52 Virtex-6 CXT Family Data Sheet DS153 (v1.6) February 11, 2011 Product Specification General Description Virtex®-6 CXT FPGAs provide designers needing power-optimized 3.75 Gb/s transceiver performance with an optimized ratio of built-in system-level blocks. These include 36 Kb block RAM/FIFOs, up to 15 Mb of block RAM, up to 768 DSP48E1 slices, enhanced mixed-mode clock management blocks, PCI Express® (GEN 1) compatible integrated blocks, a tri-mode Ethernet media access controller (MAC), up to 241K logic cells, and strong IP support. Using the third generation ASMBL™ (Advanced Silicon Modular Block) column-based architecture, the Virtex-6 CXT family also contains SelectIO™ technology with built-in digitally controlled impedance, ChipSync™ source-synchronous interface blocks, enhanced mixed-mode clock management blocks, and advanced configuration options. Customers needing higher transceiver speeds, greater I/O performance, additional Ethernet MACs, or greater capacity should instead use the Virtex-6 LXT or SXT families. Built on a 40 nm state-of-the-art copper process technology, Virtex-6 CXT FPGAs are a programmable alternative to custom ASIC technology. Virtex-6 CXT FPGAs are the programmable silicon foundation for Targeted Design Platforms that deliver integrated software and hardware components to enable designers to focus on innovation as soon as their development cycle begins. Summary of Virtex-6 CXT FPGA Features • • • • Advanced, high-performance, FPGA Logic • Real 6-input look-up table (LUT) technology • Dual LUT5 (5-input LUT) option • LUT/dual flip-flop pair for applications requiring rich register mix • Improved routing efficiency • 64-bit (or 32 x 2-bit) distributed LUT RAM option • SRL32/dual SRL16 with registered outputs option Powerful mixed-mode clock managers (MMCM) • MMCM blocks provide zero-delay buffering, frequency synthesis, clock-phase shifting, input-jitter filtering, and phase-matched clock division 36-Kb block RAM/FIFOs • Dual-port RAM blocks • Programmable Dual-port widths up to 36 bits Simple dual-port widths up to 72 bits • Enhanced programmable FIFO logic • Built-in optional error-correction circuitry • Optionally use each block as two independent 18 Kb blocks High-performance parallel SelectIO technology • 1.2 to 2.5V I/O operation • Source-synchronous interfacing using ChipSync™ technology • Digitally controlled impedance (DCI) active termination • Flexible fine-grained I/O banking • High-speed memory interface support with integrated write-leveling capability • • • • • • • • • • • Advanced DSP48E1 slices • 25 x 18, two's complement multiplier/accumulator • Optional pipelining • New optional pre-adder to assist filtering applications • Optional bitwise logic functionality • Dedicated cascade connections Flexible configuration options • SPI and Parallel Flash interface • Multi-bitstream support with dedicated fallback reconfiguration logic • Automatic bus width detection Integrated interface blocks for PCI Express designs • Compliant to the PCI Express Base Specification 2.0 • Gen1 Endpoint (2.5 Gb/s) support with GTX transceivers • x1, x2, x4, or x8 lane support per block • One virtual channel, eight traffic classes GTX transceivers: 150 Mb/s to 3.75 Gb/s Integrated 10/100/1000 Mb/s Ethernet MAC block • Supports 1000BASE-X PCS/PMA and SGMII using GTX transceivers • Supports MII, GMII, and RGMII using SelectIO technology resources 40 nm copper CMOS process technology 1.0V core voltage Two speed grades (-1 and -2) Two temperature grades (commercial and industrial) High signal-integrity flip-chip packaging available in standard or Pb-free package options Compatibility across sub-families: CXT, LXT, and SXT devices are footprint compatible in the same package © 2009–2011 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 1 Virtex-6 CXT Family Data Sheet Virtex-6 CXT FPGA Feature Summary Table 1: Virtex-6 CXT FPGA Feature Summary by Device Configurable Logic Blocks (CLBs) Logic Cells Device Slices(1) Max Distributed RAM (Kb) Block RAM Blocks DSP48E1 Slices(2) MMCMs(4) Interface Maximum Ethernet Blocks for GTX MACs(5) PCI Express Transceivers Total I/O Banks(6) Max User I/O(7) 18 Kb(3) 36 Kb Max (Kb) 5,616 6 1 1 12 9 360 XC6VCX75T 74,496 11,640 1,045 288 312 156 XC6VCX130T 128,000 20,000 1,740 480 528 264 9,504 10 2 1 16 15 600 XC6VCX195T 199,680 31,200 3,040 640 688 344 12,384 10 2 1 16 15 600 XC6VCX240T 241,152 37,680 3,650 768 832 416 14,976 12 2 1 16 18 600 Notes: 1. 2. 3. 4. 5. 6. 7. Each Virtex-6 CXT FPGA slice contains four LUTs and eight flip-flops, only some slices can use their LUTs as distributed RAM or SRLs. Each DSP48E1 slice contains a 25 x 18 multiplier, an adder, and an accumulator. Block RAMs are fundamentally 36 Kbits in size. Each block can also be used as two independent 18 Kb blocks. Each CMT contains two mixed-mode clock managers (MMCM). This table lists individual Ethernet MACs per device. Does not include configuration Bank 0. This number does not include GTX transceivers. Virtex-6 CXT FPGA Device-Package Combinations and Maximum I/Os Virtex-6 CXT FPGA package combinations with the maximum available I/Os per package are shown in Table 2. Table 2: Virtex-6 CXT FPGA Device-Package Combinations and Maximum Available I/Os Package FF484 FFG484 FF784 FFG784 FF1156 FFG1156 Size (mm) 23 x 23 29 x 29 35 x 35 Device GTs I/O GTs I/O XC6VCX75T 8 GTXs 240 12 GTXs 360 XC6VCX130T 8 GTXs 240 GTs I/O 12 GTXs 400 16 GTXs 600 XC6VCX195T 12 GTXs 400 16 GTXs 600 XC6VCX240T 12 GTXs 400 16 GTXs 600 Notes: 1. Flip-chip packages are also available in Pb-Free versions (FFG). Virtex-6 CXT FPGA Ordering Information The Virtex-6 CXT FPGA ordering information shown in Figure 1 applies to all packages including Pb-Free. X-Ref Target - Figure 1 Example: XC6VCX240T-1FFG1156C Device Type Speed Grade (-1, -2) Temperature Range: C = Commercial (TJ = 0°C to +85°C) I = Industrial (TJ = –40°C to +100°C) Number of Pins Pb-Free Package Type DS153_01_062109 Figure 1: Virtex-6 CXT FPGA Ordering Information DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 2 Virtex-6 CXT Family Data Sheet Virtex-6 CXT FPGA Documentation In addition to the data sheet information found herein, complete and up-to-date documentation of the Virtex-6 family of FPGAs is available on the Xilinx website and available for download: Virtex-6 FPGA Configuration Guide (UG360) Virtex-6 FPGA GTX Transceivers User Guide (UG366) This all-encompassing configuration guide includes chapters on configuration interfaces (serial and parallel), multi-bitstream management, bitstream encryption, boundary-scan and JTAG configuration, and reconfiguration techniques. This guide describes the GTX transceivers available in all the Virtex-6 CXT FPGAs. Virtex-6 FPGA SelectIO Resources User Guide (UG361) This guide describes the SelectIO™ resources available in all the Virtex-6 CXT devices. Virtex-6 FPGA Clocking Resources User Guide (UG362) This guide describes the clocking resources available in all the Virtex-6 CXT devices, including the MMCM and clock buffers. Virtex-6 FPGA Tri-Mode Ethernet MAC User Guide (UG368) This guide describes the dedicated tri-mode Ethernet media access controller (TEMAC) available in all the Virtex-6 CXT FPGAs. Virtex-6 FPGA Data Sheet: DC and Switching Characteristics (DS152) Reference this data sheet when considering device migration to the Virtex-6 LXT and SXT families. It contains the DC and Switching Characteristic specifications specifically for the Virtex-6 LXT and SXT families. Virtex-6 FPGA Memory Resources User Guide (UG363) This guide describes the Virtex-6 CXT device block RAM and FIFO capabilities. Virtex-6 FPGA CLB User Guide (UG364) This guide describes the capabilities of the configurable logic blocks (CLB) available in all Virtex-6 CXT devices. Virtex-6 FPGA DSP48E1 Slice User Guide (UG369) Virtex-6 FPGA Packaging and Pinout Specifications (UG365) These specifications includes the tables for device/package combinations and maximum I/Os, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and thermal specifications of the Virtex-6 LXT and SXT families. Reference these specifications when considering device migration to the Virtex-6 LXT and SXT families. This guide describes the architecture of the DSP48E1 slice in Virtex-6 CXT FPGAs and provides configuration examples. Configuration Bitstream Overview for CXT Devices This section contains two tables similar to those in the Virtex-6 FPGA Configuration Guide only updated for the CXT family. The Virtex-6 CXT FPGA bitstream contains commands to the FPGA configuration logic as well as configuration data. Table 3 gives a typical bitstream length and Table 4 gives the specific device ID codes for the Virtex-6 CXT devices. Table 3: Virtex-6 CXT FPGA Bitstream Length Device Table 4: Virtex-6 CXT FPGA Device ID Codes Total Number of Configuration Bits Device ID Code (Hex) XC6VCX75T 26,239,328 XC6VCX75T 0x042C4093 XC6VCX130T 43,719,776 XC6VCX130T 0x042CA093 XC6VCX195T 61,552,736 XC6VCX195T 0x042CC093 XC6VCX240T 73,859,552 XC6VCX240T 0x042D0093 DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 3 Virtex-6 CXT Family Data Sheet CLB Overview for CXT Devices Table 5, updated specifically for the CXT family from a similar table in the Virtex-6 FPGA CLB User Guide, shows the available resources in all Virtex-6 CXT FPGA CLBs. Table 5: Virtex-6 CXT FPGA Logic Resources Available in All CLBs Device Total Slices SLICELs SLICEMs Number of 6-Input LUTs Maximum Distributed RAM (Kb) Shift Register (Kb) Number of Flip-Flops XC6VCX75T 11,640 7,460 4,180 46,560 1045 522.5 93,120 XC6VCX130T 20,000 13,040 6,960 80,000 1740 870 160,000 XC6VCX195T 31,200 19,040 12,160 124,800 3140 1570 249,600 XC6VCX240T 37,680 23,080 14,600 150,720 3770 1885 301,440 Regional Clock Management for CXT Devices Table 6, updated from the Virtex-6 FPGA Clocking Resources User Guide specifically for the CXT family, shows the number of clock regions in all Virtex-6 CXT FPGA CLBs. Table 6: Virtex-6 CXT FPGA Clock Regions Device Number of Clock Regions XC6VCX75T 6 XC6VCX130T 10 XC6VCX195T 10 XC6VCX240T 12 CXT Packaging Specifications Table 7, updated from the Virtex-6 FPGA Packaging and Pinout Specifications specifically for the CXT family, shows the number of GTX transceiver I/O channels. Table 8 shows the number of available I/Os and the number of differential I/O pairs for each Virtex-6 device/package combination. Table 7: Number of Serial Transceivers (GTs) I/O Channels/Device I/O Channels Device CX75T(1) CX130T(2) CX195T(3) CX240T(4) MGTRXP 8 or 12 8, 12, or 16 12 or 16 12 or 16 MGTRXN 8 or 12 8, 12, or 16 12 or 16 12 or 16 MGTTXP 8 or 12 8, 12, or 16 12 or 16 12 or 16 MGTTXN 8 or 12 8, 12, or 16 12 or 16 12 or 16 Notes: 1. 2. 3. 4. The XC6VCX75T has 8 GTX I/O channels in the FF484/FFG484 package and 12 GTX I/O channels in the FF784/FFG784 package. The XC6VCX130T has 8 GTX I/O channels in the FF484/FFG484 package, 12 GTX I/O channels in the FF784/FFG784 package, and 16 GTX I/O channels in the FF1156/FFG1156 package. The XC6VCX195T has 12 GTX I/O channels in the FF784/FFG784 package and 16 GTX I/O channels in the FF1156/FFG1156 package. The XC6VCX240T has 12 GTX I/O channels in the FF784/FFG784 package and 16 GTX I/O channels in the FF1156/FFG1156 package. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 4 Virtex-6 CXT Family Data Sheet Table 8: Available I/O Pin/Device/Package Combinations Virtex-6 CXT FPGA Package Virtex-6 CXT Device User I/O Pins FF484 FF784 FF1156 Available User I/Os 240 360 – Differential I/O Pairs 120 180 – Available User I/Os 240 400 600 Differential I/O Pairs 120 200 300 Available User I/Os – 400 600 Differential I/O Pairs – 200 300 Available User I/Os – 400 600 Differential I/O Pairs – 200 300 XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T GTX Transceivers in CXT Devices CXT devices have between 8 to 16 gigabit transceiver circuits. Each GTX transceiver is a combined transmitter and receiver capable of operating at a data rate between 480 Mb/s and 3.75 Gb/s. Lower data rates can be achieved using FPGA logicbased oversampling. The transmitter and receiver are independent circuits that use separate PLLs to multiply the reference frequency input by certain programmable numbers between 2 and 25, to become the bit-serial data clock. Each GTX transceiver has a large number of user-definable features and parameters. All of these can be defined during device configuration, and many can also be modified during operation. