XILINX XC6VHX250T

Virtex-6 FPGA Data Sheet:
DC and Switching Characteristics
DS152 (v2.10) October18, 2010
Advance Product Specification
Virtex-6 FPGA Electrical Characteristics
Virtex®-6 FPGAs are available in -3, -2, -1, and -1L speed
grades, with -3 having the highest performance. Virtex-6
FPGA DC and AC characteristics are specified for both
commercial and industrial grades. Except the operating
temperature range or unless otherwise noted, all the DC
and AC electrical parameters are the same for a particular
speed grade (that is, the timing characteristics of a -1 speed
grade industrial device are the same as for a -1 speed grade
commercial device). However, only selected speed grades
and/or devices might be available in the industrial range.
All supply voltage and junction temperature specifications
are representative of worst-case conditions. The
parameters included are common to popular designs and
typical applications.
This Virtex-6 FPGA data sheet, part of an overall set of
documentation on the Virtex-6 family of FPGAs, is available
on the Xilinx website.
All specifications are subject to change without notice.
Virtex-6 FPGA DC Characteristics
Table 1: Absolute Maximum Ratings (1)
Symbol
Description
Units
Internal supply voltage relative to GND
–0.5 to 1.1
V
For -1L devices: Internal supply voltage relative to GND
–0.5 to 1.0
V
Auxiliary supply voltage relative to GND
–0.5 to 3.0
V
VCCO
Output drivers supply voltage relative to GND
–0.5 to 3.0
V
VBATT
Key memory battery backup supply
–0.5 to 3.0
V
VFS
External voltage supply for eFUSE programming(2)
–0.5 to 3.0
V
VREF
Input reference voltage
–0.5 to 3.0
V
VIN(3)
2.5V or below I/O input voltage relative to GND(4) (user and dedicated I/Os)
–0.5 to VCCO + 0.5
V
VTS
Voltage applied to 3-state 2.5V or below output(4) (user and dedicated I/Os)
–0.5 to VCCO + 0.5
V
TSTG
Storage temperature (ambient)
–65 to 150
°C
TSOL
Maximum soldering temperature(5)
+220
°C
Maximum junction temperature(5)
+125
°C
VCCINT
VCCAUX
Tj
Notes:
1.
2.
3.
4.
5.
Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only,
and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied.
Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.
When not programming eFUSE, connect VFS to GND.
2.5V I/O absolute maximum limit applied to DC and AC signals.
For I/O operation, refer to the Virtex-6 FPGA SelectIO Resources User Guide.
For soldering guidelines and thermal considerations, see Virtex-6 FPGA Packaging and Pinout Specification.
© 2009–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other
countries. All other trademarks are the property of their respective owners.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
1
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 2: Recommended Operating Conditions
Symbol
Description
VCCINT
VCCAUX
VCCO(1)(3)(4)
Min
Max
Units
Internal supply voltage relative to GND, Tj = 0°C to +85°C
0.95
1.05
V
For -1L commercial temperature range devices: internal supply voltage relative
to GND, Tj = 0°C to +85°C
0.87
0.93
V
For -1L industrial temperature range devices: internal supply voltage relative to GND,
Tj = –40°C to +100°C
0.91
0.97
V
Auxiliary supply voltage relative to GND, Tj = 0°C to +85°C
2.375
2.625
V
Supply voltage relative to GND, Tj = 0°C to +85°C
1.14
2.625
V
2.5V supply voltage relative to GND, Tj = 0°C to +85°C
GND – 0.20
2.625
V
VIN
2.5V and below supply voltage relative to GND,
Tj = 0°C to +85°C
GND – 0.20
VCCO + 0.2
V
IIN(6)
Maximum current through any pin in a powered or unpowered bank when forward
biasing the clamp diode.
–
10
mA
1.0
2.5
V
2.375
2.625
V
VBATT(2)
VFS(7)
Battery voltage relative to GND, Tj = 0°C to +85°C
External voltage supply for eFUSE programming
Notes:
1.
2.
3.
4.
5.
6.
7.
Configuration data is retained even if VCCO drops to 0V.
VBATT is required only when using bitstream encryption. If battery is not used, connect VBATT to either ground or VCCAUX.
Includes VCCO of 1.2V, 1.5V, 1.8V, and 2.5V.
The configuration supply voltage VCC_CONFIG is also known as VCCO_0.
All voltages are relative to ground.
A total of 100 mA per bank should not be exceeded.
When not programming eFUSE, connect VFS to GND.
Table 3: DC Characteristics Over Recommended Operating Conditions (1)(2)
Symbol
Description
Min
Typ
Max
Units
VDRINT
Data retention VCCINT voltage (below which configuration data might be lost)
0.75
–
–
V
VDRI
Data retention VCCAUX voltage (below which configuration data might be lost)
2.0
–
–
V
IREF
VREF leakage current per pin
–
–
10
µA
Input or output leakage current per pin (sample-tested)
–
–
10
µA
Die input capacitance at the pad
–
–
8
pF
Pad pull-up (when selected) @ VIN = 0V, VCCO = 2.5V
20
–
80
µA
Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.8V
8
–
40
µA
Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.5V
5
–
30
µA
Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.2V
1
–
20
µA
IRPD
Pad pull-down (when selected) @ VIN = 2.5V
3
–
80
µA
IBATT
Battery supply current
–
–
150
nA
n
Temperature diode ideality factor
–
1.0002
–
n
r
Series resistance
–
5
–
Ω
IL
CIN(3)
IRPU
Notes:
1.
2.
3.
Typical values are specified at nominal voltage, 25°C.
Maximum value specified for worst case process at 25°C.
This measurement represents the die capacitance at the pad, not including the package.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
2
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Important Note
Typical values for quiescent supply current are specified at nominal voltage, 85°C junction temperatures (Tj). Xilinx
recommends analyzing static power consumption at Tj = 85°C because the majority of designs operate near the high end of
the commercial temperature range. Quiescent supply current is specified by speed grade for Virtex-6 devices. Use the
XPOWER™ Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate static power
consumption for conditions other than those specified in Table 4.
Table 4: Typical Quiescent Supply Current
Symbol
Description
Device
ICCINTQ
Quiescent VCCINT
supply current
Quiescent VCCO
supply current
-2 (C & I)(1)
-1 (C & I)
-1L (C)
-1L (I)(2)
XC6VLX75T
927
927
927
656
741
mA
XC6VLX130T
1563
1563
1563
1102
1245
mA
XC6VLX195T
2059
2059
2059
1441
1628
mA
XC6VLX240T
2478
2478
2478
1733
1957
mA
XC6VLX365T
3001
3001
3001
2092
2363
mA
XC6VLX550T
N/A
4515
4515
3147
3555
mA
XC6VLX760
N/A
5094
5094
3471
3921
mA
XC6VSX315T
3476
3476
3476
2409
2721
mA
XC6VSX475T
N/A
5227
5227
3622
4091
mA
XC6VHX250T
2906
2906
2906
N/A
N/A
mA
XC6VHX255T
N/A
N/A
mA
XC6VHX380T
N/A
N/A
mA
N/A
N/A
mA
N/A
XC6VLX75T
1
1
1
1
1
mA
XC6VLX130T
1
1
1
1
1
mA
XC6VLX195T
1
1
1
1
1
mA
XC6VLX240T
2
2
2
2
2
mA
XC6VLX365T
2
2
2
2
2
mA
XC6VLX550T
N/A
3
3
3
3
mA
XC6VLX760
N/A
3
3
3
3
mA
XC6VSX315T
2
2
2
2
2
mA
XC6VSX475T
N/A
2
2
2
2
mA
XC6VHX250T
1
1
1
N/A
N/A
mA
XC6VHX255T
N/A
N/A
mA
XC6VHX380T
N/A
N/A
mA
N/A
N/A
mA
XC6VHX565T
DS152 (v2.10) October18, 2010
Advance Product Specification
Units
-3 (C)
XC6VHX565T
ICCOQ
Speed and Temperature Grade
N/A
www.xilinx.com
3
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 4: Typical Quiescent Supply Current (Cont’d)
Symbol
Description
Device
ICCAUXQ
Quiescent VCCAUX
supply current
Speed and Temperature Grade
Units
-3 (C)
-2 (C & I)(1)
-1 (C & I)
-1L (C)
-1L (I)(2)
XC6VLX75T
45
45
45
45
45
mA
XC6VLX130T
75
75
75
75
75
mA
XC6VLX195T
113
113
113
113
113
mA
XC6VLX240T
135
135
135
135
135
mA
XC6VLX365T
191
191
191
191
191
mA
XC6VLX550T
N/A
286
286
286
286
mA
XC6VLX760
N/A
387
387
387
387
mA
XC6VSX315T
186
186
186
186
186
mA
XC6VSX475T
N/A
279
279
279
279
mA
XC6VHX250T
152
152
152
N/A
N/A
mA
XC6VHX255T
N/A
N/A
mA
XC6VHX380T
N/A
N/A
mA
N/A
N/A
mA
XC6VHX565T
N/A
Notes:
1.
2.
3.
4.
The XC6VLX550T, XC6VLX760, XC6VSX475T, and XC6VHX565T are not offered in -2I.
Typical values are specified at nominal voltage, 85°C junction temperatures (Tj). -1, -2, and -3 industrial (I) grade devices have the same
typical values as commercial (C) grade devices at 85°C, but higher values at 100°C. Use the XPE tool to calculate 100°C values. -1L
industrial grade devices have the values specified in this column.
Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and
floating.
If DCI or differential signaling is used, more accurate quiescent current estimates can be obtained by using the XPOWER Estimator
(XPE) or XPOWER Analyzer (XPA) tools.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
4
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Power-On Power Supply Requirements
Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device initialization. The actual
current consumed depends on the power-on ramp rate of the power supply.
Virtex-6 devices require a power-on sequence of VCCINT, VCCAUX, and VCCO. If the requirement can not be met, then
VCCAUX must always be powered prior to VCCO. VCCAUX and VCCO can be powered by the same supply, therefore, both
VCCAUX and VCCO are permitted to ramp simultaneously. Similarly, for the power-down sequence, VCCO must be powered
down prior to VCCAUX or if power by the same supply, VCCAUX and VCCO power-down simultaneously.
Table 5 shows the minimum current, in addition to ICCQ, that are required by Virtex-6 devices for proper power-on and
configuration. If the current minimums shown in Table 4 and Table 5 are met, the device powers on after all three supplies
have passed through their power-on reset threshold voltages. The FPGA must be configured after VCCINT is applied.
Once initialized and configured, use the XPOWER tools to estimate current drain on these supplies.
Table 5: Power-On Current for Virtex-6 Devices
ICCINTMIN
ICCAUXMIN
ICCOMIN
Typ(1)
Typ(1)
Typ(1)
XC6VLX75T
See ICCINTQ in Table 4
ICCAUXQ + 10
ICCOQ + 30 mA per bank
mA
XC6VLX130T
See ICCINTQ in Table 4
ICCAUXQ + 10
ICCOQ + 30 mA per bank
mA
XC6VLX195T
See ICCINTQ in Table 4
ICCAUXQ + 40
ICCOQ + 30 mA per bank
mA
XC6VLX240T
See ICCINTQ in Table 4
ICCAUXQ + 40
ICCOQ + 30 mA per bank
mA
XC6VLX365T
See ICCINTQ in Table 4
ICCAUXQ + 40
ICCOQ + 30 mA per bank
mA
XC6VLX550T
See ICCINTQ in Table 4
ICCAUXQ + 40
ICCOQ + 30 mA per bank
mA
XC6VLX760
See ICCINTQ in Table 4
ICCAUXQ + 40
ICCOQ + 30 mA per bank
mA
XC6VSX315T
See ICCINTQ in Table 4
ICCAUXQ + 40
ICCOQ + 30 mA per bank
mA
XC6VSX475T
See ICCINTQ in Table 4
ICCAUXQ + 50
ICCOQ + 30 mA per bank
mA
XC6VHX250T
See ICCINTQ in Table 4
ICCAUXQ + 40
ICCOQ + 30 mA per bank
mA
Device
Units
XC6VHX255T
mA
XC6VHX380T
mA
XC6VHX565T
mA
Notes:
1.
2.
Typical values are specified at nominal voltage, 25°C.
Use the XPOWER™ Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate maximum power-on currents.
Table 6: Power Supply Ramp Time
Symbol
Description
Ramp Time
Units
VCCINT
Internal supply voltage relative to GND
0.20 to 50.0
ms
VCCO
Output drivers supply voltage relative to GND
0.20 to 50.0
ms
VCCAUX
Auxiliary supply voltage relative to GND
0.20 to 50.0
ms
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
5
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
SelectIO™ DC Input and Output Levels
Values for VIL and VIH are recommended input voltages. Values for IOL and IOH are guaranteed over the recommended
operating conditions at the VOL and VOH test points. Only selected standards are tested. These are chosen to ensure that
all standards meet their specifications. The selected standards are tested at a minimum VCCO with the respective VOL and
VOH voltage levels shown. Other standards are sample tested.
Table 7: SelectIO DC Input and Output Levels
I/O Standard
VIH
VIL
VOL
VOH
IOL
IOH
V, Min
V, Max
V, Min
V, Max
V, Max
V, Min
mA
mA
LVCMOS25,
LVDCI25
–0.3
0.7
1.7
VCCO + 0.3
0.4
VCCO – 0.4
Note(3)
Note(3)
LVCMOS18,
LVDCI18
–0.3
35% VCCO
65% VCCO
VCCO + 0.3
0.45
VCCO – 0.45
Note(4)
Note(4)
LVCMOS15,
LVDCI15
–0.3
35% VCCO
65% VCCO
VCCO + 0.3
25% VCCO
75% VCCO
Note(4)
Note(4)
LVCMOS12
–0.3
35% VCCO
65% VCCO
VCCO + 0.3
25% VCCO
75% VCCO
Note(5)
Note(5)
HSTL I_12
–0.3
VREF – 0.1
VREF + 0.1
VCCO + 0.3
25% VCCO
75% VCCO
6.3
6.3
HSTL I(2)
–0.3
VREF – 0.1
VREF + 0.1
VCCO + 0.3
0.4
VCCO – 0.4
8
–8
HSTL II(2)
–0.3
VREF – 0.1
VREF + 0.1
VCCO + 0.3
0.4
VCCO – 0.4
16
–16
HSTL III(2)
–0.3
VREF – 0.1
VREF + 0.1
VCCO + 0.3
0.4
VCCO – 0.4
24
–8
DIFF HSTL I(2)
–0.3
50% VCCO – 0.1 50% VCCO + 0.1
VCCO + 0.3
–
–
–
–
DIFF HSTL II(2)
–0.3
50% VCCO – 0.1 50% VCCO + 0.1
VCCO + 0.3
–
–
–
–
SSTL2 I
–0.3
VREF – 0.15
VREF + 0.15
VCCO + 0.3
VTT – 0.61
VTT + 0.61
8.1
–8.1
SSTL2 II
–0.3
VREF – 0.15
VREF + 0.15
VCCO + 0.3
VTT – 0.81
VTT + 0.81
16.2
–16.2
DIFF SSTL2 I
–0.3
50%
VCCO – 0.15
50%
VCCO + 0.15
VCCO + 0.3
–
–
–
–
DIFF SSTL2 II
–0.3
50%
VCCO – 0.15
50%
VCCO + 0.15
VCCO + 0.3
–
–
–
–
SSTL18 I
–0.3
VREF – 0.125
VREF + 0.125
VCCO + 0.3
VTT – 0.47
VTT + 0.47
6.7
–6.7
SSTL18 II
–0.3
VREF – 0.125
VREF + 0.125
VCCO + 0.3
VTT – 0.60
VTT + 0.60
13.4
–13.4
DIFF SSTL18 I
–0.3
50%
VCCO – 0.125
50%
VCCO + 0.125
VCCO + 0.3
–
–
–
–
DIFF SSTL18 II
–0.3
50%
VCCO – 0.125
50%
VCCO + 0.125
VCCO + 0.3
–
–
–
–
SSTL15
–0.3
VREF – 0.1
VREF + 0.1
VCCO + 0.3
VTT – 0.175
VTT + 0.175
14.3
14.3
Notes:
1.
