XILINX DS162

73
Spartan-6 FPGA Data Sheet:
DC and Switching Characteristics
DS162 (v1.9) August 23, 2010
Advance Product Specification
Spartan-6 FPGA Electrical Characteristics
Spartan®-6 LX FPGAs are available in -3, -2, and -1L speed grades, with -3 having the highest performance. Spartan-6 LXT
FPGAs are available in -4, -3, and -2 speed grades, with -4 having the highest performance. Spartan-6 FPGA DC and AC
characteristics are specified for both commercial and industrial grades. Except the operating temperature range or unless
otherwise noted, all the DC and AC electrical parameters are the same for a particular speed grade (that is, the timing
characteristics of a -2 speed grade industrial device are the same as for a -2 speed grade commercial device). However, only
selected speed grades and/or devices might be available in the industrial range. The -3N speed grade, designated for
Spartan-6 devices that do not support memory controller block (MCB) functionality, has identical timing characteristics to the
-3 speed grade.
All supply voltage and junction temperature specifications are representative of worst-case conditions. The parameters
included are common to popular designs and typical applications.
This Spartan-6 FPGA data sheet, part of an overall set of documentation on the Spartan-6 family of FPGAs, is available on
the Xilinx website.
All specifications are subject to change without notice.
Spartan-6 FPGA DC Characteristics
Table 1: Absolute Maximum Ratings (1)
Symbol
Description
Units
VCCINT
Internal supply voltage relative to GND
–0.5 to 1.32
V
VCCAUX
Auxiliary supply voltage relative to GND
–0.5 to 3.75
V
VCCO
Output drivers supply voltage relative to GND
–0.5 to 3.75
V
VBATT
Key memory battery backup supply (XC6SLX75, XC6SLX75T, XC6SLX100, XC6SLX100T,
XC6SLX150, and XC6SLX150T only)
–0.5 to 4.05
V
VFS
External voltage supply for eFUSE programming (XC6SLX75, XC6SLX75T, XC6SLX100,
XC6SLX100T, XC6SLX150, and XC6SLX150T only)(2)
–0.5 to 3.75
V
VREF
Input reference voltage
–0.5 to 3.75
V
–0.60 to 4.10
V
–0.75 to 4.25
V
–0.75 to 4.40
V
–0.60 to 3.95
V
–0.75 to 4.15
V
–0.75 to 4.40
V
DC
Commercial 20% overshoot duration
8% overshoot
All user and dedicated
I/Os
DC
Industrial
VIN and VTS(3)
duration(5)
I/O input voltage or voltage
applied to 3-state output,
relative to GND(4)
20% overshoot duration
4% overshoot
duration(5)
20% overshoot duration
–0.75 to 4.35
V
–0.75 to 4.40
V
10% overshoot duration
–0.75 to 4.45
V
20% overshoot duration
–0.75 to 4.25
V
10% overshoot duration
–0.75 to 4.35
V
8% overshoot duration(5)
–0.75 to 4.40
V
Commercial 15% overshoot duration(5)
Restricted to
maximum of 100 user
I/Os
Industrial
© 2009–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other
countries. All other trademarks are the property of their respective owners.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
1
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 1: Absolute Maximum Ratings (1) (Cont’d)
Symbol
TSTG
Description
Units
Storage temperature (ambient)
–65 to 150
°C
Maximum soldering
(TQG144, CPG196, CSG225, CSG324, CSG484, and FTG256)
+260
°C
Maximum soldering temperature(6) (Pb-free packages: FGG484, FGG676, and FGG900)
+250
°C
Maximum soldering temperature(6) (Pb packages: FT256, FG484, FG676, and FG900)
+220
°C
Maximum junction temperature(6)
+125
°C
temperature(6)
TSOL
Tj
Notes:
1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to
Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.
2. When programming eFUSE, VFS ≤ VCCAUX. Requires up to 40 mA current. For read mode, VFS can be between GND and 3.45 V.
3. I/O absolute maximum limit applied to DC and AC signals. Overshoot duration is the percentage of a data period that the I/O is stressed beyond
3.45V.
4. For I/O operation, refer to the Spartan-6 FPGA SelectIO Resources User Guide.
5. Maximum percent overshoot duration to meet 4.40V maximum.
6. For soldering guidelines and thermal considerations, see Spartan-6 FPGA Packaging and Pinout Specification.
Table 2: Recommended Operating Conditions(1)
Symbol
Description
Internal supply voltage relative to GND,
Tj = 0°C to +85°C
VCCINT
VCCAUX(3)
VCCO(4)(5)(6)
VIN
Internal supply voltage relative to GND,
Tj = –40°C to +100°C
Temperature
Range
Speed
Grade
Memory
Controller
Block(2)
Performance
Min
Typ
Max
Units
Commercial
-4, -3, -2
standard
1.14
1.2
1.26
V
extended
1.2
1.23
1.26
V
-1L
standard
0.95
1.0
1.05
V
-3, -2
standard
1.14
1.2
1.26
V
extended
1.2
1.23
1.26
V
-1L
standard
0.95
1.0
1.05
V
2.375
2.5
2.625
V
3.15
3.3
3.45
V
1.1
–
3.45
V
–0.5
–
4.0
V
–0.5
–
–0.5
–
VCCO +
0.5
V
–0.5
–
VCCO +
0.5
V
Industrial
Auxiliary supply voltage relative to GND
when VCCAUX = 2.5V, Tj = 0°C to +85°C
Commercial
-4, -3, -2,
-1L
N/A
Auxiliary supply voltage relative to GND
when VCCAUX = 2.5V, Tj = –40°C to
+100°C
Industrial
-3, -2, -1L
N/A
Auxiliary supply voltage relative to GND
when VCCAUX = 3.3V, Tj = 0°C to +85°C
Commercial
-4, -3, -2,
-1L
N/A
Auxiliary supply voltage relative to GND
when VCCAUX = 3.3V, Tj = –40°C to
+100°C
Industrial
-3, -2, -1L
N/A
Output supply voltage relative to GND,
Tj = 0°C to +85°C
Commercial
-4, -3, -2,
-1L
N/A
Output supply voltage relative to GND,
Tj = –40°C to +100°C
Industrial
-3, -2, -1L
N/A
Input voltage relative to GND, Tj = 0°C to
+85°C
Commercial
-4, -3, -2,
-1L
N/A
Input voltage relative to GND, Tj = –40°C
to +100°C
Industrial
-3, -2, -1L
N/A
Input voltage relative to GND, PCI I/O
standard, Tj = 0°C to +85°C
Commercial
-4, -3, -2,
-1L(7)
N/A
Input voltage relative to GND, PCI I/O
standard, Tj = –40°C to +100°C
Industrial
-3, -2,
-1L(7)
N/A
DS162 (v1.9) August 23, 2010
Advance Product Specification
3.95
V
www.xilinx.com
2
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 2: Recommended Operating Conditions(1) (Cont’d)
Symbol
Description
IIN(8)
Maximum current through pin using PCI
I/O standard when forward biasing the
clamp diode.
VBATT(9)
Battery voltage relative to GND, Tj = 0°C
to +85°C
(XC6SLX75, XC6SLX75T, XC6SLX100,
XC6SLX100T, XC6SLX150, and
XC6SLX150T only)
Battery voltage relative to GND,
Tj = –40°C to +100°C (XC6SLX75,
XC6SLX75T, XC6SLX100,
XC6SLX100T, XC6SLX150, and
XC6SLX150T only)
Memory
Controller
Block(2)
Performance
Temperature
Range
Speed
Grade
Commercial
-4, -3, -2,
-1L(7)
N/A
Industrial
-3, -2,
-1L(7)
N/A
Commercial
-4, -3, -2,
-1L
N/A
Industrial
-3, -2, -1L
N/A
Min
Typ
Max
Units
–
–
10
mA
–
–
10
mA
1.0
–
3.6
V
Notes:
1. All voltages are relative to ground.
2. See Interface Performances for Memory Interfaces in Table 25. The standard VCCINT voltage range applies to designs not using an MCB, or to devices
that do not support MCB functionality including the LX4 device, the TQG144 and CPG196 packages, and the -3N speed grade.
3. Recommended maximum voltage droop for VCCAUX is 10 mV/ms.
4. Configuration data is retained even if VCCO drops to 0V.
5. Includes VCCO of 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.
6. For PCI systems, the transmitter and receiver should have common supplies for VCCO.
7. Devices with a -1L speed grade do not support Xilinx PCI IP.
8. Do not exceed a total of 100 mA per bank.
9. VBATT is required to maintain the battery backed RAM (BBR) AES key when VCCAUX is not applied. Once VCCAUX is applied, VBATT can be
unconnected. When BBR is not used, Xilinx recommends connecting to VCCAUX or GND. However, VBATT can be unconnected.
Table 3: eFUSE Programming Conditions(1)
Symbol
VFS(2)
IFS
VCCAUX
Description
External voltage supply
VFS supply current
Auxiliary supply voltage relative to GND
RFUSE(3) External resistor from RFUSE pin to GND
VCCINT
tj
Internal supply voltage relative to GND
Temperature range
Min
Typ
Max
Units
3.2
3.3
3.4
V
–
–
40
mA
3.2
3.3
3.45
V
1129
1140
1151
Ω
1.14
1.2
1.26
V
15
–
85
°C
Notes:
1. These specifications apply during programming of the eFUSE AES key. Programming is only supported through JTAG.The AES key is only supported
in the following devices: XC6SLX75, XC6SLX75T, XC6SLX100, XC6SLX100T, XC6SLX150, and XC6SLX150T.
2. When programming eFUSE, VFS must be less than or equal to VCCAUX. When not programming or when eFUSE is not used, Xilinx recommends
connecting VFS to GND. However, VFS can be between GND and 3.45 V.
3. An RFUSE resistor is required when programming the eFUSE AES key. When not programming or when eFUSE is not used, Xilinx recommends
connecting the RFUSE pin to VCCAUX or GND. However, RFUSE can be unconnected.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
3
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 4: DC Characteristics Over Recommended Operating Conditions
Symbol
Description
Min
Typ
Max
Units
VDRINT
Data retention VCCINT voltage (below which configuration data might be lost)
0.8
–
–
V
VDRAUX
Data retention VCCAUX voltage (below which configuration data might be lost)
2.0
–
–
V
VREF leakage current per pin
–10
–
10
µA
Input or output leakage current per pin (sample-tested)
–10
–
10
µA
–20
–
20
µA
IREF
IL
IHS
Leakage current on pins during hot
socketing with FPGA unpowered
CIN
Die input capacitance at the pad
IRPU
IRPD
IBATT(1)
RDT
(2)
RIN_TERM(4)
All pins except PROGRAM_B, DONE, and
JTAG pins when HSWAPEN = 1
PROGRAM_B, DONE, and JTAG pins, or other
pins when HSWAPEN = 0
IHS + IRPU
µA
–
–
10
pF
Pad pull-up (when selected) @ VIN = 0V, VCCO = 3.3V or VCCAUX = 3.3V
200
–
500
µA
Pad pull-up (when selected) @ VIN = 0V, VCCO = 2.5V or VCCAUX = 2.5V
120
–
350
µA
Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.8V
60
–
200
µA
Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.5V
40
–
150
µA
Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.2V
12
–
100
µA
Pad pull-down (when selected) @ VIN = VCCO, VCCAUX = 3.3V
200
–
550
µA
Pad pull-down (when selected) @ VIN = VCCO, VCCAUX = 2.5V
140
–
400
µA
Battery supply current
–
–
150
nA
Resistance of optional input differential termination circuit, VCCAUX = 3.3V
–
100
–
Ω
Thevenin equivalent resistance of programmable input termination
(UNTUNED_SPLIT_25)
23
25
55
Ω
Thevenin equivalent resistance of programmable input termination
(UNTUNED_SPLIT_50)
39
50
72
Ω
Thevenin equivalent resistance of programmable input termination
(UNTUNED_SPLIT_75)
56
75
109
Ω
Notes:
1. Maximum value specified for worst case process at 25°C. XC6SLX75, XC6SLX75T, XC6SLX100, XC6SLX100T, XC6SLX150, and XC6SLX150T
only.
2. Refer to IBIS models for RDT variation and for values at VCCAUX = 2.5V.
3. VCCO2 is not required for data retention. The minimum VCCO2 for power-on reset and configuration is 1.65V.
4. Termination resistance to a VCCO/2 level.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
4
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Quiescent Current
Typical values for quiescent supply current are specified at nominal voltage, 25°C junction temperatures (Tj). Quiescent
supply current is specified by speed grade for Spartan-6 devices. Xilinx recommends analyzing static power consumption
using the XPOWER™ Estimator (XPE) tool (download at http://www.xilinx.com/power) for conditions other than those
specified in Table 5.
Table 5: Typical Quiescent Supply Current
Symbol
ICCINTQ
ICCOQ
Description
Quiescent VCCINT supply current
Quiescent VCCO supply current
DS162 (v1.9) August 23, 2010
Advance Product Specification
Device
Speed Grade
Units
-4
-3
-2
-1L
XC6SLX4
N/A
4.0
4.0
2.4
mA
XC6SLX9
N/A
4.0
4.0
2.4
mA
XC6SLX16
N/A
6.0
6.0
4.0
mA
XC6SLX25
N/A
11.0
11.0
6.6
mA
XC6SLX25T
11.0
11.0
11.0
N/A
mA
XC6SLX45
N/A
15.0
15.0
9.0
mA
XC6SLX45T
15.0
15.0
15.0
N/A
mA
XC6SLX75
N/A
29.0
29.0
17.4
mA
XC6SLX75T
29.0
29.0
29.0
N/A
mA
XC6SLX100
N/A
36.0
36.0
21.6
mA
XC6SLX100T
36.0
36.0
36.0
N/A
mA
XC6SLX150
N/A
51.0
51.0
31.0
mA
XC6SLX150T
51.0
51.0
51.0
N/A
mA
XC6SLX4
N/A
1.0
1.0
1.0
mA
XC6SLX9
N/A
1.0
1.0
1.0
mA
XC6SLX16
N/A
2.0
2.0
2.0
mA
XC6SLX25
N/A
2.0
2.0
2.0
mA
XC6SLX25T
2.0
2.0
2.0
N/A
mA
XC6SLX45
N/A
3.0
3.0
3.0
mA
XC6SLX45T
3.0
3.0
3.0
N/A
mA
XC6SLX75
N/A
4.0
4.0
4.0
mA
XC6SLX75T
4.0
4.0
4.0
N/A
mA
XC6SLX100
N/A
5.0
5.0
5.0
mA
XC6SLX100T
5.0
5.0
5.0
N/A
mA
XC6SLX150
N/A
7.0
7.0
7.0
mA
XC6SLX150T
7.0
7.0
7.0
N/A
mA
www.xilinx.com
5
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 5: Typical Quiescent Supply Current (Cont’d)
Symbol
ICCAUXQ
Description
Speed Grade
Device
Quiescent VCCAUX supply current
Units
-4
-3
-2
-1L
XC6SLX4
N/A
2.5
2.5
2.5
mA
XC6SLX9
N/A
2.5
2.5
2.5
mA
XC6SLX16
N/A
3.0
3.0
3.0
mA
XC6SLX25
N/A
4.0
4.0
4.0
mA
XC6SLX25T
4.0
4.0
4.0
N/A
mA
XC6SLX45
N/A
5.0
5.0
5.0
mA
XC6SLX45T
5.0
5.0
5.0
N/A
mA
XC6SLX75
N/A
7.0
7.0
7.0
mA
XC6SLX75T
7.0
7.0
7.0
N/A
mA
XC6SLX100
N/A
9.0
9.0
9.0
mA
XC6SLX100T
9.0
9.0
9.0
N/A
mA
XC6SLX150
N/A
12.0
12.0
12.0
mA
XC6SLX150T
12.0
12.0
12.0
N/A
mA
Notes:
1. Typical values are specified at nominal voltage, 25°C junction temperatures (Tj). Industrial (I) grade devices have the same typical values as
commercial (C) grade devices at 25°C, but higher values at 100°C. Use the XPE tool to calculate 100°C values.
2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.
3. If differential signaling is used, more accurate quiescent current estimates can be obtained by using the XPOWER Estimator (XPE) or XPOWER
Analyzer (XPA) tools.
Table 6: Power Supply Ramp Time
Symbol
VCCINTR
Description
Speed Grade
Ramp Time
Units
-4, -3, -2
0.20 to 50.0
ms
-1L
0.20 to 40.0
ms
Internal supply voltage ramp time
VCCO2(1)
Output drivers bank 2 supply voltage ramp time
All
0.20 to 50.0
ms
VCCAUXR
Auxiliary supply voltage ramp time
All
0.20 to 50.0
ms
Notes:
1. The minimum VCCO2 for power-on reset and configuration is 1.65V
2. Spartan-6 FPGAs require a certain amount of supply current during power-on to insure proper device initialization. The actual current consumed
depends on the power-on ramp rate of the power supply. Use the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools to estimate current
drain on these supplies. Spartan-6 devices do not have a required power-on sequence.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
6
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
SelectIO™ Interface DC Input and Output Levels
Table 7: Recommended Operating Conditions for User I/Os Using Single-Ended Standards
I/O Standard
VCCO for Drivers(1)
VREF for Inputs
V, Min
V, Nom
V, Max
V, Min
V, Nom
V, Max
LVTTL
3.0
3.3
3.45
LVCMOS33
3.0
3.3
3.45
LVCMOS25
2.3
2.5
2.7
LVCMOS18
1.65
1.8
1.95
LVCMOS18_JEDEC
1.65
1.8
1.95
LVCMOS15
1.4
1.5
1.6
LVCMOS15_JEDEC
1.4
1.5
1.6
LVCMOS12
1.1
1.2
1.3
LVCMOS12_JEDEC
1.1
1.2
1.3
PCI33_3(2)
3.0
3.3
3.45
PCI66_3(2)
3.0
3.3
3.45
I2C
2.7
3.0
3.45
SMBUS
2.7
3.0
3.45
SDIO
3.0
3.3
3.45
MOBILE_DDR
1.7
1.8
1.9
HSTL_I
1.4
1.5
1.6
0.68
0.75
0.9
HSTL_II
1.4
1.5
1.6
0.68
0.75
0.9
HSTL_III
1.4
1.5
1.6
–
0.9
–
HSTL_I_18
1.7
1.8
1.9
0.8
0.9
1.1
HSTL_II_18
1.7
1.8
1.9
–
0.9
–
HSTL_III_18
1.7
1.8
1.9
–
1.1
–
SSTL3_I
3.0
3.3
3.45
1.3
1.5
1.7
SSTL3_II
3.0
3.3
3.45
1.3
1.5
1.7
SSTL2_I
2.3
2.5
2.7
1.13
1.25
1.38
SSTL2_II
2.3
2.5
2.7
1.13
1.25
1.38
SSTL18_I
1.7
1.8
1.9
0.833
0.9
0.969
SSTL18_II
1.7
1.8
1.9
0.833
0.9
0.969
SSTL15_II
1.425
1.5
1.575
0.69
0.75
0.81
VREF is not used for these I/O standards
Notes:
1.
2.
VCCO range required when using I/O standard for an output. Also required for PCI33_3, LVCMOS18_JEDEC, LVCMOS15_JEDEC, and
LVCMOS12_JEDEC inputs, and for LVCMOS25 inputs when VCCAUX = 3.3V.
For PCI systems, the transmitter and receiver should have common supplies for VCCO.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
7
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 8: Recommended Operating Conditions for User I/Os Using Differential Signal Standards
VCCO for Drivers
I/O Standard
V, Min
V, Nom
V, Max
LVDS_33
3.0
3.3
3.45
LVDS_25
2.25
2.5
2.75
BLVDS_25
2.25
2.5
2.75
MINI_LVDS_33
3.0
3.3
3.45
MINI_LVDS_25
2.25
2.5
2.75
LVPECL_33(1)
N/A–Inputs Only
LVPECL_25
N/A–Inputs Only
RSDS_33
3.0
3.3
3.45
RSDS_25
2.25
2.5
2.75
TMDS_33(1)
3.14
3.3
3.45
PPDS_33
3.0
3.3
3.45
PPDS_25
2.25
2.5
2.75
DISPLAY_PORT
2.3
2.5
2.7
DIFF_MOBILE_DDR
1.7
1.8
1.9
DIFF_HSTL_I
1.4
1.5
1.6
DIFF_HSTL_II
1.4
1.5
1.6
DIFF_HSTL_III
1.4
1.5
1.6
DIFF_HSTL_I_18
1.7
1.8
1.9
DIFF_HSTL_II_18
1.7
1.8
1.9
DIFF_HSTL_III_18
1.7
1.8
1.9
DIFF_SSTL3_I
3.0
3.3
3.45
DIFF_SSTL3_II
3.0
3.3
3.45
DIFF_SSTL2_I
2.3
2.5
2.7
DIFF_SSTL2_II
2.3
2.5
2.7
DIFF_SSTL18_I
1.7
1.8
1.9
DIFF_SSTL18_II
1.7
1.8
1.9
DIFF_SSTL15_II
1.425
1.5
1.575
Notes:
1.
LVPECL_33 and TMDS_33 inputs require VCCAUX = 3.3V nominal.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
8
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
In Table 9 and Table 10, values for VIL and VIH are recommended input voltages. Values for IOL and IOH are guaranteed over
the recommended operating conditions at the VOL and VOH test points. Only selected standards are tested. These are
chosen to ensure that all standards meet their specifications. The selected standards are tested at a minimum VCCO with the
respective VOL and VOH voltage levels shown. Other standards are sample tested.
Table 9: Single-Ended I/O Standard DC Input and Output Levels
I/O Standard
VIH
VIL
VOL
VOH
IOL
IOH
V, Min
V, Max
V, Min
V, Max
V, Max
V, Min
mA
mA
LVTTL
–0.5
0.8
2.0
4.1
0.4
2.4
Note(2)
Note(2)
LVCMOS33
–0.5
0.8
2.0
4.1
0.4
VCCO – 0.4
Note(2)
Note(2)
LVCMOS25
–0.5
0.7
1.7
4.1
0.4
VCCO – 0.4
Note(2)
Note(2)
LVCMOS18
–0.5
0.38
0.8
4.1
0.45
VCCO – 0.45
Note(2)
Note(2)
LVCMOS18 (-1L)
–0.5
0.33
0.71
4.1
0.45
VCCO – 0.45
Note(2)
Note(2)
LVCMOS18_JEDEC
–0.5
35% VCCO
65% VCCO
4.1
0.45
VCCO – 0.45
Note(2)
Note(2)
LVCMOS15
–0.5
0.38
0.8
4.1
25% VCCO
75% VCCO
Note(3)
Note(3)
LVCMOS15 (-1L)
–0.5
0.33
0.71
4.1
25% VCCO
75% VCCO
Note(3)
Note(3)
LVCMOS15_JEDEC
–0.5
35% VCCO
65% VCCO
4.1
25% VCCO
75% VCCO
Note(3)
Note(3)
LVCMOS12
–0.5
0.38
0.8
4.1
0.4
VCCO – 0.4
Note(4)
Note(4)
LVCMOS12 (-1L)
–0.5
0.33
0.71
4.1
0.4
VCCO – 0.4
Note(4)
Note(4)
LVCMOS12_JEDEC
–0.5
35% VCCO
65% VCCO
4.1
0.4
VCCO – 0.4
Note(4)
Note(4)
PCI33_3
–0.5
30% VCCO
50% VCCO
VCCO + 0.5
10% VCCO
90% VCCO
1.5
–0.5
PCI66_3
–0.5
30% VCCO
50% VCCO
VCCO + 0.5
10% VCCO
90% VCCO
1.5
–0.5
I2C
–0.5
25% VCCO
70% VCCO
4.1
20% VCCO
–
3
–
SMBUS
–0.5
0.8
2.1
4.1
0.4
–
4
–
SDIO
–0.5
12.5% VCCO
75% VCCO
4.1
12.5% VCCO
75% VCCO
0.1
–0.1
MOBILE_DDR
–0.5
20% VCCO
80% VCCO
4.1
10% VCCO
90% VCCO
0.1
–0.1
HSTL_I
–0.5
VREF – 0.1
VREF + 0.1
4.1
0.4
VCCO – 0.4
8
–8
HSTL_II
–0.5
VREF – 0.1
VREF + 0.1
4.1
0.4
VCCO – 0.4
16
–16
HSTL_III
–0.5
VREF – 0.1
VREF + 0.1
4.1
0.4
VCCO – 0.4
24
–8
HSTL_I_18
–0.5
VREF – 0.1
VREF + 0.1
4.1
0.4
VCCO – 0.4
11
–11
HSTL_II_18
–0.5
VREF – 0.1
VREF + 0.1
4.1
0.4
VCCO – 0.4
22
–22
HSTL_III_18
–0.5
VREF – 0.1
VREF + 0.1
4.1
0.4
VCCO – 0.4
30
–11
SSTL3_I
–0.5
VREF – 0.2
VREF + 0.2
4.1
VTT – 0.6
VTT + 0.6
8
–8
SSTL3_II
–0.5
VREF – 0.2
VREF + 0.2
4.1
VTT – 0.8
VTT + 0.8
16
–16
SSTL2_I
–0.5
VREF – 0.15
VREF + 0.15
4.1
VTT – 0.61
VTT + 0.61
8.1
–8.1
SSTL2_II
–0.5
VREF – 0.15
VREF + 0.15
4.1
VTT – 0.81
VTT + 0.81
16.2
–16.2
SSTL18_I
–0.5
VREF – 0.125
VREF + 0.125
4.1
VTT – 0.47
VTT + 0.47
6.7
–6.7
SSTL18_II
–0.5
VREF – 0.125
VREF + 0.125
4.1
VTT – 0.60
VTT + 0.60
13.4
–13.4
SSTL15_II
–0.5
VREF – 0.1
VREF + 0.1
4.1
VTT – 0.4
VTT + 0.4
13.4
–13.4
Notes:
1. Tested according to relevant specifications.
2. Using drive strengths of 2, 4, 6, 8, 12, 16, or 24 mA.
3. Using drive strengths of 2, 4, 6, 8, 12, or 16 mA.
4. Using drive strengths of 2, 4, 6, 8, or 12 mA.
5. For more information, refer to the Spartan-6 FPGA SelectIO Resources User Guide.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
9
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 10: Differential I/O Standard DC Input and Output Levels
VID
VICM
VOD
VOCM
VOH
VOL
mV,
Min
mV,
Max
V, Min
V, Max
mV, Min
mV,
Max
V, Min
V, Max
V, Min
V, Max
LVDS_33
100
600
0.3
2.35
247
454
1.125
1.375
–
–
LVDS_25
100
600
0.3
2.35
247
454
1.125
1.375
–
–
BLVDS_25
100
–
0.3
2.35
240
460
Typical 50% VCCO
–
–
MINI_LVDS_33
200
600
0.3
1.95
300
600
1.0
1.4
–
–
MINI_LVDS_25
200
600
0.3
1.95
300
600
1.0
1.4
–
–
LVPECL_33
100
1000
0.3
2.8(1)
Inputs only
LVPECL_25
100
1000
0.3
1.95
Inputs only
RSDS_33
100
–
0.3
1.5
100
400
1.0
1.4
–
–
RSDS_25
100
–
0.3
1.5
100
400
1.0
1.4
–
–
TMDS_33
150
1200
2.7
3.23(1)
400
800
–
–
PPDS_33
100
400
0.2
2.3
100
400
0.5
1.4
–
–
PPDS_25
100
400
0.2
2.3
100
400
0.5
1.4
–
–
DISPLAY_PORT
190
1260
0.3
2.35
–
–
Typical 50% VCCO
–
–
DIFF_MOBILE_DDR
100
–
0.78
1.02
–
–
–
–
90% VCCO 10% VCCO
DIFF_HSTL_I
100
–
0.68
0.9
–
–
–
–
VCCO – 0.4
0.4
DIFF_HSTL_II
100
–
0.68
0.9
–
–
–
–
VCCO – 0.4
0.4
DIFF_HSTL_III
100
–
0.68
0.9
–
–
–
–
VCCO – 0.4
0.4
DIFF_HSTL_I_18
100
–
0.8
1.1
–
–
–
–
VCCO – 0.4
0.4
DIFF_HSTL_II_18
100
–
0.8
1.1
–
–
–
–
VCCO – 0.4
0.4
DIFF_HSTL_III_18
100
–
0.8
1.1
–
–
–
–
VCCO – 0.4
0.4
DIFF_SSTL3_I
100
–
1.0
1.9
–
–
–
–
VTT + 0.6
VTT – 0.6
DIFF_SSTL3_II
100
–
1.0
1.9
–
–
–
–
VTT + 0.8
VTT – 0.8
DIFF_SSTL2_I
100
–
1.0
1.5
–
–
–
–
VTT + 0.61 VTT – 0.61
DIFF_SSTL2_II
100
–
1.0
1.5
–
–
–
–
VTT + 0.81 VTT – 0.81
DIFF_SSTL18_I
100
–
0.7
1.1
–
–
–
–
VTT + 0.47 VTT – 0.47
DIFF_SSTL18_II
100
–
0.7
1.1
–
–
–
–
VTT + 0.6
VTT – 0.6
DIFF_SSTL15_II
100
–
0.55
0.95
–
–
–
–
VTT + 0.4
VTT – 0.4
I/O Standard
VCCO – 0.405 VCCO – 0.190
Notes:
1.