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 5 Virtex-6 CXT Family Data Sheet FF484 Package Placement Diagrams Figure 2 and Figure 3 show the placement diagrams for the GTX transceivers in the FF484 package. Note: Unbonded locations in the FF484 package are: • CX75T: X0Y8, X0Y9, X0Y10, X0Y11 • CX130T: X0Y0, X0Y1, X0Y2, X0Y3, and X0Y12, X0Y13, X0Y14, X0Y15 X-Ref Target - Figure 2 X-Ref Target - Figure 3 B1 MGTRXP3_115 W3 MGTRXP3_114 B2 MGTRXN3_115 W4 MGTRXN3_114 CX75T: GTXE1_X0Y3 CX130T: GTXE1_X0Y7 CX75T: GTXE1_X0Y7 CX130T: GTXE1_X0Y11 D1 MGTTXP3_115 M1 MGTTXP3_114 D2 MGTTXN3_115 M2 MGTTXN3_114 C3 MGTRXP2_115 Y1 MGTRXP2_114 C4 MGTRXN2_115 Y2 MGTRXN2_114 CX75T: GTXE1_X0Y2 CX130T: GTXE1_X0Y6 CX75T: GTXE1_X0Y6 CX130T: GTXE1_X0Y10 F1 MGTTXP2_115 P1 MGTTXP2_114 F2 MGTTXN2_115 P2 MGTTXN2_114 J4 MGTREFCLK1P_115 R4 MGTREFCLK1P_114 J3 MGTREFCLK1N_115 R3 MGTREFCLK1N_114 L4 MGTREFCLK0P_115 U4 MGTREFCLK0P_114 L3 MGTREFCLK0N_115 U3 MGTREFCLK0N_114 E3 MGTRXP1_115 AA3 MGTRXP1_114 E4 MGTRXN1_115 AA4 MGTRXN1_114 QUAD_115 QUAD_114 CX75T: GTXE1_X0Y1 CX130T: GTXE1_X0Y5 CX75T: GTXE1_X0Y5 CX130T: GTXE1_X0Y9 H1 MGTTXP1_115 T1 MGTTXP1_114 H2 MGTTXN1_115 T2 MGTTXN1_114 G3 MGTRXP0_115 AB1 MGTRXP0_114 G4 MGTRXN0_115 AB2 MGTRXN0_114 CX75T: GTXE1_X0Y0 CX130T: GTXE1_X0Y4 CX75T: GTXE1_X0Y4 CX130T: GTXE1_X0Y8 K1 MGTTXP0_115 V1 MGTTXP0_114 K2 MGTTXN0_115 V2 MGTTXN0_114 ds153_03_041510 ds153_02_041510 Figure 2: Placement Diagram for the FF484 Package (1 of 2) DS153 (v1.6) February 11, 2011 Product Specification Figure 3: Placement Diagram for the FF484 Package (2 of 2) www.xilinx.com 6 Virtex-6 CXT Family Data Sheet FF784 Package Placement Diagrams Figure 4 through Figure 6 show the placement diagrams for the GTX transceivers in the FF784 package. Note: Unbonded locations in the FF784 package are: • CX130T: X0Y0, X0Y1, X0Y2, X0Y3 • CX195T: X0Y0, X0Y1, X0Y2, X0Y3 • CX240T: X0Y0, X0Y1, X0Y2, X0Y3 X-Ref Target - Figure 4 X-Ref Target - Figure 5 CX75T: GTXE1_X0Y11 CX130T: GTXE1_X0Y15 CX195T: GTXE1_X0Y15 CX240T: GTXE1_X0Y15 CX75T: GTXE1_X0Y10 CX130T: GTXE1_X0Y14 CX195T: GTXE1_X0Y14 CX240T: GTXE1_X0Y14 A3 MGTRXP3_116 A4 MGTRXN3_116 D1 MGTTXP3_116 D2 MGTTXN3_116 B1 MGTRXP2_116 B2 MGTRXN2_116 F1 MGTTXP2_116 F2 MGTTXN2_116 G4 G3 CX75T: GTXE1_X0Y7 CX130T: GTXE1_X0Y11 CX195T: GTXE1_X0Y11 CX240T: GTXE1_X0Y11 CX75T: GTXE1_X0Y8 CX130T: GTXE1_X0Y12 CX195T: GTXE1_X0Y12 CX240T: GTXE1_X0Y12 MGTRXP3_115 L4 MGTRXN3_115 M1 MGTTXP3_115 M2 MGTTXN3_115 N3 MGTRXP2_115 N4 MGTRXN2_115 P1 MGTTXP2_115 P2 MGTTXN2_115 MGTREFCLK1P_116 P6 MGTREFCLK1P_115 MGTREFCLK1N_116 P5 MGTREFCLK1N_115 CX75T: GTXE1_X0Y6 CX130T: GTXE1_X0Y10 CX195T: GTXE1_X0Y10 CX240T: GTXE1_X0Y10 QUAD_116 CX75T: GTXE1_X0Y9 CX130T: GTXE1_X0Y13 CX195T: GTXE1_X0Y13 CX240T: GTXE1_X0Y13 L3 QUAD_115 J4 MGTREFCLK0P_116 T6 MGTREFCLK0P_115 J3 MGTREFCLK0N_116 T5 MGTREFCLK0N_115 C3 MGTRXP1_116 R3 MGTRXP1_115 C4 MGTRXN1_116 R4 MGTRXN1_115 H1 MGTTXP1_116 T1 MGTTXP1_115 H2 MGTTXN1_116 T2 MGTTXN1_115 E3 MGTRXP0_116 U3 MGTRXP0_115 E4 MGTRXN0_116 U4 MGTRXN0_115 K1 MGTTXP0_116 V1 MGTTXP0_115 K2 MGTTXN0_116 V2 MGTTXN0_115 CX75T: GTXE1_X0Y5 CX130T: GTXE1_X0Y9 CX195T: GTXE1_X0Y9 CX240T: GTXE1_X0Y9 CX75T: GTXE1_X0Y4 CX130T: GTXE1_X0Y8 CX195T: GTXE1_X0Y8 CX240T: GTXE1_X0Y8 ds153_04_041510 Figure 4: Placement Diagram for the FF784 Package (1 of 3) DS153 (v1.6) February 11, 2011 Product Specification ds153_05_041510 Figure 5: Placement Diagram for the FF784 Package (2 of 3) www.xilinx.com 7 Virtex-6 CXT Family Data Sheet X-Ref Target - Figure 6 CX75T: GTXE1_X0Y3 CX130T: GTXE1_X0Y7 CX195T: GTXE1_X0Y7 CX240T: GTXE1_X0Y7 CX75T: GTXE1_X0Y2 CX130T: GTXE1_X0Y6 CX195T: GTXE1_X0Y6 CX240T: GTXE1_X0Y6 AC3 MGTRXP3_114 AC4 MGTRXN3_114 Y1 MGTTXP3_114 Y2 MGTTXN3_114 AE3 MGTRXP2_114 AE4 MGTRXN2_114 AB1 MGTTXP2_114 AB2 MGTTXN2_114 W4 MGTREFCLK1P_114 W3 MGTREFCLK1N_114 AA4 MGTREFCLK0P_114 AA3 MGTREFCLK0N_114 AG3 MGTRXP1_114 AG4 MGTRXN1_114 AD1 MGTTXP1_114 AD2 MGTTXN1_114 AH1 MGTRXP0_114 AH2 MGTRXN0_114 AF1 MGTTXP0_114 AF2 MGTTXN0_114 QUAD_114 CX75T: GTXE1_X0Y1 CX130T: GTXE1_X0Y5 CX195T: GTXE1_X0Y5 CX240T: GTXE1_X0Y5 CX75T: GTXE1_X0Y0 CX130T: GTXE1_X0Y4 CX195T: GTXE1_X0Y4 CX240T: GTXE1_X0Y4 ds153_06_041510 Figure 6: Placement Diagram for the FF784 Package (3 of 3) DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 8 Virtex-6 CXT Family Data Sheet FF1156 Package Placement Diagrams Figure 7 through Figure 10 show the placement diagrams for the GTX transceivers in the FF1156 package. X-Ref Target - Figure 7 X-Ref Target - Figure 8 CX130T: GTXE1_X0Y15 CX195T: GTXE1_X0Y15 CX240T: GTXE1_X0Y15 CX130T: GTXE1_X0Y14 CX195T: GTXE1_X0Y14 CX240T: GTXE1_X0Y14 B5 MGTRXP3_116 J3 MGTRXP3_115 B6 MGTRXN3_116 J4 MGTRXN3_115 CX130T: GTXE1_X0Y11 CX195T: GTXE1_X0Y11 CX240T: GTXE1_X0Y11 A3 MGTTXP3_116 F1 MGTTXP3_115 A4 MGTTXN3_116 F2 MGTTXN3_115 D5 MGTRXP2_116 K5 MGTRXP2_115 D6 MGTRXN2_116 K6 MGTRXN2_115 B1 MGTTXP2_116 H1 MGTTXP2_115 B2 MGTTXN2_116 H2 MGTTXN2_115 F6 MGTREFCLK1P_116 M6 MGTREFCLK1P_115 F5 MGTREFCLK1N_116 M5 MGTREFCLK1N_115 CX130T: GTXE1_X0Y10 CX195T: GTXE1_X0Y10 CX240T: GTXE1_X0Y10 QUAD_116 CX130T: GTXE1_X0Y13 CX195T: GTXE1_X0Y13 CX240T: GTXE1_X0Y13 CX130T: GTXE1_X0Y12 CX195T: GTXE1_X0Y12 CX240T: GTXE1_X0Y12 QUAD_115 H6 MGTREFCLK0P_116 P6 MGTREFCLK0P_115 H5 MGTREFCLK0N_116 P5 MGTREFCLK0N_115 E3 MGTRXP1_116 L3 MGTRXP1_115 E4 MGTRXN1_116 L4 MGTRXN1_115 C3 MGTTXP1_116 K1 MGTTXP1_115 C4 MGTTXN1_116 K2 MGTTXN1_115 CX130T: GTXE1_X0Y9 CX195T: GTXE1_X0Y9 CX240T: GTXE1_X0Y9 G3 MGTRXP0_116 N3 MGTRXP0_115 G4 MGTRXN0_116 N4 MGTRXN0_115 D1 MGTTXP0_116 M1 MGTTXP0_115 D2 MGTTXN0_116 M2 MGTTXN0_115 CX130T: GTXE1_X0Y8 CX195T: GTXE1_X0Y8 CX240T: GTXE1_X0Y8 ds153_07_020210 Figure 7: Placement Diagram for the FF1156 Package (1 of 4) DS153 (v1.6) February 11, 2011 Product Specification ds153_08_020210 Figure 8: Placement Diagram for the FF1156 Package (2 of 4) www.xilinx.com 9 Virtex-6 CXT Family Data Sheet X-Ref Target - Figure 9 X-Ref Target - Figure 10 R3 CX130T: GTXE1_X0Y7 CX195T: GTXE1_X0Y7 CX240T: GTXE1_X0Y7 CX130T: GTXE1_X0Y6 CX195T: GTXE1_X0Y6 CX240T: GTXE1_X0Y6 R4 MGTRXP3_114 AC3 MGTRXP3_113 MGTRXN3_114 AC4 MGTRXN3_113 CX130T: GTXE1_X0Y3 CX195T: GTXE1_X0Y3 CX240T: GTXE1_X0Y3 P1 MGTTXP3_114 AB1 MGTTXP3_113 P2 MGTTXN3_114 AB2 MGTTXN3_113 U3 MGTRXP2_114 AE3 MGTRXP2_113 U4 MGTRXN2_114 AE4 MGTRXN2_113 T1 MGTTXP2_114 AD1 MGTTXP2_113 T2 MGTTXN2_114 AD2 MGTTXN2_113 T6 MGTREFCLK1P_114 AB6 MGTREFCLK1P_113 T5 MGTREFCLK1N_114 AB5 MGTREFCLK1N_113 CX130T: GTXE1_X0Y2 CX195T: GTXE1_X0Y2 CX240T: GTXE1_X0Y2 QUAD_114 CX130T: GTXE1_X0Y5 CX195T: GTXE1_X0Y5 CX240T: GTXE1_X0Y5 CX130T: GTXE1_X0Y4 CX195T: GTXE1_X0Y4 CX240T: GTXE1_X0Y4 QUAD_113 V6 MGTREFCLK0P_114 AD6 MGTREFCLK0P_113 V5 MGTREFCLK0N_114 AD5 MGTREFCLK0N_113 W3 MGTRXP1_114 AF5 MGTRXP1_113 W4 MGTRXN1_114 AF6 MGTRXN1_113 V1 MGTTXP1_114 AF1 MGTTXP1_113 V2 MGTTXN1_114 AF2 MGTTXN1_113 AA3 MGTRXP0_114 AG3 MGTRXP0_113 AA4 MGTRXN0_114 AG4 MGTRXN0_113 Y1 MGTTXP0_114 AH1 MGTTXP0_113 Y2 MGTTXN0_114 AH2 MGTTXN0_113 CX130T: GTXE1_X0Y1 CX195T: GTXE1_X0Y1 CX240T: GTXE1_X0Y1 CX130T: GTXE1_X0Y0 CX195T: GTXE1_X0Y0 CX240T: GTXE1_X0Y0 ds153_10_020210 ds153_09_020210 Figure 9: Placement Diagram for the FF1156 Package (3 of 4) DS153 (v1.6) February 11, 2011 Product Specification Figure 10: Placement Diagram for the FF1156 Package (4 of 4) www.xilinx.com 10 Virtex-6 CXT Family Data Sheet Virtex-6 CXT FPGA Electrical Characteristics Introduction Virtex-6 CXT FPGAs are available in -2 and -1 speed grades, with -2 having the highest performance. Virtex-6 CXT FPGA DC and AC characteristics are specified for both commercial and industrial grades. Except the operating temperature range or unless otherwise noted, all the DC and AC electrical parameters are the same for a particular speed grade (that is, the timing characteristics of a -1 speed grade industrial device are the same as for a -1 speed grade commercial device). However, only selected speed grades and/or devices might be available in the industrial range. All supply voltage and junction temperature specifications are representative of worst-case conditions. The parameters included are common to popular designs and typical applications. All specifications are subject to change without notice. Virtex-6 CXT FPGA DC Characteristics Table 9: Absolute Maximum Ratings(1) Symbol Description Units VCCINT Internal supply voltage relative to GND –0.5 to 1.1 V VCCAUX Auxiliary supply voltage relative to GND –0.5 to 3.0 V VCCO Output drivers supply voltage relative to GND –0.5 to 3.0 V VBATT Key memory battery backup supply –0.5 to 3.0 V –0.5 to 3.0 V –0.5 to 3.0 V VFS External voltage supply for eFUSE VREF Input reference voltage VIN (3) programming(2) Voltage applied to 3-state 2.5V or below TSTG Storage temperature (ambient) Tj (user and dedicated I/Os) –0.5 to VCCO 0.5 V output(4) (user and dedicated I/Os) –0.5 to VCCO 0.5 V –65 to 150 °C 220 °C 125 °C 2.5V or below I/O input voltage relative to VTS TSOL GND(4) Maximum soldering Maximum junction temperature(5) temperature(5) Notes: 1. 2. 3. 4. 5. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability. When not programming eFUSE, connect VFS to GND. 2.5V I/O absolute maximum limit applied to DC and AC signals. For I/O operation, refer to the Virtex-6 FPGA SelectIO Resources User Guide. For soldering guidelines and thermal considerations, see Virtex-6 FPGA Packaging and Pinout Specification. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 11 Virtex-6 CXT Family Data Sheet Table 10: Recommended Operating Conditions Symbol Description VCCINT VCCAUX VCCO(1)(2)(3) VIN IIN(4) VBATT(5) VFS(6) Min Max Units Internal supply voltage relative to GND, Tj = 0C to +85C 0.95 1.05 V Internal supply voltage relative to GND, Tj = –40C to +100C 0.95 1.05 V Auxiliary supply voltage relative to GND, Tj = 0C to +85C 2.375 2.625 V Auxiliary supply voltage relative to GND, Tj = –40C to +100C 2.375 2.625 V Supply voltage relative to GND, Tj = 0C to +85C 1.14 2.625 V Supply voltage relative to GND, Tj = –40C to +100C 1.14 2.625 V 2.5V supply voltage relative to GND, Tj = 0C to +85C GND – 0.20 2.625 V 2.5V supply voltage relative to GND, Tj = –40C to +100C GND – 0.20 2.625 V 2.5V and below supply voltage relative to GND, Tj = 0C to +85C GND – 0.20 VCCO 0.2 V 2.5V and below supply voltage relative to GND, Tj = –40C to +100C GND – 0.20 VCCO 0.2 V – 10 mA Battery voltage relative to GND, Tj = 0C to +85C 1.0 2.5 V Battery voltage relative to GND, Tj = –40C to +100C 1.0 2.5 V 2.375 2.625 V Maximum current through any pin in a powered or unpowered bank when forward biasing the clamp diode. External voltage supply for eFUSE programming Notes: 1. 2. 3. 4. 5. 6. 7. Configuration data is retained even if VCCO drops to 0V. Includes VCCO of 1.2V, 1.5V, 1.8V, and 2.5V. The configuration supply voltage VCC_CONFIG is also known as VCCO_0. A total of 100 mA per bank should not be exceeded. VBATT is required only when using bitstream encryption. If battery is not used, connect VBATT to either ground or VCCAUX. When not programming eFUSE, connect VFS to GND. All voltages are relative to ground. Table 11: DC Characteristics Over Recommended Operating Conditions(1)(2) Symbol Description Min Typ Max Units VDRINT Data retention VCCINT voltage (below which configuration data might be lost) 0.75 – – V VDRI Data retention VCCAUX voltage (below which configuration data might be lost) 2.0 – – V IREF VREF leakage current per pin – – 10 µA IL Input or output leakage current per pin (sample-tested) – – 10 µA CIN(3) Die input capacitance at the pad – – 8 pF Pad pull-up (when selected) @ VIN = 0V, VCCO = 2.5V 20 – 80 µA Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.8V 8 – 40 µA Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.5V 5 – 30 µA Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.2V 1 – 20 µA IRPD Pad pull-down (when selected) @ VIN = 2.5V 3 – 80 µA IBATT Battery supply current – – 150 nA n Temperature diode ideality factor – 1.0002 – n r Series resistance – 5 – IRPU Notes: 1. 2. 3. Typical values are specified at nominal voltage, 25°C. Maximum value specified for worst case process at 25°C. This measurement represents the die capacitance at the pad, not including the package. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 12 Virtex-6 CXT Family Data Sheet Quiescent Supply Current: Important Note Typical values for quiescent supply current are specified at nominal voltage, 85°C junction temperatures (Tj). Xilinx recommends analyzing static power consumption at Tj = 85°C because the majority of designs operate near the high end of the commercial temperature range. Quiescent supply current is specified by speed grade for Virtex-6 CXT devices. Use the XPOWER™ Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate static power consumption for conditions other than those specified in Table 12. Table 12: Typical Quiescent Supply Current Symbol ICCINTQ ICCOQ ICCAUXQ Description Quiescent VCCINT supply current Quiescent VCCO supply current Quiescent VCCAUX supply current Device Speed and Temperature Grade Units -2 (C & I) -1 (C & I) XC6VCX75T 927 927 mA XC6VCX130T 1563 1563 mA XC6VCX195T 2059 2059 mA XC6VCX240T 2478 2478 mA XC6VCX75T 1 1 mA XC6VCX130T 1 1 mA XC6VCX195T 1 1 mA XC6VCX240T 2 2 mA XC6VCX75T 45 45 mA XC6VCX130T 75 75 mA XC6VCX195T 113 113 mA XC6VCX240T 135 135 mA Notes: 1. 2. 3. Typical values are specified at nominal voltage, 85°C junction temperatures (Tj). Industrial (I) grade devices have the same typical values as commercial (C) grade devices at 85°C, but higher values at 100°C. Use the XPE tool to calculate 100°C values. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating. If DCI or differential signaling is used, more accurate quiescent current estimates can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 13 Virtex-6 CXT Family Data Sheet Power-On Power Supply Requirements Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device initialization. The actual current consumed depends on the power-on ramp rate of the power supply. Virtex-6 CXT devices require a power-on sequence of VCCINT, VCCAUX, and VCCO. If the requirement can not be met, then VCCAUX must always be powered prior to VCCO. VCCAUX and VCCO can be powered by the same supply, therefore, both VCCAUX and VCCO are permitted to ramp simultaneously. Similarly, for the power-down sequence, VCCO must be powered down prior to VCCAUX or if powered by the same supply, VCCAUX and VCCO power-down simultaneously. Table 13 shows the minimum current, in addition to ICCQ, that are required by Virtex-6 CXT devices for proper power-on and configuration. If the current minimums shown in Table 12 and Table 13 are met, the device powers on after all three supplies have passed through their power-on reset threshold voltages. The FPGA must be configured after VCCINT is applied. Once initialized and configured, use the XPOWER tools to estimate current drain on these supplies. Table 13: Power-On Current for Virtex-6 CXT Devices ICCINTMIN ICCAUXMIN ICCOMIN Typ(1) Typ(1) Typ(1) XC6VCX75T See ICCINTQ in Table 12 ICCAUXQ + 10 ICCOQ + 30 mA per bank mA XC6VCX130T See ICCINTQ in Table 12 ICCAUXQ + 10 ICCOQ + 30 mA per bank mA XC6VCX195T See ICCINTQ in Table 12 ICCAUXQ + 40 ICCOQ + 30 mA per bank mA XC6VCX240T See ICCINTQ in Table 12 ICCAUXQ + 40 ICCOQ + 30 mA per bank mA Device Units Notes: 1. 2. Typical values are specified at nominal voltage, 25°C. Use the XPOWER™ Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate maximum power-on currents. Table 14: Power Supply Ramp Time Symbol Description Ramp Time Units VCCINT Internal supply voltage relative to GND 0.20 to 50.0 ms VCCO Output drivers supply voltage relative to GND 0.20 to 50.0 ms VCCAUX Auxiliary supply voltage relative to GND 0.20 to 50.0 ms DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 14 Virtex-6 CXT Family Data Sheet SelectIO™ DC Input and Output Levels Values for VIL and VIH are recommended input voltages. Values for IOL and IOH are guaranteed over the recommended operating conditions at the VOL and VOH test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at a minimum VCCO with the respective VOL and VOH voltage levels shown. Other standards are sample tested. Table 15: SelectIO DC Input and Output Levels I/O Standard VIL VIH VOL VOH IOL IOH V, Min V, Max V, Min V, Max V, Max V, Min mA mA LVCMOS25, LVDCI25 –0.3 0.7 1.7 VCCO + 0.3 0.4 VCCO – 0.4 Note(3) Note(3) LVCMOS18, LVDCI18 –0.3 35% VCCO 65% VCCO VCCO + 0.3 0.45 VCCO – 0.45 Note(4) Note(4) LVCMOS15, LVDCI15 –0.3 35% VCCO 65% VCCO VCCO + 0.3 25% VCCO 75% VCCO Note(4) Note(4) LVCMOS12 –0.3 35% VCCO 65% VCCO VCCO + 0.3 25% VCCO 75% VCCO Note(5) Note(5) HSTL I_12 –0.3 VREF – 0.1 VREF + 0.1 VCCO + 0.3 25% VCCO 75% VCCO 6.3 6.3 HSTL I(2) –0.3 VREF – 0.1 VREF + 0.1 VCCO + 0.3 0.4 VCCO – 0.4 8 –8 HSTL II(2) –0.3 VREF – 0.1 VREF + 0.1 VCCO + 0.3 0.4 VCCO – 0.4 16 –16 HSTL III(2) –0.3 VREF – 0.1 VREF + 0.1 VCCO + 0.3 0.4 VCCO – 0.4 24 –8 DIFF HSTL I(2) –0.3 50% VCCO – 0.1 50% VCCO + 0.1 VCCO + 0.3 – – – – DIFF HSTL II(2) –0.3 50% VCCO – 0.1 50% VCCO + 0.1 VCCO + 0.3 – – – – SSTL2 I –0.3 VREF – 0.15 VREF + 0.15 VCCO + 0.3 VTT – 0.61 VTT + 0.61 8.1 –8.1 SSTL2 II –0.3 VREF – 0.15 VREF + 0.15 VCCO + 0.3 VTT – 0.81 VTT + 0.81 16.2 –16.2 DIFF SSTL2 I –0.3 50% VCCO – 0.15 50% VCCO + 0.15 VCCO + 0.3 – – – – DIFF SSTL2 II –0.3 50% VCCO – 0.15 50% VCCO + 0.15 VCCO + 0.3 – – – – SSTL18 I –0.3 VREF – 0.125 VREF + 0.125 VCCO + 0.3 VTT – 0.47 VTT + 0.47 6.7 –6.7 SSTL18 II –0.3 VREF – 0.125 VREF + 0.125 VCCO + 0.3 VTT – 0.60 VTT + 0.60 13.4 –13.4 DIFF SSTL18 I –0.3 50% VCCO – 0.125 50% VCCO + 0.125 VCCO + 0.3 – – – – DIFF SSTL18 II –0.3 50% VCCO – 0.125 50% VCCO + 0.125 VCCO + 0.3 – – – – SSTL15 –0.3 VREF – 0.1 VREF + 0.1 VCCO + 0.3 VTT – 0.175 VTT + 0.175 14.3 14.3 Notes: 1. 2. 3. 4. 5. 6. Tested according to relevant specifications. Applies to both 1.5V and 1.8V HSTL. Using drive strengths of 2, 4, 6, 8, 12, 16, or 24 mA. Using drive strengths of 2, 4, 6, 8, 12, or 16 mA. Supported drive strengths of 2, 4, 6, or 8 mA. For detailed interface specific DC voltage levels, see the Virtex-6 FPGA SelectIO Resources User Guide. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 15 Virtex-6 CXT Family Data Sheet HT DC Specifications (HT_25) Table 16: HT DC Specifications Symbol DC Parameter Conditions Min Typ Max Units 2.38 2.5 2.63 V 480 600 885 mV –15 – 15 mV 480 600 885 mV VCCO Supply Voltage VOD Differential Output Voltage VOD Change in VOD Magnitude VOCM Output Common Mode Voltage VOCM Change in VOCM Magnitude –15 – 15 mV VID Input Differential Voltage 200 600 1000 mV VID Change in VID Magnitude –15 – 15 mV VICM Input Common Mode Voltage 440 600 780 mV VICM Change in VICM Magnitude –15 – 15 mV Min Typ Max Units 2.38 2.5 2.63 V RT = 100 across Q and Q signals RT = 100 across Q and Q signals LVDS DC Specifications (LVDS_25) Table 17: LVDS DC Specifications Symbol DC Parameter Conditions VCCO Supply Voltage VOH Output High Voltage for Q and Q RT = 100 across Q and Q signals – – 1.675 V VOL Output Low Voltage for Q and Q RT = 100 across Q and Q signals 0.825 – – V VODIFF Differential Output Voltage (Q – Q), Q = High (Q – Q), Q = High RT = 100 across Q and Q signals 247 350 600 mV VOCM Output Common-Mode Voltage RT = 100 across Q and Q signals 1.075 1.250 1.425 V VIDIFF Differential Input Voltage (Q – Q), Q = High (Q – Q), Q = High 100 350 600 mV VICM Input Common-Mode Voltage 0.3 1.2 2.2 V Min Typ Max Units 2.38 2.5 2.63 V Extended LVDS DC Specifications (LVDSEXT_25) Table 18: Extended LVDS DC Specifications Symbol DC Parameter Conditions VCCO Supply Voltage VOH Output High Voltage for Q and Q RT = 100 across Q and Q signals – – 1.785 V VOL Output Low Voltage for Q and Q RT = 100 across Q and Q signals 0.715 – – V VODIFF Differential Output Voltage (Q – Q), Q = High (Q – Q), Q = High RT = 100 across Q and Q signals 350 – 840 mV VOCM Output Common-Mode Voltage RT = 100 across Q and Q signals 1.075 1.250 1.425 V VIDIFF Differential Input Voltage (Q – Q), Q = High (Q – Q), Q = High Common-mode input voltage = 1.25V 100 – 1000 mV VICM Input Common-Mode Voltage Differential input voltage = ±350 mV 0.3 1.2 2.2 V DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 16 Virtex-6 CXT Family Data Sheet LVPECL DC Specifications (LVPECL_25) These values are valid when driving a 100 differential load only, i.e., a 100 resistor between the two receiver pins. The VOH levels are 200 mV below standard LVPECL levels and are compatible with devices tolerant of lower common-mode ranges. Table 19 summarizes the DC output specifications of LVPECL. For more information on using LVPECL, see the Virtex-6 FPGA SelectIO Resources User Guide. Table 19: LVPECL DC Specifications Symbol DC Parameter Min Typ Max Units VOH Output High Voltage VCC – 1.025 1.545 VCC – 0.88 V VOL Output Low Voltage VCC – 1.81 0.795 VCC – 1.62 V VICM Input Common-Mode Voltage 0.6 – 2.2 V 0.100 – 1.5 V VIDIFF Differential Input Voltage(1)(2) Notes: 1. 2. Recommended input maximum voltage not to exceed VCCAUX + 0.2V. Recommended input minimum voltage not to go below –0.5V. eFUSE Read Endurance Table 20 lists the maximum number of read cycle operations expected. For more information, see the Virtex-6 FPGA Configuration User Guide. Table 20: eFUSE Read Endurance Symbol Description DNA_CYCLES Number of DNA_PORT READ operations or JTAG ISC_DNA read command operations. Unaffected by SHIFT operations. AES_CYCLES Number of JTAG FUSE_KEY or FUSE_CNTL read command operations. Unaffected by SHIFT operations. Speed Grade -3 -2 -1 -1L Units Read Cycles 30,000,000 30,000,000 Read Cycles GTX Transceiver Specifications GTX Transceiver DC Characteristics Table 21: Absolute Maximum Ratings for GTX Transceivers(1) Symbol Description Min Max Units MGTAVCC Analog supply voltage for the GTX transmitter and receiver circuits relative to GND –0.5 1.1 V MGTAVTT Analog supply voltage for the GTX transmitter and receiver termination circuits relative to GND –0.5 1.32 V MGTAVTTRCAL Analog supply voltage for the resistor calibration circuit of the GTX transceiver column –0.5 1.32 V VIN Receiver (RXP/RXN) and Transmitter (TXP/TXN) absolute input voltage –0.5 1.32 V VMGTREFCLK Reference clock absolute input voltage –0.5 1.32 V Notes: 1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 17 Virtex-6 CXT Family Data Sheet Table 22: Recommended Operating Conditions for GTX Transceivers(1)(2) Symbol Description Min Typ Max Units MGTAVCC Analog supply voltage for the GTX transmitter and receiver circuits relative to GND 0.95 1.0 1.06 V MGTAVTT Analog supply voltage for the GTX transmitter and receiver termination circuits relative to GND 1.14 1.2 1.26 V MGTAVTTRCAL Analog supply voltage for the resistor calibration circuit of the GTX transceiver column 1.14 1.2 1.26 V Notes: 1. 2. Each voltage listed requires the filter circuit described in Virtex-6 FPGA GTX Transceivers User Guide. Voltages are specified for the temperature range of Tj = –40°C to +100°C. Table 23: GTX Transceiver Supply Current (per Lane) (1)(2) Symbol Description Typ IMGTAVTT MGTAVTT supply current for one GTX transceiver 55.9 IMGTAVCC MGTAVCC supply current for one GTX transceiver 56.1 MGTRREF Precision reference resistor for internal calibration termination Max Note 2 Units mA mA 100.0 ± 1% tolerance Notes: 1. 2. Typical values are specified at nominal voltage, 25°C, with a 3.125 Gb/s line rate. Values for currents other than the values specified in this table can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools. Table 24: GTX Transceiver Quiescent Supply Current (per Lane)(1)(2)(3) Symbol Description Typ(4) IMGTAVTTQ Quiescent MGTAVTT supply current for one GTX transceiver 0.9 IMGTAVCCQ Quiescent MGTAVCC supply current for one GTX transceiver 3.5 Max Note 2 Units mA mA Notes: 1. 2. 3. 4. Device powered and unconfigured. Currents for conditions other than values specified in this table can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools. GTX transceiver quiescent supply current for an entire device can be calculated by multiplying the values in this table by the number of available GTX transceivers. Typical values are specified at nominal voltage, 25°C. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 18 Virtex-6 CXT Family Data Sheet GTX Transceiver DC Input and Output Levels Table 25 summarizes the DC output specifications of the GTX transceivers in Virtex-6 CXT FPGAs. Consult the Virtex-6 FPGA GTX Transceivers User Guide for further details. Table 25: GTX Transceiver DC Specifications Symbol DC Parameter Conditions Min Typ Max Units External AC coupled 125 – 2000 mV DVPPIN Differential peak-to-peak input voltage VIN Absolute input voltage DC coupled MGTAVTT = 1.2V –400 – MGTAVTT mV VCMIN Common mode input voltage DC coupled MGTAVTT = 1.2V – 2/3 MGTAVTT – mV DVPPOUT Differential peak-to-peak output voltage (1) Transmitter output swing is set to maximum setting – – 1000 mV VCMOUTDC DC common mode output voltage Equation based RIN Differential input resistance 80 100 130 ROUT Differential output resistance 80 100 120 TOSKEW Transmitter output pair (TXP and TXN) intra-pair skew – 2 8 ps – 100 – nF CEXT Recommended external AC coupling capacitor(2) MGTAVTT – DVPPOUT/4 mV Notes: 1. 