2.
3.
4.
5.
6.
Tested according to relevant specifications.
Applies to both 1.5V and 1.8V HSTL.
Using drive strengths of 2, 4, 6, 8, 12, 16, or 24 mA.
Using drive strengths of 2, 4, 6, 8, 12, or 16 mA.
Supported drive strengths of 2, 4, 6, or 8 mA.
For detailed interface specific DC voltage levels, see the Virtex-6 FPGA SelectIO Resources User Guide.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
6
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
HT DC Specifications (HT_25)
Table 8: HT DC Specifications
Symbol
Min
Typ
Max
Units
2.38
2.5
2.63
V
480
600
885
mV
–15
–
15
mV
440
600
760
mV
Change in VOCM Magnitude
–15
–
15
mV
VID
Input Differential Voltage
200
600
1000
mV
Δ VID
Change in VID Magnitude
–15
–
15
mV
VICM
Input Common Mode Voltage
440
600
780
mV
Change in VICM Magnitude
–15
–
15
mV
Min
Typ
Max
Units
2.38
2.5
2.63
V
VCCO
DC Parameter
Supply Voltage
VOD
Differential Output Voltage
Δ VOD
Change in VOD Magnitude
VOCM
Output Common Mode Voltage
Δ VOCM
Δ VICM
Conditions
RT = 100 Ω across Q and Q signals
RT = 100 Ω across Q and Q signals
LVDS DC Specifications (LVDS_25)
Table 9: LVDS DC Specifications
Symbol
VCCO
DC Parameter
Conditions
Supply Voltage
VOH
Output High Voltage for Q and Q
RT = 100 Ω across Q and Q signals
–
–
1.675
V
VOL
Output Low Voltage for Q and Q
RT = 100 Ω across Q and Q signals
0.825
–
–
V
VODIFF
Differential Output Voltage (Q – Q),
Q = High (Q – Q), Q = High
RT = 100 Ω across Q and Q signals
247
350
600
mV
VOCM
Output Common-Mode Voltage
RT = 100 Ω across Q and Q signals
1.075
1.250
1.425
V
VIDIFF
Differential Input Voltage (Q – Q),
Q = High (Q – Q), Q = High
100
350
600
mV
VICM
Input Common-Mode Voltage
0.3
1.2
2.2
V
Min
Typ
Max
Units
2.38
2.5
2.63
V
Extended LVDS DC Specifications (LVDSEXT_25)
Table 10: Extended LVDS DC Specifications
Symbol
VCCO
DC Parameter
Conditions
Supply Voltage
VOH
Output High Voltage for Q and Q
RT = 100 Ω across Q and Q signals
–
–
1.785
V
VOL
Output Low Voltage for Q and Q
RT = 100 Ω across Q and Q signals
0.715
–
–
V
VODIFF
Differential Output Voltage (Q – Q),
Q = High (Q – Q), Q = High
RT = 100 Ω across Q and Q signals
350
–
840
mV
VOCM
Output Common-Mode Voltage
RT = 100 Ω across Q and Q signals
1.075
1.250
1.425
V
VIDIFF
Differential Input Voltage (Q – Q),
Q = High (Q – Q), Q = High
Common-mode input voltage = 1.25V
100
–
1000
mV
VICM
Input Common-Mode Voltage
Differential input voltage = ±350 mV
0.3
1.2
2.2
V
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
7
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
LVPECL DC Specifications (LVPECL_25)
These values are valid when driving a 100Ω differential load only, i.e., a 100Ω resistor between the two receiver pins. The
VOH levels are 200 mV below standard LVPECL levels and are compatible with devices tolerant of lower common-mode
ranges. Table 11 summarizes the DC output specifications of LVPECL. For more information on using LVPECL, see the
Virtex-6 FPGA SelectIO Resources User Guide.
Table 11: LVPECL DC Specifications
Symbol
DC Parameter
Min
Typ
Max
Units
VOH
Output High Voltage
VCC – 1.025
1.545
VCC – 0.88
V
VOL
Output Low Voltage
VCC – 1.81
0.795
VCC – 1.62
V
VICM
Input Common-Mode Voltage
0.6
–
2.2
V
0.100
–
1.5
V
VIDIFF
Differential Input
Voltage(1)(2)
Notes:
1.
2.
Recommended input maximum voltage not to exceed VCCAUX + 0.2V.
Recommended input minimum voltage not to go below –0.5V.
eFUSE Read Endurance
Table 12 lists the maximum number of read cycle operations expected. For more information, see the Virtex-6 FPGA
Configuration User Guide.
Table 12: eFUSE Read Endurance
Symbol
Description
DNA_CYCLES
Number of DNA_PORT READ operations or JTAG ISC_DNA read
command operations. Unaffected by SHIFT operations.
AES_CYCLES
Number of JTAG FUSE_KEY or FUSE_CNTL read command
operations. Unaffected by SHIFT operations.
DS152 (v2.10) October18, 2010
Advance Product Specification
Speed Grade
-3
-2
-1
30,000,000
30,000,000
-1L
Units
Read
Cycles
Read
Cycles
www.xilinx.com
8
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
GTX Transceiver Specifications
GTX Transceiver DC Characteristics
Table 13: Absolute Maximum Ratings for GTX Transceivers(1)
Symbol
Description
Min
Max
Units
MGTAVCC
Analog supply voltage for the GTX transmitter and receiver circuits relative to
GND
–0.5
1.1
V
MGTAVTT
Analog supply voltage for the GTX transmitter and receiver termination circuits
relative to GND
–0.5
1.32
V
MGTAVTTRCAL
Analog supply voltage for the resistor calibration circuit of the GTX transceiver
column
–0.5
1.32
V
VIN
Receiver (RXP/RXN) and Transmitter (TXP/TXN) absolute input voltage
–0.5
1.32
V
VMGTREFCLK
Reference clock absolute input voltage
–0.5
1.32
V
Notes:
1.
Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only,
and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied.
Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.
Table 14: Recommended Operating Conditions for GTX Transceivers(1)(2)
Symbol
MGTAVCC
Description
Analog supply voltage for the GTX transmitter
and receiver circuits relative to GND
Speed
Grade
PLL
Frequency
Min
Typ
Max
Units
-3, -2(3)
> 2.7 GHz
1.0
1.03
1.06
V
-2(3)
≤ 2.7 GHz
0.95
1.0
1.06
V
-1
≤ 2.7 GHz
0.95
1.0
1.06
V
-1L
≤ 2.7 GHz
0.95
1.0
1.05
V
-3,
MGTAVTT
Analog supply voltage for the GTX transmitter
and receiver termination circuits relative to GND
All
–
1.14
1.2
1.26
V
MGTAVTTRCAL
Analog supply voltage for the resistor calibration
circuit of the GTX transceiver column
All
–
1.14
1.2
1.26
V
Notes:
1.
2.
3.
Each voltage listed requires the filter circuit described in Virtex-6 FPGA GTX Transceivers User Guide.
Voltages are specified for the temperature range of Tj = –40°C to +100°C.
If a GTX Quad contains transceivers operating with a mixture of PLL frequencies above and below 2.7 GHz, the MGTAVCC voltage supply
must be in the range of 1.0V to 1.06V.
Table 15: GTX Transceiver Supply Current (per Lane) (1)(2)
Symbol
Description
Typ
IMGTAVTT
MGTAVTT supply current for one GTX transceiver
55.9
IMGTAVCC
MGTAVCC supply current for one GTX transceiver
56.1
MGTRREF
Precision reference resistor for internal calibration termination
Max
Note 2
100.0 ± 1% tolerance
Units
mA
mA
Ω
Notes:
1.
2.
Typical values are specified at nominal voltage, 25°C, with a 3.125 Gb/s line rate.
Values for currents of other transceiver configurations and conditions can be obtained by using the XPOWER Estimator (XPE) or XPOWER
Analyzer (XPA) tools.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
9
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 16: GTX Transceiver Quiescent Supply Current (per Lane) (1)(2)(3)
Symbol
Typ(4)
Description
IMGTAVTTQ
Quiescent MGTAVTT supply current for one GTX transceiver
0.9
IMGTAVCCQ
Quiescent MGTAVCC supply current for one GTX transceiver
3.5
Max
Units
Note 2
mA
mA
Notes:
1.
2.
Device powered and unconfigured.
Currents for conditions other than values specified in this table can be obtained by using the XPOWER Estimator (XPE) or XPOWER
Analyzer (XPA) tools.
GTX transceiver quiescent supply current for an entire device can be calculated by multiplying the values in this table by the number of
available GTX transceivers.
Typical values are specified at nominal voltage, 25°C.
3.
4.
GTX Transceiver DC Input and Output Levels
Table 17 summarizes the DC output specifications of the GTX transceivers in Virtex-6 FPGAs. Consult the Virtex-6 FPGA
GTX Transceivers User Guide for further details.
Table 17: GTX Transceiver DC Specifications
Symbol
DVPPIN
VIN
VCMIN
DC Parameter
Conditions
Min
Typ
Max
Units
Differential peak-to-peak input
voltage
External AC coupled ≤ 4.25 Gb/s
125
–
2000
mV
External AC coupled > 4.25 Gb/s
175
–
2000
mV
Absolute input voltage
DC coupled
MGTAVTT = 1.2V
–400
–
MGTAVTT
mV
Common mode input voltage
DC coupled
MGTAVTT = 1.2V
–
2/3 MGTAVTT
–
mV
–
–
1000
mV
DVPPOUT
Differential peak-to-peak output Transmitter output swing is set to
voltage (1)
maximum setting
VCMOUTDC
DC common mode output
voltage.
RIN
Differential input resistance
80
100
130
Ω
ROUT
Differential output resistance
80
100
120
Ω
TOSKEW
Transmitter output pair (TXP and TXN) intra-pair skew
–
2
8
ps
–
100
–
nF
Equation based
Recommended external AC coupling
CEXT
capacitor(2)
MGTAVTT – DVPPOUT/4
mV
Notes:
1.
2.
The output swing and preemphasis levels are programmable using the attributes discussed in the Virtex-6 FPGA GTX Transceivers User
Guide and can result in values lower than reported in this table.
Other values can be used as appropriate to conform to specific protocols and standards.
X-Ref Target - Figure 1
+V
P
Single-Ended
Voltage
N
0
ds152_01_121509
Figure 1: Single-Ended Peak-to-Peak Voltage
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
10
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
X-Ref Target - Figure 2
+V
Differential
Voltage
0
–V
P–N
ds152_02_121509
Figure 2: Differential Peak-to-Peak Voltage
Table 18 summarizes the DC specifications of the clock input of the GTX transceiver. Consult the Virtex-6 FPGA GTX
Transceivers User Guide for further details.
Table 18: GTX Transceiver Clock DC Input Level Specification
Symbol
DC Parameter
Conditions
Min
Typ
Max
Units
VIDIFF
Differential peak-to-peak input voltage
210
800
2000
mV
RIN
Differential input resistance
90
100
130
Ω
CEXT
Required external AC coupling capacitor
–
100
–
nF
GTX Transceiver Switching Characteristics
Consult Virtex-6 FPGA GTX Transceivers User Guide for further information.
Table 19: GTX Transceiver Performance
Symbol
Speed Grade
Description
Units
-3
-2
-1
-1L
6.6
6.6
5.0
5.0
Gb/s
FGTXMAX
Maximum GTX transceiver data rate
FGPLLMAX
Maximum PLL frequency
3.3(1)
3.3(1)
2.7
2.7
GHz
FGPLLMIN
Minimum PLL frequency
1.2
1.2
1.2
1.2
GHz
Notes:
1.
See Table 14 for MGTAVCC requirements when PLL frequency is greater than 2.7 GHz.
Table 20: GTX Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics
Symbol
FGTXDRPCLK
Speed Grade
Description
GTXDRPCLK maximum frequency
DS152 (v2.10) October18, 2010
Advance Product Specification
-3
-2
-1
-1L
150
150
125
100
Units
MHz
www.xilinx.com
11
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 21: GTX Transceiver Reference Clock Switching Characteristics
Symbol
Description
All Speed Grades
Conditions
Units
Min
Typ
Max
62.5
–
650
MHz
FGCLK
Reference clock frequency range
TRCLK
Reference clock rise time
20% – 80%
–
200
–
ps
TFCLK
Reference clock fall time
80% – 20%
–
200
–
ps
TDCREF
Reference clock duty cycle
Transceiver PLL only
45
50
55
%
TLOCK
Clock recovery frequency acquisition
time
Initial PLL lock
–
–
1
ms
TPHASE
Clock recovery phase acquisition time
Lock to data after PLL has locked
to the reference clock
–
–
200
µs
X-Ref Target - Figure 3
TRCLK
80%
20%
TFCLK
ds152_05_042109
Figure 3: Reference Clock Timing Parameters
Table 22: GTX Transceiver User Clock Switching Characteristics(1)
Symbol
Description
FTXOUT
TXOUTCLK maximum frequency
FRXREC
RXRECCLK maximum frequency
TRX
RXUSRCLK maximum frequency
TRX2
RXUSRCLK2 maximum frequency
TTX
TXUSRCLK maximum frequency
Conditions
TXUSRCLK2 maximum frequency
Units
-3
-2
-1
-1L
Internal 20-bit data path
330
330
250
250
MHz
Internal 16-bit data path
412.5
412.5
312.5
250
MHz
Internal 20-bit data path
330
330
250
250
MHz
Internal 16-bit data path
412.5
412.5
312.5
250
MHz
412.5(2)
412.5(2)
312.5
250
MHz
1 byte interface
376
376
312.5
250
MHz
2 byte interface
406.25
406.25
312.5
250
MHz
4 byte interface
TTX2
Speed Grade
206.25
206.25
156.25
125
MHz
412.5(3)
412.5(3)
312.5
250
MHz
1 byte interface
376
376
312.5
250
MHz
2 byte interface
406.25
406.25
312.5
250
MHz
4 byte interface
206.25
206.25
156.25
125
MHz
Notes:
1.
2.
3.
Clocking must be implemented as described in the Virtex-6 FPGA GTX Transceivers User Guide.
406.25 MHz when the RX elastic buffer is bypassed.
406.25 MHz when the TX buffer is bypassed.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
12
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 23: GTX Transceiver Transmitter Switching Characteristics
Symbol
Description
FGTXTX
Serial data rate range
TRTX
TX Rise time
TFTX
TX Fall time
Condition
Min
Typ
Max
Units
0.480
–
FGTXMAX
Gb/s
20%–80%
–
120
–
ps
80%–20%
–
120
–
ps
TLLSKEW
TX lane-to-lane
skew(1)
–
–
350
ps
VTXOOBVDPP
Electrical idle amplitude
–
–
15
mV
TTXOOBTRANSITION
Electrical idle transition time
–
–
75
ns
–
–
0.33
UI
–
–
0.17
UI
–
–
0.33
UI
–
–
0.15
UI
–
–
0.33
UI
–
–
0.14
UI
–
–
0.34
UI
–
–
0.16
UI
–
–
0.2
UI
–
–
0.1
UI
–
–
0.35
UI
–
–
0.16
UI
–
–
0.20
UI
–
–
0.08
UI
–
–
0.15
UI
–
–
0.06
UI
–
–
0.1
UI
TJ6.5
Total
Jitter(2)(3)
Jitter(2)(3)
DJ6.5
Deterministic
TJ5.0
Total Jitter(2)(3)
DJ5.0
Deterministic Jitter(2)(3)
TJ4.25
Total
Jitter(2)(3)
Jitter(2)(3)
DJ4.25
Deterministic
TJ3.75
Total Jitter(2)(3)
DJ3.75
Deterministic Jitter(2)(3)
TJ3.125
Total
Jitter(2)(3)
Jitter(2)(3)
DJ3.125
Deterministic
TJ3.125L
Total Jitter(2)(3)
DJ3.125L
Deterministic Jitter(2)(3)
TJ2.5
Total
Jitter(2)(3)
Jitter(2)(3)
DJ2.5
Deterministic
TJ1.25
Total Jitter(2)(3)
DJ1.25
Deterministic Jitter(2)(3)
TJ600
Total
Jitter(2)(3)
Jitter(2)(3)
DJ600
Deterministic
TJ480
Total Jitter(2)(3)
DJ480
Deterministic Jitter(2)(3)
6.5 Gb/s
5.0 Gb/s
4.25 Gb/s
3.75 Gb/s
3.125 Gb/s
3.125 Gb/s(4)
2.5 Gb/s(5)
1.25 Gb/s(6)
600 Mb/s
480 Mb/s
–
–
0.03
UI
–
–
0.1
UI
–
–
0.03
UI
Notes:
1.