LVPECL_33 and TMDS_33 maximum VICM is the lower of V (maximum) or VCCAUX – (VID/2)
eFUSE Read Endurance
Table 11 lists the minimum guaranteed number of read cycle operations for Device DNA and for the AES eFUSE key. For
more information, see the Spartan-6 FPGA Configuration User Guide.
Table 11: eFUSE Read Endurance
Symbol
Description
DNA_CYCLES
Number of DNA_PORT READ operations or JTAG ISC_DNA read
command operations. Unaffected by SHIFT operations.
AES_CYCLES
Number of JTAG FUSE_KEY or FUSE_CNTL read command
operations. Unaffected by SHIFT operations.
DS162 (v1.9) August 23, 2010
Advance Product Specification
Speed Grade
-4
-3
-2
30,000,000
30,000,000
-1L
Units
(Min)
Read
Cycles
Read
Cycles
www.xilinx.com
10
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
GTP Transceiver Specifications
GTP transceivers are available in the Spartan-6 LXT family of devices. See DS160: Spartan-6 Family Overview for more
information.
GTP Transceiver DC Characteristics
Table 12: Absolute Maximum Ratings for GTP Transceivers(1)
Symbol
MIn
Max
Units
Analog supply voltage for the GTP transmitter and receiver circuits relative to
GND
–0.5
1.32
V
MGTAVTTTX
Analog supply voltage for the GTP transmitter termination circuit relative to GND
–0.5
1.32
V
MGTAVTTRX
Analog supply voltage for the GTP receiver termination circuit relative to GND
–0.5
1.32
V
Analog supply voltage for the GTP transmitter and receiver PLL circuits relative to
GND
–0.5
1.32
V
Analog supply voltage for the resistor calibration circuit of the GTP transceiver
bank (top or bottom)
–0.5
1.32
V
Receiver (RXP/RXN) and Transmitter (TXP/TXN) absolute input voltage
–0.5
1.32
V
Reference clock absolute input voltage
–0.5
1.32
V
MGTAVCC
MGTAVCCPLL
MGTAVTTRCAL
VIN
VMGTREFCLK
Description
Notes:
1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to
Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.
Table 13: Recommended Operating Conditions for GTP Transceivers(1)(2)(3)
Symbol
Description
Min
Typ
Max
Units
MGTAVCC
Analog supply voltage for the GTP transmitter and receiver circuits relative to GND
1.14
1.20
1.26
V
MGTAVTTTX
Analog supply voltage for the GTP transmitter termination circuit relative to GND
1.14
1.20
1.26
V
MGTAVTTRX
Analog supply voltage for the GTP receiver termination circuit relative to GND
1.14
1.20
1.26
V
Analog supply voltage for the GTP transmitter and receiver PLL circuits relative to
GND
1.14
1.20
1.26
V
Analog supply voltage for the resistor calibration circuit of the GTP transceiver
bank (top or bottom)
1.14
1.20
1.26
V
MGTAVCCPLL
MGTAVTTRCAL
Notes:
1. Each voltage listed requires the filter circuit described in Spartan-6 FPGA GTP Transceivers User Guide.
2. Voltages are specified for the temperature range of Tj = –40°C to +100°C.
3. The voltage level of MGTAVCCPLL must not exceed the voltage level of MGTAVCC +10mV. The voltage level of MGTAVCC must not exceed the
voltage level of MGTAVCCPLL.
Table 14: GTP Transceiver Current Supply (per Lane)
Symbol
IMGTAVCC
Description
Typ(1)
GTP transceiver internal analog supply current
40.4
IMGTAVTTTX
GTP transmitter termination supply current
27.4
IMGTAVTTRX
GTP receiver termination supply current
13.6
IMGTAVCCPLL
GTP transmitter and receiver PLL supply current
28.7
RMGTRREF
Precision reference resistor for internal calibration termination
Max
Units
mA
Note 2
50.0 ± 1%
tolerance
mA
mA
mA
Ω
Notes:
1. Typical values are specified at nominal voltage, 25°C, with a 2.5 Gb/s line rate, with a shared PLL use mode.
2. Values for currents of other transceiver configurations and conditions can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer
(XPA) tools.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
11
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 15: GTP Transceiver Quiescent Supply Current (per Lane)(1)(2)(3)(4)
Symbol
Typ(5)
Description
IMGTAVCCQ
Quiescent MGTAVCC supply current
1.7
IMGTAVTTTXQ
Quiescent MGTAVTTTX supply current
0.1
IMGTAVTTRXQ
Quiescent MGTAVTTRX supply current
1.2
IMGTAVCCPLLQ Quiescent MGTAVCCPLL supply current
Max
Units
mA
mA
Note 2
mA
1.0
mA
Notes:
1. Device powered and unconfigured.
2. Currents for conditions other than values specified in this table can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA)
tools.
3. GTP transceiver quiescent supply current for an entire device can be calculated by multiplying the values in this table by the number of available GTP
transceivers.
4. Does not include power-up MGTAVTTRCAL supply current during device configuration.
5. Typical values are specified at nominal voltage, 25°C.
GTP Transceiver DC Input and Output Levels
Table 16 summarizes the DC output specifications of the GTP transceivers in Spartan-6 FPGAs. Figure 1 shows the singleended output voltage swing. Figure 2 shows the peak-to-peak differential output voltage.
Consult UG386: Spartan-6 FPGA GTP Transceivers User Guide for further details.
Table 16: GTP Transceiver DC Specifications
Symbol
DVPPIN
VIN
VCMIN
DVPPOUT
VSEOUT
VCMOUTDC
RIN
ROUT
TOSKEW
CEXT
DC Parameter
Conditions
Min
Typ
Max
Units
Differential peak-to-peak input
voltage
External AC coupled
140
–
2000
mV
Absolute input voltage
DC coupled
MGTAVTTRX = 1.2V
–400
–
MGTAVTTRX
mV
Common mode input voltage
DC coupled
MGTAVTTRX = 1.2V
–
3/4
MGTAVTTRX
–
mV
Differential peak-to-peak output Transmitter output swing is set
voltage(1)
to maximum setting
–
–
1000
mV
Single-ended output voltage swing(1)
–
–
500
mV
Common mode output voltage
Equation based
MGTAVTTTX – VSEOUT/2
mV
Differential input resistance
80
100
130
Ω
Differential output resistance
80
100
130
Ω
–
–
15
ps
75
100
200
nF
Transmitter output skew
Recommended external AC coupling
capacitor(2)
Notes:
1. The output swing and preemphasis levels are programmable using the attributes discussed in the Spartan-6 FPGA GTP Transceivers User Guide
and can result in values lower than reported in this table.
2. Other values can be used as appropriate to conform to specific protocols and standards.
X-Ref Target - Figure 1
+V
P
Single-Ended
Voltage
N
0
ds162_01_112009
Figure 1: Single-Ended Peak-to-Peak Voltage
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
12
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
X-Ref Target - Figure 2
+V
Differential
Voltage
0
–V
P–N
ds162_02_112009
Figure 2: Differential Peak-to-Peak Voltage
Table 17 summarizes the DC specifications of the clock input of the GTP transceiver. Consult the Spartan-6 FPGA GTP
Transceivers User Guide for further details.
Table 17: GTP Transceiver Clock DC Input Level Specification
Symbol
VIDIFF
RIN
CEXT
DC Parameter
Min
Typ
Max
Units
Differential peak-to-peak input voltage
200
800
2000
mV
Differential input resistance
80
100
120
Ω
Required external AC coupling capacitor
–
100
–
nF
GTP Transceiver Switching Characteristics
Consult the Spartan-6 FPGA GTP Transceivers User Guide for further information.
Table 18: GTP Transceiver Performance
Symbol
Description
Speed Grade
Units
-4
-3
-2
-1L
3.2
3.2
2.7
N/A
Gb/s
FGTPMAX
Maximum GTP transceiver data rate
FGTPRANGE1
GTP transceiver data rate range when
PLL_TXDIVSEL_OUT = 1
1.88 to 3.2
1.88 to 3.2
1.88 to 2.7
N/A
Gb/s
FGTPRANGE2
GTP transceiver data rate range when
PLL_TXDIVSEL_OUT = 2
0.94 to 1.62
0.94 to 1.62
0.94 to 1.62
N/A
Gb/s
FGTPRANGE3
GTP transceiver data rate range when
PLL_TXDIVSEL_OUT = 4
0.6 to 0.81
0.6 to 0.81
0.6 to 0.81
N/A
Gb/s
FGPLLMAX
Maximum PLL frequency
1.62
1.62
1.62
N/A
GHz
FGPLLMIN
Minimum PLL frequency
0.94
0.94
0.94
N/A
GHz
Table 19: GTP Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics
Symbol
FGTPDRPCLK
Speed Grade
Description
GTP transceiver DCLK (DRP clock) maximum frequency
DS162 (v1.9) August 23, 2010
Advance Product Specification
-4
-3
-2
-1L
160
125
100
N/A
Units
MHz
www.xilinx.com
13
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 20: GTP Transceiver Reference Clock Switching Characteristics
Symbol
Description
All LXT Speed Grades
Conditions
Units
Min
Typ
Max
60
–
160
MHz
FGCLK
Reference clock frequency range
TRCLK
Reference clock rise time
20% – 80%
–
200
–
ps
TFCLK
Reference clock fall time
80% – 20%
–
200
–
ps
TDCREF
Reference clock duty cycle
Transceiver PLL only
45
50
55
%
TLOCK
Clock recovery frequency acquisition
time
Initial PLL lock
–
–
1
ms
TPHASE
Clock recovery phase acquisition time Lock to data after PLL has locked to
the reference clock
–
–
200
µs
X-Ref Target - Figure 3
TRCLK
80%
20%
TFCLK
ds162_05_042109
Figure 3: Reference Clock Timing Parameters
Table 21: GTP Transceiver User Clock Switching Characteristics(1)
Symbol
Description
Conditions
Speed Grade
-4
-3
-2
-1L
Units
FTXOUT
TXOUTCLK maximum frequency
320
320
270
N/A
MHz
FRXREC
RXRECCLK maximum frequency
320
320
270
N/A
MHz
TRX
RXUSRCLK maximum frequency
320
320
270
N/A
MHz
TRX2
RXUSRCLK2 maximum frequency
1 byte interface
156.25
156.25
125
N/A
MHz
2 byte interface
160
160
125
N/A
MHz
4 byte interface
80
80
67.5
N/A
MHz
320
320
270
N/A
MHz
TTX
TXUSRCLK maximum frequency
TTX2
TXUSRCLK2 maximum frequency
1 byte interface
156.25
156.25
125
N/A
MHz
2 byte interface
160
160
125
N/A
MHz
4 byte interface
80
80
67.5
N/A
MHz
Notes:
1. Clocking must be implemented as described in the Spartan-6 FPGA GTP Transceivers User Guide.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
14
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 22: GTP Transceiver Transmitter Switching Characteristics
Symbol
Condition
Min
Typ
Max
Units
TRTX
TX Rise time
Description
20%–80%
–
140
–
ps
TFTX
TX Fall time
80%–20%
–
120
–
ps
TLLSKEW
TX lane-to-lane skew(1)
–
–
400
ps
VTXOOBVDPP
Electrical idle amplitude
–
–
20
mV
Electrical idle transition time
–
–
50
ns
–
–
0.35
UI
–
–
0.15
UI
–
–
0.33
UI
–
–
0.15
UI
–
–
0.20
UI
–
–
0.10
UI
–
–
0.20
UI
–
–
0.10
UI
–
–
0.10
UI
–
–
0.05
UI
TTXOOBTRANSITION
Jitter(2)
TJ3.125
Total
DJ3.125
Deterministic Jitter(2)
TJ2.5
3.125 Gb/s
Total Jitter(2)
DJ2.5
Deterministic
Jitter(2)
2.5 Gb/s
Jitter(2)
TJ1.62
Total
DJ1.62
Deterministic Jitter(2)
1.62 Gb/s
TJ1.25
Total Jitter(2)
1.25 Gb/s
Jitter(2)
DJ1.25
Deterministic
TJ614
Total
Jitter(2)
DJ614
Deterministic Jitter(2)
614 Mb/s
Notes:
1. Using same REFCLK input with TXENPMAPHASEALIGN enabled for up to four consecutive GTP transceiver sites.
2. Using PLL_DIVSEL_FB = 2, INTDATAWIDTH = 1. These values are NOT intended for protocol specific compliance determinations.
Table 23: GTP Transceiver Receiver Switching Characteristics
Symbol
Description
TRXELECIDLE
Time for RXELECIDLE to respond to loss or restoration of data
RXOOBVDPP
OOB detect threshold peak-to-peak
Units
–
75
–
ns
–
150
mV
–
0
ppm
–
–
150
UI
–200
–
200
ppm
PLL_RXDIVSEL_OUT = 1 –2000
CDR 2nd-order
PLL_RXDIVSEL_OUT = 2 –2000
loop enabled
PLL_RXDIVSEL_OUT = 4 –1000
–
2000
ppm
–
2000
ppm
–
1000
ppm
RXRL
Run length (CID)
Modulated @ 33 KHz
Internal AC capacitor bypassed
CDR
SJ Jitter
Max
60
Receiver spread-spectrum tracking(1)
Data/REFCLK PPM offset
tolerance
Typ
–5000
RXSST
RXPPMTOL
Min
2nd-order
loop disabled
Tolerance(2)
JT_SJ3.125
Sinusoidal Jitter(3)
3.125 Gb/s
0.4
–
–
UI
JT_SJ2.5
Sinusoidal Jitter(3)
2.5 Gb/s
0.4
–
–
UI
JT_SJ1.62
Sinusoidal
Jitter(3)
1.62 Gb/s
0.5
–
–
UI
Sinusoidal
Jitter(3)
1.25 Gb/s
0.5
–
–
UI
Sinusoidal
Jitter(3)
614 Mb/s
0.5
–
–
UI
JT_SJ1.25
JT_SJ614
SJ Jitter Tolerance with Stressed Eye(2)(5)
JT_TJSE3.125
Total Jitter with stressed eye(4)
3.125 Gb/s
0.65
–
–
UI
JT_SJSE3.125
Sinusoidal Jitter with stressed eye
3.125 Gb/s
0.1
–
–
UI
2.7 Gb/s
0.65
–
–
UI
2.7 Gb/s
0.1
–
–
UI
eye(4)
JT_TJSE2.7
Total Jitter with stressed
JT_SJSE2.7
Sinusoidal Jitter with stressed eye
Notes:
1. Using PLL_RXDIVSEL_OUT = 1, 2, and 4.
2. All jitter values are based on a Bit Error Ratio of 1e–12.
3. Using 80 MHz sinusoidal jitter only in the absence of deterministic and random jitter.
4. Composed of 0.37 UI DJ in the form of ISI and 0.18 UI RJ.
5. Measured using PRBS7 data pattern.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
15
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Endpoint Block for PCI Express Designs Switching Characteristics
The Endpoint block for PCI Express is available in the Spartan-6 LXT family. Consult the Spartan-6 FPGA Integrated
Endpoint Block for PCI Express for further information.
Table 24: Maximum Performance for PCI Express Designs
Symbol
FPCIEUSER
Speed Grade
Description
User clock maximum frequency
-4
-3
-2
-1L
62.5
62.5
62.5
N/A
Units
MHz
Performance Characteristics
This section provides the performance characteristics of some common functions and designs implemented in
Spartan-6 devices. The numbers reported here are worst-case values; they have all been fully characterized. These values
are subject to the same guidelines as the Switching Characteristics, page 17.
Table 25: Interface Performances
Speed Grade
Description
-1L
Units
-4
-3
-2
SDR LVDS transmitter or receiver (using IOB SDR register)
400
400
375
Mb/s
DDR LVDS transmitter or receiver (using IOB ODDR2/IDDR2 register)
800
800
750
Mb/s
SDR LVDS transmitter (using OSERDES2; DATA WIDTH = 2 to 8)
1080
1050
950
Mb/s
DDR LVDS transmitter (using OSERDES2; DATA WIDTH = 2 to 8)
1080
1050
950
Mb/s
SDR LVDS receiver (using ISERDES2; DATA WIDTH = 2 to 8)
1080
1050
950
Mb/s
DDR LVDS receiver (using ISERDES2; DATA WIDTH = 2 to 8)
1080
1050
950
Mb/s
Networking Applications(1)
Memory Interfaces (Implemented using the Spartan-6 FPGA Memory Controller
Block)(2)
Standard Performance (standard VCCINT)
DDR
DDR2
DDR3
LPDDR (Mobile_DDR)
Extended Performance (Requires Extended Memory Controller Block
400
400(4)
400
Mb/s
667
667(4)
625
Mb/s
667
667(4)
625
400
400(4)
400
800
800(4)
667
—
Mb/s
800
800(4)
667
—
Mb/s
—
Mb/s
Mb/s
VCCINT)(3)
DDR2
DDR3
Notes:
1.
2.
3.
4.
Refer to XAPP1064, Source-Synchronous Serialization and Deserialization (up to 1050 Mb/s).
Refer to the Spartan-6 FPGA Memory Controller User Guide
Extended Memory Controller block performance for DDR2 and DDR3 can be achieved using the extended MCB performance VCCINT range
from Table 2.
The -3N speed grade does not support a Memory Controller block.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
16
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Switching Characteristics
All values represented in this data sheet are based on these
speed specifications: v1.11 for -4, -3, and -2; and v1.04 for
-1L. Switching characteristics are specified on a per-speedgrade basis and can be designated as Advance,
Preliminary, or Production. Each designation is defined as
follows:
Advance
These specifications are based on simulations only and are
typically available soon after device design specifications
are frozen. Although speed grades with this designation are
considered relatively stable and conservative, some underreporting might still occur.
The -1L speed grade refers to the lower-power Spartan-6
devices. The -3N speed grade refers to the Spartan-6
devices that do not support MCB functionality. The -3N
speed grade and -3 speed grade switching characteristics
are identical.
Table 26 correlates the current status of each Spartan-6
device on a per speed grade basis.
Table 26: Spartan-6 Device Speed Grade Designations
Device
Speed Grade Designations
Advance
Preliminary
Production
XC6SLX4
-3, -2, -1L
Preliminary
XC6SLX9
-3, -3N,-2, -1L
These specifications are based on complete ES
(engineering sample) silicon characterization. Devices and
speed grades with this designation are intended to give a
better indication of the expected performance of production
silicon. The probability of under-reporting delays is greatly
reduced as compared to Advance data.
XC6SLX16
-1L
-3, -3N, -2
XC6SLX25
-1L
-3, -3N, -2
Production
XC6SLX75
These specifications are released once enough production
silicon of a particular device family member has been
characterized to provide full correlation between
specifications and devices over numerous production lots.
There is no under-reporting of delays, and customers
receive formal notification of any subsequent changes.
Typically, the slowest speed grades transition to Production
before faster speed grades.
XC6SLX75T
All specifications are always representative of worst-case
supply voltage and junction temperature conditions.
XC6SLX25T
XC6SLX45
-4, -3, -3N, -2
-1L
XC6SLX45T
XC6SLX100
-4, -3, -3N, -2
-1L
XC6SLX150T
-3, -3N, -2
-4, -3, -3N, -2
-1L
XC6SLX100T
XC6SLX150
-3, -3N, -2
-3, -3N, -2
-4, -3, -3N, -2
-1L
-3, -3N, -2
-4, -3, -3N, -2
Notes:
1.
Until ISE software supports the -3N speed grade option, use the
-3 speed grade option and do not use the Memory Controller
block.
Since individual family members are produced at different
times, the migration from one category to another depends
completely on the status of the fabrication process for each
device.
Testing of Switching Characteristics
All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed
below are representative values.
For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and
back-annotate to the simulation net list. Unless otherwise noted, values apply to all Spartan-6 devices.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
17
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Production Silicon and ISE Software Status
In some cases, a particular family member (and speed grade) is released to production before a speed specification is
released with the correct label (Advance, Preliminary, Production). Any labeling discrepancies are corrected in subsequent
speed specification releases. Table 27 lists the production released Spartan-6 family member, speed grade, and the
minimum corresponding supported speed specification version and ISE® software revisions. The ISE software and speed
specifications listed are the minimum releases required for production. All subsequent releases of software and speed
specifications are valid.
Table 27: Spartan-6 Device Production Software and Speed Specification Release(1)
Device
Speed Grade Designations(2)
-4
XC6SLX4
N/A
XC6SLX9
N/A
XC6SLX16
N/A
XC6SLX25
N/A
-3
XC6SLX45T
XC6SLX75
ISE 12.1 v1.08
ISE 12.2 v1.11(3)
ISE 11.5 v1.06
ISE 12.2 v1.11(3)
N/A
N/A
ISE 12.1 v1.08
ISE 12.2 v1.11(3)
ISE 11.5 v1.07
ISE 12.2 v1.11(3)
ISE 12.1 v1.08
ISE 12.2 v1.11(3)
ISE 12.1 v1.08
N/A
ISE 12.2 v1.11(3)
N/A
ISE 12.2 v1.11(3)
N/A
ISE 12.2 v1.11(3)
N/A
ISE 12.2 v1.11(3)
XC6SLX100T
XC6SLX150
-1L
ISE 12.2 v1.11(3)
XC6SLX75T
XC6SLX100
-2
N/A
XC6SLX25T
XC6SLX45
-3N
N/A
ISE 12.2 v1.11(3)
N/A
ISE 12.2 v1.11(3)
XC6SLX150T
N/A
Notes:
1. Blank entries indicate a device and/or speed grade in advance or preliminary status.
2. As marked with an N/A, LX devices are not available with a -4 speed grade; LXT devices are not available with a -1L speed grade; LX4 devices are
not available with a -3N speed grade.
3. ISE 12.2 software with v1.11 speed specification is available using ISE 12.2 software and the 12.2 Speed Files Patch available on the Xilinx
Download Center.
IOB Pad Input/Output/3-State Switching Characteristics
Table 28 summarizes the values of standard-specific data
input delay adjustments, output delays terminating at pads
(based on standard) and 3-state delays.
TIOPI is described as the delay from IOB pad through the
input buffer to the I-pin of an IOB pad. The delay varies
depending on the capability of the SelectIO input buffer.