2. The output swing and preemphasis levels are programmable using the attributes discussed in Virtex-6 FPGA GTX Transceivers User Guide and can result in values lower than reported in this table. Other values can be used as appropriate to conform to specific protocols and standards. X-Ref Target - Figure 11 +V P Single-Ended Voltage N 0 ds153_11_041410 Figure 11: Single-Ended Peak-to-Peak Voltage X-Ref Target - Figure 12 +V Differential Voltage 0 –V P–N ds153_12_041410 Figure 12: Differential Peak-to-Peak Voltage DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 19 Virtex-6 CXT Family Data Sheet Table 26 summarizes the DC specifications of the clock input of the GTX transceiver. Consult theVirtex-6 FPGA GTX Transceivers User Guide for further details. Table 26: GTX Transceiver Clock DC Input Level Specification Symbol DC Parameter Conditions Min Typ Max Units VIDIFF Differential peak-to-peak input voltage 210 800 2000 mV RIN Differential input resistance 90 100 130 CEXT Required external AC coupling capacitor – 100 – nF GTX Transceiver Switching Characteristics Consult Virtex-6 FPGA GTX Transceivers User Guide for further information. Table 27: GTX Transceiver Performance Symbol Speed Grade Description Units -2 -1 FGTXMAX Maximum GTX transceiver data rate 3.75 3.75 Gb/s FGPLLMAX Maximum PLL frequency 2.5 2.5 GHz FGPLLMIN Minimum PLL frequency 1.2 1.2 GHz Table 28: GTX Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics Symbol FGTXDRPCLK Speed Grade Description GTXDRPCLK maximum frequency Units -2 -1 100 100 MHz Table 29: GTX Transceiver Reference Clock Switching Characteristics Symbol Description Conditions All Speed Grades Units Min Typ Max 67.5 – 375 MHz FGCLK Reference clock frequency range TRCLK Reference clock rise time 20% – 80% – 200 – ps TFCLK Reference clock fall time 80% – 20% – 200 – ps TDCREF Reference clock duty cycle Transceiver PLL only 45 50 55 % TLOCK Clock recovery frequency acquisition time Initial PLL lock – – 1 ms Clock recovery phase acquisition time Lock to data after PLL has locked to the reference clock – – 200 µs TPHASE X-Ref Target - Figure 13 TRCLK 80% 20% TFCLK ds153_13_041410 Figure 13: Reference Clock Timing Parameters DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 20 Virtex-6 CXT Family Data Sheet Table 30: GTX Transceiver User Clock Switching Characteristics(1) Symbol Description FTXOUT TXOUTCLK maximum frequency FRXREC RXRECCLK maximum frequency TRX RXUSRCLK maximum frequency TRX2 Speed Grade Conditions RXUSRCLK2 maximum frequency -2 Internal 20-bit data path 187.5 187.5 MHz Internal 16-bit data path 234.38 234.38 MHz Internal 20-bit data path 187.5 187.5 MHz Internal 16-bit data path 234.38 234.38 MHz 234.38 234.38 MHz 1 byte interface 376 312.5 MHz 2 byte interface 234.38 234.38 MHz 4 byte interface 117.19 117.19 MHz TXUSRCLK maximum frequency TTX TTX2 TXUSRCLK2 maximum frequency Units -1 234.38 234.38 MHz 1 byte interface 376 312.5 MHz 2 byte interface 234.38 234.38 MHz 4 byte interface 117.19 117.19 MHz Notes: 1. Clocking must be implemented as described in Virtex-6 FPGA GTX Transceivers User Guide. Table 31: GTX Transceiver Transmitter Switching Characteristics Symbol Description FGTXTX Serial data rate range TRTX TX Rise time TFTX TX Fall time Min Typ Max Units 0.480 – FGTXMAX Gb/s 20%–80% – 120 – ps 80%–20% – 120 – ps – – 350 ps Condition skew(1) TLLSKEW TX lane-to-lane VTXOOBVDPP Electrical idle amplitude – – 15 mV TTXOOBTRANSITION Electrical idle transition time – – 75 ns – – 0.34 UI – – 0.16 UI – – 0.2 UI – – 0.1 UI – – 0.35 UI – – 0.16 UI – – 0.20 UI – – 0.08 UI – – 0.15 UI – – 0.06 UI – – 0.1 UI – – 0.03 UI TJ3.75 DJ3.75 Total Jitter(2)(3) Deterministic Jitter(2)(3) TJ3.125 Total DJ3.125 Deterministic Jitter(2)(3) TJ3.125L DJ3.125L Total Jitter(2)(3) Deterministic Jitter(2)(3) Total DJ2.5 Deterministic Jitter(2)(3) DJ1.25 Total Jitter(2)(3) Deterministic 3.125 Gb/s(4) 2.5 Gb/s(5) 1.25 Gb/s(6) Jitter(2)(3) Jitter(2)(3) TJ600 Total DJ600 Deterministic Jitter(2)(3) DS153 (v1.6) February 11, 2011 Product Specification 3.125 Gb/s Jitter(2)(3) TJ2.5 TJ1.25 3.75 Gb/s Jitter(2)(3) 600 Mb/s www.xilinx.com 21 Virtex-6 CXT Family Data Sheet Table 31: GTX Transceiver Transmitter Switching Characteristics (Cont’d) Symbol TJ480 Description Total Jitter(2)(3) Deterministic DJ480 Condition Min Typ Max Units 480 Mb/s – – 0.1 UI – – 0.03 UI Jitter(2)(3) Notes: 1. 2. 3. 4. 5. 6. Using same REFCLK input with TXENPMAPHASEALIGN enabled for up to four consecutive GTX transceiver sites. Using PLL_DIVSEL_FB = 2, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations. All jitter values are based on a bit-error ratio of 1e-12. PLL frequency at 1.5625 GHz and OUTDIV = 1. PLL frequency at 2.5 GHz and OUTDIV = 2. PLL frequency at 2.5 GHz and OUTDIV = 4. Table 32: GTX Transceiver Receiver Switching Characteristics Symbol Description Min Typ Max Units RX oversampler not enabled 0.600 – FGTXMAX Gb/s RX oversampler enabled 0.480 – 0.600 Gb/s FGTXRX Serial data rate TRXELECIDLE TIme for RXELECIDLE to respond to loss or restoration of data – 75 – ns RXOOBVDPP OOB detect threshold peak-to-peak 60 – 150 mV RXSST Receiver spread-spectrum tracking(1) Modulated @ 33 KHz –5000 – 0 ppm RXRL Run length (CID) Internal AC capacitor bypassed – – 512 UI RXPPMTOL Data/REFCLK PPM offset tolerance CDR 2nd-order loop disabled –200 – 200 ppm –2000 – 2000 ppm JT_SJ3.75 Sinusoidal Jitter(3) 3.75 Gb/s 0.44 – – UI JT_SJ3.125 Sinusoidal Jitter(3) 3.125 Gb/s 0.45 – – UI 0.45 – – UI SJ Jitter CDR 2nd-order loop enabled Tolerance(2) JT_SJ3.125L Sinusoidal Jitter(3) Jitter(3) 3.125 Gb/s(5) JT_SJ2.5 Sinusoidal 0.5 – – UI JT_SJ1.25 Sinusoidal Jitter(3) 1.25 Gb/s(6) 0.5 – – UI JT_SJ675 Sinusoidal Jitter(3) 675 Mb/s 0.4 – – UI JT_SJ480 Jitter(3) 480 Mb/s 0.4 – – UI Sinusoidal SJ Jitter Tolerance with Stressed 2.5 Gb/s(4) Eye(2) JT_TJSE3.125 Total Jitter with Stressed Eye(7) 3.125 Gb/s 0.70 – – UI JT_SJSE3.125 Sinusoidal Jitter with Stressed Eye(7) 3.125 Gb/s 0.1 – – UI Notes: 1. 2. 3. 4. 5. 6. 7. Using PLL_RXDIVSEL_OUT = 1, 2, and 4. All jitter values are based on a bit-error ratio of 1e–12. The frequency of the injected sinusoidal jitter is 80 MHz. PLL frequency at 1.5625 GHz and OUTDIV = 1. PLL frequency at 2.5 GHz and OUTDIV = 2. PLL frequency at 2.5 GHz and OUTDIV = 4. Composite jitter with RX equalizer enabled. DFE disabled. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 22 Virtex-6 CXT Family Data Sheet Ethernet MAC Switching Characteristics Consult Virtex-6 FPGA Embedded Tri-mode Ethernet MAC User Guide for further information. Table 33: Maximum Ethernet MAC Performance Symbol FTEMACCLIENT FTEMACPHY Description Speed Grade Conditions Client interface maximum frequency Physical interface maximum frequency Units -2 -1 10 Mb/s – 8-bit width 2.5(1) 2.5(1) MHz 100 Mb/s – 8-bit width 25(2) 25(2) MHz 1000 Mb/s – 8-bit width 125 125 MHz 1000 Mb/s – 16-bit width 62.5 62.5 MHz 10 Mb/s – 4-bit width 2.5 2.5 MHz 100 Mb/s – 4-bit width 25 25 MHz 1000 Mb/s – 8-bit width 125 125 MHz Notes: 1. 2. When not using clock enable, the FMAX is lowered to 1.25 MHz. When not using clock enable, the FMAX is lowered to 12.5 MHz. Integrated Interface Block for PCI Express Designs Switching Characteristics More information and documentation on solutions for PCI Express designs can be found at: http://www.xilinx.com/technology/protocols/pciexpress.htm Table 34: Maximum Performance for PCI Express Designs Symbol Description Speed Grade -2 -1 Units FPIPECLK Pipe clock maximum frequency 125 125 MHz FUSERCLK User clock maximum frequency 250 250 MHz FDRPCLK DRP clock maximum frequency 250 250 MHz DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 23 Virtex-6 CXT Family Data Sheet Performance Characteristics This section provides the performance characteristics of some common functions and designs implemented in Virtex-6 CXT devices. The numbers reported here are worst-case values; they have all been fully characterized. These values are subject to the same guidelines as the Switching Characteristics, page 25. Table 35: Interface Performances Speed Grade Description -2 -1 SDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 8) 650 Mb/s 625 Mb/s DDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 10) 1.25 Gb/s 1.0 Gb/s 650 Mb/s 625 Mb/s 1.0 Gb/s 0.9 Gb/s DDR2 666 Mb/s 666 Mb/s DDR3 800 Mb/s 666 Mb/s QDR II + SRAM 250 MHz 250 MHz Networking Applications SDR LVDS receiver (SFI-4.1)(1) DDR LVDS receiver (SFI-4.2)(1) Maximum Physical Interface (PHY) Rate for Memory Interfaces(2)(3) Notes: 1. 2. 3. LVDS receivers are typically bounded with certain applications where specific DPA algorithms dominate deterministic performance. Based on Xilinx memory characterization platforms designed according to the guidelines in the Virtex-6 FPGA Memory Interface Solutions User Guide. Consult the Virtex-6 FPGA Memory Interface Solutions Data Sheet for performance and feature information on memory interface cores (controller plus PHY). DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 24 Virtex-6 CXT Family Data Sheet Switching Characteristics All values represented in this data sheet are based on the speed specification (version 1.08). Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows: Advance These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some underreporting might still occur. Preliminary These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data. Production These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades. All specifications are always representative of worst-case supply voltage and junction temperature conditions. Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device. Table 36 correlates the current status of each Virtex-6 CXT device on a per speed grade basis. Table 36: Virtex-6 CXT Device/Speed Grade Designations Device Speed Grade Designations Advance Preliminary Production XC6VCX75T -2, -1 XC6VCX130T -2, -1 XC6VCX195T -2, -1 XC6VCX240T -2, -1 Testing of Switching Characteristics All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Virtex-6 CXT devices. Production Silicon and ISE Software Status In some cases, a particular family member (and speed grade) is released to production before a speed specification is released with the correct label (Advance, Preliminary, Production). Any labeling discrepancies are corrected in subsequent speed specification releases. Table 37 lists the production released Virtex-6 family member, speed grade, and the minimum corresponding supported speed specification version and ISE software revisions. The ISE® software and speed specifications listed are the minimum releases required for production. All subsequent releases of software and speed specifications are valid. Table 37: Virtex-6 CXT Device/Production Software and Speed Specification Release Device -2 -1 XC6VCX75T ISE 12.2 (with speed file patch) v1.06 XC6VCX130T ISE 12.1 v1.04 XC6VCX195T ISE 12.2 (with speed file patch) v1.06 XC6VCX240T ISE 12.1 v1.04 Notes: 1. DS153 (v1.6) February 11, 2011 Product Specification Speed Grade Designations Blank entries indicate a device and/or speed grade in advance or preliminary status. www.xilinx.com 25 Virtex-6 CXT Family Data Sheet IOB Pad Input/Output/3-State Switching Characteristics TIOTP is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is disabled. The delay varies depending on the SelectIO capability of the output buffer. Table 38 summarizes the values of standard-specific data input delay adjustments, output delays terminating at pads (based on standard) and 3-state delays. TIOPI is described as the delay from IOB pad through the input buffer to the I-pin of an IOB pad. The delay varies depending on the capability of the SelectIO input buffer. Table 39 summarizes the value of TIOTPHZ. TIOTPHZ is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is enabled (i.e., a high impedance state). TIOOP is described as the delay from the O pin to the IOB pad through the output buffer of an IOB pad. The delay varies depending on the capability of the SelectIO output buffer. Table 38: IOB Switching Characteristics TIOPI TIOOP TIOTP Speed Grade Speed Grade Speed Grade -2 -1 -2 -1 -2 -1 LVDS_25 1.09 1.09 1.68 1.68 1.68 1.68 ns LVDSEXT_25 1.09 1.09 1.84 1.84 1.84 1.84 ns HT_25 1.09 1.09 1.78 1.78 1.78 1.78 ns BLVDS_25 1.09 1.09 1.67 1.67 1.67 1.67 ns RSDS_25 (point to point) 1.09 1.09 1.68 1.68 1.68 1.68 ns HSTL_I 1.06 1.06 1.73 1.73 1.73 1.73 ns HSTL_II 1.06 1.06 1.74 1.74 1.74 1.74 ns HSTL_III 1.06 1.06 1.71 1.71 1.71 1.71 ns HSTL_I_18 1.06 1.06 1.75 1.75 1.75 1.75 ns HSTL_II_18 1.06 1.06 1.81 1.81 1.81 1.81 ns HSTL_III_18 1.06 1.06 1.71 1.71 1.71 1.71 ns SSTL2_I 1.06 1.06 1.77 1.77 1.77 1.77 ns SSTL2_II 1.06 1.06 1.72 1.72 1.72 1.72 ns SSTL15 1.06 1.06 1.71 1.71 1.71 1.71 ns LVCMOS25, Slow, 2 mA 0.66 0.66 6.01 6.01 6.01 6.01 ns LVCMOS25, Slow, 4 mA 0.66 0.66 3.79 3.79 3.79 3.79 ns LVCMOS25, Slow, 6 mA 0.66 0.66 3.08 3.08 3.08 3.08 ns LVCMOS25, Slow, 8 mA 0.66 0.66 2.72 2.72 2.72 2.72 ns LVCMOS25, Slow, 12 mA 0.66 0.66 2.17 2.17 2.17 2.17 ns LVCMOS25, Slow, 16 mA 0.66 0.66 2.29 2.29 2.29 2.29 ns LVCMOS25, Slow, 24 mA 0.66 0.66 2.02 2.02 2.02 2.02 ns LVCMOS25, Fast, 2 mA 0.66 0.66 6.04 6.04 6.04 6.04 ns LVCMOS25, Fast, 4 mA 0.66 0.66 3.82 3.82 3.82 3.82 ns LVCMOS25, Fast, 6 mA 0.66 0.66 2.99 2.99 2.99 2.99 ns LVCMOS25, Fast, 8 mA 0.66 0.66 2.65 2.65 2.65 2.65 ns LVCMOS25, Fast, 12 mA 0.66 0.66 2.08 2.08 2.08 2.08 ns LVCMOS25, Fast, 16 mA 0.66 0.66 2.13 2.13 2.13 2.13 ns LVCMOS25, Fast, 24 mA 0.66 0.66 1.99 1.99 1.99 1.99 ns I/O Standard DS153 (v1.6) February 11, 2011 Product Specification Units www.xilinx.com 26 Virtex-6 CXT Family Data Sheet Table 38: IOB Switching Characteristics (Cont’d) TIOPI TIOOP TIOTP Speed Grade Speed Grade Speed Grade -2 -1 -2 -1 -2 -1 LVCMOS18, Slow, 2 mA 0.71 0.71 4.87 4.87 4.87 4.87 ns LVCMOS18, Slow, 4 mA 0.71 0.71 3.21 3.21 3.21 3.21 ns LVCMOS18, Slow, 6 mA 0.71 0.71 2.64 2.64 2.64 2.64 ns LVCMOS18, Slow, 8 mA 0.71 0.71 2.27 2.27 2.27 2.27 ns LVCMOS18, Slow, 12 mA 0.71 0.71 2.15 2.15 2.15 2.15 ns LVCMOS18, Slow, 16 mA 0.71 0.71 2.11 2.11 2.11 2.11 ns LVCMOS18, Fast, 2 mA 0.71 0.71 4.57 4.57 4.57 4.57 ns LVCMOS18, Fast, 4 mA 0.71 0.71 2.97 2.97 2.97 2.97 ns LVCMOS18, Fast, 6 mA 0.71 0.71 2.46 2.46 2.46 2.46 