2.
3.
4.
5.
6.
Using same REFCLK input with TXENPMAPHASEALIGN enabled for up to 12 consecutive transmitters (three fully populated GTX Quads).
Using PLL_DIVSEL_FB = 2, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.
All jitter values are based on a bit-error ratio of 1e-12.
PLL frequency at 1.5625 GHz and OUTDIV = 1.
PLL frequency at 2.5 GHz and OUTDIV = 2.
PLL frequency at 2.5 GHz and OUTDIV = 4.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
13
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 24: GTX Transceiver Receiver Switching Characteristics
Symbol
Description
Min
Typ
Max
Units
RX oversampler not enabled
0.600
–
FGTXMAX
Gb/s
RX oversampler enabled
0.480
–
0.600
Gb/s
FGTXRX
Serial data rate
Time for RXELECIDLE to
respond to loss or
restoration of data
–
75
–
ns
TRXELECIDLE
RXOOBVDPP
OOB detect threshold
peak-to-peak
60
–
150
mV
RXSST
Receiver spread-spectrum
tracking(1)
Modulated @ 33 KHz
–5000
–
0
ppm
RXRL
Run length (CID)
Internal AC capacitor bypassed
–
–
512
UI
Data/REFCLK PPM offset
tolerance
CDR
2nd-order
CDR
2nd-order
JT_SJ6.5
Sinusoidal Jitter(3)
6.5 Gb/s
0.44
–
–
UI
JT_SJ5.0
Sinusoidal
Jitter(3)
5.0 Gb/s
0.44
–
–
UI
JT_SJ4.25
Sinusoidal
Jitter(3)
4.25 Gb/s
0.44
–
–
UI
JT_SJ3.75
Sinusoidal Jitter(3)
3.75 Gb/s
0.44
–
–
UI
JT_SJ3.125
Sinusoidal Jitter(3)
3.125 Gb/s
0.45
–
–
UI
0.45
–
–
UI
RXPPMTOL
loop disabled
–200
–
200
ppm
loop enabled
–2000
–
2000
ppm
SJ Jitter Tolerance(2)
JT_SJ3.125L
Sinusoidal
Jitter(3)
Jitter(3)
3.125
Gb/s(5)
JT_SJ2.5
Sinusoidal
0.5
–
–
UI
JT_SJ1.25
Sinusoidal Jitter(3)
1.25 Gb/s(6)
0.5
–
–
UI
JT_SJ600
Sinusoidal Jitter(3)
600 Mb/s
0.4
–
–
UI
JT_SJ480
Jitter(3)
480 Mb/s
0.4
–
–
UI
Sinusoidal
SJ Jitter Tolerance with Stressed
2.5
Gb/s(4)
Eye(2)
JT_TJSE3.125
Total Jitter with Stressed
Eye(7)
3.125 Gb/s
0.70
–
–
UI
5.0 Gb/s
0.70
–
–
UI
JT_SJSE3.125
Sinusoidal Jitter with
Stressed Eye(7)
3.125 Gb/s
0.1
–
–
UI
5.0 Gb/s
0.1
–
–
UI
Notes:
1.
2.
3.
4.
5.
6.
7.
Using PLL_RXDIVSEL_OUT = 1, 2, and 4.
All jitter values are based on a bit error ratio of 1e–12.
The frequency of the injected sinusoidal jitter is 80 MHz.
PLL frequency at 1.5625 GHz and OUTDIV = 1.
PLL frequency at 2.5 GHz and OUTDIV = 2.
PLL frequency at 2.5 GHz and OUTDIV = 4.
Composite jitter with RX equalizer enabled. DFE disabled.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
14
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
GTH Transceiver Specifications
GTH Transceiver DC Characteristics
Table 25: Absolute Maximum Ratings for GTH Transceivers(1)
Symbol
Description
Min
Max
Units
MGTHAVCC
Analog supply voltage for the GTH transmitter, receiver, and common analog
circuits
–0.5
V
MGTHAVCCRX
Analog supply voltage for the GTH receiver circuits and common analog circuits
–0.5
V
MGTAVTT
Analog supply voltage for the GTH transmitter termination circuits
–0.5
V
MGTHAVCCPLL
Analog supply voltage for the GTH receiver and PLL circuits
–0.5
V
VIN
Receiver (RXP/RXN) and Transmitter (TXP/TXN) absolute input voltage
–0.5
V
VMGTREFCLK
Reference clock absolute input voltage
–0.5
V
Notes:
1.
Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only,
and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied.
Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.
Table 26: Recommended Operating Conditions for GTH Transceivers (1)(2)
Symbol
Description
Min
Typ
Max
Units
MGTHAVCC
Analog supply voltage for the GTH transmitter, receiver, and common analog
circuits
1.075
1.1
1.125
V
MGTHAVCCRX
Analog supply voltage for the GTH receiver circuits and common analog
circuits
1.075
1.1
1.125
V
MGTHAVTT
Analog supply voltage for the GTH transmitter termination circuits
1.140
1.2
1.26
V
MGTHAVCCPLL
Analog supply voltage for the GTH receiver and PLL circuit
1.710
1.8
1.89
V
Notes:
1.
2.
Each voltage listed requires the filter circuit described in Virtex-6 FPGA GTH Transceivers User Guide.
Voltages are specified for the temperature range of Tj = –40°C to +100°C.
Table 27: GTH Transceiver Power Supply Sequencing (1)(2)
Symbol
Description
Min
Max
Units
THAVCC2HAVCCRX
Maximum time between powering MGTHAVCC to when MGTHAVCCRX
must be powered.
0
200
µs
THAVCCRX2HAVCCPLL
Minimum time between powering MGTHAVCCRX to when
MGTHAVCCPLL can be powered.
10
–
µs
THAVCCRX2HAVTT
Minimum time between powering MGTHAVCCRX to when MGTHAVTT
can be powered.
10
–
µs
Notes:
1.
2.
MGTHAVCCRX must be powered simultaneously or within THAVCC2HAVCCRX of MGTHAVCC, but it must not precede MGTHAVCC.
MGTHAVCC and MGTHAVCCRX must be powered before MGTHAVCCPLL and MGTHAVTT. This minimum time is defined by
THAVCCRX2HAVCCPLL and THAVCCRX2HAVTT.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
15
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Figure 4 shows the timing parameters in Table 27.
X-Ref Target - Figure 4
MGTHAVCC
(1.1V DC)
THAVCC2HAVCCRX
MGTHAVCCRX
(1.1V DC)
THAVCCRX2HAVCCPLL
MGTHAVCCPLL
(1.8V DC)
THAVCCRX2HAVTT
MGTHAVTT
(1.2V DC)
DS152_04_051110
Figure 4: GTH Transceiver Power Supply Power-On Sequencing
Table 28: GTH Transceiver Supply Current (1)(2)
Symbol
Description
Min
Typ
Max
Units
IMGTHAVCC
MGTHAVCC supply current for one GTH Quad (4 lanes)
mA
IMGTHAVCCRX
MGTHAVCCRX supply current for a GTH Quad (4 lanes)
mA
IMGTHAVTT
MGTHAVTT supply current for one GTH Quad (4 lanes)
mA
IMGTHAVCCPLL
MGTHAVCCPLL supply current for one GTH Quad (4 lanes)
mA
MGTRREF
Precision reference resistor for internal calibration termination
Ω
1000.0 ± 1% tolerance
Notes:
1.
2.
Typical values are specified at nominal voltage, 25°C, with a 10.3125 Gb/s line rate.
Values for currents other than the values specified in this table can be obtained by using the XPOWER Estimator (XPE) or XPOWER
Analyzer (XPA) tools.
Table 29: GTH Transceiver Quiescent Supply Current(1)(2)(3)
Symbol
Description
Typ(4)
Max
Units
IMGTHAVCCQ
Quiescent MGTHAVCC Supply Current for one GTH Quad (4 lanes)
mA
IMGTHAVCCRXQ
Quiescent MGTHAVCCRX Supply Current for one GTH Quad (4 lanes)
mA
IMGTHAVTTQ
Quiescent MGTHAVTT Supply Current for one GTH Quad (4 lanes)
mA
IMGTHAVCCPLLQ
Quiescent MGTHAVCCPLL Supply Current for one GTH Quad (4 lanes)
mA
Notes:
1.
2.
3.
4.
Device powered and unconfigured.
Currents for conditions other than values specified in this table can be obtained by using the XPOWER Estimator (XPE) or XPOWER
Analyzer (XPA) tools.
GTH transceiver quiescent supply current for an entire device can be calculated by multiplying the values in this table by the number of
available GTH transceivers.
Typical values are specified at nominal voltage, 25°C.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
16
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
GTH Transceiver DC Input and Output Levels
Table 30 summarizes the DC output specifications of the GTH transceivers in Virtex-6 FPGAs. Consult the Virtex-6 FPGA
GTH Transceivers User Guide for further details.
Table 30: GTH Transceiver DC Specifications
Symbol
DC Parameter
Conditions
Min
Typ
Max
Units
DVPPIN
Differential peak-to-peak input voltage External AC coupled
mV
DVPPOUT
Differential peak-to-peak output
voltage (1)
mV
RIN
Differential input resistance
100
Ω
ROUT
Differential output resistance
100
Ω
TOSKEW
Transmitter output pair (TXP and TXN) intra-pair skew
CEXT
Recommended external AC coupling capacitor(2)
Transmitter output swing is set to
maximum setting
ps
100
nF
Notes:
1.
2.
The output swing and preemphasis levels are programmable using the attributes discussed in the Virtex-6 FPGA GTH Transceivers User
Guide and can result in values lower than reported in this table.
Other values can be used as appropriate to conform to specific protocols and standards.
Table 31 summarizes the DC specifications of the clock input of the GTH transceiver. Consult theVirtex-6 FPGA GTH
Transceivers User Guide for further details.
Table 31: GTH Transceiver Clock DC Input Level Specification
Symbol
DC Parameter
Conditions
Min
Typ
Max
Units
≤ 600 MHz
500
1600
mV
> 600 MHz
600
1600
mV
VIDIFF
Differential peak-to-peak input voltage
RIN
Differential input resistance
100
Ω
CEXT
Required external AC coupling capacitor
100
nF
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
17
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
GTH Transceiver Switching Characteristics
Consult Virtex-6 FPGA GTH Transceivers User Guide for further information.
Table 32: GTH Transceiver Maximum Data Rate and PLL Frequency Range
Symbol
Description
Conditions
Speed Grade
Units
-3
-2
-1
PLL Output Divider = 1
11.182
11.182
10.32
Gb/s
PLL Output Divider = 4
2.795
2.795
2.58
Gb/s
PLL Output Divider = 1
9.92
9.92
9.92
Gb/s
PLL Output Divider = 4
2.48
2.48
2.48
Gb/s
FGTHMAX
Maximum GTH transceiver data rate
FGTHMIN
Minimum GTH transceiver data rate(1)
FGPLLMAX
Maximum GTH PLL frequency
5.591
5.591
5.16
GHz
FGPLLMIN
Minimum GTH PLL frequency
4.96
4.96
4.96
GHz
Notes:
1.
Lower data rates can be achieved using FPGA logic based oversampling designs.
Table 33: GTH Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics
Symbol
Speed Grade
Description
FGTHDRPCLK
GTHDRPCLK maximum frequency
-3
-2
-1
70
70
60
Units
MHz
Table 34: GTH Transceiver Reference Clock Switching Characteristics
Symbol
Description
Conditions
All Speed Grades
Min
Typ
Max
Units
-1 speed grade
150
623
MHz
-2 and -3 speed grades
150
670
MHz
FGCLK
Reference clock frequency range
TRCLK
Reference clock rise time
20% – 80%
200
ps
TFCLK
Reference clock fall time
80% – 20%
200
ps
TDCREF
Reference clock duty cycle
CLK
TLOCK
Clock recovery frequency acquisition
time
Initial PLL lock
ms
TPHASE
Clock recovery phase acquisition time
Lock to data after PLL has locked
to the reference clock
µs
45
50
55
%
X-Ref Target - Figure 5
TRCLK
80%
20%
TFCLK
ds152_05_042109
Figure 5: Reference Clock Timing Parameters
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
18
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 35: GTH Transceiver User Clock Switching Characteristics (1)
Symbol
Description
Conditions
Speed Grade
-3
-2
-1
Units
FTXOUT
TXUSERCLKOUT maximum frequency
350
350
323
MHz
FRXOUT
RXUSERCLKOUT maximum frequency
350
350
323
MHz
16-bit data path
350
350
323
MHz
20-bit data path
280
280
258
MHz
32-bit data path
350
350
323
MHz
40-bit data path
280
280
258
MHz
64-bit data path
175
175
162
MHz
80-bit data path
140
140
129
MHz
64B/66B-bit data path
170
170
157
MHz
16-bit data path
350
350
323
MHz
20-bit data path
280
280
258
MHz
32-bit data path
350
350
323
MHz
40-bit data path
280
280
258
MHz
64-bit data path
175
175
162
MHz
80-bit data path
140
140
129
MHz
64B/66B-bit data path
170
170
157
MHz
Typ
Max
Units
TXUSERCLKIN maximum frequency
FTXIN
RXUSERCLKIN maximum frequency
FRXIN
Notes:
1.
Clocking must be implemented as described in the Virtex-6 FPGA GTH Transceivers User Guide.
Table 36: GTH Transceiver Transmitter Switching Characteristics
Symbol
Description
TRTX
TX Rise time
TFTX
TX Fall time
TLLSKEW
TX lane-to-lane skew
Condition
20%–80%
Min
ps
80%–20%
ps
within one GTH
Quad
ps
across multiple
GTH Quads
ps
Transmitter Output Jitter(1)(2)
TJ11.18
Total Jitter
DJ11.18
Deterministic Jitter
TJ10.3125
Total Jitter
DJ10.3125
Deterministic Jitter
TJ9.953
Total Jitter
DJ9.953
Deterministic Jitter
TJ2.667
Total Jitter
DJ2.667
Deterministic Jitter
TJ2.488
Total Jitter
DJ2.488
Deterministic Jitter
11.181 Gb/s
UI
UI
10.3125 Gb/s
UI
UI
9.953 Gb/s
UI
UI
2.667 Gb/s
UI
UI
2.488 Gb/s
UI
UI
Notes:
1.
2.
These values are NOT intended for protocol specific compliance determinations.
All jitter values are based on a bit-error ratio of 1e-12.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
19
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 37: GTH Transceiver Receiver Switching Characteristics
Symbol
RXRL
RXPPMTOL
SJ Jitter
Description
Min
Typ
Max
Run length (CID)
Units
UI
Data/REFCLK PPM offset tolerance
–200
200
ppm
Tolerance(1)(2)(3)
JT_SJ11.18
Sinusoidal Jitter
11.18 Gb/s
UI
JT_SJ10.32
Sinusoidal Jitter
10.32 Gb/s
UI
JT_SJ9.95
Sinusoidal Jitter
9.95 Gb/s
UI
JT_SJ2.667
Sinusoidal Jitter
2.667 Gb/s
UI
JT_SJ2.48
Sinusoidal Jitter
2.48 Gb/s
UI
Notes:
1.