TIOOP is described as the delay from the O pin to the IOB
pad through the output buffer of an IOB pad. The delay
varies depending on the capability of the SelectIO output
buffer.
DS162 (v1.9) August 23, 2010
Advance Product Specification
TIOTP is described as the delay from the T pin to the IOB
pad through the output buffer of an IOB pad, when 3-state is
disabled. The delay varies depending on the SelectIO
capability of the output buffer.
Table 29 summarizes the value of TIOTPHZ. TIOTPHZ is
described as the delay from the T pin to the IOB pad
through the output buffer of an IOB pad, when 3-state is
enabled (i.e., a high impedance state).
www.xilinx.com
18
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 28: IOB Switching Characteristics
I/O Standard
TIOPI
TIOOP
TIOTP
Speed Grade
Speed Grade
Speed Grade
Units
-4
-3
-2
-1L
-4
-3
-2
-1L
-4
-3
-2
-1L
LVDS_33
1.17
1.29
1.42
1.50
1.55
1.69
1.89
2.42
1.55
1.69
1.89
2.42
ns
LVDS_25
1.01
1.13
1.26
1.39
1.65
1.79
1.99
2.47
1.65
1.79
1.99
2.47
ns
BLVDS_25
1.02
1.14
1.27
1.39
1.72
1.86
2.06
2.68
1.72
1.86
2.06
2.68
ns
MINI_LVDS_33
1.17
1.29
1.42
1.50
1.57
1.71
1.91
2.41
1.57
1.71
1.91
2.41
ns
MINI_LVDS_25
1.01
1.13
1.26
1.39
1.65
1.79
1.99
2.47
1.65
1.79
1.99
2.47
ns
LVPECL_33
1.18
1.30
1.43
1.50
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
ns
LVPECL_25
1.02
1.14
1.27
1.39
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
ns
RSDS_33 (point to point)
1.17
1.29
1.42
1.50
1.57
1.71
1.91
2.42
1.57
1.71
1.91
2.42
ns
RSDS_25 (point to point)
1.01
1.13
1.26
1.38
1.65
1.79
1.99
2.47
1.65
1.79
1.99
2.47
ns
TMDS_33
1.21
1.33
1.46
1.53
1.54
1.68
1.88
2.50
1.54
1.68
1.88
2.50
ns
PPDS_33
1.17
1.29
1.42
1.50
1.57
1.71
1.91
2.43
1.57
1.71
1.91
2.43
ns
PPDS_25
1.01
1.13
1.26
1.38
1.68
1.82
2.02
2.47
1.68
1.82
2.02
2.47
ns
1.32
1.39(1)
3.85
4.38(1)
3.85
4.38(1)
ns
3.53
3.67
3.87
4.39(1)
3.53
3.67
3.87
4.39(1)
ns
3.29
3.49
4.08
3.15
3.29
3.49
PCI33_3
1.07
1.19
3.51
3.65
3.51
3.65
PCI66_3
1.07
1.19
1.32
1.39(1)
DISPLAY_PORT
1.02
1.14
1.27
1.38
3.15
4.08
ns
I2C
1.33
1.45
1.58
1.64
11.56 11.70 11.90 12.52 11.56 11.70 11.90 12.52
ns
SMBUS
1.33
1.45
1.58
1.64
11.56 11.70 11.90 12.52 11.56 11.70 11.90 12.52
ns
SDIO
1.36
1.48
1.61
1.66
2.64
2.78
2.98
3.60
2.64
2.78
2.98
3.60
ns
MOBILE_DDR
0.94
1.06
1.19
1.25
2.35
2.49
2.69
3.31
2.35
2.49
2.69
3.31
ns
HSTL_I
0.90
1.02
1.15
1.21
1.66
1.80
2.00
2.62
1.66
1.80
2.00
2.62
ns
HSTL_II
0.91
1.03
1.16
1.22
1.72
1.86
2.06
2.68
1.72
1.86
2.06
2.68
ns
HSTL_III
0.95
1.07
1.20
1.26
1.67
1.81
2.01
2.61
1.67
1.81
2.01
2.61
ns
HSTL_I _18
0.94
1.06
1.19
1.25
1.77
1.91
2.11
2.73
1.77
1.91
2.11
2.73
ns
HSTL_II _18
0.94
1.06
1.19
1.25
1.85
1.99
2.19
2.81
1.85
1.99
2.19
2.81
ns
HSTL_III _18
0.99
1.11
1.24
1.29
1.79
1.93
2.13
2.72
1.79
1.93
2.13
2.72
ns
SSTL3_I
1.58
1.70
1.83
1.98
1.83
1.97
2.17
2.72
1.83
1.97
2.17
2.72
ns
SSTL3_II
1.58
1.70
1.83
1.98
2.01
2.15
2.35
2.94
2.01
2.15
2.35
2.94
ns
SSTL2_I
1.30
1.42
1.55
1.69
1.77
1.91
2.11
2.69
1.77
1.91
2.11
2.69
ns
SSTL2_II
1.30
1.42
1.55
1.70
1.86
2.00
2.20
2.82
1.86
2.00
2.20
2.82
ns
SSTL18_I
0.92
1.04
1.17
1.23
1.63
1.77
1.97
2.59
1.63
1.77
1.97
2.59
ns
SSTL18_II
0.92
1.04
1.17
1.23
1.66
1.80
2.00
2.62
1.66
1.80
2.00
2.62
ns
SSTL15_II
0.92
1.04
1.17
1.23
1.67
1.81
2.01
2.63
1.67
1.81
2.01
2.63
ns
DIFF_HSTL_I
0.94
1.06
1.19
1.28
1.77
1.91
2.11
2.62
1.77
1.91
2.11
2.62
ns
DIFF_HSTL_II
0.93
1.05
1.18
1.27
1.72
1.86
2.06
2.54
1.72
1.86
2.06
2.54
ns
DIFF_HSTL_III
0.93
1.05
1.18
1.28
1.69
1.83
2.03
2.53
1.69
1.83
2.03
2.53
ns
DIFF_HSTL_I_18
0.97
1.09
1.22
1.32
1.79
1.93
2.13
2.63
1.79
1.93
2.13
2.63
ns
DIFF_HSTL_II_18
0.97
1.09
1.22
1.31
1.69
1.83
2.03
2.51
1.69
1.83
2.03
2.51
ns
DIFF_HSTL_III_18
0.97
1.09
1.22
1.32
1.69
1.83
2.03
2.53
1.69
1.83
2.03
2.53
ns
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
19
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 28: IOB Switching Characteristics (Cont’d)
I/O Standard
TIOPI
TIOOP
TIOTP
Speed Grade
Speed Grade
Speed Grade
Units
-4
-3
-2
-1L
-4
-3
-2
-1L
-4
-3
-2
-1L
DIFF_SSTL3_I
1.18
1.30
1.43
1.50
1.81
1.95
2.15
2.64
1.81
1.95
2.15
2.64
ns
DIFF_SSTL3_II
1.19
1.31
1.44
1.50
1.80
1.94
2.14
2.63
1.80
1.94
2.14
2.63
ns
DIFF_SSTL2_I
1.02
1.14
1.27
1.39
1.80
1.94
2.14
2.62
1.80
1.94
2.14
2.62
ns
DIFF_SSTL2_II
1.02
1.14
1.27
1.39
1.76
1.90
2.10
2.57
1.76
1.90
2.10
2.57
ns
DIFF_SSTL18_I
0.97
1.09
1.22
1.33
1.72
1.86
2.06
2.56
1.72
1.86
2.06
2.56
ns
DIFF_SSTL18_II
0.98
1.10
1.23
1.32
1.68
1.82
2.02
2.52
1.68
1.82
2.02
2.52
ns
DIFF_SSTL15_II
0.94
1.06
1.19
1.28
1.67
1.81
2.01
2.50
1.67
1.81
2.01
2.50
ns
DIFF_MOBILE_DDR
0.97
1.09
1.22
1.33
1.75
1.89
2.09
2.57
1.75
1.89
2.09
2.57
ns
LVTTL, QUIETIO, 2 mA
1.35
1.47
1.60
1.64
5.39
5.53
5.73
6.37
5.39
5.53
5.73
6.37
ns
LVTTL, QUIETIO, 4 mA
1.35
1.47
1.60
1.64
4.29
4.43
4.63
5.22
4.29
4.43
4.63
5.22
ns
LVTTL, QUIETIO, 6 mA
1.35
1.47
1.60
1.64
3.75
3.89
4.09
4.69
3.75
3.89
4.09
4.69
ns
LVTTL, QUIETIO, 8 mA
1.35
1.47
1.60
1.64
3.23
3.37
3.57
4.20
3.23
3.37
3.57
4.20
ns
LVTTL, QUIETIO, 12 mA
1.35
1.47
1.60
1.64
3.28
3.42
3.62
4.22
3.28
3.42
3.62
4.22
ns
LVTTL, QUIETIO, 16 mA
1.35
1.47
1.60
1.64
2.94
3.08
3.28
3.92
2.94
3.08
3.28
3.92
ns
LVTTL, QUIETIO, 24 mA
1.35
1.47
1.60
1.64
2.69
2.83
3.03
3.67
2.69
2.83
3.03
3.67
ns
LVTTL, Slow, 2 mA
1.35
1.47
1.60
1.64
4.36
4.50
4.70
5.30
4.36
4.50
4.70
5.30
ns
LVTTL, Slow, 4 mA
1.35
1.47
1.60
1.64
3.17
3.31
3.51
4.16
3.17
3.31
3.51
4.16
ns
LVTTL, Slow, 6 mA
1.35
1.47
1.60
1.64
2.76
2.90
3.10
3.75
2.76
2.90
3.10
3.75
ns
LVTTL, Slow, 8 mA
1.35
1.47
1.60
1.64
2.59
2.73
2.93
3.55
2.59
2.73
2.93
3.55
ns
LVTTL, Slow, 12 mA
1.35
1.47
1.60
1.64
2.58
2.72
2.92
3.54
2.58
2.72
2.92
3.54
ns
LVTTL, Slow, 16 mA
1.35
1.47
1.60
1.64
2.39
2.53
2.73
3.40
2.39
2.53
2.73
3.40
ns
LVTTL, Slow, 24 mA
1.35
1.47
1.60
1.64
2.28
2.42
2.62
3.24
2.28
2.42
2.62
3.24
ns
LVTTL, Fast, 2 mA
1.35
1.47
1.60
1.64
3.78
3.92
4.12
4.74
3.78
3.92
4.12
4.74
ns
LVTTL, Fast, 4 mA
1.35
1.47
1.60
1.64
2.49
2.63
2.83
3.45
2.49
2.63
2.83
3.45
ns
LVTTL, Fast, 6 mA
1.35
1.47
1.60
1.64
2.44
2.58
2.78
3.40
2.44
2.58
2.78
3.40
ns
LVTTL, Fast, 8 mA
1.35
1.47
1.60
1.64
2.32
2.46
2.66
3.28
2.32
2.46
2.66
3.28
ns
LVTTL, Fast, 12 mA
1.35
1.47
1.60
1.64
1.83
1.97
2.17
2.79
1.83
1.97
2.17
2.79
ns
LVTTL, Fast, 16 mA
1.35
1.47
1.60
1.64
1.83
1.97
2.17
2.79
1.83
1.97
2.17
2.79
ns
LVTTL, Fast, 24 mA
1.35
1.47
1.60
1.64
1.83
1.97
2.17
2.79
1.83
1.97
2.17
2.79
ns
LVCMOS33, QUIETIO, 2 mA
1.34
1.46
1.59
1.64
5.40
5.54
5.74
6.37
5.40
5.54
5.74
6.37
ns
LVCMOS33, QUIETIO, 4 mA
1.34
1.46
1.59
1.64
4.03
4.17
4.37
5.01
4.03
4.17
4.37
5.01
ns
LVCMOS33, QUIETIO, 6 mA
1.34
1.46
1.59
1.64
3.51
3.65
3.85
4.47
3.51
3.65
3.85
4.47
ns
LVCMOS33, QUIETIO, 8 mA
1.34
1.46
1.59
1.64
3.37
3.51
3.71
4.33
3.37
3.51
3.71
4.33
ns
LVCMOS33, QUIETIO, 12 mA
1.34
1.46
1.59
1.64
2.94
3.08
3.28
3.93
2.94
3.08
3.28
3.93
ns
LVCMOS33, QUIETIO, 16 mA
1.34
1.46
1.59
1.64
2.77
2.91
3.11
3.78
2.77
2.91
3.11
3.78
ns
LVCMOS33, QUIETIO, 24 mA
1.34
1.46
1.59
1.64
2.59
2.73
2.93
3.58
2.59
2.73
2.93
3.58
ns
LVCMOS33, Slow, 2 mA
1.34
1.46
1.59
1.64
4.37
4.51
4.71
5.28
4.37
4.51
4.71
5.28
ns
LVCMOS33, Slow, 4 mA
1.34
1.46
1.59
1.64
2.98
3.12
3.32
3.94
2.98
3.12
3.32
3.94
ns
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
20
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 28: IOB Switching Characteristics (Cont’d)
I/O Standard
TIOPI
TIOOP
TIOTP
Speed Grade
Speed Grade
Speed Grade
Units
-4
-3
-2
-1L
-4
-3
-2
-1L
-4
-3
-2
-1L
LVCMOS33, Slow, 6 mA
1.34
1.46
1.59
1.64
2.58
2.72
2.92
3.61
2.58
2.72
2.92
3.61
ns
LVCMOS33, Slow, 8 mA
1.34
1.46
1.59
1.64
2.65
2.79
2.99
3.61
2.65
2.79
2.99
3.61
ns
LVCMOS33, Slow, 12 mA
1.34
1.46
1.59
1.64
2.39
2.53
2.73
3.31
2.39
2.53
2.73
3.31
ns
LVCMOS33, Slow, 16 mA
1.34
1.46
1.59
1.64
2.31
2.45
2.65
3.27
2.31
2.45
2.65
3.27
ns
LVCMOS33, Slow, 24 mA
1.34
1.46
1.59
1.64
2.28
2.42
2.62
3.24
2.28
2.42
2.62
3.24
ns
LVCMOS33, Fast, 2 mA
1.34
1.46
1.59
1.64
3.76
3.90
4.10
4.70
3.76
3.90
4.10
4.70
ns
LVCMOS33, Fast, 4 mA
1.34
1.46
1.59
1.64
2.48
2.62
2.82
3.44
2.48
2.62
2.82
3.44
ns
LVCMOS33, Fast, 6 mA
1.34
1.46
1.59
1.64
2.32
2.46
2.66
3.28
2.32
2.46
2.66
3.28
ns
LVCMOS33, Fast, 8 mA
1.34
1.46
1.59
1.64
2.07
2.21
2.41
3.03
2.07
2.21
2.41
3.03
ns
LVCMOS33, Fast, 12 mA
1.34
1.46
1.59
1.64
1.65
1.79
1.99
2.62
1.65
1.79
1.99
2.62
ns
LVCMOS33, Fast, 16 mA
1.34
1.46
1.59
1.64
1.65
1.79
1.99
2.62
1.65
1.79
1.99
2.62
ns
LVCMOS33, Fast, 24 mA
1.34
1.46
1.59
1.64
1.65
1.79
1.99
2.62
1.65
1.79
1.99
2.62
ns
LVCMOS25, QUIETIO, 2 mA
0.82
0.94
1.07
1.13
4.81
4.95
5.15
5.79
4.81
4.95
5.15
5.79
ns
LVCMOS25, QUIETIO, 4 mA
0.82
0.94
1.07
1.13
3.70
3.84
4.04
4.66
3.70
3.84
4.04
4.66
ns
LVCMOS25, QUIETIO, 6 mA
0.82
0.94
1.07
1.13
3.46
3.60
3.80
4.38
3.46
3.60
3.80
4.38
ns
LVCMOS25, QUIETIO, 8 mA
0.82
0.94
1.07
1.13
3.20
3.34
3.54
4.12
3.20
3.34
3.54
4.12
ns
LVCMOS25, QUIETIO, 12 mA
0.82
0.94
1.07
1.13
2.83
2.97
3.17
3.75
2.83
2.97
3.17
3.75
ns
LVCMOS25, QUIETIO, 16 mA
0.82
0.94
1.07
1.13
2.64
2.78
2.98
3.64
2.64
2.78
2.98
3.64
ns
LVCMOS25, QUIETIO, 24 mA
0.82
0.94
1.07
1.13
2.45
2.59
2.79
3.42
2.45
2.59
2.79
3.42
ns
LVCMOS25, Slow, 2 mA
0.82
0.94
1.07
1.13
3.78
3.92
4.12
4.76
3.78
3.92
4.12
4.76
ns
LVCMOS25, Slow, 4 mA
0.82
0.94
1.07
1.13
2.79
2.93
3.13
3.73
2.79
2.93
3.13
3.73
ns
LVCMOS25, Slow, 6 mA
0.82
0.94
1.07
1.13
2.73
2.87
3.07
3.66
2.73
2.87
3.07
3.66
ns
LVCMOS25, Slow, 8 mA
0.82
0.94
1.07
1.13
2.48
2.62
2.82
3.42
2.48
2.62
2.82
3.42
ns
LVCMOS25, Slow, 12 mA
0.82
0.94
1.07
1.13
2.01
2.15
2.35
2.95
2.01
2.15
2.35
2.95
ns
LVCMOS25, Slow, 16 mA
0.82
0.94
1.07
1.13
2.01
2.15
2.35
2.95
2.01
2.15
2.35
2.95
ns
LVCMOS25, Slow, 24 mA
0.82
0.94
1.07
1.13
2.01
2.15
2.35
2.94
2.01
2.15
2.35
2.94
ns
LVCMOS25, Fast, 2 mA
0.82
0.94
1.07
1.13
3.35
3.49
3.69
4.31
3.35
3.49
3.69
4.31
ns
LVCMOS25, Fast, 4 mA
0.82
0.94
1.07
1.13
2.25
2.39
2.59
3.22
2.25
2.39
2.59
3.22
ns
LVCMOS25, Fast, 6 mA
0.82
0.94
1.07
1.13
2.09
2.23
2.43
3.05
2.09
2.23
2.43
3.05
ns
LVCMOS25, Fast, 8 mA
0.82
0.94
1.07
1.13
2.02
2.16
2.36
2.98
2.02
2.16
2.36
2.98
ns
LVCMOS25, Fast, 12 mA
0.82
0.94
1.07
1.13
1.56
1.70
1.90
2.52
1.56
1.70
1.90
2.52
ns
LVCMOS25, Fast, 16 mA
0.82
0.94
1.07
1.13
1.56
1.70
1.90
2.52
1.56
1.70
1.90
2.52
ns
LVCMOS25, Fast, 24 mA
0.82
0.94
1.07
1.13
1.56
1.70
1.90
2.52
1.56
1.70
1.90
2.52
ns
LVCMOS18, QUIETIO, 2 mA
1.18
1.30
1.43
1.86
5.92
6.06
6.26
6.80
5.92
6.06
6.26
6.80
ns
LVCMOS18, QUIETIO, 4 mA
1.18
1.30
1.43
1.86
4.74
4.88
5.08
5.63
4.74
4.88
5.08
5.63
ns
LVCMOS18, QUIETIO, 6 mA
1.18
1.30
1.43
1.86
4.05
4.19
4.39
4.96
4.05
4.19
4.39
4.96
ns
LVCMOS18, QUIETIO, 8 mA
1.18
1.30
1.43
1.86
3.71
3.85
4.05
4.63
3.71
3.85
4.05
4.63
ns
LVCMOS18, QUIETIO, 12 mA
1.18
1.30
1.43
1.86
3.35
3.49
3.69
4.27
3.35
3.49
3.69
4.27
ns
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
21
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 28: IOB Switching Characteristics (Cont’d)
I/O Standard
TIOPI
TIOOP
TIOTP
Speed Grade
Speed Grade
Speed Grade
Units
-4
-3
-2
-1L
-4
-3
-2
-1L
-4
-3
-2
-1L
LVCMOS18, QUIETIO, 16 mA
1.18
1.30
1.43
1.86
3.20
3.34
3.54
4.14
3.20
3.34
3.54
4.14
ns
LVCMOS18, QUIETIO, 24 mA
1.18
1.30
1.43
1.86
2.96
3.10
3.30
3.98
2.96
3.10
3.30
3.98
ns
LVCMOS18, Slow, 2 mA
1.18
1.30
1.43
1.86
4.62
4.76
4.96
5.54
4.62
4.76
4.96
5.54
ns
LVCMOS18, Slow, 4 mA
1.18
1.30
1.43
1.86
3.69
3.83
4.03
4.60
3.69
3.83
4.03
4.60
ns
LVCMOS18, Slow, 6 mA
1.18
1.30
1.43
1.86
3.00
3.14
3.34
3.94
3.00
3.14
3.34
3.94
ns
LVCMOS18, Slow, 8 mA
1.18
1.30
1.43
1.86
2.19
2.33
2.53
3.17
2.19
2.33
2.53
3.17
ns
LVCMOS18, Slow, 12 mA
1.18
1.30
1.43
1.86
1.99
2.13
2.33
2.95
1.99
2.13
2.33
2.95
ns
LVCMOS18, Slow, 16 mA
1.18
1.30
1.43
1.86
1.99
2.13
2.33
2.95
1.99
2.13
2.33
2.95
ns
LVCMOS18, Slow, 24 mA
1.18
1.30
1.43
1.86
1.99
2.13
2.33
2.95
1.99
2.13
2.33
2.95
ns
LVCMOS18, Fast, 2 mA
1.18
1.30
1.43
1.86
3.59
3.73
3.93
4.53
3.59
3.73
3.93
4.53
ns
LVCMOS18, Fast, 4 mA
1.18
1.30
1.43
1.86
2.39
2.53
2.73
3.35
2.39
2.53
2.73
3.35
ns
LVCMOS18, Fast, 6 mA
1.18
1.30
1.43
1.86
1.88
2.02
2.22
2.84
1.88
2.02
2.22
2.84
ns
LVCMOS18, Fast, 8 mA
1.18
1.30
1.43
1.86
1.81
1.95
2.15
2.77
1.81
1.95
2.15
2.77
ns
LVCMOS18, Fast, 12 mA
1.18
1.30
1.43
1.86
1.71
1.85
2.05
2.67
1.71
1.85
2.05
2.67
ns
LVCMOS18, Fast, 16 mA
1.18
1.30
1.43
1.86
1.71
1.85
2.05
2.67
1.71
1.85
2.05
2.67
ns
LVCMOS18, Fast, 24 mA
1.18
1.30
1.43
1.86
1.71
1.85
2.05
2.67
1.71
1.85
2.05
2.67
ns
LVCMOS18_JEDEC, QUIETIO, 2 mA
0.94
1.06
1.19
1.23
5.91
6.05
6.25
6.79
5.91
6.05
6.25
6.79
ns
LVCMOS18_JEDEC, QUIETIO, 4 mA
0.94
1.06
1.19
1.23
4.75
4.89
5.09
5.64
4.75
4.89
5.09
5.64
ns
LVCMOS18_JEDEC, QUIETIO, 6 mA
0.94
1.06
1.19
1.23
4.04
4.18
4.38
4.96
4.04
4.18
4.38
4.96
ns
LVCMOS18_JEDEC, QUIETIO, 8 mA
0.94
1.06
1.19
1.23
3.71
3.85
4.05
4.62
3.71
3.85
4.05
4.62
ns
LVCMOS18_JEDEC, QUIETIO, 12 mA 0.94
1.06
1.19
1.23
3.35
3.49
3.69
4.28
3.35
3.49
3.69
4.28
ns
LVCMOS18_JEDEC, QUIETIO, 16 mA 0.94
1.06
1.19
1.23
3.20
3.34
3.54
4.13
3.20
3.34
3.54
4.13
ns
LVCMOS18_JEDEC, QUIETIO, 24 mA 0.94
1.06
1.19
1.23
2.96
3.10
3.30
3.98
2.96
3.10
3.30
3.98
ns
LVCMOS18_JEDEC, Slow, 2 mA
0.94
1.06
1.19
1.23
4.59
4.73
4.93
5.54
4.59
4.73
4.93
5.54
ns
LVCMOS18_JEDEC, Slow, 4 mA
0.94
1.06
1.19
1.23
3.69
3.83
4.03
4.60
3.69
3.83
4.03
4.60
ns
LVCMOS18_JEDEC, Slow, 6 mA
0.94
1.06
1.19
1.23
3.00
3.14
3.34
3.94
3.00
3.14
3.34
3.94
ns
LVCMOS18_JEDEC, Slow, 8 mA
0.94
1.06
1.19
1.23
2.19
2.33
2.53
3.18
2.19
2.33
2.53
3.18
ns
LVCMOS18_JEDEC, Slow, 12 mA
0.94
1.06
1.19
1.23
1.99
2.13
2.33
2.95
1.99
2.13
2.33
2.95
ns
LVCMOS18_JEDEC, Slow, 16 mA
0.94
1.06
1.19
1.23
1.99
2.13
2.33
2.95
1.99
2.13
2.33
2.95
ns
LVCMOS18_JEDEC, Slow, 24 mA
0.94
1.06
1.19
1.23
1.99
2.13
2.33
2.95
1.99
2.13
2.33
2.95
ns
LVCMOS18_JEDEC, Fast, 2 mA
0.94
1.06
1.19
1.23
3.57
3.71
3.91
4.52
3.57
3.71
3.91
4.52
ns
LVCMOS18_JEDEC, Fast, 4 mA
0.94
1.06
1.19
1.23
2.39
2.53
2.73
3.35
2.39
2.53
2.73
3.35
ns
LVCMOS18_JEDEC, Fast, 6 mA
0.94
1.06
1.19
1.23
1.88
2.02
2.22
2.84
1.88
2.02
2.22
2.84
ns
LVCMOS18_JEDEC, Fast, 8 mA
0.94
1.06
1.19
1.23
1.80
1.94
2.14
2.76
1.80
1.94
2.14
2.76
ns
LVCMOS18_JEDEC, Fast, 12 mA
0.94
1.06
1.19
1.23
1.72
1.86
2.06
2.68
1.72
1.86
2.06
2.68
ns
LVCMOS18_JEDEC, Fast, 16 mA
0.94
1.06
1.19
1.23
1.72
1.86
2.06
2.68
1.72
1.86
2.06
2.68
ns
LVCMOS18_JEDEC, Fast, 24 mA
0.94
1.06
1.19
1.23
1.72
1.86
2.06
2.68
1.72
1.86
2.06
2.68
ns