ns LVCMOS18, Fast, 8 mA 0.71 0.71 2.13 2.13 2.13 2.13 ns LVCMOS18, Fast, 12 mA 0.71 0.71 1.97 1.97 1.97 1.97 ns LVCMOS18, Fast, 16 mA 0.71 0.71 1.91 1.91 1.91 1.91 ns LVCMOS15, Slow, 2 mA 0.85 0.85 4.29 4.29 4.29 4.29 ns LVCMOS15, Slow, 4 mA 0.85 0.85 3.10 3.10 3.10 3.10 ns LVCMOS15, Slow, 6 mA 0.85 0.85 2.68 2.68 2.68 2.68 ns LVCMOS15, Slow, 8 mA 0.85 0.85 2.23 2.23 2.23 2.23 ns LVCMOS15, Slow, 12 mA 0.85 0.85 2.13 2.13 2.13 2.13 ns LVCMOS15, Slow, 16 mA 0.85 0.85 2.04 2.04 2.04 2.04 ns LVCMOS15, Fast, 2 mA 0.85 0.85 4.28 4.28 4.28 4.28 ns LVCMOS15, Fast, 4 mA 0.85 0.85 2.78 2.78 2.78 2.78 ns LVCMOS15, Fast, 6 mA 0.85 0.85 2.42 2.42 2.42 2.42 ns LVCMOS15, Fast, 8 mA 0.85 0.85 2.11 2.11 2.11 2.11 ns LVCMOS15, Fast, 12 mA 0.85 0.85 1.97 1.97 1.97 1.97 ns LVCMOS15, Fast, 16 mA 0.85 0.85 1.96 1.96 1.96 1.96 ns LVCMOS12, Slow, 2 mA 0.93 0.93 3.75 3.75 3.75 3.75 ns LVCMOS12, Slow, 4 mA 0.93 0.93 2.93 2.93 2.93 2.93 ns LVCMOS12, Slow, 6 mA 0.93 0.93 2.41 2.41 2.41 2.41 ns LVCMOS12, Slow, 8 mA 0.93 0.93 2.25 2.25 2.25 2.25 ns LVCMOS12, Fast, 2 mA 0.93 0.93 3.39 3.39 3.39 3.39 ns LVCMOS12, Fast, 4 mA 0.93 0.93 2.51 2.51 2.51 2.51 ns LVCMOS12, Fast, 6 mA 0.93 0.93 2.11 2.11 2.11 2.11 ns LVCMOS12, Fast, 8 mA 0.93 0.93 2.02 2.02 2.02 2.02 ns LVDCI_25 0.66 0.66 2.26 2.26 2.26 2.26 ns LVDCI_18 0.71 0.71 2.47 2.47 2.47 2.47 ns LVDCI_15 0.85 0.85 2.24 2.24 2.24 2.24 ns LVDCI_DV2_25 0.66 0.66 2.01 2.01 2.01 2.01 ns LVDCI_DV2_18 0.71 0.71 2.00 2.00 2.00 2.00 ns LVDCI_DV2_15 0.85 0.85 1.91 1.91 1.91 1.91 ns I/O Standard DS153 (v1.6) February 11, 2011 Product Specification Units www.xilinx.com 27 Virtex-6 CXT Family Data Sheet Table 38: IOB Switching Characteristics (Cont’d) TIOPI TIOOP TIOTP Speed Grade Speed Grade Speed Grade -2 -1 -2 -1 -2 -1 LVPECL_25 1.09 1.09 1.65 1.65 1.65 1.65 ns HSTL_I_12 1.06 1.06 1.78 1.78 1.78 1.78 ns HSTL_I_DCI 1.06 1.06 1.66 1.66 1.66 1.66 ns HSTL_II_DCI 1.06 1.06 1.68 1.68 1.68 1.68 ns HSTL_II_T_DCI 1.06 1.06 1.66 1.66 1.66 1.66 ns HSTL_III_DCI 1.06 1.06 1.62 1.62 1.62 1.62 ns HSTL_I_DCI_18 1.06 1.06 1.68 1.68 1.68 1.68 ns HSTL_II_DCI_18 1.06 1.06 1.62 1.62 1.62 1.62 ns HSTL_II _T_DCI_18 1.06 1.06 1.68 1.68 1.68 1.68 ns HSTL_III_DCI_18 1.06 1.06 1.69 1.69 1.69 1.69 ns DIFF_HSTL_I_18 1.09 1.09 1.75 1.75 1.75 1.75 ns DIFF_HSTL_I_DCI_18 1.09 1.09 1.68 1.68 1.68 1.68 ns DIFF_HSTL_I 1.09 1.09 1.73 1.73 1.73 1.73 ns DIFF_HSTL_I_DCI 1.09 1.09 1.66 1.66 1.66 1.66 ns DIFF_HSTL_II_18 1.09 1.09 1.81 1.81 1.81 1.81 ns DIFF_HSTL_II_DCI_18 1.09 1.09 1.62 1.62 1.62 1.62 ns DIFF_HSTL_II _T_DCI_18 1.09 1.09 1.68 1.68 1.68 1.68 ns DIFF_HSTL_II 1.09 1.09 1.74 1.74 1.74 1.74 ns DIFF_HSTL_II_DCI 1.09 1.09 1.68 1.68 1.68 1.68 ns SSTL2_I_DCI 1.06 1.06 1.70 1.70 1.70 1.70 ns SSTL2_II_DCI 1.06 1.06 1.67 1.67 1.67 1.67 ns SSTL2_II_T_DCI 1.06 1.06 1.70 1.70 1.70 1.70 ns SSTL18_I 1.06 1.06 1.75 1.75 1.75 1.75 ns SSTL18_II 1.06 1.06 1.67 1.67 1.67 1.67 ns SSTL18_I_DCI 1.06 1.06 1.67 1.67 1.67 1.67 ns SSTL18_II_DCI 1.06 1.06 1.63 1.63 1.63 1.63 ns SSTL18_II_T_DCI 1.06 1.06 1.67 1.67 1.67 1.67 ns SSTL15_T_DCI 1.06 1.06 1.68 1.68 1.68 1.68 ns SSTL15_DCI 1.06 1.06 1.68 1.68 1.68 1.68 ns DIFF_SSTL2_I 1.09 1.09 1.77 1.77 1.77 1.77 ns DIFF_SSTL2_I_DCI 1.09 1.09 1.70 1.70 1.70 1.70 ns DIFF_SSTL2_II 1.09 1.09 1.72 1.72 1.72 1.72 ns DIFF_SSTL2_II_DCI 1.09 1.09 1.67 1.67 1.67 1.67 ns DIFF_SSTL2_II_T_DCI 1.09 1.09 1.70 1.70 1.70 1.70 ns DIFF_SSTL18_I 1.09 1.09 1.75 1.75 1.75 1.75 ns DIFF_SSTL18_I_DCI 1.09 1.09 1.67 1.67 1.67 1.67 ns DIFF_SSTL18_II 1.09 1.09 1.67 1.67 1.67 1.67 ns DIFF_SSTL18_II_DCI 1.09 1.09 1.63 1.63 1.63 1.63 ns I/O Standard DS153 (v1.6) February 11, 2011 Product Specification Units www.xilinx.com 28 Virtex-6 CXT Family Data Sheet Table 38: IOB Switching Characteristics (Cont’d) TIOPI TIOOP TIOTP Speed Grade Speed Grade Speed Grade -2 -1 -2 -1 -2 -1 DIFF_SSTL18_II_T_DCI 1.09 1.09 1.67 1.67 1.67 1.67 ns DIFF_SSTL15 1.06 1.06 1.71 1.71 1.71 1.71 ns DIFF_SSTL15_DCI 1.06 1.06 1.68 1.68 1.68 1.68 ns DIFF_SSTL15_T_DCI 1.06 1.06 1.68 1.68 1.68 1.68 ns I/O Standard Units Table 39: IOB 3-state ON Output Switching Characteristics (TIOTPHZ) Symbol TIOTPHZ Speed Grade Description T input to Pad high-impedance Units -2 -1 0.99 0.99 ns I/O Standard Adjustment Measurement Methodology Input Delay Measurements Table 40 shows the test setup parameters used for measuring input delay. Table 40: Input Delay Measurement Methodology Description I/O Standard Attribute VL (1)(2) VH (1)(2) VMEAS VREF (1,4,5) (1,3,5) LVCMOS, 2.5V LVCMOS25 0 2.5 1.25 – LVCMOS, 1.8V LVCMOS18 0 1.8 0.9 – LVCMOS, 1.5V LVCMOS15 0 1.5 0.75 – HSTL (High-Speed Transceiver Logic), Class I & II HSTL_I, HSTL_II VREF – 0.5 VREF + 0.5 VREF 0.75 HSTL, Class III HSTL_III VREF – 0.5 VREF + 0.5 VREF 0.90 HSTL, Class I & II, 1.8V HSTL_I_18, HSTL_II_18 VREF – 0.5 VREF + 0.5 VREF 0.90 HSTL, Class III 1.8V HSTL_III_18 VREF – 0.5 VREF + 0.5 VREF 1.08 SSTL (Stub Terminated Transceiver Logic), Class I & II, 3.3V SSTL3_I, SSTL3_II VREF – 1.00 VREF + 1.00 VREF 1.5 SSTL, Class I & II, 2.5V SSTL2_I, SSTL2_II VREF – 0.75 VREF + 0.75 VREF 1.25 SSTL, Class I & II, 1.8V SSTL18_I, SSTL18_II VREF – 0.5 VREF + 0.5 VREF 0.90 LVDS (Low-Voltage Differential Signaling), 2.5V LVDS_25 1.2 – 0.125 1.2 + 0.125 0(6) – LVDSEXT (LVDS Extended Mode), 2.5V LVDSEXT_25 1.2 – 0.125 1.2 + 0.125 0(6) – HT (HyperTransport), 2.5V LDT_25 0.6 – 0.125 0.6 + 0.125 0(6) – Notes: 1. 2. 3. 4. 5. 6. The input delay measurement methodology parameters for LVDCI are the same for LVCMOS standards of the same voltage. Input delay measurement methodology parameters for HSLVDCI are the same as for HSTL_II standards of the same voltage. Parameters for all other DCI standards are the same for the corresponding non-DCI standards. Input waveform switches between VLand VH. Measurements are made at typical, minimum, and maximum VREF values. Reported delays reflect worst case of these measurements. VREF values listed are typical. Input voltage level from which measurement starts. This is an input voltage reference that bears no relation to the VREF / VMEAS parameters found in IBIS models and/or noted in Figure 14. The value given is the differential output voltage. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 29 Virtex-6 CXT Family Data Sheet Output Delay Measurements X-Ref Target - Figure 15 FPGA Output Output delays are measured using a Tektronix P6245 TDS500/600 probe (< 1 pF) across approximately 4" of FR4 microstrip trace. Standard termination was used for all testing. The propagation delay of the 4" trace is characterized separately and subtracted from the final measurement, and is therefore not included in the generalized test setups shown in Figure 14 and Figure 15. + RREF VMEAS CREF – ds152_07_042109 X-Ref Target - Figure 14 Figure 15: Differential Test Setup VREF Measurements and test conditions are reflected in the IBIS models except where the IBIS format precludes it. Parameters VREF, RREF, CREF, and VMEAS fully describe the test conditions for each I/O standard. The most accurate prediction of propagation delay in any given application can be obtained through IBIS simulation, using the following method: RREF FPGA Output VMEAS (voltage level when taking delay measurement) 1. Simulate the output driver of choice into the generalized test setup, using values from Table 41. CREF (probe capacitance) 2. Record the time to VMEAS . 3. Simulate the output driver of choice into the actual PCB trace and load, using the appropriate IBIS model or capacitance value to represent the load. ds152_06_042109 Figure 14: Single Ended Test Setup 4. Record the time to VMEAS . 5. Compare the results of steps 2 and 4. The increase or decrease in delay yields the actual propagation delay of the PCB trace. Table 41: Output Delay Measurement Methodology I/O Standard Attribute Description RREF () CREF(1) (pF) VMEAS (V) VREF (V) LVCMOS, 2.5V LVCMOS25 1M 0 1.25 0 LVCMOS, 1.8V LVCMOS18 1M 0 0.9 0 LVCMOS, 1.5V LVCMOS15 1M 0 0.75 0 LVCMOS, 1.2V LVCMOS12 1M 0 0.75 0 HSTL (High-Speed Transceiver Logic), Class I HSTL_I 50 0 VREF 0.75 HSTL, Class II HSTL_II 25 0 VREF 0.75 HSTL, Class III HSTL_III 50 0 0.9 1.5 HSTL, Class I, 1.8V HSTL_I_18 50 0 VREF 0.9 HSTL, Class II, 1.8V HSTL_II_18 25 0 VREF 0.9 HSTL, Class III, 1.8V HSTL_III_18 50 0 1.1 1.8 SSTL (Stub Series Terminated Logic), Class I, 1.8V SSTL18_I 50 0 VREF 0.9 SSTL, Class II, 1.8V SSTL18_II 25 0 VREF 0.9 SSTL, Class I, 2.5V SSTL2_I 50 0 VREF 1.25 SSTL, Class II, 2.5V SSTL2_II 25 0 VREF 1.25 LVDS (Low-Voltage Differential Signaling), 2.5V LVDS_25 100 0 0(2) 1.2 LVDSEXT (LVDS Extended Mode), 2.5V LVDS_25 100 0 0(2) 1.2 BLVDS (Bus LVDS), 2.5V BLVDS_25 100 0 0(2) 0 DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 30 Virtex-6 CXT Family Data Sheet Table 41: Output Delay Measurement Methodology (Cont’d) I/O Standard Attribute Description HT (HyperTransport), 2.5V RREF () CREF(1) (pF) VMEAS (V) VREF (V) 100 0 0(2) 0.6 0 LDT_25 LVPECL (Low-Voltage Positive Emitter-Coupled Logic), 2.5V LVPECL_25 100 0 0(2) LVDCI/HSLVDCI, 2.5V LVDCI_25, HSLVDCI_25 1M 0 1.25 0 LVDCI/HSLVDCI, 1.8V LVDCI_18, HSLVDCI_18 1M 0 0.9 0 LVDCI/HSLVDCI, 1.5V LVDCI_15, HSLVDCI_15 1M 0 0.75 0 HSTL (High-Speed Transceiver Logic), Class I & II, with DCI HSTL_I_DCI, HSTL_II_DCI 50 0 VREF 0.75 HSTL, Class III, with DCI HSTL_III_DCI 50 0 0.9 1.5 HSTL, Class I & II, 1.8V, with DCI HSTL_I_DCI_18, HSTL_II_DCI_18 50 0 VREF 0.9 HSTL, Class III, 1.8V, with DCI HSTL_III_DCI_18 50 0 1.1 1.8 SSTL (Stub Series Termi.Logic), Class I & II, 1.8V, with DCI SSTL18_I_DCI, SSTL18_II_DCI 50 0 VREF 0.9 SSTL, Class I & II, 2.5V, with DCI 50 0 VREF 1.25 SSTL2_I_DCI, SSTL2_II_DCI Notes: 1. 2. CREF is the capacitance of the probe, nominally 0 pF. The value given is the differential output voltage. Input/Output Logic Switching Characteristics Table 42: ILOGIC Switching Characteristics Symbol Description Speed Grade -2 -1 Units Setup/Hold TICE1CK/TICKCE1 CE1 pin Setup/Hold with respect to CLK 0.27/0.04 0.27/0.04 ns TISRCK/TICKSR SR pin Setup/Hold with respect to CLK 0.96/–0.10 0.96/–0.10 ns TIDOCK/TIOCKD D pin Setup/Hold with respect to CLK without Delay 0.10/0.54 0.10/0.54 ns TIDOCKD/TIOCKDD DDLY pin Setup/Hold with respect to CLK (using IODELAY) 0.14/0.42 0.14/0.40 ns Combinatorial TIDI D pin to O pin propagation delay, no Delay 0.20 0.20 ns TIDID DDLY pin to O pin propagation delay (using IODELAY) 0.25 0.25 ns TIDLO D pin to Q1 pin using flip-flop as a latch without Delay 0.64 0.64 ns TIDLOD DDLY pin to Q1 pin using flip-flop as a latch (using IODELAY) 0.68 0.68 ns TICKQ CLK to Q outputs 0.71 0.71 ns TRQ_ILOGIC SR pin to OQ/TQ out 1.15 1.15 ns TGSRQ_ILOGIC Global Set/Reset to Q outputs 10.51 10.51 ns Minimum Pulse Width, SR inputs 1.20 1.20 ns, Min Sequential Delays Set/Reset TRPW_ILOGIC DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 31 Virtex-6 CXT Family Data Sheet Table 43: OLOGIC Switching Characteristics Symbol Description Speed Grade Units -2 -1 Setup/Hold TODCK/TOCKD D1/D2 pins Setup/Hold with respect to CLK 0.54/–0.11 0.54/–0.11 ns TOOCECK/TOCKOCE OCE pin Setup/Hold with respect to CLK 0.22/–0.05 0.22/–0.05 ns TOSRCK/TOCKSR SR pin Setup/Hold with respect to CLK 0.71/–0.29 0.71/–0.29 ns TOTCK/TOCKT T1/T2 pins Setup/Hold with respect to CLK 0.56/–0.10 0.56/–0.10 ns TOTCECK/TOCKTCE TCE pin Setup/Hold with respect to CLK 0.21/–0.05 0.21/–0.05 ns D1 to OQ out or T1 to TQ out 1.01 1.01 ns TOCKQ CLK to OQ/TQ out 0.71 0.71 ns TRQ SR pin to OQ/TQ out 1.05 1.05 ns TGSRQ Global Set/Reset to Q outputs 10.51 10.51 ns Minimum Pulse Width, SR inputs 1.20 1.20 ns, Min Combinatorial TDOQ Sequential Delays Set/Reset TRPW Input Serializer/Deserializer Switching Characteristics Table 44: ISERDES Switching Characteristics Symbol Description Speed Grade Units -2 -1 BITSLIP pin Setup/Hold with respect to CLKDIV 0.09/0.17 0.09/0.17 ns CE pin Setup/Hold with respect to CLK (for CE1) 0.27/0.04 0.27/0.04 ns CE pin Setup/Hold with respect to CLKDIV (for CE2) –0.06/0.31 –0.06/0.31 ns TISDCK_D /TISCKD_D D pin Setup/Hold with respect to CLK 0.09/0.11 0.09/0.11 ns TISDCK_DDLY /TISCKD_DDLY DDLY pin Setup/Hold with respect to CLK (using IODELAY)(1) 0.14/0.07 0.14/0.07 ns TISDCK_D_DDR /TISCKD_D_DDR D pin Setup/Hold with respect to CLK at DDR mode 0.09/0.11 0.09/0.11 ns TISDCK_DDLY_DDR TISCKD_DDLY_DDR D pin Setup/Hold with respect to CLK at DDR mode (using IODELAY)(1) 0.14/0.07 0.14/0.07 ns CLKDIV to out at Q pin 0.75 0.75 ns D input to DO output pin 0.25 0.25 ns Setup/Hold for Control Lines TISCCK_BITSLIP/ TISCKC_BITSLIP TISCCK_CE / TISCKC_CE TISCCK_CE2 / (2) TISCKC_CE2(2) Setup/Hold for Data Lines Sequential Delays TISCKO_Q Propagation Delays TISDO_DO Notes: 1. 2. Recorded at 0 tap value. TISCCK_CE2 and TISCKC_CE2 are reported as TISCCK_CE/TISCKC_CE in a TRACE report. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 32 Virtex-6 CXT Family Data Sheet Output Serializer/Deserializer Switching Characteristics Table 45: OSERDES Switching Characteristics Symbol Description Speed Grade -2 -1 Units Setup/Hold TOSDCK_D/TOSCKD_D D input Setup/Hold with respect to CLKDIV 0.31/–0.12 0.31/–0.12 ns TOSDCK_T/TOSCKD_T(1) T input Setup/Hold with respect to CLK 0.56/–0.08 0.56/–0.08 ns TOSDCK_T2/TOSCKD_T2(1) T input Setup/Hold with respect to CLKDIV 0.31/–0.08 0.31/–0.08 ns TOSCCK_OCE/TOSCKC_OCE OCE input Setup/Hold with respect to CLK 0.22/–0.05 0.22/–0.05 ns TOSCCK_S SR (Reset) input Setup with respect to CLKDIV 0.07 0.07 ns TOSCCK_TCE/TOSCKC_TCE TCE input Setup/Hold with respect to CLK 0.21/–0.05 0.21/–0.05 ns Sequential Delays TOSCKO_OQ Clock to out from CLK to OQ 0.82 0.82 ns TOSCKO_TQ Clock to out from CLK to TQ 0.82 0.82 ns T input to TQ Out 0.97 0.97 ns Combinatorial TOSDO_TTQ Notes: 1. TOSDCK_T2 and TOSCKD_T2 are reported as TOSDCK_T/TOSCKD_T in the TRACE report. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 33 Virtex-6 CXT Family Data Sheet Input/Output Delay Switching Characteristics Table 46: Input/Output Delay Switching Characteristics Symbol Speed Grade Description Units -2 -1 3 3 µs 200 200 MHz IDELAYCTRL_REF_PRECISION REFCLK precision ±10 ±10 MHz TIDELAYCTRL_RPW 50 50 ns IDELAYCTRL TDLYCCO_RDY Reset to Ready for IDELAYCTRL FIDELAYCTRL_REF REFCLK frequency Minimum Reset pulse width IODELAY TIDELAYRESOLUTION IODELAY Chain Delay Resolution 1/(32 x 2 x FREF) Pattern dependent period jitter in delay chain for clock pattern.(1) 0 0 ps per tap Pattern dependent period jitter in delay chain for random data pattern.(2) ±5 ±5 ps per tap Pattern dependent period jitter in delay chain for random data pattern.(3) ±9 ±9 ps per tap TIODELAY_CLK_MAX Maximum frequency of CLK input to IODELAY 300 300 MHz TIODCCK_CE / TIODCKC_CE CE pin Setup/Hold with respect to CK 0.65/–0.09 0.65/–0.09 ns TIODCK_INC/ TIODCKC_INC INC pin Setup/Hold with respect to CK 0.31/–0.00 0.31/–0.00 ns TIODCCK_RST/ TIODCKC_RST RST pin Setup/Hold with respect to CK 0.69/–0.08 0.69/–0.08 ns TIODDO_T TSCONTROL delay to MUXE/MUXF switching and through IODELAY Note 4 Note 4 ps TIODDO_IDATAIN Propagation delay through IODELAY Note 4 Note 4 ps TIODDO_ODATAIN Propagation delay through IODELAY Note 4 Note 4 ps TIDELAYPAT_JIT ps Notes: 1. 2. 3. 4. When HIGH_PERFORMANCE mode is set to TRUE or FALSE. When HIGH_PERFORMANCE mode is set to TRUE When HIGH_PERFORMANCE mode is set to FALSE. Delay depends on IODELAY tap setting. See the TRACE report for actual values. CLB Switching Characteristics Table 47: CLB Switching Characteristics Symbol Description Speed Grade Units -2 -1 An – Dn LUT address to A 0.08 0.08 ns, Max An – Dn LUT address to AMUX/CMUX 0.23 0.25 ns, Max An – Dn LUT address to BMUX_A 0.37 0.41 ns, Max TITO An – Dn inputs to A – D Q outputs 0.79 0.91 ns, Max TAXA AX inputs to AMUX output 0.42 0.48 ns, Max TAXB AX inputs to BMUX output 0.47 0.53 ns, Max TAXC AX inputs to CMUX output 0.52 0.60 ns, Max TAXD AX inputs to DMUX output 0.55 0.63 ns, Max Combinatorial Delays TILO DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 34 Virtex-6 CXT Family Data Sheet Table 47: CLB Switching Characteristics (Cont’d) Symbol Description Speed Grade -2 -1 Units TBXB BX inputs to BMUX output 0.39 0.45 ns, Max TBXD BX inputs to DMUX output 0.50 0.58 ns, Max TCXB CX inputs to CMUX output 0.34 0.38 ns, Max TCXD CX inputs to DMUX output 0.40 0.45 ns, Max TDXD DX inputs to DMUX output 0.38 0.44 ns, Max TOPCYA An input to COUT output 0.42 0.47 ns, Max TOPCYB Bn input to COUT output 0.42 0.47 ns, Max TOPCYC Cn input to COUT output 0.35 0.39 ns, Max TOPCYD Dn input to COUT output 0.33 0.37 ns, Max TAXCY AX input to COUT output 0.33 0.38 ns, Max TBXCY BX input to COUT output 0.28 0.32 ns, Max TCXCY CX input to COUT output 0.20 0.23 ns, Max TDXCY DX input to COUT output 0.19 0.22 ns, Max TBYP CIN input to COUT output 0.08 0.09 ns, Max TCINA CIN input to AMUX output 0.28 0.32 ns, Max TCINB CIN input to BMUX output 0.29 0.34 ns, Max TCINC CIN input to CMUX output 0.30 0.34 ns, Max TCIND CIN input to DMUX output 0.33 0.38 ns, Max TCKO Clock to AQ – DQ outputs 0.39 0.44 ns, Max TSHCKO Clock to AMUX – DMUX outputs 0.47 0.54 ns, Max Sequential Delays Setup and Hold Times of CLB Flip-Flops Before/After Clock CLK TDICK/TCKDI A – D input to CLK on A – D Flip Flops 0.43/0.20 0.50/0.23 ns, Min TCECK_CLB/ TCKCE_CLB CE input to CLK on A – D Flip Flops 0.32/–0.01 0.37/–0.01 ns, Min TSRCK/TCKSR SR input to CLK on A – D Flip Flops 0.52/–0.08 0.60/–0.08 ns, Min TCINCK/TCKCIN CIN input to CLK on A – D Flip Flops 0.24/0.17 0.27/0.19 ns, Min Set/Reset TSRMIN SR input minimum pulse width 0.97 0.97 ns, Min TRQ Delay from SR input to AQ – DQ flip-flops 0.68 0.78 ns, Max TCEO Delay from CE input to AQ – DQ flip-flops 0.59 0.67 ns, Max FTOG Toggle frequency (for export control) 1098.00 1098.00 MHz Notes: 1. 2. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. These items are of interest for Carry Chain applications. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 35 Virtex-6 CXT Family Data Sheet CLB Distributed RAM Switching Characteristics (SLICEM Only) Table 48: CLB Distributed RAM Switching Characteristics Symbol Description Speed Grade -2 -1 Units Sequential Delays TSHCKO Clock to A – B outputs 1.36 1.56 ns, Max TSHCKO_1 Clock to AMUX – BMUX outputs 1.71 1.96 ns, Max Setup and Hold Times Before/After Clock CLK TDS/TDH A – D inputs to CLK 0.88/0.22 1.01/0.26 ns, Min TAS/TAH Address An inputs to clock 0.27/0.70 0.31/0.80 ns, Min TWS/TWH WE input to clock 0.40/–0.01 0.46/0.00 ns, Min TCECK/TCKCE CE input to CLK 0.41/–0.02 0.48/–0.01 ns, Min Clock CLK TMPW Minimum pulse width 1.00 1.15 ns, Min TMCP Minimum clock period 2.00 2.30 ns, Min Notes: 1. 2. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. TSHCKO also represents the CLK to XMUX output. Refer to the TRACE report for the CLK to XMUX path. CLB Shift Register Switching Characteristics (SLICEM Only) Table 49: CLB Shift Register Switching Characteristics Symbol Description Speed Grade -2 -1 Units Sequential Delays TREG Clock to A – D outputs 1.58 1.82 ns, Max TREG_MUX Clock to AMUX – DMUX output 1.93 2.22 ns, Max TREG_M31 Clock to DMUX output via M31 output 1.55 1.78 ns, Max Setup and Hold Times Before/After Clock CLK TWS/TWH WE input 0.09/–0.01 0.10/0.00 ns, Min TCECK/TCKCE CE input to CLK 0.10/–0.02 0.11/–0.01 ns, Min TDS/TDH A – D inputs to CLK 0.94/0.24 1.08/0.28 ns, Min Minimum pulse width 0.85 0.98 ns, Min Clock CLK TMPW Notes: 1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 36 Virtex-6 CXT Family Data Sheet Block RAM and FIFO Switching Characteristics Table 50: Block RAM and FIFO Switching Characteristics Symbol Speed Grade Description Units -2 -1 2.08 2.39 ns, Max 0.75 0.86 ns, Max Clock CLK to DOUT output with ECC (without output register)(2)(3) 3.30 3.79 ns, Max Clock CLK to DOUT output with ECC (with output register)(4)(5) 0.86 0.98 ns, Max Clock CLK to DOUT output with Cascade (without output register)(2) 3.18 3.65 ns, Max Clock CLK to DOUT output with Cascade (with output register)(4) 1.58 1.81 ns, Max 0.91 1.05 ns, Max 1.09 1.25 ns, Max Block RAM and FIFO Clock-to-Out Delays TRCKO_DO and TRCKO_DO_REG(1) Clock CLK to DOUT output (without output register)(2)(3) Clock CLK to DOUT output (with output TRCKO_DO_ECC and TRCKO_DO_ECC_REG TRCKO_CASC and TRCKO_CASC_REG TRCKO_FLAGS Clock CLK to FIFO flags register)(4)(5) outputs(6) outputs(7) TRCKO_POINTERS Clock CLK to FIFO pointers TRCKO_RDCOUNT Clock CLK to FIFO Read Counter 1.09 1.25 ns, Max TRCKO_WRCOUNT Clock CLK to FIFO Write Counter 1.09 1.25 ns, Max TRCKO_SDBIT_ECC and TRCKO_SDBIT_ECC_REG Clock CLK to BITERR (with output register) 0.76 0.87 ns, Max Clock CLK to BITERR (without output register) 2.84 3.26 ns, Max TRCKO_PARITY_ECC Clock CLK to ECCPARITY in ECC encode only mode 1.06 1.21 ns, Max TRCKO_RDADDR_ECC and TRCKO_RDADDR_ECC_REG Clock CLK to RDADDR output with ECC (without output register) 0.90 1.03 ns, Max Clock CLK to RDADDR output with ECC (with output register) 0.92 1.06 ns, Max 0.62/0.32 0.72/0.37 ns, Min 1.11/0.34 1.28/0.39 ns, Min Setup and Hold Times Before/After Clock CLK TRCCK_ADDR/TRCKC_ADDR TRDCK_DI/TRCKD_DI TRDCK_DI_ECC/TRCKD_DI_ECC ADDR inputs(8) DIN inputs(9) DIN inputs with block RAM ECC in standard 0.59/0.34 0.68/0.39 ns, Min only(9) 0.85/0.34 0.97/0.39 ns, Min mode(9) 1.02/0.34 1.17/0.39 ns, Min DIN inputs with block RAM ECC encode DIN inputs with FIFO ECC in standard mode(9) TRCCK_CLK/TRCKC_CLK Inject single/double bit error in ECC mode 1.20/0.29 1.38/0.33 ns, Min TRCCK_RDEN/TRCKC_RDEN Block RAM Enable (EN) input 0.41/0.30 0.47/0.34 ns, Min TRCCK_REGCE/TRCKC_REGCE CE input of output register 0.22/0.31 0.25/0.35 ns, Min TRCCK_RSTREG/TRCKC_RSTREG Synchronous RSTREG input 0.28/0.26 0.32/0.29 ns, Min TRCCK_RSTRAM/TRCKC_RSTRAM Synchronous RSTRAM input 0.41/0.27 0.47/0.31 ns, Min TRCCK_WE/TRCKC_WE Write Enable (WE) input (block RAM only) 0.52/0.35 0.60/0.40 ns, Min TRCCK_WREN/TRCKC_WREN WREN FIFO inputs 0.55/0.30 0.64/0.34 ns, Min TRCCK_RDEN/TRCKC_RDEN RDEN FIFO inputs 0.55/0.30 0.63/0.34 ns, Min 1.10 1.27 ns, Max 0.28/0.26 0.32/0.29 ns, Min Reset Delays TRCO_FLAGS TRCCK_RSTREG/TRCKC_RSTREG DS153 (v1.6) February 11, 2011 Product Specification Reset RST to FIFO Flags/Pointers(10) FIFO reset timing(11) www.xilinx.com 37 Virtex-6 CXT Family Data Sheet Table 50: Block RAM and FIFO Switching Characteristics (Cont’d) Symbol Description Speed Grade Units -2 -1 Block RAM (Write First and No Change modes) 400 350 MHz Block RAM (Read First mode) 400 347 MHz 400 347 MHz Block RAM Cascade (Write First and No Change modes) 400 347 MHz Block RAM Cascade (Read First mode) 350 304 MHz FMAX_FIFO FIFO in all modes 400 350 MHz FMAX_ECC Block RAM and FIFO in ECC configuration 325 282 MHz Maximum Frequency FMAX Block RAM (SDP FMAX_CASCADE mode)(12) Notes: 1. 2. 3. 4. 5. 6. 7. 8. TRACE will report all of these parameters as TRCKO_DO. TRCKO_DOR includes TRCKO_DOW, TRCKO_DOPR, and TRCKO_DOPW as well as the B port equivalent timing parameters. These parameters also apply to synchronous FIFO with DO_REG = 0. TRCKO_DO includes TRCKO_DOP as well as the B port equivalent timing parameters. These parameters also apply to multirate (asynchronous) and synchronous FIFO with DO_REG = 1. TRCKO_FLAGS includes the following parameters: TRCKO_AEMPTY, TRCKO_AFULL, TRCKO_EMPTY, TRCKO_FULL, TRCKO_RDERR, TRCKO_WRERR. TRCKO_POINTERS includes both TRCKO_RDCOUNT and TRCKO_WRCOUNT. The ADDR setup and hold must be met when EN is asserted (even when WE is deasserted). Otherwise, block RAM data corruption is possible. 9. TRCKO_DI includes both A and B inputs as well as the parity inputs of A and B. 10. TRCO_FLAGS includes the following flags: AEMPTY, AFULL, EMPTY, FULL, RDERR, WRERR, RDCOUNT, and WRCOUNT. 11. The FIFO reset must be asserted for at least three positive clock edges. 12. When using ISE software v12.4 or later, if the RDARRDR_COLLISION_HWCONFIG attribute is set to PERFORMANCE or the block RAM is in single-port operation, then the faster FMAX for WRITE_FIRST/NO_CHANGE modes apply. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 38 Virtex-6 CXT Family Data Sheet DSP48E1 Switching Characteristics Table 51: DSP48E1 Switching Characteristics Symbol Description Speed Grade -2 -1 Units Setup and Hold Times of Data/Control Pins to the Input Register Clock TDSPDCK_{A, ACIN; B, BCIN}_{AREG; BREG}/ TDSPCKD_{A, ACIN; B, BCIN}_{AREG; BREG} {A, ACIN, B, BCIN} input to {A, B} register CLK 0.35/0.34 0.41/0.39 ns TDSPDCK_C_CREG/TDSPCKD_C_CREG C input to C register CLK 0.22/0.24 0.26/0.27 ns TDSPDCK_D_DREG/TDSPCKD_D_DREG D input to D register CLK 0.15/0.39 0.17/0.44 ns Setup and Hold Times of Data Pins to the Pipeline Register Clock TDSPDCK_{A, ACIN, B, BCIN}_PREG_MULT/ TDSPCKD_{A, ACIN, B, BCIN}_PREG_MULT {A, ACIN, B, BCIN} input to M register CLK 3.21/0.02 3.69/0.02 ns TDSPDCK_{A, D}_ADREG/ TDSPCKD_{A, D}_ADREG {A, D} input to AD register CLK 1.69/0.13 1.94/0.15 ns Setup and Hold Times of Data/Control Pins to the Output Register Clock TDSPDCK_{A, ACIN, B, BCIN}_PREG_MULT/ TDSPCKD_{A, ACIN, B, BCIN}_PREG_MULT {A, ACIN, B, BCIN} input to P register CLK using multiplier 5.20/–0.19 5.97/–0.22 ns TDSPDCK_D_DREG_MULT/ TDSPCKD_D_DREG_MULT D input to P register CLK 4.90/–0.65 5.63/–0.75 ns TDSPDCK_{A, ACIN, B, BCIN}_PREG/ TDSPCKD_{A, ACIN, B, BCIN}_PREG {A, ACIN, B, BCIN} input to P register CLK not using multiplier 2.15/–0.19 2.47/–0.22 ns TDSPDCK_C_PREG/ TDSPCKD_C_PREG C input to P register CLK 1.91/–0.14 2.19/–0.17 ns TDSPDCK_{PCIN, CARRYCASCIN, MULTSIGNIN}_PREG/ TDSPCKD_{PCIN, CARRYCASCIN, MULTSIGNIN}_PREG {PCIN, CARRYCASCIN, MULTSIGNIN} input to P register CLK 1.67/–0.04 1.92/–0.05 ns TDSPDCK_{CEA; CEB}_{AREG; BREG}/ TDSPCKD_{CEA; CEB}_{AREG; BREG} {CEA; CEB} input to {A; B} register CLK 0.22/0.25 0.25/0.29 ns TDSPDCK_CEC_CREG/ TDSPCKD_CEC_CREG CEC input to C register CLK 0.24/0.23 0.28/0.27 ns TDSPDCK_CED_DREG/ TDSPCKD_CED_DREG CED input to D register CLK 0.31/0.14 0.35/0.16 ns TDSPDCK_CEM_MREG/ TDSPCKD_CEM_MREG CEM input to M register CLK 0.26/0.25 0.30/0.28 ns TDSPDCK_CEP_PREG/ TDSPCKD_CEP_PREG CEP input to P