2.
3.
These values are NOT intended for protocol specific compliance determinations.
All jitter values are based on a bit error ratio of 1e–12.
The frequency of the injected sinusoidal jitter is 80 MHz.
Ethernet MAC Switching Characteristics
Consult Virtex-6 FPGA Embedded Tri-mode Ethernet MAC User Guide for further information.
Table 38: Maximum Ethernet MAC Performance
Symbol
FTEMACCLIENT
FTEMACPHY
Description
Client interface maximum
frequency
Physical interface maximum
frequency
Conditions
Speed Grade
Units
-3
-2
-1
-1L
10 Mb/s – 8-bit width
2.5(1)
2.5(1)
2.5(1)
2.5(1)
MHz
100 Mb/s – 8-bit width
25(2)
25(2)
25(2)
25(2)
MHz
1000 Mb/s – 8-bit width
125
125
125
125
MHz
1000 Mb/s – 16-bit width
62.5
62.5
62.5
62.5
MHz
2000 Mb/s – 16-bit width
125
125
125
N/A
MHz
2500 Mb/s – 16-bit width
156.25
156.25
156.25
N/A
MHz
10 Mb/s – 4-bit width
2.5
2.5
2.5
2.5
MHz
100 Mb/s – 4-bit width
25
25
25
25
MHz
1000 Mb/s – 8-bit width
125
125
125
125
MHz
2000 Mb/s – 8-bit width
250
250
250
N/A
MHz
2500 Mb/s – 8-bit width
312.5
312.5
312.5
N/A
MHz
Notes:
1.
2.
When not using clock enable, the FMAX is lowered to 1.25 MHz.
When not using clock enable, the FMAX is lowered to 12.5 MHz.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
20
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Integrated Interface Block for PCI Express Designs Switching Characteristics
More information and documentation on solutions for PCI Express designs can be found at:
http://www.xilinx.com/technology/protocols/pciexpress.htm
Table 39: Maximum Performance for PCI Express Designs
Symbol
Speed Grade
Description
-3
-2
-1
-1L
Units
FPIPECLK
Pipe clock maximum frequency
250
250
250
250
MHz
FUSERCLK
User clock maximum frequency
500
500
250
250
MHz
FDRPCLK
DRP clock maximum frequency
250
250
250
250
MHz
System Monitor Analog-to-Digital Converter Specification
Table 40: Analog-to-Digital Specifications
Parameter
Symbol
Comments/Conditions
Min
Typ
Max
Units
AVDD = 2.5V ± 5%, VREFP = 1.25V, VREFN = 0V, ADCCLK = 5.2 MHz, Tj = –40°C to 100°C, Typical values at Tj=+35°C
DC Accuracy: All external input channels. Both unipolar and bipolar modes.
Resolution
10
–
–
Bits
–
–
±1
LSBs
No missing codes (TMIN to TMAX)
Guaranteed Monotonic
–
–
±0.9
LSBs
Uncalibrated
–
±2
±30
LSBs
Uncalibrated measured in bipolar mode
–
±2
±30
LSBs
Uncalibrated - External Reference
–
±0.2
±2
%
Uncalibrated - Internal Reference
–
±2
–
%
Uncalibrated - External Reference
–
±0.2
±2
%
Uncalibrated - Internal Reference
–
±2
–
%
Deviation from ideal transfer function.
External 1.25V reference
–
±10
–
LSBs
Deviation from ideal transfer function.
Internal reference
–
±20
–
LSBs
Deviation from ideal transfer function.
External 1.25V reference
–
±1
±2
LSBs
Variation of FS code with temperature
–
±0.01
–
LSB/°C
CMRRDC
VN = VCM = 0.5V ± 0.5V,
VP – VN = 100mV
–
70
–
dB
Conversion Time - Continuous
tCONV
Number of CLK cycles
26
–
32
Conversion Time - Event
tCONV
Number of CLK cycles
–
–
21
T/H Acquisition Time
tACQ
Number of CLK cycles
4
–
–
DRP Clock Frequency
DCLK
DRP clock frequency
8
–
80
MHz
ADC Clock Frequency
ADCCLK
Derived from DCLK
1
–
5.2
MHz
40
–
60
%
Integral Nonlinearity
INL
Differential Nonlinearity
DNL
Unipolar Offset Error (1)
Bipolar Offset Error
(1)
Gain Error
Bipolar Gain Error
(1)
Total Unadjusted Error
(Uncalibrated)
Total Unadjusted Error
(Calibrated)
TUE
TUE
Calibrated Gain Temperature
Coefficient
DC Common-Mode Reject
Conversion Rate(2)
CLK Duty cycle
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
21
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 40: Analog-to-Digital Specifications (Cont’d)
Parameter
Symbol
Comments/Conditions
Min
Typ
Max
Units
Unipolar Operation
0
–
1
Volts
Bipolar Operation
–0.5
–
+0.5
0
–
+0.5
+0.5
–
+0.6
Bandwidth
–
20
–
MHz
Unipolar Operation
0
–
1
Volts
Bipolar Operation
–0.5
–
+0.5
0
–
+0.5
+0.5
–
+0.6
Bandwidth
–
10
–
kHz
A/D not converting, ADCCLK stopped
–
±1.0
–
µA
–
10
–
pF
VCCINT and VCCAUX with calibration enabled.
External 1.25V reference Tj = –40°C to 125°C.
–
–
±1.0
% Reading
VCCINT and VCCAUX with calibration enabled.
Internal reference Tj = –40°C to 100°C.
–
±2
–
% Reading
Tj = –40°C to +125°C with calibration enabled.
External 1.25V reference.
–
–
±4
°C
Tj = –40°C to +100°C with calibration enabled.
Internal reference.
–
±5
–
°C
Analog Inputs(3)
Dedicated Analog Inputs
Input Voltage Range
VP - VN
Unipolar Common Mode Range (FS input)
Bipolar Common Mode Range (FS input)
Auxiliary Analog Inputs
Input Voltage Range
VAUXP[0] /VAUXN[0] to VAUXP[15]
/VAUXN[15]
Tj = –40°C to 100°C
Unipolar Common Mode Range (FS input)
Bipolar Common Mode Range (FS input)
Input Leakage Current
Input Capacitance
On-chip Supply Monitor Error
On-chip Temperature Monitor
Error
External Reference Inputs(4)
Positive Reference Input
Voltage Range
VREFP
Measured Relative to VREFN
1.20
1.25
1.30
Volts
Negative Reference Input
Voltage Range
VREFN
Measured Relative to AGND
–50
0
100
mV
Input current
IREF
ADCCLK = 5.2 MHz
–
–
100
µA
Analog Power Supply
AVDD
Measured Relative to AVSS
2.375
2.5
2.625
Volts
Analog Supply Current
AIDD
ADCCLK = 5.2 MHz
–
–
12
mA
Power Requirements
Notes:
1.
2.
3.
4.
Offset errors are removed by enabling the System Monitor automatic gain calibration feature.
See "System Monitor Timing" in the Virtex-6 FPGA System Monitor User Guide
See "Analog Inputs" in the Virtex-6 FPGA System Monitor User Guide for a detailed description.
Any variation in the reference voltage from the nominal VREFP = 1.25V and VREFN = 0V will result is a deviation from the ideal transfer
function.This also impacts the accuracy of the internal sensor measurements (i.e., temperature and power supply). However, for external
ratiometric type applications allowing reference to vary by ±4% is permitted.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
22
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Performance Characteristics
This section provides the performance characteristics of some common functions and designs implemented in
Virtex-6 devices. The numbers reported here are worst-case values; they have all been fully characterized. These values are
subject to the same guidelines as the Switching Characteristics, page 24.
Table 41: Interface Performances
Speed Grade
Description
-3
-2
-1
-1L
SDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 8)
710 Mb/s
710 Mb/s
650 Mb/s
585 Mb/s
DDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 10)
1.4 Gb/s
1.3 Gb/s
1.25 Gb/s
1.1 Gb/s
710 Mb/s
710 Mb/s
650 Mb/s
585 Mb/s
1.4 Gb/s
1.3 Gb/s
1.0 Gb/s
0.9 Gb/s
DDR2
800 Mb/s
800 Mb/s
800 Mb/s
606 Mb/s
DDR3
1066 Mb/s
1066 Mb/s
800 Mb/s
606 Mb/s
QDR II + SRAM
400 MHz
350 MHz
300 MHz
–
RLDRAM II
500 MHz
400 MHz
350 MHz
–
Networking Applications
SDR LVDS receiver
(SFI-4.1)(1)
DDR LVDS receiver
(SPI-4.2)(1)
Maximum Physical Interface (PHY) Rate for Memory
Interfaces(2)(3)
Notes:
1.
2.
3.
LVDS receivers are typically bounded with certain applications where specific DPA algorithms dominate deterministic performance.
Verified on Xilinx memory characterization platforms designed according to the guidelines in theVirtex-6 FPGA Memory Interface Solutions
User Guide.
Consult theVirtex-6 FPGA Memory Interface Solutions Data Sheet for performance and feature information on memory interface cores
(controller plus PHY).
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
23
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Switching Characteristics
All values represented in this data sheet are based on these
speed specifications: v1.10 for -3, -2, and -1; and v1.07 for
-1L. Switching characteristics are specified on a per-speedgrade basis and can be designated as Advance,
Preliminary, or Production. Each designation is defined as
follows:
Advance
These specifications are based on simulations only and are
typically available soon after device design specifications
are frozen. Although speed grades with this designation are
considered relatively stable and conservative, some underreporting might still occur.
All specifications are always representative of worst-case
supply voltage and junction temperature conditions.
Since individual family members are produced at different
times, the migration from one category to another depends
completely on the status of the fabrication process for each
device.
Table 42 correlates the current status of each Virtex-6
device on a per speed grade basis.
Table 42: Virtex-6 Device Speed Grade Designations
Device
Speed Grade Designations
Advance
Preliminary
Production
Preliminary
XC6VLX75T
-3, -2, -1, -1L
These specifications are based on complete ES
(engineering sample) silicon characterization. Devices and
speed grades with this designation are intended to give a
better indication of the expected performance of production
silicon. The probability of under-reporting delays is greatly
reduced as compared to Advance data.
XC6VLX130T
-3, -2, -1, -1L
XC6VLX195T
-3, -2, -1, -1L
XC6VLX240T
-3, -2, -1, -1L
XC6VLX365T
-3, -2, -1, -1L
XC6VLX550T
-2, -1, -1L
Production
XC6VLX760
-2, -1, -1L
These specifications are released once enough production
silicon of a particular device family member has been
characterized to provide full correlation between
specifications and devices over numerous production lots.
There is no under-reporting of delays, and customers
receive formal notification of any subsequent changes.
Typically, the slowest speed grades transition to Production
before faster speed grades.
XC6VSX315T
-3, -2, -1, -1L
XC6VSX475T
-2, -1, -1L
XC6VHX250T
-3, -2, -1
XC6VHX255T
-3, -2, -1
XC6VHX380T
-3, -2, -1
XC6VHX565T
-2, -1
Testing of Switching Characteristics
All devices are 100% functionally tested. Internal timing
parameters are derived from measuring internal test
patterns. Listed below are representative values.
DS152 (v2.10) October18, 2010
Advance Product Specification
For more specific, more precise, and worst-case
guaranteed data, use the values reported by the static
timing analyzer and back-annotate to the simulation net list.
Unless otherwise noted, values apply to all Virtex-6 devices.
www.xilinx.com
24
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Production Silicon and ISE Software Status
Table 43 lists the production released Virtex-6 family
member, speed grade, and the minimum corresponding
supported speed specification version and ISE software
revisions. The ISE® software and speed specifications
listed are the minimum releases required for production. All
subsequent releases of software and speed specifications
are valid.
In some cases, a particular family member (and speed
grade) is released to production before a speed
specification is released with the correct label (Advance,
Preliminary, Production). Any labeling discrepancies are
corrected in subsequent speed specification releases.
Table 43: Virtex-6 Device Production Software and Speed Specification Release
Speed Grade Designations
Device
-3
-2
XC6VLX75T
-1
-1L
ISE 12.2 v1.08
ISE 12.3 v1.07 Patch
XC6VLX130T
ISE 12.1 v1.06
ISE 11.5 v1.05
ISE 11.5 v1.05
ISE 12.2 v1.05
XC6VLX195T
ISE 12.1 v1.06
ISE 12.1 v1.06
ISE 12.1 v1.06
ISE 12.2 v1.04
XC6VLX240T
ISE 12.1 v1.06
ISE 11.4.1 v1.04
ISE 11.4.1 v1.04
ISE 12.2 v1.04
XC6VLX365T
ISE 12.2 v1.08
ISE 12.2 v1.04
XC6VLX550T
N/A
ISE 12.2 v1.07
ISE 12.2 v1.04
XC6VLX760
N/A
ISE 12.2 v1.08
ISE 12.3 v1.07 Patch
XC6VSX315T
ISE 12.2 v1.08
ISE 12.1 v1.06
ISE 12.3 v1.07 Patch
XC6VSX475T
N/A
ISE 12.2 v1.08
ISE 12.3 v1.07 Patch
XC6VHX250T
N/A
XC6VHX255T
N/A
XC6VHX380T
N/A
XC6VHX565T
N/A
N/A
Notes:
1.
Blank entries indicate a device and/or speed grade in advance or preliminary status.
IOB Pad Input/Output/3-State Switching Characteristics
Table 44 summarizes the values of standard-specific data
input delay adjustments, output delays terminating at pads
(based on standard) and 3-state delays.
TIOPI is described as the delay from IOB pad through the
input buffer to the I-pin of an IOB pad. The delay varies
depending on the capability of the SelectIO input buffer.
TIOTP is described as the delay from the T pin to the IOB
pad through the output buffer of an IOB pad, when 3-state is
disabled. The delay varies depending on the SelectIO
capability of the output buffer.
Table 45 summarizes the value of TIOTPHZ. TIOTPHZ is
described as the delay from the T pin to the IOB pad
through the output buffer of an IOB pad, when 3-state is
enabled (i.e., a high impedance state).
TIOOP is described as the delay from the O pin to the IOB
pad through the output buffer of an IOB pad. The delay
varies depending on the capability of the SelectIO output
buffer.