LVCMOS15, QUIETIO, 2 mA
0.98
1.10
1.23
1.61
5.47
5.61
5.81
6.38
5.47
5.61
5.81
6.38
ns
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
22
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 28: IOB Switching Characteristics (Cont’d)
I/O Standard
TIOPI
TIOOP
TIOTP
Speed Grade
Speed Grade
Speed Grade
Units
-4
-3
-2
-1L
-4
-3
-2
-1L
-4
-3
-2
-1L
LVCMOS15, QUIETIO, 4 mA
0.98
1.10
1.23
1.61
4.61
4.75
4.95
5.51
4.61
4.75
4.95
5.51
ns
LVCMOS15, QUIETIO, 6 mA
0.98
1.10
1.23
1.61
4.07
4.21
4.41
4.97
4.07
4.21
4.41
4.97
ns
LVCMOS15, QUIETIO, 8 mA
0.98
1.10
1.23
1.61
3.91
4.05
4.25
4.81
3.91
4.05
4.25
4.81
ns
LVCMOS15, QUIETIO, 12 mA
0.98
1.10
1.23
1.61
3.53
3.67
3.87
4.51
3.53
3.67
3.87
4.51
ns
LVCMOS15, QUIETIO, 16 mA
0.98
1.10
1.23
1.61
3.32
3.46
3.66
4.31
3.32
3.46
3.66
4.31
ns
LVCMOS15, Slow, 2 mA
0.98
1.10
1.23
1.61
4.18
4.32
4.52
5.11
4.18
4.32
4.52
5.11
ns
LVCMOS15, Slow, 4 mA
0.98
1.10
1.23
1.61
3.42
3.56
3.76
4.34
3.42
3.56
3.76
4.34
ns
LVCMOS15, Slow, 6 mA
0.98
1.10
1.23
1.61
2.29
2.43
2.63
3.24
2.29
2.43
2.63
3.24
ns
LVCMOS15, Slow, 8 mA
0.98
1.10
1.23
1.61
2.30
2.44
2.64
3.25
2.30
2.44
2.64
3.25
ns
LVCMOS15, Slow, 12 mA
0.98
1.10
1.23
1.61
2.03
2.17
2.37
2.99
2.03
2.17
2.37
2.99
ns
LVCMOS15, Slow, 16 mA
0.98
1.10
1.23
1.61
2.01
2.15
2.35
2.97
2.01
2.15
2.35
2.97
ns
LVCMOS15, Fast, 2 mA
0.98
1.10
1.23
1.61
3.29
3.43
3.63
4.24
3.29
3.43
3.63
4.24
ns
LVCMOS15, Fast, 4 mA
0.98
1.10
1.23
1.61
2.27
2.41
2.61
3.22
2.27
2.41
2.61
3.22
ns
LVCMOS15, Fast, 6 mA
0.98
1.10
1.23
1.61
1.78
1.92
2.12
2.74
1.78
1.92
2.12
2.74
ns
LVCMOS15, Fast, 8 mA
0.98
1.10
1.23
1.61
1.73
1.87
2.07
2.69
1.73
1.87
2.07
2.69
ns
LVCMOS15, Fast, 12 mA
0.98
1.10
1.23
1.61
1.73
1.87
2.07
2.64
1.73
1.87
2.07
2.64
ns
LVCMOS15, Fast, 16 mA
0.98
1.10
1.23
1.61
1.73
1.87
2.07
2.64
1.73
1.87
2.07
2.64
ns
LVCMOS15_JEDEC, QUIETIO, 2 mA
1.03
1.15
1.28
1.31
5.49
5.63
5.83
6.37
5.49
5.63
5.83
6.37
ns
LVCMOS15_JEDEC, QUIETIO, 4 mA
1.03
1.15
1.28
1.31
4.61
4.75
4.95
5.51
4.61
4.75
4.95
5.51
ns
LVCMOS15_JEDEC, QUIETIO, 6 mA
1.03
1.15
1.28
1.31
4.07
4.21
4.41
4.97
4.07
4.21
4.41
4.97
ns
LVCMOS15_JEDEC, QUIETIO, 8 mA
1.03
1.15
1.28
1.31
3.92
4.06
4.26
4.81
3.92
4.06
4.26
4.81
ns
LVCMOS15_JEDEC, QUIETIO, 12 mA 1.03
1.15
1.28
1.31
3.54
3.68
3.88
4.51
3.54
3.68
3.88
4.51
ns
LVCMOS15_JEDEC, QUIETIO, 16 mA 1.03
1.15
1.28
1.31
3.33
3.47
3.67
4.31
3.33
3.47
3.67
4.31
ns
LVCMOS15_JEDEC, Slow, 2 mA
1.03
1.15
1.28
1.31
4.18
4.32
4.52
5.13
4.18
4.32
4.52
5.13
ns
LVCMOS15_JEDEC, Slow, 4 mA
1.03
1.15
1.28
1.31
3.42
3.56
3.76
4.35
3.42
3.56
3.76
4.35
ns
LVCMOS15_JEDEC, Slow, 6 mA
1.03
1.15
1.28
1.31
2.29
2.43
2.63
3.25
2.29
2.43
2.63
3.25
ns
LVCMOS15_JEDEC, Slow, 8 mA
1.03
1.15
1.28
1.31
2.30
2.44
2.64
3.26
2.30
2.44
2.64
3.26
ns
LVCMOS15_JEDEC, Slow, 12 mA
1.03
1.15
1.28
1.31
2.01
2.15
2.35
2.97
2.01
2.15
2.35
2.97
ns
LVCMOS15_JEDEC, Slow, 16 mA
1.03
1.15
1.28
1.31
2.01
2.15
2.35
2.97
2.01
2.15
2.35
2.97
ns
LVCMOS15_JEDEC, Fast, 2 mA
1.03
1.15
1.28
1.31
3.28
3.42
3.62
4.22
3.28
3.42
3.62
4.22
ns
LVCMOS15_JEDEC, Fast, 4 mA
1.03
1.15
1.28
1.31
2.27
2.41
2.61
3.23
2.27
2.41
2.61
3.23
ns
LVCMOS15_JEDEC, Fast, 6 mA
1.03
1.15
1.28
1.31
1.78
1.92
2.12
2.74
1.78
1.92
2.12
2.74
ns
LVCMOS15_JEDEC, Fast, 8 mA
1.03
1.15
1.28
1.31
1.73
1.87
2.07
2.69
1.73
1.87
2.07
2.69
ns
LVCMOS15_JEDEC, Fast, 12 mA
1.03
1.15
1.28
1.31
1.73
1.87
2.07
2.63
1.73
1.87
2.07
2.63
ns
LVCMOS15_JEDEC, Fast, 16 mA
1.03
1.15
1.28
1.31
1.73
1.87
2.07
2.63
1.73
1.87
2.07
2.63
ns
LVCMOS12, QUIETIO, 2 mA
0.91
1.03
1.16
1.33
6.40
6.54
6.74
7.30
6.40
6.54
6.74
7.30
ns
LVCMOS12, QUIETIO, 4 mA
0.91
1.03
1.16
1.33
4.98
5.12
5.32
5.90
4.98
5.12
5.32
5.90
ns
LVCMOS12, QUIETIO, 6 mA
0.91
1.03
1.16
1.33
4.65
4.79
4.99
5.55
4.65
4.79
4.99
5.55
ns
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
23
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 28: IOB Switching Characteristics (Cont’d)
I/O Standard
TIOPI
TIOOP
TIOTP
Speed Grade
Speed Grade
Speed Grade
Units
-4
-3
-2
-1L
-4
-3
-2
-1L
-4
-3
-2
-1L
LVCMOS12, QUIETIO, 8 mA
0.91
1.03
1.16
1.33
4.23
4.37
4.57
5.21
4.23
4.37
4.57
5.21
ns
LVCMOS12, QUIETIO, 12 mA
0.91
1.03
1.16
1.33
3.98
4.12
4.32
4.94
3.98
4.12
4.32
4.94
ns
LVCMOS12, Slow, 2 mA
0.91
1.03
1.16
1.33
4.98
5.12
5.32
5.91
4.98
5.12
5.32
5.91
ns
LVCMOS12, Slow, 4 mA
0.91
1.03
1.16
1.33
2.84
2.98
3.18
3.81
2.84
2.98
3.18
3.81
ns
LVCMOS12, Slow, 6 mA
0.91
1.03
1.16
1.33
2.77
2.91
3.11
3.72
2.77
2.91
3.11
3.72
ns
LVCMOS12, Slow, 8 mA
0.91
1.03
1.16
1.33
2.34
2.48
2.68
3.31
2.34
2.48
2.68
3.31
ns
LVCMOS12, Slow, 12 mA
0.91
1.03
1.16
1.33
2.08
2.22
2.42
3.06
2.08
2.22
2.42
3.06
ns
LVCMOS12, Fast, 2 mA
0.91
1.03
1.16
1.33
3.46
3.60
3.80
4.44
3.46
3.60
3.80
4.44
ns
LVCMOS12, Fast, 4 mA
0.91
1.03
1.16
1.33
2.35
2.49
2.69
3.30
2.35
2.49
2.69
3.30
ns
LVCMOS12, Fast, 6 mA
0.91
1.03
1.16
1.33
1.79
1.93
2.13
2.75
1.79
1.93
2.13
2.75
ns
LVCMOS12, Fast, 8 mA
0.91
1.03
1.16
1.33
1.68
1.82
2.02
2.64
1.68
1.82
2.02
2.64
ns
LVCMOS12, Fast, 12 mA
0.91
1.03
1.16
1.33
1.66
1.80
2.00
2.62
1.66
1.80
2.00
2.62
ns
LVCMOS12_JEDEC, QUIETIO, 2 mA
1.50
1.62
1.75
1.70
6.39
6.53
6.73
7.31
6.39
6.53
6.73
7.31
ns
LVCMOS12_JEDEC, QUIETIO, 4 mA
1.50
1.62
1.75
1.70
4.98
5.12
5.32
5.88
4.98
5.12
5.32
5.88
ns
LVCMOS12_JEDEC, QUIETIO, 6 mA
1.50
1.62
1.75
1.70
4.67
4.81
5.01
5.54
4.67
4.81
5.01
5.54
ns
LVCMOS12_JEDEC, QUIETIO, 8 mA
1.50
1.62
1.75
1.70
4.23
4.37
4.57
5.22
4.23
4.37
4.57
5.22
ns
LVCMOS12_JEDEC, QUIETIO, 12 mA 1.50
1.62
1.75
1.70
3.99
4.13
4.33
4.94
3.99
4.13
4.33
4.94
ns
LVCMOS12_JEDEC, Slow, 2 mA
1.50
1.62
1.75
1.70
5.00
5.14
5.34
5.90
5.00
5.14
5.34
5.90
ns
LVCMOS12_JEDEC, Slow, 4 mA
1.50
1.62
1.75
1.70
2.85
2.99
3.19
3.80
2.85
2.99
3.19
3.80
ns
LVCMOS12_JEDEC, Slow, 6 mA
1.50
1.62
1.75
1.70
2.76
2.90
3.10
3.72
2.76
2.90
3.10
3.72
ns
LVCMOS12_JEDEC, Slow, 8 mA
1.50
1.62
1.75
1.70
2.35
2.49
2.69
3.30
2.35
2.49
2.69
3.30
ns
LVCMOS12_JEDEC, Slow, 12 mA
1.50
1.62
1.75
1.70
2.09
2.23
2.43
3.05
2.09
2.23
2.43
3.05
ns
LVCMOS12_JEDEC, Fast, 2 mA
1.50
1.62
1.75
1.70
3.46
3.60
3.80
4.42
3.46
3.60
3.80
4.42
ns
LVCMOS12_JEDEC, Fast, 4 mA
1.50
1.62
1.75
1.70
2.35
2.49
2.69
3.31
2.35
2.49
2.69
3.31
ns
LVCMOS12_JEDEC, Fast, 6 mA
1.50
1.62
1.75
1.70
1.79
1.93
2.13
2.76
1.79
1.93
2.13
2.76
ns
LVCMOS12_JEDEC, Fast, 8 mA
1.50
1.62
1.75
1.70
1.69
1.83
2.03
2.65
1.69
1.83
2.03
2.65
ns
LVCMOS12_JEDEC, Fast, 12 mA
1.50
1.62
1.75
1.70
1.66
1.80
2.00
2.62
1.66
1.80
2.00
2.62
ns
Notes:
1.
Devices with a -1L speed grade do not support Xilinx PCI IP.
Table 29: IOB 3-state ON Output Switching Characteristics (TIOTPHZ)
Symbol
TIOTPHZ
Speed Grade
Description
T input to Pad high-impedance
DS162 (v1.9) August 23, 2010
Advance Product Specification
-4
-3
-2
-1L
1.39
1.59
1.59
1.91
Units
ns
www.xilinx.com
24
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
I/O Standard Adjustment Measurement Methodology
Input Delay Measurements
Table 30 shows the test setup parameters used for measuring input delay.
Table 30: Input Delay Measurement Methodology
Description
I/O Standard Attribute
VL(1)
VH(1)
VMEAS(3)(4) VREF(2)(4)
LVTTL (Low-Voltage Transistor-Transistor Logic)
LVTTL
0
3.0
1.4
–
LVCMOS (Low-Voltage CMOS), 3.3V
LVCMOS33
0
3.3
1.65
–
LVCMOS, 2.5V
LVCMOS25
0
2.5
1.25
–
LVCMOS, 1.8V
LVCMOS18
0
1.8
0.9
–
LVCMOS, 1.5V
LVCMOS15
0
1.5
0.75
–
LVCMOS, 1.2V
LVCMOS12
0
1.2
0.6
–
PCI (Peripheral Component Interface),
33 MHz and 66 MHz, 3.3V
PCI33_3, PCI66_3
HSTL (High-Speed Transceiver Logic),
Class I & II
HSTL_I, HSTL_II
VREF – 0.5
VREF + 0.5
VREF
0.75
HSTL, Class III
HSTL_III
VREF – 0.5
VREF + 0.5
VREF
0.90
HSTL, Class I & II, 1.8V
HSTL_I_18, HSTL_II_18
VREF – 0.5
VREF + 0.5
VREF
0.90
HSTL, Class III 1.8V
HSTL_III_18
VREF – 0.5
VREF + 0.5
VREF
1.1
SSTL (Stub Terminated Transceiver Logic),
Class I & II, 3.3V
SSTL3_I, SSTL3_II
VREF – 0.75
VREF + 0.75
VREF
1.5
SSTL, Class I & II, 2.5V
SSTL2_I, SSTL2_II
VREF – 0.75
VREF + 0.75
VREF
1.25
SSTL, Class I & II, 1.8V
SSTL18_I, SSTL18_II
VREF – 0.5
VREF + 0.5
VREF
0.90
SSTL, Class II, 1.5V
SSTL15_II
VREF – 0.2
VREF + 0.2
VREF
0.75
1.25 – 0.125
1.25 + 0.125
0(5)
–
1.2 – 0.3
1.2 – 0.3
0(5)
–
1.3 – 0.125
1.3 + 0.125
0(5)
–
1.2 – 0.125
1.2 + 0.125
0(5)
–
LVDS (Low-Voltage Differential Signaling),
2.5V & 3.3V
LVDS_25, LVDS_33
LVPECL (Low-Voltage Positive Emitter-Coupled
Logic), 2.5V & 3.3V
LVPECL_25, LVPECL_33
BLVDS (Bus LVDS), 2.5V
BLVDS_25
Per PCI Specification
–
Mini-LVDS, 2.5V & 3.3V
MINI_LVDS_25,
MINI_LVDS_33
RSDS (Reduced Swing Differential Signaling),
2.5V & 3.3V
RSDS_25, RSDS_33
1.2 – 0.1
1.2 + 0.1
0(5)
–
TMDS (Transition Minimized Differential Signaling),
3.3V
TMDS_33
3.0 – 0.1
3.0 + 0.1
0(5)
–
PPDS (Point-to-Point Differential Signaling,
2.5V & 3.3V
PPDS_25, PPDS_33
1.25 – 0.1
1.25 + 0.1
0(5)
–
Notes:
1. Input waveform switches between VL and VH.
2. Measurements are made at typical, minimum, and maximum VREF values. Reported delays reflect worst case of these measurements. VREF values
listed are typical.
3. Input voltage level from which measurement starts.
4. This is an input voltage reference that bears no relation to the VREF / VMEAS parameters found in IBIS models and/or noted in Figure 4.
5. The value given is the differential input voltage.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
25
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Output Delay Measurements
X-Ref Target - Figure 5
FPGA Output
Output delays are measured using a Tektronix P6245
TDS500/600 probe (< 1 pF) across approximately 4" of FR4
microstrip trace. Standard termination was used for all
testing. The propagation delay of the 4" trace is
characterized separately and subtracted from the final
measurement, and is therefore not included in the
generalized test setups shown in Figure 4 and Figure 5.
+
RREF VMEAS
CREF
–
ds162_07_011309
X-Ref Target - Figure 4
Figure 5: Differential Test Setup
VREF
Measurements and test conditions are reflected in the IBIS
models except where the IBIS format precludes it.
Parameters VREF , RREF , CREF , and VMEAS fully describe
the test conditions for each I/O standard. The most accurate
prediction of propagation delay in any given application can
be obtained through IBIS simulation, using the following
method:
RREF
FPGA Output
VMEAS
(voltage level when taking
delay measurement)
1. Simulate the output driver of choice into the generalized
test setup, using values from Table 31.
CREF
(probe capacitance)
2. Record the time to VMEAS .
ds162_06_011309
3. Simulate the output driver of choice into the actual PCB
trace and load, using the appropriate IBIS model or
capacitance value to represent the load.
Figure 4: Single-Ended Test Setup
4. Record the time to VMEAS .
5. Compare the results of steps 2 and 4. The increase or
decrease in delay yields the actual propagation delay of
the PCB trace.
Table 31: Output Delay Measurement Methodology
I/O Standard
Attribute
Description
RREF
(Ω)
CREF(1)
(pF)
VMEAS
(V)
VREF
(V)
LVTTL (Low-Voltage Transistor-Transistor Logic)
LVTTL (all)
1M
0
1.4
0
LVCMOS (Low-Voltage CMOS), 3.3V
LVCMOS33
1M
0
1.65
0
LVCMOS, 2.5V
LVCMOS25
1M
0
1.25
0
LVCMOS, 1.8V
LVCMOS18
1M
0
0.9
0
LVCMOS, 1.5V
LVCMOS15
1M
0
0.75
0
LVCMOS, 1.2V
LVCMOS12
1M
0
0.75
0
PCI (Peripheral Component Interface)
33 MHz and 66 MHz, 3.3V
PCI33_3, PCI66_3 (rising edge)
25
10 (2)
0.94
0
PCI33_3, PCI66_3 (falling edge)
25
10 (2)
2.03
3.3
HSTL (High-Speed Transceiver Logic), Class I
HSTL_I
50
0
VREF
0.75
HSTL, Class II
HSTL_II
25
0
VREF
0.75
HSTL, Class III
HSTL_III
50
0
0.9
1.5
HSTL, Class I, 1.8V
HSTL_I_18
50
0
VREF
0.9
HSTL, Class II, 1.8V
HSTL_II_18
25
0
VREF
0.9
HSTL, Class III, 1.8V
HSTL_III_18
50
0
1.1
1.8
SSTL (Stub Series Terminated Logic), Class I, 1.8V
SSTL18_I
50
0
VREF
0.9
SSTL, Class II, 1.8V
SSTL18_II
25
0
VREF
0.9
SSTL, Class I, 2.5V
SSTL2_I
50
0
VREF
1.25
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
26
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 31: Output Delay Measurement Methodology (Cont’d)
I/O Standard
Attribute
Description
RREF
(Ω)
CREF(1)
(pF)
VMEAS
(V)
VREF
(V)
SSTL, Class II, 2.5V
SSTL2_II
25
0
VREF
1.25
SSTL, Class II, 1.5V
SSTL15_II
25
0
VREF
0.75
0
0(3)
1.2
0
0(3)
0
0
0(3)
1.2
0
0(3)
1.2
LVDS (Low-Voltage Differential Signaling), 2.5V & 3.3V
BLVDS (Bus LVDS), 2.5V
Mini-LVDS, 2.5V & 3.3V
LVDS_25, LVDS_33
BLVDS_25
MINI_LVDS_25, MINI_LVDS_33
RSDS (Reduced Swing Differential Signaling), 2.5V & 3.3V RSDS_25, RSDS_33
100
100
100
100
TMDS (Transition Minimized Differential Signaling), 3.3V
TMDS_33
100
0
0(3)
PPDS (Point-to-Point Differential Signaling, 2.5V & 3.3V
PPDS_25, PPDS_33
100
0
0(3)
–
Notes:
1. CREF is the capacitance of the probe, nominally 0 pF.
2. Per PCI specifications.
3. The value given is the differential output voltage.
Simultaneously Switching Outputs
Due to lead inductance, a given package supports a limited number of simultaneous switching outputs (SSOs) when using
fast, high-drive outputs. Table 32 and Table 33 provide guidelines for the recommended maximum allowable number of
SSOs. These guidelines describe the maximum number of user I/O pins of an output signal standard that should
simultaneously switch in the same direction, while maintaining a safe level of switching noise for that particular signal
standard. Meeting these guidelines for the stated test conditions ensures that the FPGA operates free from the adverse
effects of GND and power bounce.
For each device/package combination, Table 32 provides the number of equivalent VCCO/GND pairs per bank. For each
output signal standard and drive strength, Table 33 recommends the maximum number of SSOs, switching in the same
direction, allowed per VCCO/GND pair within an I/O bank. The guidelines are categorized by package style, slew rate, and
output drive current. The number of SSOs are also specified by I/O bank. Multiply the appropriate numbers from each table
to calculate the maximum number of SSOs allowed within an I/O bank. The guidelines assume that all pins within a bank use
the same I/O standard. Exceeding these SSO guidelines can result in increased power or GND bounce, degraded signal
integrity, or increased system jitter. For a given I/O standard, if the SSO limit per pair in Table 33 is greater than the maximum
I/O per pair in Table 32, then there is no SSO limit for the exclusive use of that I/O standard.