register CLK 0.46/0.03 0.53/0.03 ns TDSPDCK_{RSTA; RSTB}_{AREG; BREG}/ TDSPCKD_{RSTA; RSTB}_{AREG; BREG} {RSTA, RSTB} input to {A, B} register CLK 0.38/0.22 0.43/0.25 ns TDSPDCK_RSTC_CREG/ TDSPCKD_RSTC_CREG RSTC input to C register CLK 0.23/0.09 0.27/0.11 ns TDSPDCK_RSTD_DREG/ TDSPCKD_RSTD_DREG RSTD input to D register CLK 0.38/0.19 0.44/0.21 ns TDSPDCK_RSTM_MREG/ TDSPCKD_RSTM_MREG RSTM input to M register CLK 0.26/0.30 0.30/0.35 ns TDSPDCK_RSTP_PREG/ TDSPCKD_RSTP_PREG RSTP input to P register CLK 0.33/0.05 0.41/0.06 ns Setup and Hold Times of the CE Pins Setup and Hold Times of the RST Pins Combinatorial Delays from Input Pins to Output Pins TDSPDO_{A, B}_{P, CARRYOUT}_MULT {A, B} input to {P, CARRYOUT} output using multiplier 5.08 5.84 ns TDSPDO_D_{P, CARRYOUT}_MULT D input to {P, CARRYOUT} output using multiplier 4.82 5.54 ns TDSPDO_{A, B}_{P, CARRYOUT} {A, B} input to {P, CARRYOUT} output not using multiplier 2.07 2.38 ns TDSPDO_{C, CARRYIN}_{P, CARRYOUT} {C, CARRYIN} input to {P, CARRYOUT} output 1.83 2.10 ns DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 39 Virtex-6 CXT Family Data Sheet Table 51: DSP48E1 Switching Characteristics (Cont’d) Symbol Description Speed Grade -2 -1 Units Combinatorial Delays from Input Pins to Cascading Output Pins TDSPDO_{A; B}_{ACOUT; BCOUT} {A, B} input to {ACOUT, BCOUT} output 0.65 0.75 ns TDSPDO_{A, B}_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_MULT {A, B} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output using multiplier 5.24 6.03 ns TDSPDO_D_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_MULT D input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output using multiplier 4.94 5.68 ns TDSPDO_{A, B}_{PCOUT, CARRYCASCOUT, MULTSIGNOUT} {A, B} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output not using multiplier 2.19 2.52 ns TDSPDO__{C, CARRYIN}_{PCOUT, CARRYCASCOUT,MULTSIGNOUT} {C, CARRYIN} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output 1.95 2.25 ns Combinatorial Delays from Cascading Input Pins to All Output Pins TDSPDO_{ACIN, BCIN}_{P, CARRYOUT}_MULT {ACIN, BCIN} input to {P, CARRYOUT} output using multiplier 4.97 5.72 ns TDSPDO_{ACIN, BCIN}_{P, CARRYOUT {ACIN, BCIN} input to {P, CARRYOUT} output not using multiplier 1.92 2.21 ns TDSPDO_{ACIN; BCIN}_{ACOUT; BCOUT} {ACIN, BCIN} input to {ACOUT, BCOUT} output 0.49 0.57 ns TDSPDO_{ACIN, BCIN}_{PCOUT, CARRYCASCOUT, {ACIN, BCIN} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output using multiplier 5.10 5.86 ns {ACIN, BCIN} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output not using multiplier 2.05 2.35 ns MULTSIGNOUT} TDSPDO_{PCIN, CARRYCASCIN, MULTSIGNIN}_ {P, CARRYOUT} {PCIN, CARRYCASCIN, MULTSIGNIN} input to {P, CARRYOUT} output 1.60 1.83 ns TDSPDO_{PCIN, CARRYCASCIN, MULTSIGNIN}_ {PCOUT, {PCIN, CARRYCASCIN, MULTSIGNIN} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output 1.72 1.98 ns MULTSIGNOUT}_MULT TDSPDO_{ACIN, BCIN}_{PCOUT, CARRYCASCOUT, CARRYCASCOUT, MULTSIGNOUT} Clock to Outs from Output Register Clock to Output Pins TDSPCKO_{P, CARRYOUT}_PREG CLK (PREG) to {P, CARRYOUT} output 0.50 0.57 ns TDSPCKO_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_PREG CLK (PREG) to {CARRYCASCOUT, PCOUT, MULTSIGNOUT} output 0.50 0.66 ns Clock to Outs from Pipeline Register Clock to Output Pins TDSPCKO_{P, CARRYOUT}_MREG CLK (MREG) to {P, CARRYOUT} output 2.30 2.65 ns TDSPCKO_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_MREG CLK (MREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output 2.43 2.79 ns TDSPCKO_{P, CARRYOUT}_ADREG_MULT CLK (ADREG) to {P, CARRYOUT} output 3.72 4.72 ns TDSPCKO_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_ADREG_MULT CLK (ADREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output 3.84 4.42 ns Clock to Outs from Input Register Clock to Output Pins TDSPCKO_{P, CARRYOUT}_{AREG, BREG}_MULT CLK (AREG, BREG) to {P, CARRYOUT} output using multiplier 5.36 6.16 ns TDSPCKO_{P, CARRYOUT}_{AREG, BREG} CLK (AREG, BREG) to {P, CARRYOUT} output not using multiplier 2.27 2.61 ns TDSPCKO_{P, CARRYOUT}_CREG CLK (CREG) to {P, CARRYOUT} output 2.27 2.61 ns TDSPCKO_{P, CARRYOUT}_DREG_MULT CLK (DREG) to {P, CARRYOUT} output 5.25 6.04 ns DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 40 Virtex-6 CXT Family Data Sheet Table 51: DSP48E1 Switching Characteristics (Cont’d) Symbol Description Speed Grade -2 -1 Units Clock to Outs from Input Register Clock to Cascading Output Pins TDSPCKO_{ACOUT; BCOUT}_{AREG; BREG} CLK (AREG, BREG) to {P, CARRYOUT} output 0.89 1.02 ns TDSPCKO_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_{AREG, BREG}_MULT CLK (AREG, BREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output using multiplier 5.49 6.31 ns TDSPCKO_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_{AREG, BREG} CLK (AREG, BREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output not using multiplier 2.40 2.76 ns TDSPCKO_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_DREG_MULT CLK (DREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output using multiplier 5.38 6.18 ns TDSPCKO_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_CREG CLK (CREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output 2.40 2.76 ns FMAX With all registers used 350 275 MHz FMAX_PATDET With pattern detector 350 275 MHz FMAX_MULT_NOMREG Two register multiply without MREG 262 227 MHz FMAX_MULT_NOMREG_PATDET Two register multiply without MREG with pattern detect 241 209 MHz FMAX_PREADD_MULT_NOADREG Without ADREG 292 253 MHz FMAX_PREADD_MULT_NOADREG_PATDET Without ADREG with pattern detect 292 253 MHz FMAX_NOPIPELINEREG Without pipeline registers (MREG, ADREG) 196 170 MHz FMAX_NOPIPELINEREG_PATDET Without pipeline registers (MREG, ADREG) with pattern detect 184 160 MHz Maximum Frequency DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 41 Virtex-6 CXT Family Data Sheet Configuration Switching Characteristics Table 52: Configuration Switching Characteristics Symbol Description Speed Grade -2 -1 Units Power-up Timing Characteristics TPL(1) Program Latency 3 3 ms, Max TPOR(1) Power-on-Reset 15/55 15/55 ms, Min/Max TICCK CCLK (output) delay 400 400 ns, Min TPROGRAM Program Pulse Width 250 250 ns, Min Master/Slave Serial Mode Programming Switching(1) TDCCK/TCCKD DIN Setup/Hold, slave mode 4.0/0.0 4.0/0.0 ns, Min TDSCCK/TSCCKD DIN Setup/Hold, master mode 4.0/0.0 4.0/0.0 ns, Min TCCO DOUT at 2.5V 6 6 ns, Max DOUT at 1.8V 6 6 ns, Max FMCCK Maximum CCLK frequency, serial modes 100 100 MHz, Max FMCCKTOL Frequency Tolerance, master mode with respect to nominal CCLK 55 55 % FMSCCK Slave mode external CCLK 100 100 MHz SelectMAP Mode Programming Switching TSMDCCK/TSMCCKD SelectMAP Data Setup/Hold 4.0/0.0 4.0/0.0 ns, Min TSMCSCCK/TSMCCKCS CSI_B Setup/Hold 4.0/0.0 4.0/0.0 ns, Min TSMCCKW/TSMWCCK RDWR_B Setup/Hold 10.0/0.0 10.0/0.0 ns, Min TSMCKCSO CSO_B clock to out (330 pull-up resistor required) 7 7 ns, Min TSMCO CCLK to DATA out in readback at 2.5V 8 8 ns, Max CCLK to DATA out in readback at 1.8V 8 8 ns, Max CCLK to BUSY out in readback at 2.5V 6 6 ns, Max CCLK to BUSY out in readback at 1.8V 6 6 ns, Max TSMCKBY FSMCCK Maximum Frequency with respect to nominal CCLK 100 100 MHz, Max FRBCCK Maximum Readback Frequency with respect to nominal CCLK 100 100 MHz, Max FMCCKTOL Frequency Tolerance with respect to nominal CCLK 55 55 % 3.0/2.0 3.0/2.0 ns, Min Boundary-Scan Port Timing Specifications TTAPTCK/TTCKTAP TMS and TDI Setup time before TCK/ Hold time after TCK TTCKTDO TCK falling edge to TDO output valid at 2.5V 6 6 ns, Max TCK falling edge to TDO output valid at 1.8V 6 6 ns, Max FTCK Maximum configuration TCK clock frequency 66 66 MHz, Max FTCKB_MIN Minimum boundary-scan TCK clock frequency when using IEEE Std 1149.6 (AC-JTAG). Minimum operating temperature for IEEE Std 1149.6 is 0°C. 15 15 MHz, Min FTCKB Maximum boundary-scan TCK clock frequency 66 66 MHz, Max DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 42 Virtex-6 CXT Family Data Sheet Table 52: Configuration Switching Characteristics (Cont’d) Symbol Description Speed Grade Units -2 -1 ADDR[25:0], RS[1:0], FCS_B, FOE_B, FWE_B outputs valid after CCLK rising edge at 2.5V 6 6 ns ADDR[25:0], RS[1:0], FCS_B, FOE_B, FWE_B outputs valid after CCLK rising edge at 1.8V 6 6 ns 4.0/0.0 4.0/0.0 ns 3 3 CCLK cycles 3.0/0.0 3.0/0.0 ns BPI Master Flash Mode Programming Switching TBPICCO(2) TBPIDCC/TBPICCD Setup/Hold on D[15:0] data input pins TINITADDR Minimum period of initial ADDR[25:0] address cycles SPI Master Flash Mode Programming Switching TSPIDCC/TSPIDCCD DIN Setup/Hold before/after the rising CCLK edge TSPICCM MOSI clock to out at 2.5V 6 6 ns MOSI clock to out at 1.8V 6 6 ns FCS_B clock to out at 2.5V 6 6 ns FCS_B clock to out at 1.8V 6 6 ns FS[2:0] to INIT_B rising edge Setup and Hold 2 2 µs TSPICCFC TFSINIT/TFSINITH CCLK Output (Master Modes) TMCCKL Master CCLK clock Low time duty cycle 45/55 45/55 %, Min/Max TMCCKH Master CCLK clock High time duty cycle 45/55 45/55 %, Min/Max CCLK Input (Slave Modes) TSCCKL Slave CCLK clock minimum Low time 2.5 2.5 ns, Min TSCCKH Slave CCLK clock minimum High time 2.5 2.5 ns, Min 200 200 MHz Dynamic Reconfiguration Port (DRP) for MMCM Before and After DCLK FDCK Maximum frequency for DCLK TMMCMDCK_DADDR/ TMMCMCKD_DADDR DADDR Setup/Hold 1.63/0.00 1.63/0.00 ns TMMCMDCK_DI/TMMCMCKD_DI DI Setup/Hold 1.63/0.00 1.63/0.00 ns TMMCMDCK_DEN/TMMCMCKD_DEN DEN Setup/Hold time 1.63/0.00 1.63/0.00 ns TMMCMDCK_DWE/TMMCMCKD_DWE DWE Setup/Hold time 1.63/0.00 1.63/0.00 ns TMMCMCKO_DO CLK to out of DO(3) 3.64 3.64 ns TMMCMCKO_DRDY CLK to out of DRDY 0.38 0.38 ns Notes: 1. 2. 3. To support longer delays in configuration, use the design solutions described in Virtex-6 FPGA Configuration Guide. Only during configuration, the last edge is determined by a weak pull-up/pull-down resistor in the I/O. DO will hold until next DRP operation. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 43 Virtex-6 CXT Family Data Sheet Clock Buffers and Networks Table 53: Global Clock Switching Characteristics (Including BUFGCTRL) Symbol Description Speed Grade -2 -1 Units TBCCCK_CE/TBCCKC_CE(1) CE pins Setup/Hold 0.16/0.00 0.16/0.00 ns TBCCCK_S/TBCCKC_S(1) S pins Setup/Hold 0.16/0.00 0.16/0.00 ns TBCCKO_O(2) BUFGCTRL delay from I0/I1 to O 0.10 0.10 ns Global clock tree (BUFG) 700 700 MHz Maximum Frequency FMAX Notes: 1. 2. TBCCCK_CE and TBCCKC_CE must be satisfied to assure glitch-free operation of the global clock when switching between clocks. These parameters do not apply to the BUFGMUX_VIRTEX4 primitive that assures glitch-free operation. The other global clock setup and hold times are optional; only needing to be satisfied if device operation requires simulation matches on a cycle-for-cycle basis when switching between clocks. TBGCKO_O (BUFG delay from I0 to O) values are the same as TBCCKO_O values. Table 54: Input/Output Clock Switching Characteristics (BUFIO) Symbol TBIOCKO_O Description Speed Grade Units -2 -1 Clock to out delay from I to O 0.18 0.18 ns I/O clock tree (BUFIO) 710 710 MHz Maximum Frequency FMAX DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 44 Virtex-6 CXT Family Data Sheet Table 55: Regional Clock Switching Characteristics (BUFR) Symbol TBRCKO_O Speed Grade Description -1 0.75 0.75 ns 0.75 0.75 ns 0.75 0.75 ns 0.75 0.75 ns 0.37 0.37 ns 0.37 0.37 ns 0.37 0.37 ns 0.37 0.37 ns Propagation delay from CLR to O 0.83 0.83 ns Regional clock tree (BUFR) 300 300 MHz Clock to out delay from I to O TBRCKO_O_BYP TBRDO_O Units -2 Clock to out delay from I to O with Divide Bypass attribute set Maximum Frequency FMAX Table 56: Horizontal Clock Buffer Switching Characteristics (BUFH) Symbol Speed Grade Description -2 -1 Units TBHCKO_O BUFH delay from I to O 0.13 0.13 ns TBHCCK_CE/TBHCKC_CE CE pin Setup and Hold 0.05/0.05 0.05/0.05 ns 700 700 MHz Maximum Frequency FMAX Horizontal clock buffer (BUFH) MMCM Switching Characteristics Table 57: MMCM Specification Symbol Speed Grade Description Units -2 -1 FINMAX Maximum Input Clock Frequency(1) 700 700 MHz FINMIN Minimum Input Clock Frequency 10 10 MHz FINJITTER Maximum Input Clock Period Jitter FINDUTY Allowable Input Duty Cycle: 10—49 MHz 25/75 % Allowable Input Duty Cycle: 50—199 MHz 30/70 % Allowable Input Duty Cycle: 200—399 MHz 35/65 % Allowable Input Duty Cycle: 400—499 MHz 40/60 % Allowable Input Duty Cycle: >500 MHz 45/55 % < 20% of clock input period or 1 ns Max FMIN_PSCLK Minimum Dynamic Phase Shift Clock Frequency 0.01 0.01 MHz FMAX_PSCLK Maximum Dynamic Phase Shift Clock Frequency 450 450 MHz FVCOMIN Minimum MMCM VCO Frequency 600 600 MHz FVCOMAX Maximum MMCM VCO Frequency 1200 1200 MHz FBANDWIDTH Low MMCM Bandwidth at Typical(2) 1.00 1.00 MHz High MMCM Bandwidth at Typical(2) 4.00 4.00 MHz DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 45 Virtex-6 CXT Family Data Sheet Table 57: MMCM Specification (Cont’d) Symbol TSTATPHAOFFSET TOUTJITTER Speed Grade Description Static Phase Offset of the MMCM Outputs(3) MMCM Output Units -2 -1 0.12 0.12 Jitter(4) ns Note 1 TOUTDUTY MMCM Output Clock Duty Cycle TLOCKMAX FOUTMAX Precision(5) 0.20 0.20 ns MMCM Maximum Lock Time 100 100 µs MMCM Maximum Output Frequency 700 700 MHz 4.69 4.69 MHz Frequency(6)(7) FOUTMIN MMCM Minimum Output TEXTFDVAR External Clock Feedback Variation RSTMINPULSE Minimum Reset Pulse Width 1.5 1.5 ns FPFDMAX Maximum Frequency at the Phase Frequency Detector with Bandwidth Set to High or Optimized(8) 450 450 MHz Maximum Frequency at the Phase Frequency Detector with Bandwidth Set to Low 300 300 MHz Minimum Frequency at the Phase Frequency Detector with Bandwidth Set to High or Optimized 135 135 MHz Minimum Frequency at the Phase Frequency Detector with Bandwidth Set to Low 10.00 10.00 MHz FPFDMIN < 20% of clock input period or 1 ns Max TFBDELAY Maximum Delay in the Feedback Path 3 ns Max or one CLKIN cycle TMMCMDCK_PSEN/ TMMCMCKD_PSEN Setup and Hold of Phase Shift Enable 1.04/0.00 1.04/0.00 ns TMMCMDCK_PSINCDEC/ TMMCMCKD_PSINCDEC Setup and Hold of Phase Shift Increment/Decrement 1.04/0.00 1.04/0.00 ns TMMCMCKO_PSDONE Phase Shift Clock-to-Out of PSDONE 0.38 0.38 ns Notes: 1. 