Table 44: IOB Switching Characteristics
I/O Standard
TIOPI
TIOOP
TIOTP
Speed Grade
Speed Grade
Speed Grade
Units
-3
-2
-1
-1L
-3
-2
-1
-1L
-3
-2
-1
-1L
LVDS_25
0.85
0.94
1.09
1.08
1.45
1.54
1.68
1.62
1.45
1.54
1.68
1.62
ns
LVDSEXT_25
0.85
0.94
1.09
1.08
1.53
1.65
1.84
1.73
1.53
1.65
1.84
1.73
ns
HT_25
0.85
0.94
1.09
1.08
1.51
1.62
1.78
1.69
1.51
1.62
1.78
1.69
ns
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
25
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 44: IOB Switching Characteristics (Cont’d)
I/O Standard
TIOPI
TIOOP
TIOTP
Speed Grade
Speed Grade
Speed Grade
Units
-3
-2
-1
-1L
-3
-2
-1
-1L
-3
-2
-1
-1L
BLVDS_25
0.85
0.94
1.09
1.08
1.39
1.50
1.67
1.65
1.39
1.50
1.67
1.65
ns
RSDS_25 (point to point)
0.85
0.94
1.09
1.08
1.45
1.54
1.68
1.62
1.45
1.54
1.68
1.62
ns
HSTL_I
0.81
0.91
1.06
1.06
1.45
1.56
1.73
1.71
1.45
1.56
1.73
1.71
ns
HSTL_II
0.81
0.91
1.06
1.06
1.44
1.56
1.74
1.72
1.44
1.56
1.74
1.72
ns
HSTL_III
0.81
0.91
1.06
1.06
1.42
1.54
1.71
1.69
1.42
1.54
1.71
1.69
ns
HSTL_I_18
0.81
0.91
1.06
1.06
1.47
1.58
1.75
1.72
1.47
1.58
1.75
1.72
ns
HSTL_II_18
0.81
0.91
1.06
1.06
1.50
1.62
1.81
1.78
1.50
1.62
1.81
1.78
ns
HSTL_III_18
0.81
0.91
1.06
1.06
1.42
1.54
1.71
1.69
1.42
1.54
1.71
1.69
ns
SSTL2_I
0.81
0.91
1.06
1.06
1.49
1.60
1.77
1.74
1.49
1.60
1.77
1.74
ns
SSTL2_II
0.81
0.91
1.06
1.06
1.42
1.54
1.72
1.71
1.42
1.54
1.72
1.71
ns
SSTL15
0.81
0.91
1.06
1.06
1.42
1.54
1.71
1.69
1.42
1.54
1.71
1.69
ns
LVCMOS25, Slow, 2 mA
0.51
0.57
0.66
0.70
5.09
5.46
6.01
5.63
5.09
5.46
6.01
5.63
ns
LVCMOS25, Slow, 4 mA
0.51
0.57
0.66
0.70
3.30
3.49
3.79
3.65
3.30
3.49
3.79
3.65
ns
LVCMOS25, Slow, 6 mA
0.51
0.57
0.66
0.70
2.62
2.81
3.08
2.95
2.62
2.81
3.08
2.95
ns
LVCMOS25, Slow, 8 mA
0.51
0.57
0.66
0.70
2.21
2.41
2.72
2.59
2.21
2.41
2.72
2.59
ns
LVCMOS25, Slow, 12 mA
0.51
0.57
0.66
0.70
1.80
1.95
2.17
2.10
1.80
1.95
2.17
2.10
ns
LVCMOS25, Slow, 16 mA
0.51
0.57
0.66
0.70
1.89
2.05
2.29
2.21
1.89
2.05
2.29
2.21
ns
LVCMOS25, Slow, 24 mA
0.51
0.57
0.66
0.70
1.68
1.82
2.02
1.98
1.68
1.82
2.02
1.98
ns
LVCMOS25, Fast, 2 mA
0.51
0.57
0.66
0.70
5.12
5.49
6.04
5.62
5.12
5.49
6.04
5.62
ns
LVCMOS25, Fast, 4 mA
0.51
0.57
0.66
0.70
3.28
3.50
3.82
3.65
3.28
3.50
3.82
3.65
ns
LVCMOS25, Fast, 6 mA
0.51
0.57
0.66
0.70
2.56
2.73
2.99
2.88
2.56
2.73
2.99
2.88
ns
LVCMOS25, Fast, 8 mA
0.51
0.57
0.66
0.70
2.11
2.33
2.65
2.53
2.11
2.33
2.65
2.53
ns
LVCMOS25, Fast, 12 mA
0.51
0.57
0.66
0.70
1.74
1.88
2.08
2.03
1.74
1.88
2.08
2.03
ns
LVCMOS25, Fast, 16 mA
0.51
0.57
0.66
0.70
1.77
1.92
2.13
2.08
1.77
1.92
2.13
2.08
ns
LVCMOS25, Fast, 24 mA
0.51
0.57
0.66
0.70
1.66
1.79
1.99
1.96
1.66
1.79
1.99
1.96
ns
LVCMOS18, Slow, 2 mA
0.55
0.61
0.71
0.73
4.21
4.47
4.87
4.30
4.21
4.47
4.87
4.30
ns
LVCMOS18, Slow, 4 mA
0.55
0.61
0.71
0.73
2.79
2.96
3.21
2.94
2.79
2.96
3.21
2.94
ns
LVCMOS18, Slow, 6 mA
0.55
0.61
0.71
0.73
2.30
2.43
2.64
2.47
2.30
2.43
2.64
2.47
ns
LVCMOS18, Slow, 8 mA
0.55
0.61
0.71
0.73
2.01
2.11
2.27
2.24
2.01
2.11
2.27
2.24
ns
LVCMOS18, Slow, 12 mA
0.55
0.61
0.71
0.73
1.88
1.99
2.15
2.10
1.88
1.99
2.15
2.10
ns
LVCMOS18, Slow, 16 mA
0.55
0.61
0.71
0.73
1.84
1.95
2.11
2.04
1.84
1.95
2.11
2.04
ns
LVCMOS18, Fast, 2 mA
0.55
0.61
0.71
0.73
4.00
4.23
4.57
4.08
4.00
4.23
4.57
4.08
ns
LVCMOS18, Fast, 4 mA
0.55
0.61
0.71
0.73
2.62
2.76
2.97
2.74
2.62
2.76
2.97
2.74
ns
LVCMOS18, Fast, 6 mA
0.55
0.61
0.71
0.73
2.15
2.28
2.46
2.32
2.15
2.28
2.46
2.32
ns
LVCMOS18, Fast, 8 mA
0.55
0.61
0.71
0.73
1.90
1.99
2.13
2.14
1.90
1.99
2.13
2.14
ns
LVCMOS18, Fast, 12 mA
0.55
0.61
0.71
0.73
1.69
1.80
1.97
1.88
1.69
1.80
1.97
1.88
ns
LVCMOS18, Fast, 16 mA
0.55
0.61
0.71
0.73
1.63
1.74
1.91
1.88
1.63
1.74
1.91
1.88
ns
LVCMOS15, Slow, 2 mA
0.64
0.73
0.85
0.85
3.43
3.77
4.29
3.91
3.43
3.77
4.29
3.91
ns
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
26
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 44: IOB Switching Characteristics (Cont’d)
I/O Standard
TIOPI
TIOOP
TIOTP
Speed Grade
Speed Grade
Speed Grade
Units
-3
-2
-1
-1L
-3
-2
-1
-1L
-3
-2
-1
-1L
LVCMOS15, Slow, 4 mA
0.64
0.73
0.85
0.85
2.58
2.79
3.10
2.93
2.58
2.79
3.10
2.93
ns
LVCMOS15, Slow, 6 mA
0.64
0.73
0.85
0.85
2.08
2.32
2.68
2.50
2.08
2.32
2.68
2.50
ns
LVCMOS15, Slow, 8 mA
0.64
0.73
0.85
0.85
1.81
1.98
2.23
2.24
1.81
1.98
2.23
2.24
ns
LVCMOS15, Slow, 12 mA
0.64
0.73
0.85
0.85
1.76
1.91
2.13
2.07
1.76
1.91
2.13
2.07
ns
LVCMOS15, Slow, 16 mA
0.64
0.73
0.85
0.85
1.69
1.83
2.04
1.98
1.69
1.83
2.04
1.98
ns
LVCMOS15, Fast, 2 mA
0.64
0.73
0.85
0.85
3.44
3.77
4.28
3.91
3.44
3.77
4.28
3.91
ns
LVCMOS15, Fast, 4 mA
0.64
0.73
0.85
0.85
2.37
2.53
2.78
2.66
2.37
2.53
2.78
2.66
ns
LVCMOS15, Fast, 6 mA
0.64
0.73
0.85
0.85
1.80
2.05
2.42
2.16
1.80
2.05
2.42
2.16
ns
LVCMOS15, Fast, 8 mA
0.64
0.73
0.85
0.85
1.76
1.90
2.11
2.04
1.76
1.90
2.11
2.04
ns
LVCMOS15, Fast, 12 mA
0.64
0.73
0.85
0.85
1.64
1.77
1.97
1.90
1.64
1.77
1.97
1.90
ns
LVCMOS15, Fast, 16 mA
0.64
0.73
0.85
0.85
1.62
1.76
1.96
1.92
1.62
1.76
1.96
1.92
ns
LVCMOS12, Slow, 2 mA
0.72
0.81
0.93
0.95
3.14
3.39
3.75
3.54
3.14
3.39
3.75
3.54
ns
LVCMOS12, Slow, 4 mA
0.72
0.81
0.93
0.95
2.43
2.63
2.93
2.79
2.43
2.63
2.93
2.79
ns
LVCMOS12, Slow, 6 mA
0.72
0.81
0.93
0.95
1.92
2.11
2.41
2.26
1.92
2.11
2.41
2.26
ns
LVCMOS12, Slow, 8 mA
0.72
0.81
0.93
0.95
1.87
2.02
2.25
2.17
1.87
2.02
2.25
2.17
ns
LVCMOS12, Fast, 2 mA
0.72
0.81
0.93
0.95
2.71
2.98
3.39
3.11
2.71
2.98
3.39
3.11
ns
LVCMOS12, Fast, 4 mA
0.72
0.81
0.93
0.95
1.93
2.16
2.51
2.31
1.93
2.16
2.51
2.31
ns
LVCMOS12, Fast, 6 mA
0.72
0.81
0.93
0.95
1.75
1.89
2.11
2.05
1.75
1.89
2.11
2.05
ns
LVCMOS12, Fast, 8 mA
0.72
0.81
0.93
0.95
1.69
1.82
2.02
1.98
1.69
1.82
2.02
1.98
ns
LVDCI_25
0.51
0.57
0.66
0.70
2.05
2.14
2.26
2.26
2.05
2.14
2.26
2.26
ns
LVDCI_18
0.55
0.61
0.71
0.73
2.07
2.23
2.47
2.38
2.07
2.23
2.47
2.38
ns
LVDCI_15
0.64
0.73
0.85
0.85
1.85
2.01
2.24
2.18
1.85
2.01
2.24
2.18
ns
LVDCI_DV2_25
0.51
0.57
0.66
0.70
1.71
1.83
2.01
2.00
1.71
1.83
2.01
2.00
ns
LVDCI_DV2_18
0.55
0.61
0.71
0.73
1.69
1.81
2.00
1.98
1.69
1.81
2.00
1.98
ns
LVDCI_DV2_15
0.64
0.73
0.85
0.85
1.68
1.77
1.91
1.98
1.68
1.77
1.91
1.98
ns
LVPECL_25
0.85
0.94
1.09
1.08
1.38
1.49
1.65
1.64
1.38
1.49
1.65
1.64
ns
HSTL_I_12
0.81
0.91
1.06
1.06
1.48
1.60
1.78
1.74
1.48
1.60
1.78
1.74
ns
HSTL_I_DCI
0.81
0.91
1.06
1.06
1.40
1.50
1.66
1.64
1.40
1.50
1.66
1.64
ns
HSTL_II_DCI
0.81
0.91
1.06
1.06
1.37
1.49
1.68
1.66
1.37
1.49
1.68
1.66
ns
HSTL_II_T_DCI
0.81
0.91
1.06
1.06
1.40
1.50
1.66
1.64
1.40
1.50
1.66
1.64
ns
HSTL_III_DCI
0.81
0.91
1.06
1.06
1.34
1.45
1.62
1.61
1.34
1.45
1.62
1.61
ns
HSTL_I_DCI_18
0.81
0.91
1.06
1.06
1.42
1.53
1.68
1.66
1.42
1.53
1.68
1.66
ns
HSTL_II_DCI_18
0.81
0.91
1.06
1.06
1.36
1.46
1.62
1.59
1.36
1.46
1.62
1.59
ns
HSTL_II _T_DCI_18
0.81
0.91
1.06
1.06
1.42
1.53
1.68
1.66
1.42
1.53
1.68
1.66
ns
HSTL_III_DCI_18
0.81
0.91
1.06
1.06
1.43
1.54
1.69
1.67
1.43
1.54
1.69
1.67
ns
DIFF_HSTL_I_18
0.85
0.94
1.09
1.08
1.47
1.58
1.75
1.72
1.47
1.58
1.75
1.72
ns
DIFF_HSTL_I_DCI_18
0.85
0.94
1.09
1.08
1.42
1.53
1.68
1.66
1.42
1.53
1.68
1.66
ns
DIFF_HSTL_I
0.85
0.94
1.09
1.08
1.45
1.56
1.73
1.71
1.45
1.56
1.73
1.71
ns
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
27
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 44: IOB Switching Characteristics (Cont’d)
I/O Standard
TIOPI
TIOOP
TIOTP
Speed Grade
Speed Grade
Speed Grade
Units
-3
-2
-1
-1L
-3
-2
-1
-1L
-3
-2
-1
-1L
DIFF_HSTL_I_DCI
0.85
0.94
1.09
1.08
1.40
1.50
1.66
1.64
1.40
1.50
1.66
1.64
ns
DIFF_HSTL_II_18
0.85
0.94
1.09
1.08
1.50
1.62
1.81
1.78
1.50
1.62
1.81
1.78
ns
DIFF_HSTL_II_DCI_18
0.85
0.94
1.09
1.08
1.36
1.46
1.62
1.59
1.36
1.46
1.62
1.59
ns
DIFF_HSTL_II _T_DCI_18
0.85
0.94
1.09
1.08
1.42
1.53
1.68
1.66
1.42
1.53
1.68
1.66
ns
DIFF_HSTL_II
0.85
0.94
1.09
1.08
1.44
1.56
1.74
1.72
1.44
1.56
1.74
1.72
ns
DIFF_HSTL_II_DCI
0.85
0.94
1.09
1.08
1.37
1.49
1.68
1.66
1.37
1.49
1.68
1.66
ns
SSTL2_I_DCI
0.81
0.91
1.06
1.06
1.42
1.53
1.70
1.68
1.42
1.53
1.70
1.68
ns
SSTL2_II_DCI
0.81
0.91
1.06
1.06
1.39
1.50
1.67
1.69
1.39
1.50
1.67
1.69
ns
SSTL2_II_T_DCI
0.81
0.91
1.06
1.06
1.42
1.53
1.70
1.68
1.42
1.53
1.70
1.68
ns
SSTL18_I
0.81
0.91
1.06
1.06
1.47
1.58
1.75
1.73
1.47
1.58
1.75
1.73
ns
SSTL18_II
0.81
0.91
1.06
1.06
1.39
1.50
1.67
1.66
1.39
1.50
1.67
1.66
ns
SSTL18_I_DCI
0.81
0.91
1.06
1.06
1.40
1.51
1.67
1.65
1.40
1.51
1.67
1.65
ns
SSTL18_II_DCI
0.81
0.91
1.06
1.06
1.36
1.47
1.63
1.62
1.36
1.47
1.63
1.62
ns
SSTL18_II_T_DCI
0.81
0.91
1.06
1.06
1.40
1.51
1.67
1.65
1.40
1.51
1.67
1.65
ns
SSTL15_T_DCI
0.81
0.91
1.06
1.06
1.41
1.52
1.68
1.66
1.41
1.52
1.68
1.66
ns
SSTL15_DCI
0.81
0.91
1.06
1.06
1.41
1.52
1.68
1.66
1.41
1.52
1.68
1.66
ns
DIFF_SSTL2_I
0.85
0.94
1.09
1.08
1.49
1.60
1.77
1.74
1.49
1.60
1.77
1.74
ns
DIFF_SSTL2_I_DCI
0.85
0.94
1.09
1.08
1.42
1.53
1.70
1.68
1.42
1.53
1.70
1.68
ns
DIFF_SSTL2_II
0.85
0.94
1.09
1.08
1.42
1.54
1.72
1.71
1.42
1.54
1.72
1.71
ns
DIFF_SSTL2_II_DCI
0.85
0.94
1.09
1.08
1.39
1.50
1.67
1.69
1.39
1.50
1.67
1.69
ns
DIFF_SSTL2_II_T_DCI
0.85
0.94
1.09
1.08
1.42
1.53
1.70
1.68
1.42
1.53
1.70
1.68
ns
DIFF_SSTL18_I
0.85
0.94
1.09
1.08
1.47
1.58
1.75
1.73
1.47
1.58
1.75
1.73
ns
DIFF_SSTL18_I_DCI
0.85
0.94
1.09
1.08
1.40
1.51
1.67
1.65
1.40
1.51
1.67
1.65
ns
DIFF_SSTL18_II
0.85
0.94
1.09
1.08
1.39
1.50
1.67
1.66
1.39
1.50
1.67
1.66
ns
DIFF_SSTL18_II_DCI
0.85
0.94
1.09
1.08
1.36
1.47
1.63
1.62
1.36
1.47
1.63
1.62
ns
DIFF_SSTL18_II_T_DCI
0.85
0.94
1.09
1.08
1.40
1.51
1.67
1.65
1.40
1.51
1.67
1.65
ns
DIFF_SSTL15
0.81
0.91
1.06
1.06
1.42
1.54
1.71
1.69
1.42
1.54
1.71
1.69
ns
DIFF_SSTL15_DCI
0.81
0.91
1.06
1.06
1.41
1.52
1.68
1.66
1.41
1.52
1.68
1.66
ns
DIFF_SSTL15_T_DCI
0.81
0.91
1.06
1.06
1.41
1.52
1.68
1.66
1.41
1.52
1.68
1.66
ns
Table 45: IOB 3-state ON Output Switching Characteristics (TIOTPHZ)
Symbol
TIOTPHZ
DS152 (v2.10) October18, 2010
Advance Product Specification
Description
T input to Pad high-impedance
Speed Grade
-3
-2
-1
-1L
0.86
0.92
0.99
0.99
Units
ns
www.xilinx.com
28
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
I/O Standard Adjustment Measurement Methodology
Input Delay Measurements
Table 46 shows the test setup parameters used for measuring input delay.