The recommended maximum SSO values assume that the FPGA is soldered on a printed circuit board and that the board
uses sound design practices. Due to the additional lead inductance introduced by the socket, the SSO values do not apply
for FPGAs mounted in sockets. The SSO values assume that the VCCAUX is powered at 3.3V. Setting VCCAUX to 2.5V
provides better SSO characteristics. For more detail, see the Spartan-6 FPGA SelectIO Resources User Guide.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
27
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 32: Spartan-6 FPGA VCCO/GND Pairs per Bank
Package
Devices
TQG144
LX
CPG196
LX
CSG225
LX
FT(G)256
LX
LX
CSG324
LXT
LX
CSG484
LXT
LX
FG(G)484
LXT
LX45
FG(G)676
LX75, LX100, LX150
LXT
LX
FG(G)900
LXT
DS162 (v1.9) August 23, 2010
Advance Product Specification
Description
Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
VCCO/GND Pairs
3
3
2
3
N/A
N/A
Maximum I/O per Pair
8
8
13
8
N/A
N/A
VCCO/GND Pairs
4
6
4
6
N/A
N/A
Maximum I/O per Pair
6
4
7
4
N/A
N/A
VCCO/GND Pairs
4
4
4
4
N/A
N/A
Maximum I/O per Pair
10
10
9
10
N/A
N/A
VCCO/GND Pairs
5
6
4
5
N/A
N/A
Maximum I/O per Pair
8
9
9
10
N/A
N/A
VCCO/GND Pairs
6
6
6
6
N/A
N/A
Maximum I/O per Pair
10
9
10
9
N/A
N/A
VCCO/GND Pairs
4
6
6
6
N/A
N/A
Maximum I/O per Pair
4
9
10
9
N/A
N/A
VCCO/GND Pairs
8
13
8
13
N/A
N/A
Maximum I/O per Pair
7
8
7
8
N/A
N/A
VCCO/GND Pairs
7
12
8
13
N/A
N/A
Maximum I/O per Pair
5
8
6
8
N/A
N/A
VCCO/GND Pairs
10
10
11
11
N/A
N/A
Maximum I/O per Pair
6
8
9
8
N/A
N/A
VCCO/GND Pairs
6
10
11
10
N/A
N/A
Maximum I/O per Pair
7
8
7
8
N/A
N/A
VCCO/GND Pairs
12
15
10
16
N/A
N/A
Maximum I/O per Pair
3
7
8
7
N/A
N/A
VCCO/GND Pairs
12
9
10
10
6
6
Maximum I/O per Pair
9
10
9
9
8
9
VCCO/GND Pairs
10
8
10
8
7
7
Maximum I/O per Pair
8
7
8
8
7
7
VCCO/GND Pairs
17
14
17
14
7
8
Maximum I/O per Pair
7
6
7
8
7
6
VCCO/GND Pairs
15
14
13
14
7
8
Maximum I/O per Pair
7
6
8
8
7
6
www.xilinx.com
28
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 33: SSO Limit per VCCO/GND Pair
SSO Limit per VCCO/GND Pair
VCCO
I/O Standard
Drive
2
4
1.2V
LVCMOS12, LVCMOS12_JEDEC
6
8
12
DS162 (v1.9) August 23, 2010
Advance Product Specification
Slew
All TQG144, CPG196,
CSG225, FT(G)256, and
LX devices in CSG324
All CSG484, FG(G)484,
FG(G)676, FG(G)900, and
LXT devices in CSG324
Bank 0/2
Bank 1/3
Bank 0/2
Bank 1/3/4/5
Fast
30 (1)
35
30
35
Slow
51
55
51
52
QuietIO
71
58
71
70
Fast
17
17
17
19
Slow
23
25
23
22
QuietIO
35
32
35
32
Fast
13
15
13
14
Slow
19
20
19
17
QuietIO
26
24
26
24
Fast
N/A
12
N/A
12
Slow
N/A
15
N/A
13
QuietIO
N/A
20
N/A
19
Fast
N/A
5
N/A
4
Slow
N/A
8
N/A
5
QuietIO
N/A
11
N/A
10
www.xilinx.com
29
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 33: SSO Limit per VCCO/GND Pair (Cont’d)
SSO Limit per VCCO/GND Pair
VCCO
I/O Standard
Drive
2
4
6
LVCMOS15, LVCMOS15_JEDEC
8
1.5V
12
16
Slew
All TQG144, CPG196,
CSG225, FT(G)256, and
LX devices in CSG324
All CSG484, FG(G)484,
FG(G)676, FG(G)900, and
LXT devices in CSG324
Bank 0/2
Bank 1/3
Bank 0/2
Bank 1/3/4/5
Fast
33
40
33
41
Slow
57
62
57
56
QuietIO
70
67
70
66
Fast
19
21
19
21
Slow
30
30
30
24
QuietIO
38
33
38
30
Fast
14
16
14
16
Slow
18
19
18
17
QuietIO
27
24
27
21
Fast
11
13
11
12
Slow
16
16
16
14
QuietIO
23
20
23
17
Fast
N/A
5
N/A
4
Slow
N/A
8
N/A
5
QuietIO
N/A
10
N/A
9
Fast
N/A
5
N/A
4
Slow
N/A
8
N/A
8
QuietIO
N/A
10
N/A
9
HSTL_I
9
10
9
10
HSTL_II
N/A
5
N/A
6
HSTL_III
7
9
7
9
DIFF_HSTL_I
27
30
27
30
DIFF_HSTL_II
N/A
15
N/A
18
DIFF_HSTL_III
21
27
21
27
N/A
5
N/A
4
N/A
15
N/A
12
SSTL_15_II
(3)
DIFF_SSTL_15_II
(3)
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
30
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 33: SSO Limit per VCCO/GND Pair (Cont’d)
SSO Limit per VCCO/GND Pair
VCCO
I/O Standard
Drive
2
4
6
LVCMOS18, LVCMOS18_JEDEC
8
12
Slew
All TQG144, CPG196,
CSG225, FT(G)256, and
LX devices in CSG324
All CSG484, FG(G)484,
FG(G)676, FG(G)900, and
LXT devices in CSG324
Bank 0/2
Bank 1/3
Bank 0/2
Bank 1/3/4/5
Fast
39
46
39
47
Slow
65
75
65
74
QuietIO
80
80
80
85
Fast
22
25
22
25
Slow
38
36
38
29
QuietIO
45
40
45
35
Fast
16
18
16
17
Slow
27
25
27
19
QuietIO
30
28
30
23
Fast
13
15
13
14
Slow
16
18
16
16
QuietIO
25
22
25
18
Fast
5
7
5
5
Slow
7
8
7
6
QuietIO
11
10
11
8
Fast
4
5
4
4
Slow
7
8
7
5
QuietIO
11
10
11
8
Fast
N/A
5
N/A
3
Slow
N/A
8
N/A
8
QuietIO
N/A
10
N/A
8
HSTL_I_18
9
10
9
9
HSTL_II_18
N/A
5
N/A
6
HSTL_III_18
9
10
9
11
DIFF_HSTL_I_18
27
30
27
27
DIFF_HSTL_II_18
N/A
15
N/A
18
DIFF_HSTL_III_18
27
30
27
33
12
14
12
14
36
42
36
42
1.8V
16
24
MOBILE_DDR (3)
DIFF_MOBILE_DDR
SSTL_18_I
(3)
(3)
SSTL_18_II (3)
DIFF_SSTL_18_I
DIFF_SSTL_18_II
(3)
(3)
DS162 (v1.9) August 23, 2010
Advance Product Specification
9
10
9
10
N/A
5
N/A
4
27
30
27
30
N/A
15
N/A
12
www.xilinx.com
31
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 33: SSO Limit per VCCO/GND Pair (Cont’d)
SSO Limit per VCCO/GND Pair
VCCO
I/O Standard
Drive
2
4
6
LVCMOS25
8
2.5V
12
16
Slew
SSTL_2_I
Bank 1/3
Bank 0/2
Bank 1/3/4/5
Fast
38
43
38
43
Slow
46
52
46
48
QuietIO
57
64
57
59
Fast
21
24
21
23
Slow
26
31
26
27
QuietIO
33
32
33
30
Fast
15
17
15
16
Slow
19
22
19
19
QuietIO
25
23
25
19
Fast
12
15
12
14
Slow
15
18
15
16
QuietIO
21
19
21
16
Fast
1
3
1
1
Slow
2
7
2
4
QuietIO
3
8
3
8
Fast
1
3
1
1
Slow
3
7
3
3
4
9
4
8
Fast
N/A
3
N/A
1
Slow
N/A
5
N/A
2
QuietIO
N/A
8
N/A
6
(3)
SSTL_2_II (3)
DIFF_SSTL_2_I
DIFF_SSTL_2_II
(3)
(3)
DS162 (v1.9) August 23, 2010
Advance Product Specification
All CSG484, FG(G)484,
FG(G)676, FG(G)900, and
LXT devices in CSG324
Bank 0/2
QuietIO
24
All TQG144, CPG196,
CSG225, FT(G)256, and
LX devices in CSG324
10
11
10
11
N/A
7
N/A
7
30
33
30
33
N/A
21
N/A
24
www.xilinx.com
32
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 33: SSO Limit per VCCO/GND Pair (Cont’d)
SSO Limit per VCCO/GND Pair
VCCO
I/O Standard
Drive
2
4
6
3.3V
LVCMOS33
8
12
16
24
DS162 (v1.9) August 23, 2010
Advance Product Specification
Slew
All TQG144, CPG196,
CSG225, FT(G)256, and
LX devices in CSG324
All CSG484, FG(G)484,
FG(G)676, FG(G)900, and
LXT devices in CSG324
Bank 0/2
Bank 1/3
Bank 0/2
Bank 1/3/4/5
Fast
42
46
42
44
Slow
50
55
50
49
QuietIO
60
68
60
60
Fast
21
27
21
25
Slow
32
37
32
32
QuietIO
39
42
39
37
Fast
14
19
14
17
Slow
19
25
19
22
QuietIO
29
30
29
25
Fast
11
15
11
14
Slow
15
20
15
18
QuietIO
25
24
25
20
Fast
1
3
1
1
Slow
2
5
2
2
QuietIO
4
9
4
7
Fast
1
2
1
1
Slow
1
5
1
1
QuietIO
3
10
3
8
Fast
1
2
1
1
Slow
2
5
2
1
QuietIO
7
9
7
7
www.xilinx.com
33
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 33: SSO Limit per VCCO/GND Pair (Cont’d)
SSO Limit per VCCO/GND Pair
VCCO
I/O Standard
Drive
2
4
6
LVTTL
8
12
Slew
All TQG144, CPG196,
CSG225, FT(G)256, and
LX devices in CSG324
All CSG484, FG(G)484,
FG(G)676, FG(G)900, and
LXT devices in CSG324
Bank 0/2
Bank 1/3
Bank 0/2
Bank 1/3/4/5
Fast
53
65
53
62
Slow
70
80
70
73
QuietIO
79
89
79
91
Fast
23
30
23
27
Slow
34
41
34
37
QuietIO
44
49
44
46
Fast
16
21
16
20
Slow
21
28
21
25
QuietIO
34
39
34
34
Fast
12
16
12
15
Slow
16
22
16
19
QuietIO
27
28
27
24
Fast
1
3
1
1
Slow
2
5
2
4
QuietIO
2
10
2
8
Fast
1
3
1
1
Slow
1
7
1
2
QuietIO
3
11
3
8
Fast
1
2
1
1
Slow
2
5
2
2
QuietIO
8
9
8
8
PCI33_3
18
19
18
19
PCI66_3
18
19
18
19
SSTL_3_I
5
8
5
8
SSTL_3_II
3
5
3
3
3.3V
16
24
DIFF_SSTL_3_I
15
24
15
24
DIFF_SSTL_3_II
9
15
9
9
SDIO
17
18
17
15
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
34
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 33: SSO Limit per VCCO/GND Pair (Cont’d)
SSO Limit per VCCO/GND Pair
VCCO
Various
I/O Standard
Drive
Slew
All TQG144, CPG196,
CSG225, FT(G)256, and
LX devices in CSG324
All CSG484, FG(G)484,
FG(G)676, FG(G)900, and
LXT devices in CSG324
Bank 0/2
Bank 1/3
Bank 0/2
Bank 1/3/4/5
LVDS_33
16
N/A
16
N/A
LVDS_25
20
N/A
20
N/A
BLVDS_25
20
48
20
20
MINI_LVDS_33
13
N/A
13
N/A
MINI_LVDS_25
18
N/A
18
N/A
RSDS_33
12
N/A
12
N/A
RSDS_25
15
N/A
15
N/A
TMDS_33
83
N/A
83
N/A
PPDS_33
12
N/A
12
N/A
PPDS_25
16
N/A
16
N/A
DISPLAY_PORT
42
40
42
30
I2C
47
55
47
42
SMBUS
44
52
44
40
Notes:
1.
2.
3.
SSO limits greater than the number of I/O per VCCO/GND pair (Table 32) indicate No Limit for the given I/O standard. They are provided in
this table to calculate limits when using multiple I/O standards in a bank.
Not available (N/A) indicates that the I/O standard is not available in the given bank.
When used with the MCB, these signals are exempt from SSO analysis due to the known activity of the MCB switching patterns. SSO
performance is validated for all MCB instances. MCB outputs can, in some cases, exceed the SSO limits.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
35
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Input/Output Logic Switching Characteristics
Table 34: ILOGIC2 Switching Characteristics
Symbol
Description
Speed Grade
-4
-3
-2
-1L
Units
Setup/Hold
TICE0CK/TICKCE0
CE0 pin Setup/Hold with respect to CLK
0.56
–0.30
0.56
–0.25
0.79
–0.22
1.24
–0.55
ns
TISRCK/TICKSR
SR pin Setup/Hold with respect to CLK
0.74
–0.23
0.74
–0.22
0.98
–0.20
1.35
–0.49
ns
TIDOCK/TIOCKD
D pin Setup/Hold with respect to CLK without Delay
1.19
–0.83
1.36
–0.83
1.73
–0.83
1.97
–1.09
ns
TIDOCKD/TIOCKDD
DDLY pin Setup/Hold with respect to CLK (using IODELAY2)
0.31
0.00
0.47
0.00
0.54
0.00
0.64
–0.16
ns
TIDI
D pin to O pin propagation delay, no Delay
0.95
1.28
1.53
1.97
ns
TIDID
DDLY pin to O pin propagation delay (using IODELAY2)
0.23
0.39
0.44
0.64
ns
TIDLO
D pin to Q pin using flip-flop as a latch without Delay
1.56
1.86
2.39
3.22
ns
TIDLOD
DDLY pin to Q1 pin using flip-flop as a latch (using IODELAY2)
0.68
0.97
1.20
1.89
ns
TICKQ
CLK to Q outputs
1.03
1.24
1.43
1.66
ns
TRQ_ILOGIC2
SR pin to Q outputs
1.81
1.81
2.50
3.05
ns
Combinatorial
Sequential Delays
Table 35: OLOGIC2 Switching Characteristics
Symbol
Description
Speed Grade
-4
-3
-2
-1L
Units
Setup/Hold
TODCK/TOCKD
D1/D2 pins Setup/Hold with respect to CLK
0.60
–0.05
0.86
–0.05
1.18
0.00
1.15
–0.26
ns
TOOCECK/TOCKOCE
OCE pin Setup/Hold with respect to CLK
0.75
–0.10
0.75
–0.10
1.01
–0.05
0.56
–0.22
ns
TOSRCK/TOCKSR
SR pin Setup/Hold with respect to CLK
0.68
–0.28
0.79
–0.28
1.03
–0.23
1.09
–0.46
ns
TOTCK/TOCKT
T1/T2 pins Setup/Hold with respect to CLK
0.24
–0.08
0.56
–0.06
0.83
–0.01
0.86
–0.18
ns
TOTCECK/TOCKTCE
TCE pin Setup/Hold with respect to CLK
0.58
–0.06
0.72
–0.06
1.18
–0.01
0.47
–0.12
ns
TOCKQ
CLK to OQ/TQ out
0.55
0.51
0.74
0.97
ns
TRQ_OLOGIC2
SR pin to OQ/TQ out
1.81
1.81
2.50
3.05
ns
Sequential Delays
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
36
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Input Serializer/Deserializer Switching Characteristics
Table 36: ISERDES2 Switching Characteristics
Symbol
Description
Speed Grade
-4
-3
-2
-1L
Units
Setup/Hold for Control Lines
TISCCK_BITSLIP/ TISCKC_BITSLIP
BITSLIP pin Setup/Hold with respect to CLKDIV
0.16
–0.09
0.20
–0.09
0.31
–0.09
0.34
–0.14
ns
TISCCK_CE / TISCKC_CE
CE pin Setup/Hold with respect to CLK
0.71
–0.47
0.71
–0.42
0.97
–0.42
1.39
–0.71
ns
TISDCK_D /TISCKD_D
D pin Setup/Hold with respect to CLK
0.24
–0.15
0.25
–0.05
0.29
–0.05
0.12
–0.06
ns
TISDCK_DDLY /TISCKD_DDLY
DDLY pin Setup/Hold with respect to CLK (using
IODELAY2)
–0.25
0.30
–0.25
0.42
–0.25
0.56
–0.54
0.67
ns
TISDCK_D_DDR /TISCKD_D_DDR
D pin Setup/Hold with respect to CLK at DDR mode
–0.03
0.04
–0.03
0.16
–0.03
0.18
–0.05
0.12
ns
TISDCK_DDLY_DDR/
TISCKD_DDLY_DDR
D pin Setup/Hold with respect to CLK at DDR mode
(using IODELAY2)
–0.40
0.48
–0.40
0.53
–0.40
0.71
–0.71
0.86
ns
CLKDIV to out at Q pin
1.30
1.44
2.02
2.22
ns
Setup/Hold for Data Lines
Sequential Delays
TISCKO_Q
Output Serializer/Deserializer Switching Characteristics
Table 37: OSERDES2 Switching Characteristics
Symbol
Description
Speed Grade
-4
-3
-2
-1L
Units
Setup/Hold
TOSDCK_D/TOSCKD_D
D input Setup/Hold with respect to CLKDIV
–0.03
1.02
–0.03
1.17
–0.03
1.27
–0.02
0.23
ns
TOSDCK_T/TOSCKD_T(1)
T input Setup/Hold with respect to CLK
–0.05
1.03
–0.05
1.13
–0.05
1.23
–0.05
0.24
ns
TOSCCK_OCE/TOSCKC_OCE
OCE input Setup/Hold with respect to CLK
0.12
–0.03
0.15
–0.03
0.24
–0.03
0.28
–0.17
ns
TOSCCK_TCE/TOSCKC_TCE
TCE input Setup/Hold with respect to CLK
0.14
–0.08
0.17
–0.08
0.27
–0.08
0.31
–0.16
ns
TOSCKO_OQ
Clock to out from CLK to OQ
0.94
1.11
1.51
1.89
ns
TOSCKO_TQ
Clock to out from CLK to TQ
0.94
1.11
1.51
1.91
ns
Sequential Delays
Notes:
1. TOSDCK_T2/TOSCKD_T2 (T input setup/hold with respect to CLKDIV) are reported as TOSDCK_T/TOSCKD_T in TRACE report.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
37
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Input/Output Delay Switching Characteristics
Table 38: IODELAY2 Switching Characteristics
Symbol
Description
Speed Grade
-4
-3
-2
-1L
Units
TIODCCK_CAL / TIODCKC_CAL
CAL pin Setup/Hold with respect to CK
0.28
–0.13
0.33
–0.13
0.48
–0.13
0.57
–0.24
ns
TIODCCK_CE / TIODCKC_CE
CE pin Setup/Hold with respect to CK
0.14
–0.03
0.17
–0.03
0.25
–0.02
0.33
0.01
ns
TIODCCK_INC/ TIODCKC_INC
INC pin Setup/Hold with respect to CK
0.10
0.02
0.12
0.03
0.18
0.06
0.23
0.11
ns
TIODCCK_RST/ TIODCKC_RST
RST pin Setup/Hold with respect to CK
0.12
–0.02
0.15
–0.02
0.22
–0.01
0.28
0.02
ns
TTAP1(2)
Maximum tap 1 delay
8
14
16
ps
TTAP2
Maximum tap 2 delay
40
66
77
ps
TTAP3
Maximum tap 3 delay
95
120
140
ps
TTAP4
Maximum tap 4 delay
108
141
166
ps
TTAP5
Maximum tap 5 delay
171
194
231
ps
TTAP6
Maximum tap 6 delay
207
249
292
ps
TTAP7
Maximum tap 7 delay
212
276
343
ps
TTAP8
Maximum tap 8 delay
292
341
424
ps
FMINCAL
Minimum allowed bit rate for calibration in variable
mode: VARIABLE_FROM_ZERO,
VARIABLE_FROM_HALF_MAX, and
DIFF_PHASE_DETECTOR.
188
188
188
Mb/s
TIODDO_IDATAIN
Propagation delay through IODELAY2
Note 1
Note 1
Note 1
Note 1
TIODDO_ODATAIN
Propagation delay through IODELAY2
Note 1
Note 1
Note 1
Note 1
Notes:
1. Delay depends on IODELAY2 tap setting. See TRACE report for actual values.
2. Maximum delay = integer (number of taps/8) × TTAP8 + TTAPn (where n equals the remainder). For minimum delay consult the TRACE setup and hold
report. Minimum delay is greater than 30% of the maximum delay.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
38
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
CLB Switching Characteristics (SLICEM Only)
Table 39: CLB Switching Characteristics (SLICEM Only)
Symbol
Description
Speed Grade
Units
-4
-3
-2
-1L
An – Dn LUT inputs to A to D outputs
0.21
0.26
0.38
0.49
ns, Max
An – Dn LUT inputs through F7AMUX/F7BMUX
to AMUX/CMUX output
0.37
0.43
0.61
0.80
ns, Max
TOPAB
An – Dn LUT inputs through F7AMUX or F7BMUX and F8MUX
to BMUX output
0.37
0.46
0.65
0.86
ns, Max
TITO
An – Dn LUT inputs through latch to AQ – DQ outputs
0.82
0.95
1.28
1.70
ns, Max
TTITO_LOGIC
An – Dn LUT inputs to AQ – DQ outputs (latch as logic)
0.82
0.95
1.28
1.70
ns, Max
TOPCYA
An LUT inputs to COUT output
0.38
0.48
0.72
0.95
ns, Max
TOPCYB
Bn LUT inputs to COUT output
0.38
0.49
0.71
0.92
ns, Max
TOPCYC
Cn LUT inputs to COUT output
0.28
0.33
0.49
0.67
ns, Max
TOPCYD
Dn LUT inputs to COUT output
0.28
0.35
0.48
0.63
ns, Max
TAXCY
AX input to COUT output
0.21
0.26
0.40
0.51
ns, Max
TBXCY
BX input to COUT output
0.13
0.16
0.24
0.35
ns, Max
TCXCY
CX input to COUT output
0.10
0.12
0.18
0.18
ns, Max
TDXCY
DX input to COUT output
0.09
0.11
0.14
0.18
ns, Max
TBYP
CIN input to COUT output
0.08
0.10
0.13
0.11
ns, Max
TCINA
CIN input to AMUX output
0.21
0.22
0.29
0.47
ns, Max
TCINB
CIN input to BMUX output
0.30
0.31
0.46
0.58
ns, Max
TCINC
CIN input to CMUX output
0.29
0.31
0.41
0.59
ns, Max
TCIND
CIN input to DMUX output
0.31
0.32
0.44
0.67
ns, Max
Clock to AQ – DQ outputs
0.45
0.53
0.64
0.82
ns, Max
Combinatorial Delays
TILO
Sequential Delays
TCKO
Setup and Hold Times of CLB Flip-Flops Before/After Clock CLK
TDICK/TCKDI
AX – DX input to CLK on A – D flip-flops
0.42
0.28
0.47
0.39
0.74
0.54
0.99
0.58
ns, Min
TCECK/TCKCE
CE input to CLK on A – D flip-flops
0.31
–0.07
0.37
–0.07
0.59
–0.07
0.59
–0.27
ns, Min
TSRCK/TCKSR
SR input to CLK on A – D flip-flops
0.34
0.02
0.42
0.02
0.49
0.02
0.63
–0.33
ns, Min
TCINCK/TCKCIN
CIN input to CLK on A – D flip-flops
0.31
–0.17
0.31
–0.13
0.49
–0.12
0.79
–0.46
ns, Min
TRPW
SR input minimum pulse width
0.41
0.48
0.65
1.58
ns, Min
TRQ
Delay from SR input to AQ – DQ flip-flops
1.81
1.81
2.50
3.05
ns, Max
TCEO
Delay from CE input to AQ – DQ flip-flops
0.53
0.65
0.92
1.36
ns, Max
FTOG
Toggle frequency (for export control)
862
806
667
Set/Reset
DS162 (v1.9) August 23, 2010
Advance Product Specification
MHz
www.xilinx.com
39
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
CLB Distributed RAM Switching Characteristics (SLICEM Only)
Table 40: CLB Distributed RAM Switching Characteristics (SLICEM Only)
Symbol
Description
Speed Grade
-4
-3
-2
-1L
Clock to A – D outputs
1.26
1.55
2.12
2.56
Clock to A – D outputs (direct output path)
0.96
1.20
1.60
Units
Sequential Delays
TSHCKO
ns, Max
ns, Max
Setup and Hold Times Before/After Clock CLK
TDS/TDH
AX – DX or AI – DI inputs to CLK
0.59
0.17
0.73
0.22
1.04
0.37
1.17
0.33
ns, Min
TAS/TAH
Address An inputs to clock
0.28
0.35
0.32
0.42
0.40
0.67
0.26
0.71
ns, Min
TWS/TWH
WE input to clock
0.31
–0.08
0.37
–0.08
0.59
–0.08
0.59
–0.27
ns, Min
TCECK/TCKCE
CE input to CLK
0.31
–0.08
0.37
–0.08
0.59
–0.08
0.59
–0.27
ns, Min
CLB Shift Register Switching Characteristics (SLICEM Only)
Table 41: CLB Shift Register Switching Characteristics
Symbol
Description
Speed Grade
-4
-3
-2
-1L
Clock to A – D outputs
1.35
1.78
2.14
2.89
Clock to A – D outputs (direct output path)
1.24
1.65
1.95
Units
Sequential Delays
TREG
ns, Max
ns, Max
Setup and Hold Times Before/After Clock CLK
TWS/TWH
WE input to CLK
0.20
–0.07
0.24
–0.07
0.36
–0.07
0.59
–0.17
ns, Min
TCECK/TCKCE
CE input to CLK
0.27
0.36
0.29
0.38
0.52
0.40
0.59
–0.17
ns, Min
TDS/TDH
AX – DX or AI – DI inputs to CLK
0.07
0.11
0.09
0.14
0.18
0.28
1.16
0.28
ns, Min
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
40
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Block RAM Switching Characteristics
Table 42: Block RAM Switching Characteristics
Symbol
Speed Grade
Description
Units
-4
-3
-2
-1L
1.85
2.10
2.90
3.50
ns, Max
1.60
1.75
1.90
2.30
ns, Max
Block RAM Clock to Out Delays
TRCKO_DO
TRCKO_DO_REG
Clock CLK to DOUT output (without output register)(1)
Clock CLK to DOUT output (with output
register)(2)
Setup and Hold Times Before/After Clock CLK
TRCCK_ADDR/TRCKC_ADDR
ADDR inputs(3)
0.35
0.10
0.40
0.12
0.40
0.15
0.50
0.15
ns, Min
TRDCK_DI/TRCKD_DI
DIN inputs (4)
0.30
0.10
0.30
0.10
0.30
0.12
0.40
0.15
ns, Min
TRCCK_EN/TRCKC_EN
Block RAM Enable (EN) input
0.21
0.05
0.22
0.06
0.28
0.10
0.26
0.10
ns, Min
TRCCK_REGCE/TRCKC_REGCE
CE input of output register
0.20
0.10
0.20
0.10
0.25
0.12
0.28
0.15
ns, Min
TRCCK_WE/TRCKC_WE
Write Enable (WE) input
0.25
0.10
0.33
0.10
0.46
0.12
0.28
0.15
ns, Min
Block RAM in all modes
320
280
260
150
MHz
Maximum Frequency
FMAX
Notes:
1. TRCKO_DO includes TRCKO_DOA and TRCKO_DOPA as well as the B port equivalent timing parameters.
2. TRCKO_DO_REG includes TRCKO_DOA_REG and TRCKO_DOPA_REG as well as the B port equivalent timing parameters.
3. The ADDR setup and hold must be met when EN is asserted (even when WE is deasserted). Otherwise, block RAM data corruption is possible.