2. 3. 4. 5. 6. 7. 8. When DIVCLK_DIVIDE = 3 or 4, FINMAX is 315 MHz. The MMCM does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies. The static offset is measured between any MMCM outputs with identical phase. Values for this parameter are available in the Architecture Wizard. Includes global clock buffer. Calculated as FVCO/128 assuming output duty cycle is 50%. When CASCADE4_OUT = TRUE, FOUTMIN is 0.036 MHz. In ISE software 12.3 (or earlier versions supporting the Virtex-6 family), the phase frequency detector Optimized bandwidth setting is equivalent to the High bandwidth setting. Starting with ISE software 12.4, the Optimized bandwidth setting is automatically adjusted to Low when the software can determine that the phase frequency detector input is less than 135 MHz. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 46 Virtex-6 CXT Family Data Sheet Virtex-6 CXT Device Pin-to-Pin Output Parameter Guidelines All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are listed in Table 58. Values are expressed in nanoseconds unless otherwise noted. Table 58: Global Clock Input to Output Delay Without MMCM Symbol Description Device Speed Grade -2 Units -1 LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, without MMCM. TICKOF Global Clock input and OUTFF without MMCM XC6VCX75T 5.88 5.88 ns XC6VCX130T 6.00 6.00 ns XC6VCX195T 6.13 6.13 ns XC6VCX240T 6.13 6.13 ns Notes: 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. Table 59: Global Clock Input to Output Delay With MMCM Symbol Description Device Speed Grade -2 Units -1 LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with MMCM. TICKOFMMCMGC Global Clock Input and OUTFF with MMCM XC6VCX75T 2.77 2.77 ns XC6VCX130T 2.78 2.78 ns XC6VCX195T 2.78 2.78 ns XC6VCX240T 2.79 2.79 ns Notes: 1. 2. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. MMCM output jitter is already included in the timing calculation. Table 60: Clock-Capable Clock Input to Output Delay With MMCM Symbol Description Device Speed Grade -2 Units -1 LVCMOS25 Clock-capable Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with MMCM. TICKOFMMCMCC Clock-capable Clock Input and OUTFF with MMCM XC6VCX75T 2.63 2.63 ns XC6VCX130T 2.65 2.65 ns XC6VCX195T 2.65 2.65 ns XC6VCX240T 2.65 2.65 ns Notes: 1. 2. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. MMCM output jitter is already included in the timing calculation. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 47 Virtex-6 CXT Family Data Sheet Virtex-6 CXT Device Pin-to-Pin Input Parameter Guidelines All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are listed in Table 61. Values are expressed in nanoseconds unless otherwise noted. Table 61: Global Clock Input Setup and Hold Without MMCM Symbol Description Speed Grade Device -2 Units -1 Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1) TPSFD/ TPHFD Full Delay (Legacy Delay or Default Delay) Global Clock Input and IFF(2) without MMCM XC6VCX75T 1.75/–0.01 1.75/–0.01 ns XC6VCX130T 1.88/–0.11 1.88/–0.11 ns XC6VCX195T 1.97/–0.14 1.97/–0.14 ns XC6VCX240T 1.97/–0.14 1.97/–0.14 ns Notes: 1. 2. 3. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. IFF = Input Flip-Flop or Latch. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. Table 62: Global Clock Input Setup and Hold With MMCM Symbol Description Speed Grade Device Units -2 -1 1.72/–0.22 1.72/–0.22 ns XC6VCX130T 1.81/–0.21 1.81/–0.21 ns XC6VCX195T 1.82/–0.20 1.82/–0.20 ns XC6VCX240T 1.82/–0.20 1.82/–0.20 ns Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1) TPSMMCMGC/ TPHMMCMGC No Delay Global Clock Input and IFF(2) with MMCM XC6VCX75T Notes: 1. 2. 3. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. IFF = Input Flip-Flop or Latch. Use IBIS to determine any duty-cycle distortion incurred using various standards. Table 63: Clock-Capable Clock Input Setup and Hold With MMCM Symbol Description Speed Grade Device -2 Units -1 Input Setup and Hold Time Relative to Clock-capable Clock Input Signal for LVCMOS25 Standard.(1) TPSMMCMCC/ TPHMMCMCC No Delay Clock-capable Clock Input and IFF(2) with MMCM XC6VCX75T 1.86/–0.28 1.86/–0.28 ns XC6VCX130T 1.93/–0.28 1.93/–0.28 ns XC6VCX195T 1.96/–0.27 1.96/–0.27 ns XC6VCX240T 1.96/–0.27 1.96/–0.27 ns Notes: 1. 2. 3. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. IFF = Input Flip-Flop or Latch. Use IBIS to determine any duty-cycle distortion incurred using various standards. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 48 Virtex-6 CXT Family Data Sheet Clock Switching Characteristics The parameters in this section provide the necessary values for calculating timing budgets for Virtex-6 CXT FPGA clock transmitter and receiver data-valid windows. Table 64: Duty Cycle Distortion and Clock-Tree Skew Symbol Description Speed Grade Device TDCD_CLK Global Clock Tree Duty Cycle Distortion(1) TCKSKEW Global Clock Tree Skew(2) Units -2 -1 All 0.12 0.12 ns XC6VCX75T 0.18 0.18 ns XC6VCX130T 0.29 0.29 ns XC6VCX195T 0.31 0.31 ns XC6VCX240T 0.31 0.31 ns TDCD_BUFIO I/O clock tree duty cycle distortion All 0.08 0.08 ns TBUFIOSKEW I/O clock tree skew across one clock region All 0.03 0.03 ns TBUFIOSKEW2 I/O clock tree skew across three clock regions All 0.22 0.22 ns TDCD_BUFR Regional clock tree duty cycle distortion All 0.15 0.15 ns Notes: 1. 2. These parameters represent the worst-case duty cycle distortion observable at the pins of the device using LVDS output buffers. For cases where other I/O standards are used, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times. The TCKSKEW value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application. Table 65: Package Skew Symbol TPKGSKEW Description Package Skew(1) Device XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T Package Value Units FF484 ps FF784 ps FF484 95 ps FF784 146 ps FF1156 165 ps FF784 ps FF1156 ps FF784 146 ps FF1156 182 ps Notes: 1. 2. These values represent the worst-case skew between any two SelectIO resources in the package: shortest flight time to longest flight time from Pad to Ball (7.0 ps per mm). Package trace length information is available for these device/package combinations. This information can be used to deskew the package. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 49 Virtex-6 CXT Family Data Sheet Table 66: Sample Window Symbol Description Speed Grade Device Units -2 -1 TSAMP Sampling Error at Receiver Pins(1) All 610 610 ps TSAMP_BUFIO Sampling Error at Receiver Pins using BUFIO(2) All 400 400 ps Notes: 1. 2. This parameter indicates the total sampling error of Virtex-6 CXT FPGA DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the MMCM to capture the DDR input registers’ edges of operation. These measurements include: - CLK0 MMCM jitter - MMCM accuracy (phase offset) - MMCM phase shift resolution These measurements do not include package or clock tree skew. This parameter indicates the total sampling error of Virtex-6 CXT FPGA DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the BUFIO clock network and IODELAY to capture the DDR input registers’ edges of operation. These measurements do not include package or clock tree skew. Table 67: Pin-to-Pin Setup/Hold and Clock-to-Out Symbol Speed Grade Description Units -2 -1 –0.33/1.31 –0.33/1.31 ns 5.19 5.19 ns Data Input Setup and Hold Times Relative to a Forwarded Clock Input Pin Using BUFIO TPSCS/TPHCS Setup/Hold of I/O clock Pin-to-Pin Clock-to-Out Using BUFIO TICKOFCS Clock-to-Out of I/O clock Revision History The following table shows the revision history for this document: Date Version 07/08/09 1.0 Initial Xilinx release. 02/05/10 1.1 Removed Figure 11: Placement Diagram for the FF1156 Package (5 of 5) from page 11 as there are only 16 GTX transceivers in the FF1156 package. Corrected the placement diagrams in Figure 2 through Figure 10. DS153 (v1.6) February 11, 2011 Product Specification Description of Revisions www.xilinx.com 50 Virtex-6 CXT Family Data Sheet Date Version Description of Revisions 06/08/10 1.2 Revised GTX Transceivers in CXT Devices, page 5. Added VFS and revised the VIN and VTS values in Table 9, page 11. Added VFS and note 6 to Table 10. Revised description of CIN in Table 11, including adding note 3. Updated Table 13 including adding note 2. Removed DIFF SSTL15 and added values to SSTL15 in Table 15. Updated Table 16 through Table 19. Added eFUSE Read Endurance section. Updated entire GTX Transceivers in CXT Devices section. Changed specifications of PCI Express in Table 34. In Table 35, removed RLDRAM II and revised and added values to other interface performance specifications. Updated speed specification to v1.04 with appropriate changes to Table 36. Revised the IOB switching characteristics in Table 38. Updated values in Table 39 and note 4 in Table 41. ILOGIC (Table 42), OLOGIC (Table 43), ISERDES (Table 44), and OSERDES (Table 45) switching characteristics changes. Revised TIODELAY_CLK_MAX and TIDELAYPAT_JIT in Table 46. Revised CLB switching characteristics and added TSHCKO to Table 47and revised CLB switching characteristics in Table 48 and Table 49. In Table 50, removed TRCKO_RDCOUNT and TRCKO_WRCOUNT, removed TRCKO_PARITY_ECC: Clock CLK to ECCPARITY in standard ECC mode, revised TRDCK_DI_ECC/TRCKD_DI_ECC, TRCKO_POINTERS, and revised FMAX and FMAX_CASCADE switching characteristics. Multiple changes to configuration specifications in Table 52. Revised switching characteristics and global clock tree (BUFG) FMAX in Table 53. Revised switching characteristics and I/O clock tree (BUFIO) FMAX in Table 54. Added note 1 to Table 55. Revised the FMAX horizontal clock tree (BUFH) in Table 56. Multiple changes to MMCM specifications in Table 57 including FINMAX and FOUTMAX. Updated switching characteristics in Table 58 through Table 63. Removed TDCD_BUFH and TBUFHSKEW from Table 64. 06/30/10 1.3 Production release of XC6VCX130T and XC6VCX240T in Table 36 and Table 37. Updated -1 speed grade SDR values in Table 35. Updated BUFIO FMAX specification in Table 54. Added Note 6 to Table 57. 07/28/10 1.4 Production release of XC6VCX75T and XC6VCX195T in Table 36 and Table 37 using ISE 12.2 software with speed file v1.06 using the Speed File Patch. Updated PCI compliance on page 1. Added values to Table 13. In Table 25, update VCMOUTDC equation to MGTAVTT – DVPPOUT/4. Updated FMAX in Table 53, Table 54, and Table 56. Updated FINMAX and FOUTMAX in Table 57. Updated values in Table 61, Table 62, and Table 63. 10/14/10 1.5 Moved data sheet to Production status on the first page. Updated speed file with ISE 12.3 software with speed file v1.08 using the Speed File Patch. In Table 51, updated values for TDSPCKO_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_PREG. 02/11/11 1.6 Updated Table 10 to include the industrial range specifications. Added Note 12 to Table 50. Revised TBPICCO values in Table 52. Updated range description for FINDUTY in Table 57 and added note 8. The following revisions are due to specification changes as described in XCN11009, Virtex-6 FPGA: Data Sheet, User Guides, and JTAG ID Updates. In Table 52, updated the values for TSMCCKW, TSPIDCC, TSPICCM, and TSPICCFC. In Table 57: MMCM Specification, added bandwidth settings to FPFDMIN and added note 1. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 51 Virtex-6 CXT Family Data Sheet Notice of Disclaimer THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS. CRITICAL APPLICATIONS DISCLAIMER XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE FAILSAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, “CRITICAL APPLICATIONS”). FURTHERMORE, XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS. AUTOMOTIVE APPLICATIONS DISCLAIMER XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAILSAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS. DS153 (v1.6) February 11, 2011 Product Specification www.xilinx.com 52