Table 46: Input Delay Measurement Methodology
Description
I/O Standard Attribute
VL (1)(2)
VH(1)(2)
VMEAS
VREF
(1)(4)(5)
(1)(3)(5)
LVCMOS, 2.5V
LVCMOS25
0
2.5
1.25
–
LVCMOS, 1.8V
LVCMOS18
0
1.8
0.9
–
LVCMOS, 1.5V
LVCMOS15
0
1.5
0.75
–
HSTL (High-Speed Transceiver Logic),
Class I & II
HSTL_I, HSTL_II
VREF – 0.5
VREF + 0.5
VREF
0.75
HSTL, Class III
HSTL_III
VREF – 0.5
VREF + 0.5
VREF
0.90
HSTL, Class I & II, 1.8V
HSTL_I_18, HSTL_II_18
VREF – 0.5
VREF + 0.5
VREF
0.90
HSTL, Class III 1.8V
HSTL_III_18
VREF – 0.5
VREF + 0.5
VREF
1.08
SSTL (Stub Terminated Transceiver Logic),
Class I & II, 3.3V
SSTL3_I, SSTL3_II
VREF – 1.00
VREF + 1.00
VREF
1.5
SSTL, Class I & II, 2.5V
SSTL2_I, SSTL2_II
VREF – 0.75
VREF + 0.75
VREF
1.25
SSTL, Class I & II, 1.8V
SSTL18_I, SSTL18_II
VREF – 0.5
VREF + 0.5
VREF
0.90
1.2 + 0.125
0(6)
–
1.2 + 0.125
0(6)
–
0.6 + 0.125
0(6)
–
LVDS (Low-Voltage Differential Signaling), 2.5V
LVDSEXT (LVDS Extended Mode), 2.5V
HT (HyperTransport), 2.5V
LVDS_25
LVDSEXT_25
LDT_25
1.2 – 0.125
1.2 – 0.125
0.6 – 0.125
Notes:
1.
2.
3.
4.
5.
6.
The input delay measurement methodology parameters for LVDCI are the same for LVCMOS standards of the same voltage. Input delay
measurement methodology parameters for HSLVDCI are the same as for HSTL_II standards of the same voltage. Parameters for all other
DCI standards are the same for the corresponding non-DCI standards.
Input waveform switches between VLand VH.
Measurements are made at typical, minimum, and maximum VREF values. Reported delays reflect worst case of these measurements. VREF
values listed are typical.
Input voltage level from which measurement starts.
This is an input voltage reference that bears no relation to the VREF / VMEAS parameters found in IBIS models and/or noted in Figure 6.
The value given is the differential input voltage.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
29
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Output Delay Measurements
X-Ref Target - Figure 7
FPGA Output
Output delays are measured using a Tektronix P6245
TDS500/600 probe (< 1 pF) across approximately 4" of FR4
microstrip trace. Standard termination was used for all
testing. The propagation delay of the 4" trace is
characterized separately and subtracted from the final
measurement, and is therefore not included in the
generalized test setups shown in Figure 6 and Figure 7.
+
RREF VMEAS
CREF
–
ds152_07_042109
X-Ref Target - Figure 6
Figure 7: Differential Test Setup
VREF
Measurements and test conditions are reflected in the IBIS
models except where the IBIS format precludes it.
Parameters VREF , RREF , CREF , and VMEAS fully describe
the test conditions for each I/O standard. The most accurate
prediction of propagation delay in any given application can
be obtained through IBIS simulation, using the following
method:
RREF
FPGA Output
VMEAS
(voltage level when taking
delay measurement)
1. Simulate the output driver of choice into the generalized
test setup, using values from Table 47.
CREF
(probe capacitance)
2. Record the time to VMEAS .
3. Simulate the output driver of choice into the actual PCB
trace and load, using the appropriate IBIS model or
capacitance value to represent the load.
ds152_06_042109
Figure 6: Single Ended Test Setup
4. Record the time to VMEAS .
5. Compare the results of steps 2 and 4. The increase or
decrease in delay yields the actual propagation delay of
the PCB trace.
Table 47: Output Delay Measurement Methodology
I/O Standard
Attribute
Description
RREF
(Ω)
CREF(1)
(pF)
VMEAS
(V)
VREF
(V)
LVCMOS, 2.5V
LVCMOS25
1M
0
1.25
0
LVCMOS, 1.8V
LVCMOS18
1M
0
0.9
0
LVCMOS, 1.5V
LVCMOS15
1M
0
0.75
0
LVCMOS, 1.2V
LVCMOS12
1M
0
0.75
0
HSTL (High-Speed Transceiver Logic), Class I
HSTL_I
50
0
VREF
0.75
HSTL, Class II
HSTL_II
25
0
VREF
0.75
HSTL, Class III
HSTL_III
50
0
0.9
1.5
HSTL, Class I, 1.8V
HSTL_I_18
50
0
VREF
0.9
HSTL, Class II, 1.8V
HSTL_II_18
25
0
VREF
0.9
HSTL, Class III, 1.8V
HSTL_III_18
50
0
1.1
1.8
SSTL (Stub Series Terminated Logic), Class I, 1.8V
SSTL18_I
50
0
VREF
0.9
SSTL, Class II, 1.8V
SSTL18_II
25
0
VREF
0.9
SSTL, Class I, 2.5V
SSTL2_I
50
0
VREF
1.25
SSTL, Class II, 2.5V
SSTL2_II
25
0
VREF
1.25
LVDS (Low-Voltage Differential Signaling), 2.5V
LVDS_25
100
0
0(2)
1.2
LVDSEXT (LVDS Extended Mode), 2.5V
LVDS_25
100
0
0(2)
1.2
BLVDS (Bus LVDS), 2.5V
BLVDS_25
100
0
0(2)
0
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
30
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 47: Output Delay Measurement Methodology (Cont’d)
I/O Standard
Attribute
Description
HT (HyperTransport), 2.5V
LDT_25
RREF
(Ω)
CREF(1)
(pF)
VMEAS
(V)
VREF
(V)
100
0
0(2)
0.6
0
LVPECL (Low-Voltage Positive Emitter-Coupled Logic),
2.5V
LVPECL_25
100
0
0(2)
LVDCI/HSLVDCI, 2.5V
LVDCI_25, HSLVDCI_25
1M
0
1.25
0
LVDCI/HSLVDCI, 1.8V
LVDCI_18, HSLVDCI_18
1M
0
0.9
0
LVDCI/HSLVDCI, 1.5V
LVDCI_15, HSLVDCI_15
1M
0
0.75
0
HSTL (High-Speed Transceiver Logic), Class I & II, with DCI HSTL_I_DCI, HSTL_II_DCI
50
0
VREF
0.75
HSTL, Class III, with DCI
HSTL_III_DCI
50
0
0.9
1.5
HSTL, Class I & II, 1.8V, with DCI
HSTL_I_DCI_18, HSTL_II_DCI_18
50
0
VREF
0.9
HSTL, Class III, 1.8V, with DCI
HSTL_III_DCI_18
50
0
1.1
1.8
SSTL (Stub Series Termi.Logic), Class I & II, 1.8V, with DCI SSTL18_I_DCI, SSTL18_II_DCI
50
0
VREF
0.9
SSTL, Class I & II, 2.5V, with DCI
50
0
VREF
1.25
SSTL2_I_DCI, SSTL2_II_DCI
Notes:
1.
2.
CREF is the capacitance of the probe, nominally 0 pF.
The value given is the differential output voltage.
Input/Output Logic Switching Characteristics
Table 48: ILOGIC Switching Characteristics
Symbol
Description
Speed Grade
-3
-2
-1
-1L
Units
Setup/Hold
TICE1CK/TICKCE1
CE1 pin Setup/Hold with respect to CLK
0.21/
0.03
0.25/
0.04
0.27/
0.04
0.31/
0.05
ns
TISRCK/TICKSR
SR pin Setup/Hold with respect to CLK
0.66/
–0.08
0.78/
–0.08
0.96/
–0.08
1.09/
–0.11
ns
TIDOCK/TIOCKD
D pin Setup/Hold with respect to CLK without Delay
0.07/
0.41
0.08/
0.46
0.10/
0.54
0.11/
0.64
ns
TIDOCKD/TIOCKDD
DDLY pin Setup/Hold with respect to CLK (using IODELAY)
0.10/
0.32
0.12/
0.36
0.14/
0.42
0.16/
0.50
ns
TIDI
D pin to O pin propagation delay, no Delay
0.15
0.17
0.20
0.23
ns
TIDID
DDLY pin to O pin propagation delay (using IODELAY)
0.19
0.22
0.25
0.28
ns
TIDLO
D pin to Q1 pin using flip-flop as a latch without Delay
0.48
0.54
0.64
0.73
ns
TIDLOD
DDLY pin to Q1 pin using flip-flop as a latch (using IODELAY)
0.52
0.58
0.68
0.78
ns
TICKQ
CLK to Q outputs
0.54
0.61
0.70
0.93
ns
TRQ_ILOGIC
SR pin to OQ/TQ out
0.85
0.97
1.15
1.32
ns
TGSRQ_ILOGIC
Global Set/Reset to Q outputs
7.60
7.60
10.51
10.51
ns
Minimum Pulse Width, SR inputs
0.78
0.95
1.20
1.30
ns, Min
Combinatorial
Sequential Delays
Set/Reset
TRPW_ILOGIC
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
31
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 49: OLOGIC Switching Characteristics
Symbol
Speed Grade
Description
-3
-2
-1
-1L
Units
Setup/Hold
TODCK/TOCKD
D1/D2 pins Setup/Hold with respect to CLK
0.45/
–0.08
0.50/
–0.08
0.54/
–0.08
0.69/
–0.11
ns
TOOCECK/TOCKOCE
OCE pin Setup/Hold with respect to CLK
0.17/
–0.03
0.20/
–0.03
0.22/
–0.03
0.27/
–0.04
ns
TOSRCK/TOCKSR
SR pin Setup/Hold with respect to CLK
0.59/
–0.24
0.62/
–0.24
0.71/
–0.24
0.79/
–0.35
ns
TOTCK/TOCKT
T1/T2 pins Setup/Hold with respect to CLK
0.44/
–0.07
0.51/
–0.07
0.56/
–0.07
0.68/
–0.13
ns
TOTCECK/TOCKTCE
TCE pin Setup/Hold with respect to CLK
0.15/
–0.04
0.19/
–0.04
0.21/
–0.04
0.29/
–0.05
ns
D1 to OQ out or T1 to TQ out
0.78
0.87
1.01
1.15
ns
TOCKQ
CLK to OQ/TQ out
0.54
0.61
0.71
0.80
ns
TRQ
SR pin to OQ/TQ out
0.80
0.90
1.05
1.19
ns
TGSRQ
Global Set/Reset to Q outputs
7.60
7.60
10.51
10.51
ns
Minimum Pulse Width, SR inputs
0.78
0.95
1.20
1.30
ns, Min
Combinatorial
TDOQ
Sequential Delays
Set/Reset
TRPW
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
32
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Input Serializer/Deserializer Switching Characteristics
Table 50: ISERDES Switching Characteristics
Symbol
Description
Speed Grade
-3
-2
-1
-1L
Units
Setup/Hold for Control Lines
TISCCK_BITSLIP/ TISCKC_BITSLIP
BITSLIP pin Setup/Hold with respect to CLKDIV
0.07/
0.15
0.08/
0.16
0.09/
0.17
0.14/
0.17
ns
TISCCK_CE / TISCKC_CE(2)
CE pin Setup/Hold with respect to CLK (for CE1)
0.20/
0.03
0.25/
0.04
0.27/
0.04
0.31/
0.05
ns
TISCCK_CE2 / TISCKC_CE2(2)
CE pin Setup/Hold with respect to CLKDIV (for
CE2)
0.01/
0.27
0.01
0.29
0.01/
0.31
–0.05/
0.35
ns
TISDCK_D /TISCKD_D
D pin Setup/Hold with respect to CLK
0.07/
0.08
0.08/
0.09
0.09/
0.11
0.11/
0.19
ns
TISDCK_DDLY /TISCKD_DDLY
DDLY pin Setup/Hold with respect to CLK (using
IODELAY)(1)
0.10/
0.05
0.12/
0.06
0.14/
0.07
0.16/
0.15
ns
TISDCK_D_DDR /TISCKD_D_DDR
D pin Setup/Hold with respect to CLK at DDR
mode
0.07/
0.08
0.08/
0.09
0.09/
0.11
0.11/
0.19
ns
TISDCK_DDLY_DDR
TISCKD_DDLY_DDR
D pin Setup/Hold with respect to CLK at DDR
mode (using IODELAY)(1)
0.10/
0.05
0.12/
0.06
0.14/
0.07
0.16/
0.15
ns
CLKDIV to out at Q pin
0.57
0.66
0.75
0.88
ns
D input to DO output pin
0.19
0.22
0.25
0.28
ns
Setup/Hold for Data Lines
Sequential Delays
TISCKO_Q
Propagation Delays
TISDO_DO
Notes:
1.
2.
Recorded at 0 tap value.
TISCCK_CE2 and TISCKC_CE2 are reported as TISCCK_CE/TISCKC_CE in TRACE report.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
33
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Output Serializer/Deserializer Switching Characteristics
Table 51: OSERDES Switching Characteristics
Symbol
Description
Speed Grade
-3
-2
-1
-1L
Units
Setup/Hold
TOSDCK_D/TOSCKD_D
D input Setup/Hold with respect to CLKDIV
0.23/
–0.10
0.28/
–0.10
0.31/
–0.10
0.36/
–0.15
ns
TOSDCK_T/TOSCKD_T(1)
T input Setup/Hold with respect to CLK
0.44/
–0.10
0.51/
–0.09
0.56/
–0.08
0.68/
–0.15
ns
TOSDCK_T2/TOSCKD_T2(1)
T input Setup/Hold with respect to CLKDIV
0.25/
–0.10
0.27/
–0.09
0.31/
–0.08
0.47/
–0.15
ns
TOSCCK_OCE/TOSCKC_OCE
OCE input Setup/Hold with respect to CLK
0.17/
–0.03
0.20/
–0.03
0.22/
–0.03
0.27/
–0.04
ns
TOSCCK_S
SR (Reset) input Setup with respect to CLKDIV
0.07
0.07
0.07
0.08
ns
TOSCCK_TCE/TOSCKC_TCE
TCE input Setup/Hold with respect to CLK
0.15/
–0.04
0.19/
–0.04
0.21/
–0.04
0.29/
–0.05
ns
TOSCKO_OQ
Clock to out from CLK to OQ
0.63
0.71
0.82
0.93
ns
TOSCKO_TQ
Clock to out from CLK to TQ
0.63
0.71
0.82
0.93
ns
T input to TQ Out
0.76
0.84
0.97
1.11
ns
Sequential Delays
Combinatorial
TOSDO_TTQ
Notes:
1.