4. TRDCK_DI includes both A and B inputs as well as the parity inputs of A and B.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
41
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
DSP48A1 Switching Characteristics
Table 43: DSP48A1 Switching Characteristics
Symbol
Preadder
Description
Multiplier
Postadder
Speed Grade
-4
-3
-2
-1L
Units
Setup and Hold Times of Data/Control Pins to the Input Register Clock
TDSPDCK_A_A1REG/
TDSPCKD_A_A1REG
A input to A1 register CLK
N/A
N/A
N/A
0.15
0.09
0.17
0.09
0.23
0.09
0.32
0.09
ns
TDSPDCK_D_B1REG/
TDSPCKD_D_B1REG
D input to B1 register CLK
Yes
N/A
N/A
1.90
–0.07
1.95
–0.07
1.99
–0.07
2.82
–0.07
ns
TDSPDCK_C_CREG/
TDSPCKD_C_CREG
C input to C register CLK
N/A
N/A
N/A
0.11
0.15
0.13
0.15
0.17
0.15
0.24
0.09
ns
TDSPDCK_D_DREG/
TDSPCKD_D_DREG
D input to D register CLK
N/A
N/A
N/A
0.09
0.15
0.10
0.15
0.14
0.15
0.19
0.12
ns
TDSPDCK_OPMODE_B1REG/
TDSPCKD_OPMODE_B1REG
OPMODE input to B1
register CLK
Yes
N/A
N/A
1.97
0.01
2.00
0.01
2.01
0.01
2.85
0.01
ns
N/A
N/A
N/A
0.18
0.12
0.21
0.12
0.28
0.26
0.40
0.12
ns
TDSPDCK_OPMODE_OPMODEREG/ OPMODE input to
TDSPCKD_OPMODE_OPMODEREG OPMODE register CLK
Setup and Hold Times of Data Pins to the Pipeline Register Clock
TDSPDCK_A_MREG/
TDSPCKD_A_MREG
A input to M register CLK
N/A
Yes
N/A
3.06
–0.40
3.51
–0.40
3.71
–0.40
3.97
–0.40
ns
TDSPDCK_B_MREG/
TDSPCKD_B_MREG
B input to M register CLK
Yes
Yes
N/A
3.96
–0.68
4.58
–0.68
5.28
–0.68
7.00
–0.68
ns
TDSPDCK_D_MREG/
TDSPCKD_D_MREG
D input to M register CLK
Yes
Yes
N/A
4.23
–0.56
4.80
–0.56
4.82
–0.56
6.84
–0.56
ns
TDSPDCK_OPMODE_MREG/
TDSPCKD_OPMODE_MREG
OPMODE to M register
CLK
Yes
Yes
N/A
4.18
–0.48
4.80
–0.48
4.85
–0.48
6.88
–0.48
ns
No
Yes
N/A
2.37
–0.48
2.70
–0.48
3.02
–0.48
4.28
–0.48
ns
Setup and Hold Times of Data/Control Pins to the Output Register Clock
TDSPDCK_A_PREG/
TDSPCKD_A_PREG
A input to P register CLK
N/A
Yes
Yes
4.32
–0.76
5.06
–0.76
5.38
–0.76
7.52
–0.76
ns
TDSPDCK_B_PREG/
TDSPCKD_B_PREG
B input to P register CLK
Yes
Yes
Yes
5.87
–0.59
6.87
–0.59
7.87
–0.59
10.55
–0.59
ns
No
Yes
Yes
4.14
–0.93
4.68
–0.93
6.16
–0.93
8.12
–0.93
ns
TDSPDCK_C_PREG/
TDSPCKD_C_PREG
C input to P register CLK
N/A
N/A
Yes
2.20
–0.23
2.25
–0.23
2.30
–0.23
3.27
–0.23
ns
TDSPDCK_D_PREG/
TDSPCKD_D_PREG
D input to P register CLK
Yes
Yes
Yes
5.90
–0.92
6.91
–0.92
7.32
–0.92
10.39
–0.92
ns
TDSPDCK_OPMODE_PREG/
TDSPCKD_OPMODE_PREG
OPMODE input to P
register CLK
Yes
Yes
Yes
6.21
–0.84
7.27
–0.84
7.35
–0.84
10.43
–0.84
ns
No
Yes
Yes
1.69
–0.87
1.98
–0.87
2.55
–0.87
3.62
–0.87
ns
No
No
Yes
2.09
–0.22
2.30
–0.22
2.67
–0.22
3.79
–0.22
ns
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
42
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 43: DSP48A1 Switching Characteristics (Cont’d)
Symbol
Description
Speed Grade
Preadder
Multiplier
Postadder
-4
-3
-2
-1L
N/A
N/A
N/A
1.20
1.34
1.34
1.90
ns
N/A
N/A
Yes
3.38
3.95
4.19
5.83
ns
Units
Clock to Out from Output Register Clock to Output Pin
TDSPCKO_P_PREG
CLK (PREG) to P output
Clock to Out from Pipeline Register Clock to Output Pins
TDSPCKO_P_MREG
CLK (MREG) to P output
Clock to Out from Input Register Clock to Output Pins
TDSPCKO_P_A1REG
CLK (A1REG) to P output
N/A
Yes
Yes
5.02
5.87
6.80
9.65
ns
TDSPCKO_P_B1REG
CLK (B1REG) to P output
N/A
Yes
Yes
5.02
5.87
6.79
9.63
ns
TDSPCKO_P_CREG
CLK (CREG) to P output
N/A
N/A
Yes
3.12
3.64
3.70
5.24
ns
TDSPCKO_P_DREG
CLK (DREG) to P output
Yes
Yes
Yes
6.77
7.92
9.06
12.53
ns
N/A
No
Yes
2.85
3.33
3.41
4.73
ns
N/A
Yes
No
3.35
3.93
4.83
6.74
ns
N/A
Yes
Yes
4.56
5.22
6.38
8.94
ns
Yes
No
No
3.22
3.76
3.91
5.55
ns
Yes
Yes
No
6.01
6.54
6.88
9.76
ns
Yes
Yes
Yes
6.27
7.34
8.43
11.96
ns
Combinatorial Delays from Input Pins to Output Pins
TDSPDO_A_P
TDSPDO_B_P
A input to P output
B input to P output
TDSPDO_C_P
C input to P output
N/A
N/A
Yes
2.69
3.15
3.30
4.68
ns
TDSPDO_D_P
D input to P output
Yes
Yes
Yes
6.31
7.38
8.32
11.81
ns
TDSPDO_OPMODE_P
OPMODE input to P output
Yes
Yes
Yes
6.43
7.52
8.35
11.84
ns
No
Yes
Yes
4.84
5.66
6.52
9.25
ns
No
No
Yes
3.11
3.49
3.55
5.03
ns
Yes
Yes
Yes
390
333
302
213
MHz
Maximum Frequency
FMAX
All registers used
Notes:
1. A Yes signifies that the component is in the path. A No signifies that the component is being bypassed. N/A signifies not applicable because no path
exists.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
43
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 44: Device DNA Interface Port Switching Characteristics
Symbol
Speed Grade
Description
-4
-3
-2
Units
-1L
TDNASSU
Setup time on SHIFT before the rising edge of CLK
7
ns, Min
TDNASH
Hold time on SHIFT after the rising edge of CLK
1
ns, Min
TDNADSU
Setup time on DIN before the rising edge of CLK
7
ns, Min
TDNADH
Hold time on DIN after the rising edge of CLK
1
ns, Min
TDNARSU
Setup time on READ before the rising edge of CLK
7
ns, Min
1,000
ns, Max
TDNARH
Hold time on READ after the rising edge of CLK
1
ns, Min
TDNADCKO
Clock-to-output delay on DOUT after rising edge of CLK
0.5
ns, Min
6
ns, Max
CLK frequency
2
MHz, Max
TDNACLKL
CLK Low time
50
ns, Min
TDNACLKH
CLK High time
50
ns, Min
TDNACLKF
(2)
Notes:
1. The minimum READ pulse width is 8 ns, the maximum READ pulse width is 1 µs.
2. Also applies to TCK when reading DNA through the boundary-scan port.
Table 45: Suspend Mode Switching Characteristics
Description
Min
Max
Units
TSUSPENDHIGH_AWAKE
Rising edge of SUSPEND pin to falling edge of AWAKE pin without glitch filter
2.5
14
ns
TSUSPENDFILTER
Adjustment to SUSPEND pin rising edge parameters when glitch filter enabled
31
430
ns
TSUSPEND_GWE
Rising edge of SUSPEND pin until FPGA output pins drive their defined
SUSPEND constraint behavior (without glitch filter)
–
15
ns
TSUSPEND_GTS
Rising edge of SUSPEND pin to write-protect lock on all writable clocked
elements (without glitch filter)
–
15
ns
TSUSPEND_DISABLE
Rising edge of the SUSPEND pin to FPGA input pins and interconnect
disabled (without glitch filter)
–
1500
ns
TSUSPENDLOW_AWAKE
Falling edge of the SUSPEND pin to rising edge of the AWAKE pin. Does not
include DCM or PLL lock time.
7
75
µs
TSUSPEND_ENABLE
Falling edge of the SUSPEND pin to FPGA input pins and interconnect reenabled
7
41
µs
TAWAKE_GWE1
Rising edge of the AWAKE pin until write-protect lock released on all writable
clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:1.
–
80
ns
TAWAKE_GWE512
Rising edge of the AWAKE pin until write-protect lock released on all writable
clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:512.
–
20.5
µs
TAWAKE_GTS1
Rising edge of the AWAKE pin until outputs return to the behavior described in
the FPGA application, using sw_clk:InternalClock and sw_gts_cycle:1.
–
80
ns
TAWAKE_GTS512
Rising edge of the AWAKE pin until outputs return to the behavior described in
the FPGA application, using sw_clk:InternalClock and sw_gts_cycle:512.
–
20.5
µs
TSCP_AWAKE
Rising edge of SCP pins to rising edge of AWAKE pin
7
75
µs
Symbol
Entering Suspend Mode
Exiting Suspend Mode
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
44
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Configuration Switching Characteristics
Table 46: Configuration Switching Characteristics(1)
Symbol
Description
Speed Grade
Units
-4
-3
-2
-1L
4
4
4
5
ms, Max
Power-up Timing Characteristics
TPL(2)
PROGRAM_B Latency
TPOR(2)
Power-on-Reset
5/40
5/40
5/40
5/40
ms, Min/Max
TPROGRAM
PROGRAM_B Pulse Width
500
500
500
500
ns, Min
6.0/1.0
6.0/1.0
6.0/1.0
8.0/2.0
ns, Min
Slave Serial Mode Programming Switching
TDCCK/TCCKD
DIN Setup/Hold, slave mode
TCCO
CCLK to DOUT
12
12
12
17
ns, Max
FSCCK
Slave mode external CCLK
80
80
80
50
MHz, Max
Slave SelectMAP Mode Programming Switching
TSMDCCK/TSMCCKD
SelectMAP Data Setup/Hold
6.0/1.0
6.0/1.0
6.0/1.0
8.0/2.0
ns, Min
TSMCSCCK/TSMCCKCS
CSI_B Setup/Hold
7.0/0.0
7.0/0.0
7.0/0.0
9.0/2.0
ns, Min
TSMCCKW/TSMWCCK
RDWR_B Setup/Hold
17.0/1.0 17.0/1.0 17.0/1.0 27.0/2.0
ns, Min
TSMCKCSO
CSO_B clock to out
16
16
16
26
ns, Min
TSMCO
CCLK to DATA out in readback
13
13
13
25
ns, Max
TSMCKBY
CCLK to BUSY out in readback
12
12
12
17
ns, Max
Maximum CCLK frequency (XC6SLX4,
XC6SLX9, XC6SLX16, XC6SLX25,
XC6SLX25T, XC6SLX45, XC6SLX45T,
XC6SLX75, and XC6SLX75T only)
50
50
50
25
MHz, Max
Maximum CCLK frequency
(XC6SLX100, XC6SLX100T,
XC6SLX150, and XC6SLX150T only)
40
40
40
20
MHz, Max
Maximum Readback CCLK frequency
(XC6SLX4, XC6SLX9, XC6SLX16,
XC6SLX25, XC6SLX25T, XC6SLX45,
XC6SLX45T, XC6SLX75, and
XC6SLX75T only)
20
20
20
4
MHz, Max
Maximum Readback CCLK frequency
(XC6SLX100, XC6SLX100T,
XC6SLX150, and XC6SLX150T only)
12
12
12
4
MHz, Max
FSMCCK
FRBCCK
Boundary-Scan Port Timing Specifications
TTAPTCK
TMS and TDI Setup time before TCK
10
10
10
17
ns, Min
TTCKTAP
TMS and TDI Hold time after TCK
5.5
5.5
5.5
5.5
ns, Min
TTCKTDO
TCK falling edge to TDO output valid
6.5
6.5
6.5
8
ns, Max
TTCKH
TCK clock minimum High time
12
12
12
21
ns, Min
TTCKL
TCK clock minimum Low time
12
12
12
21
ns, Min
FTCK
Maximum configuration TCK clock
frequency
33
33
33
18
MHz, Max
FTCKB
Maximum boundary-scan TCK clock
frequency
33
33
33
18
MHz, Max
FTCKAES
Maximum AES key TCK clock frequency
2
2
2
2
MHz, Max
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
45
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 46: Configuration Switching Characteristics(1) (Cont’d)
Symbol
Description
Speed Grade
Units
-4
-3
-2
-1L
15
15
15
20
ns, Min
BPI Master Flash Mode Programming Switching(3)
TBPICCO(4)
A[25:0], FCS_B, FOE_B, FWE_B, LDC
outputs valid after CCLK falling edge
TBPIICCK
Master BPI CCLK (output) delay
10/100
10/100
10/100
10/130
µs, Min/Max
TBPIDCC/TBPICCD
Setup/Hold on D[15:0] data input pins
5.0/1.0
5.0/1.0
5.0/1.0
6.0/2.0
ns, Min
ns, Min
SPI Master Flash Mode Programming Switching
TSPIDCC/TSPIDCCD
DIN, MISO0, MISO1, MISO2, MISO3,
Setup/Hold before/after the rising CCLK
edge
5.0/1.0
5.0/1.0
5.0/1.0
7.0/1.0
TSPIICCK
Master SPI CCLK (output) delay
0.4/7.0
0.4/7.0
0.4/7.0
0.4/10.0 µs, Min/Max
TSPICCM
MOSI clock to out
13
13
13
19
ns, Max
TSPICCFC
CSO_B clock to out
16
16
16
26
ns, Max
CCLK Output (Master Modes)
TMCCKL
Master CCLK clock duty cycle Low
40/60
%, Min/Max
TMCCKH
Master CCLK clock duty cycle High
40/60
%, Min/Max
FMCCK
Maximum Frequency, master mode
40
40
40
30
MHz, Max
FMCCKTOL
Frequency Tolerance, master mode
±50
±50
±50
±50
%
CCLK Input (Slave Modes)
TSCCKL
Slave CCLK clock minimum Low time
5
5
5
8
ns, Min
TSCCKH
Slave CCLK clock minimum High time
5
5
5
8
ns, Min
TUSERCCLKL
USERCCLK clock minimum Low time
12
12
12
21
ns, Min
TUSERCCLKH
USERCCLK clock minimum High time
12
12
12
21
ns, Min
FUSERCCLK
Maximum USERCCLK frequency
40
40
40
30
MHz, Max
USERCCLK Input
Notes:
1.
2.
3.
4.
Maximum frequency and setup/hold timing parameters are for 3.3V and 2.5V configuration voltages.
To support longer delays in configuration, use the design solutions described in the Spartan-6 FPGA Configuration User Guide.
BPI mode is not supported in:
•
LX4, LX25, or LX25T devices
•
LX9 devices in the TQG144 package
•
LX9 or LX16 devices in the CPG196 package.
Only during configuration, the last edge is determined by a weak pull-up/pull-down resistor in the I/O.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
46
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Clock Buffers and Networks
Table 47: Global Clock Switching Characteristics
Symbol
TGSI
Description
S pin Setup to I0/I1 inputs
BUFGMUX delay from
I0/I1 to O
TGIO
Devices
Speed Grade
Units
-4
-3
-2
-1L
LX Family
N/A
0.31
0.48
0.60
ns
LXT Family
0.25
0.31
0.48
N/A
ns
LX Family
N/A
0.21
0.21
LXT Family
0.21
0.21
0.21
LX Family
N/A
400
375
LXT Family
400
400
375
ns
N/A
ns
Maximum Frequency
Global clock tree (BUFG)
FMAX
MHz
N/A
MHz
Table 48: Input/Output Clock Switching Characteristics (BUFIO2)
Symbol
TBUFCKO_O
Description
Clock to out delay from I to O
Devices
Speed Grade
Units
-4
-3
-2
-1L
LX Family
N/A
0.82
1.09
1.80
ns
LXT Family
0.67
0.82
1.09
N/A
ns
LX Family
N/A
525
500
LXT Family
540
525
500
Maximum Frequency
FMAX
I/O clock tree (BUFIO2)
MHz
N/A
MHz
Table 49: Input/Output Clock Switching Characteristics (BUFPLL)
Symbol
Description
Devices
Speed Grade
-4
-3
-2
LX Family
N/A
1050
950
LXT Family
1080
1050
950
-1L
Units
Maximum Frequency
FMAX
BUFPLL clock tree (BUFPLL)
DS162 (v1.9) August 23, 2010
Advance Product Specification
MHz
N/A
MHz
www.xilinx.com
47
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
PLL Switching Characteristics
Table 50: PLL Specification
Symbol
FINMAX
FINMIN
Speed Grade
Device(1)
Description
-4
-3
-2
Units
-1L
Maximum Input Clock Frequency
from I/O Clock
LX Family
N/A
525
450
MHz
LXT Family
540
525
450
Maximum Input Clock Frequency
from Global Clock
LX Family
N/A
400
375
LXT Family
400
400
375
Minimum Input Clock Frequency
LX Family
N/A
19
19
LXT Family
19
19
19
<20% of clock input period or 1 ns Max
N/A
MHz
MHz
N/A
MHz
MHz
N/A
MHz
FINJITTER
Maximum Input Clock Period Jitter
All
FINDUTY
Allowable Input Duty Cycle: 19—199 MHz
All
25/75
%
Allowable Input Duty Cycle: 200—299 MHz All
35/65
%
Allowable Input Duty Cycle: > 300 MHz
All
45/55
%
Minimum PLL VCO Frequency
LX Family
N/A
400
400
400
MHz
LXT Family
400
400
400
N/A
MHz
LX Family
N/A
1050
1000
1000
MHz
LXT Family
1080
1050
1000
N/A
MHz
FVCOMIN
FVCOMAX
FBANDWIDTH
TSTAPHAOFFSET
TOUTJITTER
Maximum PLL VCO Frequency
Low PLL Bandwidth at
Typical(3)
All
1
1
1
1
MHz
High PLL Bandwidth at
Typical(3)
All
4
4
4
4
MHz
All
0.12
0.12
0.12
Static Phase Offset of the PLL Outputs
PLL Output
Jitter(3)
All
TOUTDUTY
PLL Output Clock Duty Cycle
TLOCKMAX
Precision(4)
ns
Note 2
All
0.15
0.15
0.20
PLL Maximum Lock Time
All
100
100
100
FOUTMAX
PLL Maximum Output Frequency for
BUFGMUX
LX Family
N/A
400
375
LXT Family
400
400
375
FOUTMAX
PLL Maximum Output Frequency for
BUFPLL
LX Family
N/A
1050
950
ns
100
µs
MHz
N/A
MHz
MHz
LXT Family
1080
1050
950
N/A
MHz
FOUTMIN
PLL Minimum Output
Frequency(5)
All
3.125
3.125
3.125
3.125
MHz
TEXTFDVAR
External Clock Feedback Variation
All
< 20% of clock input period or 1 ns Max
RSTMINPULSE
Minimum Reset Pulse Width
All
5
5
5
FPFDMAX(5)
Maximum Frequency at the Phase
Frequency Detector
LX Family
N/A
500
400
LXT Family
500
500
400
Minimum Frequency at the Phase
Frequency Detector
LX Family
N/A
19
19
LXT Family
19
19
19
Maximum Delay in the Feedback Path
All
FPFDMIN
TFBDELAY
5
ns
MHz
N/A
MHz
MHz
N/A
MHz
3 ns Max or one CLKIN cycle
Notes:
1. LX devices are not available with a -4 speed grade; LXT devices are not available with a -1L speed grade.
2. Values for this parameter are available in the Clocking Wizard.
3. The PLL does not filter typical spread spectrum input clocks because they are usually far below the bandwidth filter frequencies.
4. Includes global clock buffer.
5. Calculated as FVCO/128 assuming output duty cycle is 50%.
6. When using CLK_FEEDBACK = CLKOUT0 with BUFIO2 feedback, the feedback frequency will be higher than the phase frequency detector
frequency. FPFDMAX = FCLKFB / CLKFBOUT_MULT
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
48
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
DCM Switching Characteristics
Table 51: Operating Frequency Ranges and Conditions for the Delay-Locked Loop (DLL)(1)
Speed Grade
Symbol
Description
-4
-3
-2
-1L
Units
Min
Max
Min
Max
Min
Max
Min
Max
Frequency of the CLKIN clock
input. Also described as FCLKIN.
5(2)
280(3)
5(2)
280(3)
5(2)
250(3)
5(2)
175(3)
MHz
CLKIN pulse width as a
percentage of the CLKIN period
for
CLKIN_FREQ_DLL < 150 MHz
40
60
40
60
40
60
40
60
%
CLKIN pulse width as a
percentage of the CLKIN period
for
CLKIN_FREQ_DLL > 150 MHz
45
55
45
55
45
55
45
55
%
Cycle-to-cycle jitter at the CLKIN
input for
CLKIN_FREQ_DLL < 150 MHz
–
±300
–
±300
–
±300
–
±300
ps
Cycle-to-cycle jitter at the CLKIN
input for
CLKIN_FREQ_DLL > 150 MHz.
–
±150
–
±150
–
±150
–
±150
ps
CLKIN_PER_JITT_DLL
Period jitter at the CLKIN input.
–
±1
–
±1
–
±1
–
±1
ns
CLKFB_DELAY_VAR_EXT
Allowable variation of the off-chip
feedback delay from the DCM
output to the CLKFB input.
–
±1
–
±1
–
±1
–
±1
ns
Input Frequency Ranges
CLKIN_FREQ_DLL
Input Pulse Requirements
CLKIN_PULSE
Input Clock Jitter Tolerance and Delay Path Variation(4)
CLKIN_CYC_JITT_DLL_LF
CLKIN_CYC_JITT_DLL_HF
Notes:
1. DLL specifications apply when using any of the DLL outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV.
2. When operating independently of the DLL, the DFS supports lower CLKIN_FREQ_DLL frequencies. See Table 53.
3. The CLKIN_DIVIDE_BY_2 attribute can be used to increase the effective input frequency range up to the FMAX for the global clock BUFG, see
Table 47. When set to TRUE, the CLKIN_DIVIDE_BY_2 attribute divides the incoming clock frequency by two as it enters the DCM.
4. CLKIN_FREQ_DLL input jitter beyond these limits can cause the DCM to lose LOCK, indicated by the LOCKED output deasserting. The user must
then reset the DCM.
5. When using both DCMs in a CMT, both DCMs must be LOCKED.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
49
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 52: Switching Characteristics for the Delay-Locked Loop (DLL)(1)
Speed Grade
Symbol
Description
-4
-3
-2
-1L
Min
Max
Min
Max
Min
Max
Min
Units
Max
Output Frequency Ranges
CLKOUT_FREQ_CLK0
Frequency for the CLK0 and
CLK180 outputs.
5
280
5
280
5
250
MHz
CLKOUT_FREQ_CLK90
Frequency for the CLK90 and
CLK270 outputs.
5
200
5
200
5
200
MHz
CLKOUT_FREQ_2X
Frequency for the CLK2X and
CLK2X180 outputs.
10
375
10
375
10
334
MHz
CLKOUT_FREQ_DV
Frequency for the CLKDV output.
0.3125
186
0.3125
186
0.3125
166
MHz
Output Clock
Jitter(2)(3)(4)
CLKOUT_PER_JITT_0
Period jitter at the CLK0 output.
–
±100
–
±100
–
±100
–
ps
CLKOUT_PER_JITT_90
Period jitter at the CLK90 output.
–
±150
–
±150
–
±150
–
ps
CLKOUT_PER_JITT_180
Period jitter at the CLK180 output.
–
±150
–
±150
–
±150
–
ps
CLKOUT_PER_JITT_270
Period jitter at the CLK270 output.
–
±150
–
±150
–
±150
–
ps
CLKOUT_PER_JITT_2X
Period jitter at the CLK2X and
CLK2X180 outputs.
CLKOUT_PER_JITT_DV1
Period jitter at the CLKDV output
when performing integer division.
CLKOUT_PER_JITT_DV2
Period jitter at the CLKDV output
when performing non-integer
division.
Maximum = ±[0.5% of CLKIN period + 100]
–
±150
–
±150
–
ps
±150
ps
Maximum = ±[0.5% of CLKIN
period + 100]
ps
Duty Cycle(4)
CLKOUT_DUTY_CYCLE_DLL Duty cycle variation for the CLK0,
CLK90, CLK180, CLK270, CLK2X,
CLK2X180, and CLKDV outputs,
including the BUFGMUX and clock
tree duty-cycle distortion.
Typical = ±[1% of CLKIN period + 350]
ps
Phase Alignment(4)
CLKIN_CLKFB_PHASE
CLKOUT_PHASE_DLL
Phase offset between the CLKIN
and CLKFB inputs
(CLK_FEEDBACK = 1X).
–
Phase offset between the CLKIN
and CLKFB inputs
(CLK_FEEDBACK = 2X).
–
±150
–
±150
–
±150
–
±250
ps
Max
±250
–
±250
–
±250
Phase offset between DLL outputs
for CLK0 to CLK2X (not CLK2X180).
Maximum = ±[1% of CLKIN period + 100]
ps
Phase offset between DLL outputs
for all others.
Maximum = ±[1% of CLKIN period + 150]
ps
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
50
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 52: Switching Characteristics for the Delay-Locked Loop (DLL)(1) (Cont’d)
Speed Grade
Symbol
Description
LOCK_DLL(3)
-4
-3
-2
-1L
Units
Min
Max
Min
Max
Min
Max
Min
Max
When using the DLL alone: The time
from deassertion at the DCM’s reset
input to the rising transition at its
LOCKED output. When the DCM is
locked, the CLKIN and CLKFB
signals are in phase.
5 MHz < CLKIN_FREQ_DLL
< 50 MHz.
–
5
–
5
–
5
–
5
ms
When using the DLL alone: The time
from deassertion at the DCM’s reset
input to the rising transition at its
LOCKED output. When the DCM is
locked, the CLKIN and CLKFB
signals are in phase.
CLKIN_FREQ_DLL > 50 MHz
–
0.60
–
0.60
–
0.60
–
0.60
ms
Finest delay resolution, averaged
over all steps.
10
40
10
40
10
40
10
40
ps
Delay Lines
DCM_DELAY_STEP(5)
Notes:
1. The values in this table are based on the operating conditions described in Table 2 and Table 51.
2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.
3. For optimal jitter tolerance and faster LOCK time, use the CLKIN_PERIOD attribute.
4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. For example, this data sheet specifies a maximum jitter of
±(1% of CLKIN period + 150 ps). Assuming that the CLKIN frequency is 100 MHz, the equivalent CLKIN period is 10 ns. Since 1% of 10 ns is 0.1 ns
or 100 ps, the maximum jitter is ±(100 ps + 150 ps) = ±250 ps.
5. A typical delay step size is 23 ps.
Table 53: Recommended Operating Conditions for the Digital Frequency Synthesizer (DFS)(1)
Speed Grade
Symbol
Description
-4
-3
-2
-1L
Min
Units
Min
Max
Min
Max
Min
Max
Max
0.5
375
0.5
375
0.5
333
Cycle-to-cycle jitter at the CLKIN input,
based on CLKFX output frequency:
FCLKFX < 150 MHz.
–
±300
–
±300
–
±300
–
±300
ps
CLKIN_CYC_JITT_FX_HF Cycle-to-cycle jitter at the CLKIN input,
based on CLKFX output frequency:
FCLKFX > 150 MHz.
–
±150
–
±150
–
±150
–
±150
ps
CLKIN_PER_JITT_FX
–
±1
–
±1
–
±1
–
±1
ns
Input Frequency Ranges(2)
CLKIN_FREQ_FX
Frequency for the CLKIN input. Also
described as FCLKIN.
MHz
Input Clock Jitter Tolerance(3)
CLKIN_CYC_JITT_FX_LF
Period jitter at the CLKIN input.
Notes:
1. DFS specifications apply when using either of the DFS outputs (CLKFX or CLKFX180).
2. When using both DFS and DLL outputs on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 51.
3. CLKIN input jitter beyond these limits can cause the DCM to lose LOCK.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
51
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 54: Switching Characteristics for the Digital Frequency Synthesizer (DFS) for DCM_SP(1)
Speed Grade
Symbol
Description
-4
-3
-2
-1L
Min
Max
Min
Max
Min
Max
5
375
5
375
5
333
Min
Units
Max
Output Frequency Ranges
CLKOUT_FREQ_FX
Frequency for the CLKFX and
CLKFX180 outputs
MHz
Output Clock Jitter(2)(3)
CLKOUT_PER_JITT_FX
Period jitter at the CLKFX and
CLKFX180 outputs. When
CLKIN < 20 MHz
Use the Clocking Wizard
ps
Period jitter at the CLKFX and
CLKFX180 outputs. When
CLKIN > 20 MHz
Typical = ±(1% of CLKFX period + 100)
ps
Maximum = ±(1% of CLKFX period + 350)
ps
Duty Cycle(4)(5)
Duty cycle precision for the CLKFX
and CLKFX180 outputs including the
CLKOUT_DUTY_CYCLE_FX
BUFGMUX and clock tree duty-cycle
distortion
Phase Alignment(5)
CLKOUT_PHASE_FX
Phase offset between the DFS
CLKFX output and the DLL CLK0
output when both the DFS and DLL
are used
CLKOUT_PHASE_FX180
Phase offset between the DFS
CLKFX180 output and the DLL CLK0
output when both the DFS and DLL
are used
–
±200
–
±200
–
±200
–
±250
Maximum = ±(1% of CLKFX period + 200)
ps
ps
LOCKED Time
LOCK_FX(2)
When 5 MHz < FCLKIN < 50 MHz,
the time from deassertion at the
DCM’s reset input to the rising
transition at its LOCKED output. The
DFS asserts LOCKED when the
CLKFX and CLKFX180 signals are
valid. When using both the DLL and
the DFS, use the longer locking time.
–
5
–
5
–
5
–
5
ms
When FCLKIN > 50 MHz, the time
from deassertion at the DCM’s reset
input to the rising transition at its
LOCKED output. The DFS asserts
LOCKED when the CLKFX and
CLKFX180 signals are valid. When
using both the DLL and the DFS, use
the longer locking time.
–
0.45
–
0.45
–
0.45
–
0.60
ms
Notes:
1. The values in this table are based on the operating conditions described in Table 2 and Table 53.
2. For optimal jitter tolerance and a faster LOCK time, use the CLKIN_PERIOD attribute.
3. Output jitter is characterized with no input jitter. Output jitter strongly depends on the environment, including the number of SSOs, the output drive
strength, CLB utilization, CLB switching activities, switching frequency, power supply, and PCB design. The actual maximum output jitter depends on
the system application.
4. The CLKFX, CLKFXDV, and CLKFX180 outputs have a duty cycle of approximately 50%.
5. Some duty cycle and alignment specifications include a percentage of the CLKFX output period. For example, this data sheet specifies a maximum
CLKFX jitter of ±(1% of CLKFX period + 200 ps). Assuming that the CLKFX output frequency is 100 MHz, the equivalent CLKFX period is 10 ns, and
1% of 10 ns is 0.1 ns or 100 ps. Accordingly, the maximum jitter is ±(100 ps + 200 ps) = ±300 ps.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
52
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 55: Switching Characteristics for the Digital Frequency Synthesizer DFS (DCM_CLKGEN)(1)
Speed Grade
Symbol
Description
-4
-3
-2
-1L
Units
Min
Max
Min
Max
Min
Max
Min
Max
5
375
5
375
5
333
5
200
MHz
100
MHz
Output Frequency Ranges (DCM_CLKGEN)
CLKOUT_FREQ_FX
Frequency for the CLKFX and
CLKFX180 outputs
CLKOUT_FREQ_FXDV
Frequency for the CLKFXDV
output
0.15625 187.5 0.15625 187.5 0.15625 166.5 0.15625
Output Clock Jitter(2)(3)
CLKOUT_PER_JITT_FX
Period jitter at the CLKFX and
CLKFX180 outputs.
Typical = ±[0.2% of CLKFX period + 100]
ps
Typical = ±[0.2% of CLKFX period + 100]
ps
CLKFX period change in free
running oscillator mode at the
same temperature.
FCLKFX > 50 MHz
Maximum = ±3% of CLKFX period
ps
CLKFX period change in free
running oscillator mode at the
same temperature.
FCLKFX < 50 MHz
Maximum = ±5% of CLKFX period
ps
CLKFX period will change in
free_oscillator mode over
temperature. Add to
CLKFX_FREEZE_VAR to
determine total CLKFX period
change. Percentage change for
CLKFX period over 1°C.
Maximum = 0.1
%/°C
CLKOUT_DUTY_CYCLE_
FX
Duty cycle precision for the
CLKFX and CLKFX180 outputs,
including the BUFGMUX and
clock tree duty-cycle distortion
Maximum = ±[1% of CLKFX period + 350]
ps
CLKOUT_DUTY_CYCLE_
FXDV
Duty cycle precision for the
CLKFXDV outputs, including the
BUFGMUX and clock tree
duty-cycle distortion
Maximum = ±[1% of CLKFX period + 350]
ps
CLKOUT_PER_JITT_FXDV Period jitter at the CLKFXDV
output.
CLKFX_FREEZE_VAR
CLKFX_FREEZE_TEMP
_SLOPE
Duty Cycle(4)(5)
Lock Time
LOCK_FX(2)
The time from deassertion at the
DCM’s Reset input to the rising
transition at its LOCKED output.
The DFS asserts LOCKED when
the CLKFX, CLKFX180, and
CLKFXDV signals are valid.
Lock time requires
CLKFX_DIVIDE < FIN/(0.50
MHz)
when:
5 MHz < FCLKIN < 50 MHz
–
50
–
50
–
50
–
50
ms
when:
FCLKIN > 50 MHz
–
5
–
5
–
5
–
5
ms
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
53
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 55: Switching Characteristics for the Digital Frequency Synthesizer DFS (DCM_CLKGEN)(1) (Cont’d)
Speed Grade
Symbol
Description
-4
-3
-2
-1L
Units
Min
Max
Min
Max
Min
Max
Min
Max
30
200
30
200
30
200
30
200
Spread Spectrum
FCLKIN_FIXED_SPREAD_
SPECTRUM
Frequency of the CLKIN input for
fixed spread spectrum
(SPREAD_SPECTRUM =
CENTER_LOW_SPREAD/
CENTER_HIGH_SPREAD)
TCENTER_LOW_SPREAD(6)
Spread at the CLKFX output for
fixed spread spectrum
(SPREAD_SPECTRUM =
CENTER_LOW_SPREAD)
100
Typical = -----------------------------------------CLKFX_DIVIDE
Spread at the CLKFX output for
fixed spread spectrum
(SPREAD_SPECTRUM=
CENTER_HIGH_SPREAD)
240
Typical = -----------------------------------------CLKFX_DIVIDE
TCENTER_HIGH_SPREAD(6)
SPECTRUM
(6)
ps
Maximum = 250
ps
Maximum = 400
Average modulation frequency
when using fixed spread
spectrum
(SPREAD_SPECTRUM =
CENTER_LOW_SPREAD /
CENTER_HIGH_SPREAD)
FMOD_FIXED_SPREAD_
MHz
Typical = FIN/1024
MHz
Notes:
1. The values in this table are based on the operating conditions described in Table 2 and Table 53.
2. For optimal jitter tolerance and a faster LOCK time, use the CLKIN_PERIOD attribute.
3. Output jitter is characterized with no input jitter. Output jitter strongly depends on the environment, including the number of SSOs, the output drive
strength, CLB utilization, CLB switching activities, switching frequency, power supply, and PCB design. The actual maximum output jitter depends on
the system application.
4. The CLKFX, CLKFXDV, and CLKFX180 outputs have a duty cycle of approximately 50%.
5. Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, this data sheet specifies a maximum
CLKFX jitter of ±(1% of CLKFX period + 200 ps). Assuming that the CLKFX output frequency is 100 MHz, the equivalent CLKFX period is 10 ns, and
1% of 10 ns is 0.1 ns or 100 ps. Accordingly, the maximum jitter is ±(100 ps + 200 ps) = ±300 ps.
6. When using CENTER_LOW_SPREAD, CENTER_HIGH_SPREAD, the valid values for CLKFX_MULTIPLY are limited to 2 through 32, and the valid
values for CLKFX_DIVIDE are limited to 1 through 4.
Table 56: Recommended Operating Conditions for the Phase-Shift Clock in Variable Phase Mode
Speed Grade
Symbol
Description
-4
-3
-2
-1L
Units
Min
Max
Min
Max
Min
Max
Min
Max
1
167
1
167
1
167
1
100
MHz
40
60
40
60
40
60
40
60
%
Operating Frequency Ranges
PSCLK_FREQ
Frequency for the PSCLK input.
Input Pulse Requirements
PSCLK_PULSE
PSCLK pulse width as a
percentage of the PSCLK period.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
54
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 57: Switching Characteristics for the Phase-Shift Clock in Variable Phase Mode(1)
Symbol
Description
Amount of Phase Shift
Units
When CLKIN < 60 MHz, the maximum allowed
number of DCM_DELAY_STEP steps for a
given CLKIN clock period, where T = CLKIN
clock period in ns. When using
CLKIN_DIVIDE_BY_2 = TRUE, double the
clock-effective clock period.
±(INTEGER(10 x (TCLKIN – 3 ns)))
steps
When CLKIN ≥ 60 MHz, the maximum allowed
number of DCM_DELAY_STEP steps for a
given CLKIN clock period, where T = CLKIN
clock period in ns. When using
CLKIN_DIVIDE_BY_2 = TRUE, double the
clock-effective clock period.
±(INTEGER(15 x (TCLKIN – 3 ns)))
steps
FINE_SHIFT_RANGE_MIN
Minimum guaranteed delay for variable phase
shifting.
±(MAX_STEPS x DCM_DELAY_STEP_MIN)
ns
FINE_SHIFT_RANGE_MAX
Maximum guaranteed delay for variable phase
shifting
±(MAX_STEPS x DCM_DELAY_STEP_MAX)
ns
Phase Shifting Range
MAX_STEPS(2)
Notes:
1. The values in this table are based on the operating conditions described in Table 51 and Table 56.
2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM has no initial fixed-phase shifting, that is, the PHASE_SHIFT
attribute is set to 0.
3. The DCM_DELAY_STEP values are provided at the end of Table 52.
Table 58: Miscellaneous DCM Timing Parameters(1)
Symbol
Description
DCM_RST_PW_MIN
Min
Max
Units
3
–
CLKIN cycles
Minimum duration of a RST pulse width
Notes:
1. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV). The DCM
DFS outputs (CLKFX, CLKFXDV, CLKFX180) are unaffected.
Table 59: Frequency Synthesis
Attribute
Min
Max
CLKFX_MULTIPLY (DCM_SP)
2
32
CLKFX_DIVIDE (DCM_SP)
1
32
CLKDV_DIVIDE (DCM_SP)
1.5
16
CLKFX_MULTIPLY (DCM_CLKGEN)
2
256
CLKFX_DIVIDE (DCM_CLKGEN)
1
256
CLKFXDV_DIVIDE (DCM_CLKGEN)
2
32
Table 60: DCM Switching Characteristics
Symbol
Description
Speed Grade
-4
-3
-2
-1L
Units
TDMCCK_PSEN/ TDMCKC_PSEN
PSEN Setup/Hold
1.50
0.00
1.50
0.00
1.50
0.00
1.50
0.00
ns
TDMCCK_PSINCDEC/ TDMCKC_PSINCDEC
PSINCDEC Setup/Hold
1.50
0.00
1.50
0.00
1.50
0.00
1.50
0.00
ns
TDMCKO_PSDONE
Clock to out of PSDONE
1.50
1.50
1.50
1.50
ns
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
55
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Spartan-6 Device Pin-to-Pin Output Parameter Guidelines
All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are
listed in Table 61 through Table 67. Values are expressed in nanoseconds unless otherwise noted.
Table 61: Global Clock Input to Output Delay Without DCM or PLL
Symbol
Description
Device
Speed Grade
-4
-3
-2
-1L
Units
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, without DCM or PLL
TICKOF
Global Clock and OUTFF without DCM or
PLL
XC6SLX4
N/A
6.48
7.44
ns
XC6SLX9
N/A
6.34
7.33
ns
XC6SLX16
N/A
6.42
7.48
ns
XC6SLX25
N/A
6.69
7.84
ns
XC6SLX25T
6.20
6.69
7.84
XC6SLX45
N/A
6.88
8.10
XC6SLX45T
6.42
6.88
8.10
XC6SLX75
N/A
7.22
8.42
XC6SLX75T
6.60
7.22
8.42
XC6SLX100
N/A
7.18
8.41
XC6SLX100T
6.72
7.18
8.41
XC6SLX150
N/A
7.68
8.80
XC6SLX150T
7.11
7.68
8.80
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible
IOB and CLB flip-flops are clocked by the global clock net.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
56
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 62: Global Clock Input to Output Delay With DCM in System-Synchronous Mode
Symbol
Description
Device
Speed Grade
-4
-3
-2
-1L
Units
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with DCM in System-Synchronous Mode.
TICKOFDCM
Global Clock and OUTFF with DCM
XC6SLX4
N/A
4.50
5.32
ns
XC6SLX9
N/A
4.50
5.31
ns
XC6SLX16
N/A
4.57
5.34
ns
XC6SLX25
N/A
4.18
4.59
ns
XC6SLX25T
3.95
4.18
4.59
XC6SLX45
N/A
4.70
5.50
XC6SLX45T
4.37
4.70
5.50
XC6SLX75
N/A
4.23
4.77
XC6SLX75T
3.90
4.23
4.77
XC6SLX100
N/A
4.16
4.66
XC6SLX100T
3.90
4.16
4.66
XC6SLX150
N/A
4.33
4.83
XC6SLX150T
4.03
4.33
4.83
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible
IOB and CLB flip-flops are clocked by the global clock net.
2. DCM output jitter is already included in the timing calculation.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
57
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 63: Global Clock Input to Output Delay With DCM in Source-Synchronous Mode
Symbol
Description
Device
Speed Grade
-4
-3
-2
-1L
Units
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with DCM in Source-Synchronous Mode.
TICKOFDCM_0
Global Clock and OUTFF with DCM
XC6SLX4
N/A
5.44
6.42
ns
XC6SLX9
N/A
5.43
6.42
ns
XC6SLX16
N/A
5.51
6.44
ns
XC6SLX25
N/A
5.13
5.69
ns
XC6SLX25T
4.81
5.13
5.69
XC6SLX45
N/A
5.69
6.63
XC6SLX45T
5.26
5.69
6.63
XC6SLX75
N/A
5.18
5.88
XC6SLX75T
4.77
5.18
5.88
XC6SLX100
N/A
5.11
5.76
XC6SLX100T
4.76
5.11
5.76
XC6SLX150
N/A
5.30
5.93
XC6SLX150T
4.90
5.30
5.93
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible
IOB and CLB flip-flops are clocked by the global clock net.
2. DCM output jitter is already included in the timing calculation.
Table 64: Global Clock Input to Output Delay With PLL in System-Synchronous Mode
Symbol
Description
Device
Speed Grade
-4
-3
-2
-1L
Units
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with PLL in System-Synchronous Mode.
TICKOFPLL
Global Clock and OUTFF with PLL
XC6SLX4
N/A
4.69
5.48
ns
XC6SLX9
N/A
4.68
5.47
ns
XC6SLX16
N/A
4.64
5.39
ns
XC6SLX25
N/A
4.32
4.91
ns
XC6SLX25T
4.03
4.32
4.91
XC6SLX45
N/A
4.96
5.75
XC6SLX45T
4.63
4.96
5.75
XC6SLX75
N/A
4.30
4.88
XC6SLX75T
4.01
4.30
4.88
XC6SLX100
N/A
4.33
4.90
XC6SLX100T
4.06
4.33
4.90
XC6SLX150
N/A
3.98
4.58
XC6SLX150T
3.65
3.98
4.58
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible
IOB and CLB flip-flops are clocked by the global clock net.
2. PLL output jitter is included in the timing calculation.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
58
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 65: Global Clock Input to Output Delay With PLL in Source-Synchronous Mode
Symbol
Description
Device
Speed Grade
-4
-3
-2
-1L
Units
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with PLL in Source-Synchronous Mode.
TICKOFPLL_0
Global Clock and OUTFF with PLL
XC6SLX4
N/A
5.81
6.87
ns
XC6SLX9
N/A
5.80
6.86
ns
XC6SLX16
N/A
5.77
6.79
ns
XC6SLX25
N/A
5.35
6.10
ns
XC6SLX25T
5.00
5.35
6.10
XC6SLX45
N/A
6.03
7.02
XC6SLX45T
5.59
6.03
7.02
XC6SLX75
N/A
5.41
6.22
XC6SLX75T
4.96
5.41
6.22
XC6SLX100
N/A
5.42
6.21
XC6SLX100T
5.01
5.42
6.21
XC6SLX150
N/A
5.06
5.86
XC6SLX150T
4.59
5.06
5.86
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible
IOB and CLB flip-flops are clocked by the global clock net.
2. PLL output jitter is included in the timing calculation.
Table 66: Global Clock Input to Output Delay With DCM and PLL in System-Synchronous Mode
Symbol
Description
Device
Speed Grade
-4
-3
-2
-1L
Units
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with DCM in System-Synchronous Mode
and PLL in DCM2PLL Mode.
TICKOFDCM_PLL
Global Clock and OUTFF with DCM and
PLL
XC6SLX4
N/A
5.01
5.90
ns
XC6SLX9
N/A
5.01
5.89
ns
XC6SLX16
N/A
5.12
5.94
ns
XC6SLX25
N/A
5.09
5.92
ns
XC6SLX25T
4.70
5.09
5.92
XC6SLX45
N/A
4.98
5.83
XC6SLX45T
4.63
4.98
5.83
XC6SLX75
N/A
5.04
5.88
XC6SLX75T
4.68
5.04
5.88
XC6SLX100
N/A
5.07
5.92
XC6SLX100T
4.76
5.07
5.92
XC6SLX150
N/A
4.73
5.31
XC6SLX150T
4.44
4.73
5.31
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible
IOB and CLB flip-flops are clocked by the global clock net.
2. DCM and PLL output jitter are already included in the timing calculation.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
59
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 67: Global Clock Input to Output Delay With DCM and PLL in Source-Synchronous Mode
Symbol
Description
Device
Speed Grade
-4
-3
-2
-1L
Units
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with DCM in Source-Synchronous Mode
and PLL in DCM2PLL Mode.
TICKOFDCM0_PLL
Global Clock and OUTFF with DCM and
PLL
XC6SLX4
N/A
5.95
7.00
ns
XC6SLX9
N/A
5.94
7.00
ns
XC6SLX16
N/A
6.06
7.05
ns
XC6SLX25
N/A
6.04
7.02
ns
XC6SLX25T
5.57
6.04
7.02
XC6SLX45
N/A
5.97
6.96
XC6SLX45T
5.53
5.97
6.96
XC6SLX75
N/A
6.00
6.99
XC6SLX75T
5.55
6.00
6.99
XC6SLX100
N/A
6.03
7.02
XC6SLX100T
5.62
6.03
7.02
XC6SLX150
N/A
5.70
6.41
XC6SLX150T
5.32
5.70
6.41
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible
IOB and CLB flip-flops are clocked by the global clock net.
2. DCM and PLL output jitter are already included in the timing calculation.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
60
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Spartan-6 Device Pin-to-Pin Input Parameter Guidelines
All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are
listed in Table 68 through Table 74. Values are expressed in nanoseconds unless otherwise noted.
Table 68: Global Clock Setup and Hold Without DCM or PLL
Symbol
Description
Device
Speed Grade
-4
-1L
Units
-3
-2
N/A
0.34/
1.54
0.34/
1.59
ns
N/A
0.31/
1.40
0.31/
1.49
ns
XC6SLX16
N/A
0.12/
1.48
0.12/
1.64
ns
XC6SLX25
N/A
0.18/
1.75
0.18/
1.99
ns
XC6SLX25T
0.18/
1.64
0.18/
1.75
0.18/
1.99
XC6SLX45
N/A
–0.08/
1.95
–0.08/
2.27
–0.08/
1.88
–0.08/
1.95
–0.08/
2.27
XC6SLX75
N/A
0.13/
2.29
0.13/
2.57
XC6SLX75T
0.13/
2.08
0.13/
2.29
0.13/
2.57
N/A
ns
XC6SLX100
N/A
–0.14/
2.24
–0.14/
2.56
0
ns
–0.14/
2.15
–0.14/
2.24
–0.14/
2.56
N/A
ns
N/A
–0.24/
2.74
–0.24/
2.95
–0.24/
2.55
–0.24/
2.74
–0.24/
2.95
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1)
TPSFD/ TPHFD
Full Delay (Legacy Delay or Default Delay) XC6SLX4
Global Clock and IFF(2) without DCM or
PLL
XC6SLX9
XC6SLX45T
XC6SLX100T
XC6SLX150
XC6SLX150T
N/A
ns
ns
N/A
ns
ns
ns
N/A
ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock
input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using
the fastest process, lowest temperature, and highest voltage.
2. IFF = Input Flip-Flop or Latch.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
61
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 69: Global Clock Setup and Hold With DCM in System-Synchronous Mode
Symbol
Description
Device
Speed Grade
-4
-3
-2
-1L
Units
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1)
TPSDCM/ TPHDCM
No Delay Global Clock and IFF(2) with DCM XC6SLX4
in System-Synchronous Mode
N/A
1.97/
0.18
2.20/
0.18
ns
XC6SLX9
N/A
1.96/
0.19
2.19/
0.19
ns
XC6SLX16
N/A
1.87/
–0.17
2.13/
–0.17
ns
XC6SLX25
N/A
1.78/
0.17
2.00/
0.17
ns
XC6SLX25T
1.79/
0.16
1.79/
0.17
2.00/
0.17
XC6SLX45
N/A
1.84/
0.08
2.02/
0.08
XC6SLX45T
1.76/
0.07
1.84/
0.08
2.02/
0.08
XC6SLX75
N/A
1.98/
0.12
2.20/
0.12
XC6SLX75T
1.89/
0.11
1.98/
0.12
2.20/
0.12
XC6SLX100
N/A
1.72/
0.17
1.97/
0.17
XC6SLX100T
1.69/
0.16
1.72/
0.17
1.97/
0.17
XC6SLX150
N/A
1.62/
0.40
1.82/
0.40
XC6SLX150T
1.51/
0.39
1.62/
0.40
1.82/
0.40
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock
input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using
the fastest process, lowest temperature, and highest voltage. These measurements include DCM CLK0 jitter.