TOSDCK_T2 and TOSCKD_T2 are reported as TOSDCK_T/TOSCKD_T in TRACE report.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
34
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Input/Output Delay Switching Characteristics
Table 52: Input/Output Delay Switching Characteristics
Symbol
Speed Grade
Description
-3
-2
-1
-1L
Units
IDELAYCTRL
TDLYCCO_RDY
FIDELAYCTRL_REF
Reset to Ready for IDELAYCTRL
3.00
3.00
3.00
3.25
µs
Attribute REFCLK frequency =
200.0(1)
200
200
200
200
MHz
Attribute REFCLK frequency =
300.0(1)
300
300
–
–
MHz
±10
±10
±10
±10
MHz
50.00
50.00
50.00
52.50
ns
IDELAYCTRL_REF_PRECISION
REFCLK precision
TIDELAYCTRL_RPW
Minimum Reset pulse width
IODELAY
TIDELAYRESOLUTION
TIDELAYPAT_JIT
IODELAY Chain Delay Resolution
1/(32 x 2 x FREF)
ps
Pattern dependent period jitter in delay
chain for clock pattern.(2)
0
0
0
0
ps
per tap
Pattern dependent period jitter in delay
chain for random data pattern
(PRBS 23).(3)
±5
±5
±5
±5
ps
per tap
Pattern dependent period jitter in delay
chain for random data pattern
(PRBS 23).(4)
±9
±9
±9
±9
ps
per tap
TIODELAY_CLK_MAX
Maximum frequency of CLK input to
IODELAY
500.00
420.00
300.00
300.00
MHz
TIODCCK_CE / TIODCKC_CE
CE pin Setup/Hold with respect to CK
0.45/
–0.09
0.53/
–0.09
0.65/
–0.09
0.84/
–0.14
ns
TIODCK_INC/ TIODCKC_INC
INC pin Setup/Hold with respect to CK
0.23/
–0.02
0.27/
–0.01
0.31/
0.00
0.27/
–0.04
ns
TIODCCK_RST/ TIODCKC_RST
RST pin Setup/Hold with respect to CK
0.57/
–0.08
0.62/
–0.08
0.69/
–0.08
0.74/
–0.13
ns
TIODDO_T
TSCONTROL delay to MUXE/MUXF
switching and through IODELAY
Note 5
Note 5
Note 5
Note 5
ps
TIODDO_IDATAIN
Propagation delay through IODELAY
Note 5
Note 5
Note 5
Note 5
ps
TIODDO_ODATAIN
Propagation delay through IODELAY
Note 5
Note 5
Note 5
Note 5
ps
Notes:
1.
2.
3.
4.
5.
Average Tap Delay at 200 MHz = 78 ps, at 300 MHz = 52 ps.
When HIGH_PERFORMANCE mode is set to TRUE or FALSE.
When HIGH_PERFORMANCE mode is set to TRUE
When HIGH_PERFORMANCE mode is set to FALSE.
Delay depends on IODELAY tap setting. See TRACE report for actual values.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
35
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
CLB Switching Characteristics
Table 53: CLB Switching Characteristics
Symbol
Speed Grade
Description
Units
-3
-2
-1
-1L
An – Dn LUT address to A
0.06
0.07
0.07
0.09
ns, Max
An – Dn LUT address to AMUX/CMUX
0.18
0.20
0.22
0.25
ns, Max
An – Dn LUT address to BMUX_A
0.28
0.31
0.36
0.40
ns, Max
TITO
An – Dn inputs to A – D Q outputs
0.59
0.67
0.79
0.85
ns, Max
TAXA
AX inputs to AMUX output
0.31
0.35
0.42
0.44
ns, Max
TAXB
AX inputs to BMUX output
0.35
0.39
0.47
0.50
ns, Max
TAXC
AX inputs to CMUX output
0.39
0.44
0.52
0.56
ns, Max
TAXD
AX inputs to DMUX output
0.42
0.47
0.55
0.60
ns, Max
TBXB
BX inputs to BMUX output
0.30
0.34
0.39
0.44
ns, Max
TBXD
BX inputs to DMUX output
0.38
0.43
0.50
0.55
ns, Max
TCXB
CX inputs to CMUX output
0.26
0.29
0.34
0.37
ns, Max
TCXD
CX inputs to DMUX output
0.30
0.34
0.40
0.44
ns, Max
TDXD
DX inputs to DMUX output
0.30
0.33
0.38
0.43
ns, Max
TOPCYA
An input to COUT output
0.32
0.36
0.41
0.47
ns, Max
TOPCYB
Bn input to COUT output
0.32
0.36
0.41
0.47
ns, Max
TOPCYC
Cn input to COUT output
0.27
0.30
0.34
0.40
ns, Max
TOPCYD
Dn input to COUT output
0.25
0.28
0.32
0.37
ns, Max
TAXCY
AX input to COUT output
0.25
0.28
0.33
0.36
ns, Max
TBXCY
BX input to COUT output
0.22
0.24
0.28
0.31
ns, Max
TCXCY
CX input to COUT output
0.15
0.17
0.20
0.22
ns, Max
TDXCY
DX input to COUT output
0.14
0.16
0.19
0.21
ns, Max
TBYP
CIN input to COUT output
0.06
0.07
0.08
0.09
ns, Max
TCINA
CIN input to AMUX output
0.21
0.24
0.28
0.30
ns, Max
TCINB
CIN input to BMUX output
0.23
0.25
0.29
0.31
ns, Max
TCINC
CIN input to CMUX output
0.23
0.26
0.30
0.33
ns, Max
TCIND
CIN input to DMUX output
0.25
0.29
0.33
0.36
ns, Max
TCKO
Clock to AQ – DQ outputs
0.29
0.33
0.39
0.44
ns, Max
TSHCKO
Clock to AMUX – DMUX outputs
0.36
0.40
0.47
0.53
ns, Max
Combinatorial Delays
TILO
Sequential Delays
Setup and Hold Times of CLB Flip-Flops Before/After Clock CLK
TDICK/TCKDI
A – D input to CLK on A – D Flip Flops
0.30/
0.17
0.36/
0.18
0.43/
0.20
0.44/
0.25
ns, Min
TCECK_CLB/
TCKCE_CLB
CE input to CLK on A – D Flip Flops
0.20/
0.00
0.25/
0.00
0.32/
0.00
0.32/
0.01
ns, Min
TSRCK/TCKSR
SR input to CLK on A – D Flip Flops
0.39/
–0.07
0.44/
–0.07
0.52/
–0.07
0.58/
–0.08
ns, Min
TCINCK/TCKCIN
CIN input to CLK on A – D Flip Flops
0.16/
0.12
0.19/
0.14
0.24/
0.16
0.23/
0.22
ns, Min
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
36
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 53: CLB Switching Characteristics (Cont’d)
Symbol
Speed Grade
Description
-3
-2
-1
-1L
Units
Set/Reset
TSRMIN
SR input minimum pulse width
0.90
0.90
0.97
0.80
ns, Min
TRQ
Delay from SR input to AQ – DQ flip-flops
0.52
0.58
0.68
0.77
ns, Max
TCEO
Delay from CE input to AQ – DQ flip-flops
0.41
0.48
0.59
0.61
ns, Max
FTOG
Toggle frequency (for export control)
1412.00
1286.40
1098.00
1098.00
MHz
Notes:
1.
2.
A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is
listed, there is no positive hold time.
These items are of interest for Carry Chain applications.
CLB Distributed RAM Switching Characteristics (SLICEM Only)
Table 54: CLB Distributed RAM Switching Characteristics
Symbol
Speed Grade
Description
-3
-2
-1
-1L
Units
Sequential Delays
TSHCKO
Clock to A – B outputs
0.92
1.10
1.36
1.49
ns, Max
TSHCKO_1
Clock to AMUX – BMUX outputs
1.19
1.40
1.71
1.87
ns, Max
Setup and Hold Times Before/After Clock CLK
TDS/TDH
A – D inputs to CLK
0.62/
0.18
0.72/
0.20
0.88/
0.22
0.98/
0.23
ns, Min
TAS/TAH
Address An inputs to clock
0.19/
0.52
0.22/
0.59
0.27/
0.66
0.30/
0.75
ns, Min
TWS/TWH
WE input to clock
0.27/
0.00
0.32/
0.00
0.40/
0.00
0.47/
–0.03
ns, Min
TCECK/TCKCE
CE input to CLK
0.28/
–0.01
0.34/
–0.01
0.41/
–0.01
0.48/
–0.05
ns, Min
TMPW
Minimum pulse width
0.70
0.82
1.00
1.04
ns, Min
TMCP
Minimum clock period
1.40
1.64
2.00
2.08
ns, Min
Clock CLK
Notes:
1.
2.
A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed “best-case”, but if a “0” is
listed, there is no positive hold time.
TSHCKO also represents the CLK to XMUX output. Refer to TRACE report for the CLK to XMUX path.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
37
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
CLB Shift Register Switching Characteristics (SLICEM Only)
Table 55: CLB Shift Register Switching Characteristics
Symbol
Speed Grade
Description
-3
-2
-1
-1L
Units
Sequential Delays
TREG
Clock to A – D outputs
1.11
1.30
1.58
1.74
ns, Max
TREG_MUX
Clock to AMUX – DMUX output
1.37
1.60
1.93
2.12
ns, Max
TREG_M31
Clock to DMUX output via M31 output
1.08
1.27
1.55
1.74
ns, Max
Setup and Hold Times Before/After Clock CLK
TWS/TWH
WE input
0.05/
0.00
0.07/
0.00
0.09/
0.00
0.11/
0.03
ns, Min
TCECK/TCKCE
CE input to CLK
0.06/
–0.01
0.08/
–0.01
0.10/
–0.01
0.12/
0.02
ns, Min
TDS/TDH
A – D inputs to CLK
0.64/
0.18
0.76/
0.21
0.94/
0.24
1.07/
0.23
ns, Min
Minimum pulse width
0.60
0.70
0.85
0.89
ns, Min
Clock CLK
TMPW
Notes:
1.
A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed “best-case”, but if a “0” is
listed, there is no positive hold time.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
38
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Block RAM and FIFO Switching Characteristics
Table 56: Block RAM and FIFO Switching Characteristics
Symbol
Speed Grade
Description
Units
-3
-2
-1
-1L
1.60
1.79
2.08
2.36
ns, Max
Clock CLK to DOUT output (with output
register)(4)(5)
0.60
0.66
0.75
0.83
ns, Max
Clock CLK to DOUT output with ECC
(without output register)(2)(3)
2.62
2.89
3.30
3.73
ns, Max
Clock CLK to DOUT output with ECC (with
output register)(4)(5)
0.71
0.77
0.86
0.94
ns, Max
Clock CLK to DOUT output with Cascade
(without output register)(2)
2.49
2.77
3.18
3.61
ns, Max
Clock CLK to DOUT output with Cascade
(with output register)(4)
1.29
1.41
1.58
1.79
ns, Max
Clock CLK to FIFO flags outputs(6)
0.74
0.81
0.91
0.98
ns, Max
0.90
0.98
1.09
1.21
ns, Max
Block RAM and FIFO Clock-to-Out Delays
TRCKO_DO and TRCKO_DO_REG(1) Clock CLK to DOUT output (without output
register)(2)(3)
TRCKO_DO_ECC and
TRCKO_DO_ECC_REG
TRCKO_CASC and
TRCKO_CASC_REG
TRCKO_FLAGS
outputs(7)
TRCKO_POINTERS
Clock CLK to FIFO pointers
TRCKO_SDBIT_ECC and
TRCKO_SDBIT_ECC_REG
Clock CLK to BITERR (with output
register)
0.62
0.68
0.76
0.82
ns, Max
Clock CLK to BITERR (without output
register)
2.21
2.46
2.84
3.23
ns, Max
TRCKO_PARITY_ECC
Clock CLK to ECCPARITY in ECC encode
only mode
0.86
0.94
1.06
1.18
ns, Max
TRCKO_RDADDR_ECC and
TRCKO_RDADDR_ECC_REG
Clock CLK to RDADDR output with ECC
(without output register)
0.73
0.79
0.90
1.00
ns, Max
Clock CLK to RDADDR output with ECC
(with output register)
0.76
0.82
0.92
1.02
ns, Max
Setup and Hold Times Before/After Clock CLK
TRCCK_ADDR/TRCKC_ADDR
ADDR inputs(8)
0.47/
0.27
0.53/
0.29
0.62/
0.32
0.66/
0.34
ns, Min
TRDCK_DI/TRCKD_DI
DIN inputs(9)
0.84/
0.30
0.95/
0.32
1.11/
0.34
1.26/
0.36
ns, Min
TRDCK_DI_ECC/TRCKD_DI_ECC
DIN inputs with block RAM ECC in
standard mode(9)
0.47/
0.30
0.52/
0.32
0.59/
0.34
0.68/
0.36
ns, Min
DIN inputs with block RAM ECC encode
only(9)
0.68/
0.30
0.75/
0.32
0.85/
0.34
0.97/
0.36
ns, Min
DIN inputs with FIFO ECC in standard
mode(9)
0.77/
0.30
0.87/
0.32
1.02/
0.34
1.16/
0.36
ns, Min
TRCCK_CLK/TRCKC_CLK
Inject single/double bit error in ECC mode
0.90/
0.27
1.02/
0.28
1.20/
0.29
1.56/
0.29
ns, Min
TRCCK_RDEN/TRCKC_RDEN
Block RAM Enable (EN) input
0.31/
0.26
0.35/
0.27
0.41/
0.30
0.44/
0.31
ns, Min
TRCCK_REGCE/TRCKC_REGCE
CE input of output register
0.18/
0.25
0.19/
0.27
0.22/
0.31
0.24/
0.33
ns, Min
TRCCK_RSTREG/TRCKC_RSTREG
Synchronous RSTREG input
0.22/
0.23
0.24/
0.24
0.28/
0.26
0.31/
0.27
ns, Min
TRCCK_RSTRAM/TRCKC_RSTRAM
Synchronous RSTRAM input
0.32/
0.23
0.36/
0.24
0.41/
0.27
0.46/
0.29
ns, Min
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
39
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 56: Block RAM and FIFO Switching Characteristics (Cont’d)
Symbol
Speed Grade
Description
-3
-2
-1
-1L
Units
TRCCK_WE/TRCKC_WE
Write Enable (WE) input (Block RAM only)
0.44/
0.19
0.47/
0.25
0.52/
0.35
0.67/
0.24
ns, Min
TRCCK_WREN/TRCKC_WREN
WREN FIFO inputs
0.47/
0.26
0.50/
0.27
0.55/
0.30
0.68/
0.31
ns, Min
TRCCK_RDEN/TRCKC_RDEN
RDEN FIFO inputs
0.46/
0.26
0.50/
0.27
0.55/
0.30
0.67/
0.31
ns, Min
Reset RST to FIFO Flags/Pointers(10)
0.90
0.98
1.10
1.23
ns, Max
0.22/
0.23
0.24/
0.24
0.28/
0.26
0.31/
0.27
ns, Min
Block RAM
(Write First and No Change modes)
600
540
450
340
MHz
Block RAM (Read First mode)
525
475
400
275
MHz
Block RAM (SDP mode)
525
475
400
275
MHz
Block RAM Cascade
(Write First and No Change modes)
550
490
400
300
MHz
Block RAM Cascade (Read First mode)
475
425
350
235
MHz
FMAX_FIFO
FIFO in all modes
600
540
450
340
MHz
FMAX_ECC
Block RAM and FIFO in ECC configuration
450
400
325
250
MHz
Reset Delays
TRCO_FLAGS
TRCCK_RSTREG/TRCKC_RSTREG
FIFO reset
timing(11)
Maximum Frequency
FMAX
FMAX_CASCADE
Notes:
1.