2. IFF = Input Flip-Flop or Latch
3. Use IBIS to determine any duty-cycle distortion incurred using various standards.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
62
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 70: Global Clock Setup and Hold With DCM in Source-Synchronous Mode
Symbol
Description
Device
Speed Grade
-4
-3
-2
-1L
Units
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1)
TPSDCM0/ TPHDCM0 No Delay Global Clock and IFF(2) with DCM XC6SLX4
in Source-Synchronous Mode
N/A
1.02/
0.69
1.11/
0.69
ns
XC6SLX9
N/A
1.01/
0.70
1.10/
0.70
ns
XC6SLX16
N/A
0.92/
0.57
1.04/
0.60
ns
XC6SLX25
N/A
0.90/
0.77
1.01/
0.77
ns
XC6SLX25T
0.94/
0.76
0.94/
0.77
1.01/
0.77
XC6SLX45
N/A
0.90/
0.76
0.98/
0.79
XC6SLX45T
0.87/
0.73
0.90/
0.76
0.98/
0.79
XC6SLX75
N/A
1.06/
0.72
1.15/
0.72
XC6SLX75T
1.03/
0.71
1.06/
0.72
1.15/
0.72
XC6SLX100
N/A
0.81/
0.76
0.94/
0.76
XC6SLX100T
0.86/
0.75
0.86/
0.76
0.94/
0.76
XC6SLX150
N/A
0.69/
0.99
0.79/
0.99
XC6SLX150T
0.66/
0.98
0.69/
0.99
0.79/
0.99
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock
input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using
the fastest process, lowest temperature, and highest voltage. These measurements include DCM CLK0 jitter.
2. IFF = Input Flip-Flop or Latch
3. Use IBIS to determine any duty-cycle distortion incurred using various standards.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
63
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 71: Global Clock Setup and Hold With PLL in System-Synchronous Mode
Symbol
Description
Device
Speed Grade
-4
-3
-2
-1L
Units
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1)
TPSPLL/ TPHPLL
No Delay Global Clock and IFF(2) with PLL
in System-Synchronous Mode
XC6SLX4
N/A
2.07/
0.19
2.07/
0.19
ns
XC6SLX9
N/A
2.06/
0.20
2.06/
0.20
ns
XC6SLX16
N/A
1.53/
0.07
1.60/
0.07
ns
XC6SLX25
N/A
1.71/
0.28
1.91/
0.28
ns
XC6SLX25T
1.70/
0.28
1.71/
0.28
1.91/
0.28
XC6SLX45
N/A
1.64/
0.18
1.75/
0.18
XC6SLX45T
1.57/
0.18
1.64/
0.18
1.75/
0.18
XC6SLX75
N/A
1.89/
0.21
2.13/
0.21
XC6SLX75T
1.80/
0.21
1.89/
0.21
2.13/
0.21
XC6SLX100
N/A
1.52/
0.32
1.70/
0.32
XC6SLX100T
1.51/
0.32
1.52/
0.32
1.70/
0.32
XC6SLX150
N/A
1.48/
0.49
1.67/
0.49
XC6SLX150T
1.41/
0.49
1.48/
0.49
1.67/
0.49
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock
input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using
the fastest process, lowest temperature, and highest voltage. These measurements include PLL CLKOUT0 jitter.
2. IFF = Input Flip-Flop or Latch
3. Use IBIS to determine any duty-cycle distortion incurred using various standards.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
64
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 72: Global Clock Setup and Hold With PLL in Source-Synchronous Mode
Symbol
Description
Device
Speed Grade
-4
-3
-2
-1L
Units
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1)
TPSPLL0/ TPHPLL0
No Delay Global Clock and IFF(2) with PLL
in Source-Synchronous Mode
XC6SLX4
N/A
0.88/
0.92
0.91/
1.03
ns
XC6SLX9
N/A
0.87/
0.93
0.89/
1.02
ns
XC6SLX16
N/A
0.37/
0.82
0.51/
0.94
ns
XC6SLX25
N/A
0.76/
1.06
0.79/
1.06
ns
XC6SLX25T
0.83/
1.06
0.83/
1.06
0.83/
1.06
XC6SLX45
N/A
0.65/
1.10
0.65/
1.18
XC6SLX45T
0.59/
1.06
0.65/
1.10
0.65/
1.18
XC6SLX75
N/A
0.87/
1.04
0.90/
1.04
XC6SLX75T
0.88/
1.04
0.88/
1.04
0.90/
1.04
XC6SLX100
N/A
0.54/
1.13
0.55/
1.13
XC6SLX100T
0.61/
1.13
0.61/
1.13
0.61/
1.13
XC6SLX150
N/A
0.51/
1.31
0.52/
1.31
XC6SLX150T
0.52/
1.31
0.52/
1.31
0.52/
1.31
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock
input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using
the fastest process, lowest temperature, and highest voltage. These measurements include PLL CLKOUT0 jitter.
2. IFF = Input Flip-Flop or Latch
3. Use IBIS to determine any duty-cycle distortion incurred using various standards.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
65
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 73: Global Clock Setup and Hold With DCM and PLL in System-Synchronous Mode
Symbol
Description
Device
Speed Grade
-4
-3
-2
-1L
Units
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1)
TPSDCMPLL/
TPHDCMPLL
No Delay Global Clock and IFF(2) with
DCM in System-Synchronous Mode and
PLL in DCM2PLL Mode.
XC6SLX4
N/A
2.06/
0.87
2.30/
0.87
ns
XC6SLX9
N/A
2.05/
0.88
2.29/
0.88
ns
XC6SLX16
N/A
1.49/
0.18
1.62/
0.18
ns
XC6SLX25
N/A
1.65/
0.42
1.83/
0.42
ns
XC6SLX25T
1.69/
0.42
1.69/
0.42
1.83/
0.42
XC6SLX45
N/A
1.59/
0.39
1.75/
0.39
XC6SLX45T
1.57/
0.39
1.59/
0.39
1.75/
0.39
XC6SLX75
N/A
1.80/
0.41
1.99/
0.41
XC6SLX75T
1.74/
0.41
1.80/
0.41
1.99/
0.41
XC6SLX100
N/A
1.46/
0.51
1.64/
0.51
XC6SLX100T
1.46/
0.51
1.46/
0.51
1.64/
0.51
XC6SLX150
N/A
1.40/
0.69
1.55/
0.69
XC6SLX150T
1.35/
0.69
1.40/
0.69
1.55/
0.69
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock
input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using
the fastest process, lowest temperature, and highest voltage. These measurements include CMT jitter; DCM CLK0 driving PLL, PLL CLKOUT0
driving BUFG.
2. IFF = Input Flip-Flop or Latch
3. Use IBIS to determine any duty-cycle distortion incurred using various standards.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
66
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 74: Global Clock Setup and Hold With DCM and PLL in Source-Synchronous Mode
Symbol
Description
Device
Speed Grade
-4
-3
-2
-1L
Units
Example Data Input Set-Up and Hold Times Relative to a Forwarded Clock Input Pin,(1) Using DCM, PLL, and Global Clock Buffer. For
situations where clock and data inputs conform to different standards, adjust the setup and hold values accordingly using the values
shown in IOB Switching Characteristics, page 19.
TPSDCMPLL_0/
TPHDCMPLL_0
No Delay Global Clock and IFF (2) with DCM XC6SLX4
in Source-Synchronous Mode and PLL in
DCM2PLL Mode.
XC6SLX9
N/A
1.11/
1.38
1.21/
1.38
ns
N/A
1.10/
1.38
1.20/
1.39
ns
XC6SLX16
N/A
0.83/
1.12
0.83/
1.21
ns
XC6SLX25
N/A
0.76/
1.11
0.84/
1.18
ns
XC6SLX25T
0.84/
1.02
0.84/
1.11
0.84/
1.18
XC6SLX45
N/A
0.65/
1.04
0.71/
1.12
XC6SLX45T
0.68/
1.00
0.68/
1.04
0.71/
1.12
XC6SLX75
N/A
0.88/
1.06
0.94/
1.14
XC6SLX75T
0.89/
1.03
0.89/
1.06
0.94/
1.14
XC6SLX100
N/A
0.56/
1.10
0.61/
1.17
XC6SLX100T
0.63/
1.10
0.63/
1.10
0.63/
1.17
XC6SLX150
N/A
0.47/
1.28
0.53/
1.28
XC6SLX150T
0.50/
1.28
0.50/
1.28
0.52/
1.28
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock
input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using
the fastest process, lowest temperature, and highest voltage. The timing values were measured using the fine-phase adjustment feature of the DCM.
These measurements include CMT jitter; DCM CLK0 driving PLL, PLL CLKOUT0 driving BUFG. Package skew is not included in these
measurements.
2. IFF = Input Flip-Flop
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
67
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Source-Synchronous Switching Characteristics
The parameters in this section provide the necessary values for calculating timing budgets for Spartan-6 FPGA
source-synchronous transmitter and receiver data-valid windows.
Table 75: Duty Cycle Distortion and Clock-Tree Skew
Symbol
TDCD_CLK
TCKSKEW
TDCD_BUFIO2
TBUFIOSKEW
Description
Device(1)
Global Clock Tree
I/O clock tree duty cycle distortion
I/O clock tree skew across one clock
region
-1L
Units
-4
-3
-2
N/A
0.20
0.20
LXT Family
0.20
0.20
0.20
XC6SLX4
N/A
0.16
0.16
ns
XC6SLX9
N/A
0.16
0.16
ns
XC6SLX16
N/A
0.15
0.15
ns
XC6SLX25
N/A
0.26
0.26
ns
XC6SLX25T
0.26
0.26
0.26
XC6SLX45
N/A
0.20
0.20
XC6SLX45T
0.20
0.20
0.20
XC6SLX75
N/A
0.56
0.56
XC6SLX75T
0.56
0.56
0.56
XC6SLX100
N/A
0.22
0.22
XC6SLX100T
0.22
0.22
0.22
XC6SLX150
N/A
0.48
0.48
XC6SLX150T
0.39
0.48
0.48
LX Family
N/A
0.25
0.25
LXT Family
0.25
0.25
0.25
LX Family
N/A
0.06
0.06
LXT Family
0.06
0.06
0.06
Global Clock Tree Duty Cycle Distortion(2) LX Family
Skew(3)
Speed Grade
ns
N/A
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
N/A
ns
Notes:
1. LX devices are not available with a -4 speed grade; LXT devices are not available with a -1L speed grade.
2. These parameters represent the worst-case duty cycle distortion observable at the pins of the device using LVDS output buffers. For cases where
other I/O standards are used, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times.
3. The TCKSKEW value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists
for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA Editor and Timing Analyzer
tools to evaluate clock skew specific to your application.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
68
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 76: Package Skew
Symbol
TPKGSKEW
Description
Package
Device
Skew(1)(2)
Package(3)
Value
TQG144
XC6SLX4
ps
CPG196
23
ps
CSG225
58
ps
TQG144
CPG196
XC6SLX9
XC6SLX16
XC6SLX25
XC6SLX25T
XC6SLX45
XC6SLX45T
XC6SLX75
XC6SLX75T
XC6SLX100
XC6SLX100T
DS162 (v1.9) August 23, 2010
Advance Product Specification
Units
ps
23
ps
CSG225
58
ps
FT(G)256
88
ps
CSG324
64
ps
CPG196
19
ps
CSG225
70
ps
FT(G)256
71
ps
CSG324
54
ps
FT(G)256
90
ps
CSG324
61
ps
FG(G)484
84
ps
CSG324
48
ps
FG(G)484
112
ps
CSG324
70
ps
CSG484
99
ps
FG(G)484
109
ps
FG(G)676
138
ps
CSG324
75
ps
CSG484
100
ps
FG(G)484
95
ps
CSG484
101
ps
FG(G)484
107
ps
FG(G)676
161
ps
CSG484
107
ps
FG(G)484
110
ps
FG(G)676
134
ps
CSG484
95
ps
FG(G)484
155
ps
FG(G)676
144
ps
CSG484
88
ps
FG(G)484
111
ps
FG(G)676
147
ps
FG(G)900
134
ps
www.xilinx.com
69
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 76: Package Skew (Cont’d)
Symbol
TPKGSKEW
Description
Device
Package Skew(1)
XC6SLX150
XC6SLX150T
Package(3)
Value
Units
CSG484
84
ps
FG(G)484
103
ps
FG(G)676
115
ps
FG(G)900
121
ps
CSG484
83
ps
FG(G)484
88
ps
FG(G)676
141
ps
FG(G)900
120
ps
Notes:
1. These values represent the worst-case skew between any two SelectIO resources in the package: shortest delay to longest delay from Pad to Ball.
2. Package delay information is available for these device/package combinations. This information can be used to deskew the package.
3. Some of these devices are available in both Pb and Pb-free (additional G) packages as standard ordering options.
Table 77: Sample Window
Symbol
Device(1)
Description
Speed Grade
-4
-3
-2
-1L
Units
TSAMP
Sampling Error at Receiver Pins(2)
All
510
510
560
ps
TSAMP_BUFIO2
Sampling Error at Receiver Pins using
BUFIO2(3)
All
430
430
480
ps
Notes:
1. LX devices are not available with a -4 speed grade; LXT devices are not available with a -1L speed grade.
2. This parameter indicates the total sampling error of Spartan-6 FPGA DDR input registers, measured across voltage, temperature, and process. The
characterization methodology uses the DCM to capture the DDR input registers’ edges of operation. These measurements include:
- CLK0 DCM jitter
- DCM accuracy (phase offset)
- DCM phase shift resolution
These measurements do not include package or clock tree skew.
3. This parameter indicates the total sampling error of Spartan-6 FPGA DDR input registers, measured across voltage, temperature, and process. The
characterization methodology uses the BUFIO2 clock network and IODELAY to capture the DDR input registers’ edges of operation. These
measurements do not include package or clock tree skew.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
70
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Table 78: Source-Synchronous Pin-to-Pin Setup/Hold and Clock-to-Out Using BUFIO2
Symbol
Description
Device
Speed Grade
-4
-3
-2
-1L
Units
Data Input Setup and Hold Times Relative to a Forwarded Clock Input Pin Using BUFIO2
TPSCS/TPHCS
IFF setup/hold using BUFIO2 clock
XC6SLX4
N/A
0.86/
0.23
1.01/
0.35
ns
XC6SLX9
N/A
0.73/
0.44
0.83/
0.57
ns
XC6SLX16
N/A
0.55/
0.75
0.69/
0.83
ns
XC6SLX25
N/A
0.28/
1.12
0.28/
1.24
ns
XC6SLX25T
0.28/
1.08
0.28/
1.12
0.28/
1.24
ns
XC6SLX45
N/A
0.44/
1.29
0.50/
1.40
ns
XC6SLX45T
0.42/
1.23
0.44/
1.29
0.50/
1.40
XC6SLX75
N/A
0.38/
1.63
0.38/
1.84
XC6SLX75T
0.38/
1.53
0.38/
1.63
0.38/
1.84
XC6SLX100
N/A
0.06/
1.63
0.06/
1.87
XC6SLX100T
0.06/
1.54
0.06/
1.63
0.06/
1.87
XC6SLX150
N/A
0.04/
1.75
0.04/
1.98
XC6SLX150T
0.04/
1.73
0.04/
1.75
0.04/
1.98
XC6SLX4
N/A
5.16
6.15
ns
XC6SLX9
N/A
5.38
6.41
ns
XC6SLX16
N/A
5.70
6.67
ns
XC6SLX25
N/A
6.00
7.02
ns
XC6SLX25T
5.53
6.00
7.02
ns
XC6SLX45
N/A
6.18
7.22
ns
XC6SLX45T
5.76
6.18
7.22
XC6SLX75
N/A
6.46
7.57
XC6SLX75T
5.94
6.46
7.57
XC6SLX100
N/A
6.53
7.60
XC6SLX100T
6.09
6.53
7.60
XC6SLX150
N/A
6.69
7.81
XC6SLX150T
6.29
6.69
7.81
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
Pin-to-Pin Clock-to-Out Using BUFIO2
TICKOFCS
OFF clock-to-out using BUFIO2 clock
DS162 (v1.9) August 23, 2010
Advance Product Specification
N/A
ns
ns
N/A
ns
ns
N/A
ns
ns
N/A
ns
www.xilinx.com
71
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Revision History
The following table shows the revision history for this document.
Date
Version
06/24/09
1.0
Initial Xilinx release.
08/26/09
1.1
Added VFS to Table 1and Table 2. Added RFUSE to Table 2. Added XC6SLX75 and XC6SLX75T to
VBATT and IBATT in Table 1, Table 2, and Table 4. Corrected the quiescent supply current for the
XC6SLX4 in Table 5. Updated Table 11. Removed DVPPIN from Figure 2. Removed FPCIECORE from
Table 24 and added values to FPCIEUSER. Added more networking applications to Table 25. Updated
values for TSUSPENDLOW_AWAKE, TSUSPEND_ENABLE, and TSCP_AWAKE in Table 45. Numerous changes
to Table 46, page 45 including the addition of new values to various specifications, revising the
TSMCKCSO description, and changing the units of TPOR. Also, removed Dynamic Reconfiguration Port
(DRP) for DCM and PLL Before and After DCLK section from Table 46 and updated all the notes. In
Table 50, added to FINMAX, revised FOUTMAX, and removed PLL Maximum Output Frequency for
BUFIO2. Revised values for DCM_DELAY_STEP in Table 52. Updated CLKIN_FREQ_FX values in
Table 53.
01/04/10
1.2
Added -4 speed grade to entire document. Updated speed specification of -4, -3, -2 speed grades to
version 1.03. Added -1L speed grade numbers per speed specification 1.00. Updated TSOL in Table 1.
Added -1L rows for LVCMOS12, LVCMOS15, and LVCMOS18 in Table 9. Revised much of the detail
in GTP Transceiver Specifications in Table 12 through Table 23. Added -2 data to Table 25. Updated
FMAX in Table 43. Updated descriptions for TDNACLKL and TDNACLKH in Table 44 and revised values for
all parameters. Removed TINITADDR from Table 46 and added new data. Updated values in Table 47
through Table 60. Added Table 49 (BUFPLL) and Table 55 (DCM_CLKGEN). Removed
TLOCKMAX note from Table 50. Updated note 3 in Table 51. In Table 76: removed XC6SLX75CSG324
and XC6SLX75TCSG324; added XC6SLX75FG(G)484 and XC6SLX75FG(G)484.
02/22/10
1.3
Production release of XC6SLX16 -2 speed grade devices. The changes to Table 26 and Table 27
includes updating this data sheet to the data in ISE v11.5 software with speed specification v1.06.
Updated maximum of VIN and VTS and note 2 in Table 1. In Table 2, changed VIN, added IIN and note
5, revised notes 1, 6, and 7, and added note 8 to RFUSE. In Table 4, removed previous note 1 and added
data to IRPU, IRPD, and IBATT, changed CIN, added RDT and RIN_TERM, and added note 2 and 3. Updated
VCCO2 in Table 6. Added Table 7 and Table 8. Removed PCI66_3 from Table 9. Updated PCI33_3 and
I2C in Table 9. Updated the description of Table 11. Completely updated Table 25. Updated Table 28
including adding values for PCI33_3. Updated VREF value for HSTL_III_18 in Table 30. Updates
missing VREF values in Table 31. Added Simultaneously Switching Outputs, page 27. Removed TGSRQ
and TRPW from Table 34 and Table 35. Also removed TDOQ from Table 35. Removed TISDO_DO and
note 1 from Table 36. Removed TOSCCK_S and combinatorial section from Table 37. In Table 38,
removed TIODDO_T and added new tap parameters and note 2. In Table 39, Table 40, and Table 41,
made typographical edits and removed notes. Removed clock CLK section in Table 40. Removed clock
CLK section and TREG_MUX and TREG_M31 in Table 41. Added block RAM FMAX values to Table 42.
Updated values and added note 2 to Table 44. Added values to Table 45 and removed note 1.
Numerous changes to Table 46. Completely updated Table 55. Revised data in Table 60. Removed
note 3 from Table 68. Added values to Table 76. Added data to Table 77 and Table 78.
03/10/10
1.4
Production release of XC6SLX45 -2 speed grade devices, which includes changes to Table 26 and
Table 27 updating this data sheet to the data in ISE v11.5 software with speed specification v1.07.
Fixed RIN_TERM description in Table 4. Added PCI66_3 to Table 7 and replaced note 1. Corrected note
1 and the V, Max for TMDS_33 in Table 8. In Table 10, added note 1 to LVPECL_33 and TMDS_33.
Also updated specifications for TMDS_33. Updated the GTP Transceiver Specifications section
including adding values to Table 16, Table 17, and Table 20 through Table 23. Added PCI66_3 back
into Table 9, Table 28, Table 30, Table 31, and Table 33. Updated note 3 on Table 31. In Table 33,
corrected some typographical errors and fixed SSO limits for bank1/3 in FG(G)484 package. Corrected
TOSCKC_OCE in Table 37. In Table 55, updated CLKFX_FREEZE_VAR and
CLKFX_FREEZE_TEMP_SLOPE and added typical values to TCENTER_LOW_SPREAD and
TCENTER_HIGH_SPREAD. Updated and added values to Table 61 through Table 75, and Table 78. In
Table 76, revised the XC6SLX16-CSG324 and the XC6SLX45-CSG484 and FG(G)484 values.
DS162 (v1.9) August 23, 2010
Advance Product Specification
Description of Revisions
www.xilinx.com
72
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
Date
Version
Description of Revisions
06/14/10
1.5
In Table 2, added note 5 and added temperature range to VFS and RFUSE. Removed speed grade
delineation, revised IRPD description, and updated note 2 in Table 4. Added note 2 to Table 7. Added
DIFF_MOBILE_DDR to Table 8 and Table 10. Added note 4 to Table 15. Changed minimum DVPPIN in
Table 16. Updated FGTPDRPCLK in Table 19. Increased maximum TLLSKEW in Table 22. Updated
descriptions and added data to Table 23. Removed note 1 and added new data to the Networking
Applications section in Table 25. Updated Table 26 and Table 27 to the data in ISE v12.1 software with
speed specification v1.08. In Table 28, added DIFF_MOBILE_DDR and updated -4 speed grade data.
Updated the maximum I/O pairs per bank in Table 32. Updated note 2 on Table 38. Revised the FMAX
in Table 43. In Table 46, updated description for TSMCKCSO, revised values for TPOR and added Min
value, added TBPIICCK and TSPIICCK. Also in Table 46, added device dependencies to FSMCCK and
FRBCCK. Updated and added data to Table 61 through Table 75, and Table 78. In Table 76, added data
on the XC6SLX45-FG(G)676 and revised the XC6SLX45T and XC6SLX150T values.
The following changes to this specification are addressed in the product change notice
XCN10024, MCB Performance and JTAG Revision Code for Spartan-6 LX16 and LX45 FPGAs.
In Table 2, revised the VCCINT to add the memory controller block extended performance
specifications. In Table 25, changed the standard specifications and added extended performance
specifications for the memory controller block and note 2. Added Note 4 and updated values in
Table 33.
06/24/10
1.6
Production release of XC6SLX45T (-2 and -3 speed grades), XC6SLX16 and XC6SLX45 (-3 speed
grade) devices which includes changes to Table 26 and Table 27 (ISE v12.1 software with speed
specification v1.08).
Added the -3N speed grade, which designates Spartan-6 devices that do not support MCB functionality
(specifications are identical to the -3 speed grade). This includes changes to Table 2 (note 2), Table 25
(note 4), and Switching Characteristics (Table 26).
Updated Simultaneously Switching Outputs discussion. Added -3 speed grade values for TTAP and
FMINCAL values in Table 38. In Table 39, updated TRPW (-2 and -3 speed grade) values and FTOG (-3
speed grade) values. In Table 47, updated TGIO (-2 and -3 speed grade) values. Updated -3 values in
spread spectrum section of Table 55.
07/16/10
1.7
Production release of specific devices listed in Table 26 and Table 27 using ISE v12.2 software with
speed specification v1.11. Added Note 3 advising designers of the patch which contains v1.11. Also
updated the -1L speed specification to v1.04. Updated numerous -4 and -1L values. Added -4 TTAP
values and FMINCAL to Table 38. Revised TCINCK/TCKCIN in Table 39. In Table 40, revised TSHCKO. In
Table 41, revised TREG. Added new -1L values to Table 46. Added and updated values in Table 76.
07/26/10
1.8
Production release of XC6SLX25, XC6SLX25T, XC6SLX100 and XC6SLX100T in the specific speed
grades listed in Table 26 and Table 27 using ISE v12.2 software with speed specification v1.11. Added
note 7 to Table 2 and moved VFS and RFUSE to a new Table 3. Added IHS and Note 4 to Table 4. Added
note 1 to Table 28. Added and updated SSO limits per VCCO/GND pairs in Table 33. Added note 3 to
Table 46. In Table 52, removed -1L specifications for CLKOUT_PER_JITT_DV1/2 and revised
CLKIN_CLKFB_PHASE and CLKOUT_PHASE_DLL values. Updated note 3 in both Table 54 and
Table 55.
08/23/10
1.9
Updated values for FGTPRANGE1, FGTPRANGE2, and FGPLLMIN in Table 18. Revised -3 and -4 values in
Table 21. Removed the -1L speed grade readback support restriction and Note 3 in Table 46.
Notice of Disclaimer
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO
APPLICABLE LAWS AND REGULATIONS.
DS162 (v1.9) August 23, 2010
Advance Product Specification
www.xilinx.com
73