2.
3.
4.
5.
6.
7.
8.
TRACE will report all of these parameters as TRCKO_DO.
TRCKO_DOR includes TRCKO_DOW, TRCKO_DOPR, and TRCKO_DOPW as well as the B port equivalent timing parameters.
These parameters also apply to synchronous FIFO with DO_REG = 0.
TRCKO_DO includes TRCKO_DOP as well as the B port equivalent timing parameters.
These parameters also apply to multirate (asynchronous) and synchronous FIFO with DO_REG = 1.
TRCKO_FLAGS includes the following parameters: TRCKO_AEMPTY, TRCKO_AFULL, TRCKO_EMPTY, TRCKO_FULL, TRCKO_RDERR, TRCKO_WRERR.
TRCKO_POINTERS includes both TRCKO_RDCOUNT and TRCKO_WRCOUNT.
The ADDR setup and hold must be met when EN is asserted (even when WE is deasserted). Otherwise, block RAM data corruption is
possible.
9. TRCKO_DI includes both A and B inputs as well as the parity inputs of A and B.
10. TRCO_FLAGS includes the following flags: AEMPTY, AFULL, EMPTY, FULL, RDERR, WRERR, RDCOUNT, and WRCOUNT.
11. The FIFO reset must be asserted for at least three positive clock edges.
DSP48E1 Switching Characteristics
Table 57: DSP48E1 Switching Characteristics
Symbol
Description
Speed
-3
-2
-1
-1L
Units
Setup and Hold Times of Data/Control Pins to the Input Register Clock
TDSPDCK_{A, ACIN; B, BCIN}_{AREG; BREG}/
TDSPCKD_{A, ACIN; B, BCIN}_{AREG; BREG}
{A, ACIN, B, BCIN} input to {A, B}
register CLK
0.25/
0.27
0.29/
0.30
0.35/
0.34
0.46/
0.39
ns
TDSPDCK_C_CREG/TDSPCKD_C_CREG
C input to C register CLK
0.16/
0.20
0.19/
0.22
0.22/
0.24
0.33/
0.30
ns
TDSPDCK_D_DREG/TDSPCKD_D_DREG
D input to D register CLK
0.07/
0.31
0.10/
0.34
0.15/
0.39
0.24/
0.45
ns
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
40
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 57: DSP48E1 Switching Characteristics (Cont’d)
Symbol
Description
Speed
-3
-2
-1
-1L
Units
Setup and Hold Times of Data Pins to the Pipeline Register Clock
TDSPDCK_{A, ACIN, B, BCIN}_MREG_MULT/
TDSPCKD_{A, ACIN, B, BCIN}_MREG_MULT
{A, ACIN, B, BCIN} input to M register
CLK
2.36/
0.04
2.70/
0.04
3.21/
0.04
3.66/
0.02
ns
TDSPDCK_{A, D}_ADREG/ TDSPCKD_{A, D}_ADREG
{A, D} input to AD register CLK
1.24/
0.10
1.42/
0.12
1.69/
0.13
1.91/
0.16
ns
Setup and Hold Times of Data/Control Pins to the Output Register Clock
TDSPDCK_{A, ACIN, B, BCIN}_PREG_MULT/
TDSPCKD_{A, ACIN, B, BCIN}_PREG_MULT
{A, ACIN, B, BCIN} input to P register
CLK using multiplier
3.83/
–0.13
4.37/
–0.13
5.20/
–0.13
5.94/
–0.24
ns
TDSPDCK_D_PREG_MULT/
TDSPCKD_D_PREG_MULT
D input to P register CLK
3.62/
–0.47
4.13/
–0.47
4.90/
–0.47
5.61/
–0.77
ns
TDSPDCK_{A, ACIN, B, BCIN}_PREG/
TDSPCKD_{A, ACIN, B, BCIN}_PREG
{A, ACIN, B, BCIN} input to P register
CLK not using multiplier
1.59/
–0.13
1.81/
–0.13
2.15/
–0.13
2.44/
–0.24
ns
TDSPDCK_C_PREG/ TDSPCKD_C_PREG
C input to P register CLK
1.42/
–0.10
1.61/
–0.10
1.91/
–0.10
2.16/
–0.19
ns
TDSPDCK_{PCIN, CARRYCASCIN, MULTSIGNIN}_PREG/
TDSPCKD_{PCIN, CARRYCASCIN, MULTSIGNIN}_PREG
{PCIN, CARRYCASCIN, MULTSIGNIN}
input to P register CLK
1.23/
–0.02
1.41/
–0.02
1.67/
–0.02
1.91/
–0.07
ns
TDSPDCK_{CEA; CEB}_{AREG; BREG}/
TDSPCKD_{CEA; CEB}_{AREG; BREG}
{CEA; CEB} input to {A; B} register CLK
0.14/
0.19
0.17/
0.22
0.22/
0.25
0.30/
0.28
ns
TDSPDCK_CEC_CREG/ TDSPCKD_CEC_CREG
CEC input to C register CLK
0.15/
0.18
0.18/
0.20
0.24/
0.23
0.31/
0.26
ns
TDSPDCK_CED_DREG/ TDSPCKD_CED_DREG
CED input to D register CLK
0.20/
0.12
0.24/
0.13
0.31/
0.14
0.43/
0.16
ns
TDSPDCK_CEM_MREG/ TDSPCKD_CEM_MREG
CEM input to M register CLK
0.16/
0.19
0.20/
0.21
0.26/
0.25
0.32/
0.28
ns
TDSPDCK_CEP_PREG/ TDSPCKD_CEP_PREG
CEP input to P register CLK
0.32/
0.02
0.38/
0.02
0.46/
0.03
0.54/
0.04
ns
TDSPDCK_{RSTA; RSTB}_{AREG; BREG}/
TDSPCKD_{RSTA; RSTB}_{AREG; BREG}
{RSTA, RSTB} input to {A, B} register
CLK
0.27/
0.17
0.31/
0.19
0.38/
0.22
0.41/
0.25
ns
TDSPDCK_RSTC_CREG/ TDSPCKD_RSTC_CREG
RSTC input to C register CLK
0.18/
0.08
0.20/
0.08
0.23/
0.09
0.27/
0.11
ns
TDSPDCK_RSTD_DREG/ TDSPCKD_RSTD_DREG
RSTD input to D register CLK
0.28/
0.15
0.32/
0.16
0.38/
0.19
0.45/
0.21
ns
TDSPDCK_RSTM_MREG/ TDSPCKD_RSTM_MREG
RSTM input to M register CLK
0.20/
0.24
0.23/
0.26
0.26/
0.30
0.29/
0.34
ns
TDSPDCK_RSTP_PREG/ TDSPCKD_RSTP_PREG
RSTP input to P register CLK
0.26/
0.04
0.30/
0.04
0.35/
0.05
0.43/
0.06
ns
Setup and Hold Times of the CE Pins
Setup and Hold Times of the RST Pins
Combinatorial Delays from Input Pins to Output Pins
TDSPDO_{A, B}_{P, CARRYOUT}_MULT
{A, B} input to {P, CARRYOUT} output
using multiplier
3.76
4.29
5.08
5.87
ns
TDSPDO_D_{P, CARRYOUT}_MULT
D input to {P, CARRYOUT} output using
multiplier
3.57
4.07
4.82
5.57
ns
TDSPDO_{A, B}_{P, CARRYOUT}
{A, B} input to {P, CARRYOUT} output
not using multiplier
1.55
1.76
2.07
2.41
ns
TDSPDO_{C, CARRYIN}_{P, CARRYOUT}
{C, CARRYIN} input to {P, CARRYOUT}
output
1.38
1.56
1.83
2.13
ns
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
41
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 57: DSP48E1 Switching Characteristics (Cont’d)
Symbol
Description
Speed
-3
-2
-1
-1L
Units
Combinatorial Delays from Input Pins to Cascading Output Pins
TDSPDO_{A; B}_{ACOUT; BCOUT}
{A, B} input to {ACOUT, BCOUT} output
0.49
0.56
0.65
0.73
ns
TDSPDO_{A, B}_{PCOUT, CARRYCASCOUT,
{A, B} input to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output using multiplier
3.87
4.42
5.24
6.09
ns
D input to {PCOUT, CARRYCASCOUT,
MULTSIGNOUT} output using multiplier
3.66
4.17
4.94
5.76
ns
TDSPDO_{A, B}_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}
{A, B} input to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output not using multiplier
1.64
1.86
2.19
2.60
ns
TDSPDO__{C, CARRYIN}_{PCOUT,
CARRYCASCOUT,MULTSIGNOUT}
{C, CARRYIN} input to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output
1.46
1.66
1.95
2.32
ns
MULTSIGNOUT}_MULT
TDSPDO_D_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_MULT
Combinatorial Delays from Cascading Input Pins to All Output Pins
TDSPDO_{ACIN, BCIN}_{P, CARRYOUT}_MULT
{ACIN, BCIN} input to {P, CARRYOUT}
output using multiplier
3.67
4.19
4.97
5.75
ns
TDSPDO_{ACIN, BCIN}_{P, CARRYOUT
{ACIN, BCIN} input to {P, CARRYOUT}
output not using multiplier
1.43
1.63
1.92
2.25
ns
TDSPDO_{ACIN; BCIN}_{ACOUT; BCOUT}
{ACIN, BCIN} input to {ACOUT,
BCOUT} output
0.36
0.42
0.49
0.56
ns
TDSPDO_{ACIN, BCIN}_{PCOUT, CARRYCASCOUT,
{ACIN, BCIN} input to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output using multiplier
3.76
4.29
5.10
5.94
ns
{ACIN, BCIN} input to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output not using multiplier
1.52
1.73
2.05
2.44
ns
{PCIN, CARRYCASCIN, MULTSIGNIN}
input to {P, CARRYOUT} output
1.19
1.35
1.60
1.87
ns
{PCIN, CARRYCASCIN, MULTSIGNIN}
input to {PCOUT, CARRYCASCOUT,
MULTSIGNOUT} output
1.28
1.46
1.72
2.06
ns
MULTSIGNOUT}_MULT
TDSPDO_{ACIN, BCIN}_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}
TDSPDO_{PCIN, CARRYCASCIN, MULTSIGNIN}_
{P, CARRYOUT}
TDSPDO_{PCIN, CARRYCASCIN, MULTSIGNIN}_ {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
Clock to Outs from Output Register Clock to Output Pins
TDSPCKO_{P, CARRYOUT}_PREG
CLK (PREG) to {P, CARRYOUT} output
0.38
0.43
0.50
0.57
ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_PREG
CLK (PREG) to {CARRYCASCOUT,
PCOUT, MULTSIGNOUT} output
0.50
0.56
0.66
0.76
ns
Clock to Outs from Pipeline Register Clock to Output Pins
TDSPCKO_{P, CARRYOUT}_MREG
CLK (MREG) to {P, CARRYOUT} output
1.72
1.96
2.30
2.69
ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
CLK (MREG) to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output
1.81
2.06
2.43
2.88
ns
TDSPCKO_{P, CARRYOUT}_ADREG_MULT
CLK (ADREG) to {P, CARRYOUT}
output
2.79
3.16
3.72
4.32
ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_ADREG_MULT
CLK (ADREG) to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output
2.87
3.26
3.84
4.51
ns
MULTSIGNOUT}_MREG
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
42
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 57: DSP48E1 Switching Characteristics (Cont’d)
Symbol
Speed
Description
-3
-2
-1
-1L
Units
Clock to Outs from Input Register Clock to Output Pins
TDSPCKO_{P, CARRYOUT}_{AREG, BREG}_MULT
CLK (AREG, BREG) to {P, CARRYOUT}
output using multiplier
3.97
4.52
5.36
6.20
ns
TDSPCKO_{P, CARRYOUT}_{AREG, BREG}
CLK (AREG, BREG) to {P, CARRYOUT}
output not using multiplier
1.70
1.93
2.27
2.65
ns
TDSPCKO_{P, CARRYOUT}_CREG
CLK (CREG) to {P, CARRYOUT} output
1.70
1.93
2.27
2.80
ns
TDSPCKO_{P, CARRYOUT}_DREG_MULT
CLK (DREG) to {P, CARRYOUT} output
3.89
4.44
5.25
6.07
ns
Clock to Outs from Input Register Clock to Cascading Output Pins
TDSPCKO_{ACOUT; BCOUT}_{AREG; BREG}
CLK (AREG, BREG) to {P, CARRYOUT}
output
0.66
0.76
0.89
1.01
ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_{AREG, BREG}_MULT
CLK (AREG, BREG) to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output using multiplier
4.05
4.63
5.49
6.39
ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_{AREG, BREG}
CLK (AREG, BREG) to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output not using multiplier
1.79
2.03
2.40
2.84
ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_DREG_MULT
CLK (DREG) to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output using multiplier
3.98
4.54
5.38
6.26
ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_CREG
CLK (CREG) to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output
1.78
2.03
2.40
2.99
ns
FMAX
With all registers used
600
540
450
410
MHz
FMAX_PATDET
With pattern detector
551
483
408
356
MHz
FMAX_MULT_NOMREG
Two register multiply without MREG
356
311
262
224
MHz
FMAX_MULT_NOMREG_PATDET
Two register multiply without MREG
with pattern detect
327
286
241
211
MHz
FMAX_PREADD_MULT_NOADREG
Without ADREG
398
347
292
254
MHz
FMAX_PREADD_MULT_NOADREG_PATDET
Without ADREG with pattern detect
398
347
292
254
MHz
FMAX_NOPIPELINEREG
Without pipeline registers (MREG,
ADREG)
266
233
196
171
MHz
FMAX_NOPIPELINEREG_PATDET
Without pipeline registers (MREG,
ADREG) with pattern detect
250
219
184
160
MHz
Maximum Frequency
Configuration Switching Characteristics
Table 58: Configuration Switching Characteristics
Symbol
Description
Speed Grade
-3
-2
-1
-1L
Units
Power-up Timing Characteristics
TPL(1)
Program Latency
5
5
5
5
ms, Max
TPOR(1)
Power-on-Reset
15/55
15/55
15/55
15/55
ms, Min/Max
TICCK
CCLK (output) delay
400
400
400
400
ns, Min
TPROGRAM
Program Pulse Width
250
250
250
250
ns, Min
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
43
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 58: Configuration Switching Characteristics (Cont’d)
Symbol
Description
Speed Grade
-3
-2
-1
-1L
Units
Master/Slave Serial Mode Programming Switching
TDCCK/TCCKD
DIN Setup/Hold, slave mode
4.0/0.0
4.0/0.0
4.0/0.0
4.5/0.0
ns, Min
TDSCCK/TSCCKD
DIN Setup/Hold, master mode
4.0/0.0
4.0/0.0
4.0/0.0
5.0/0.0
ns, Min
TCCO
DOUT at 2.5V
6
6
6
7
ns, Max
DOUT at 1.8V
6
6
6
7
ns, Max
FMCCK
Maximum CCLK frequency, serial modes
100
100
100
100
MHz,
Max
FMCCKTOL
Frequency Tolerance, master mode with
respect to nominal CCLK.
55
55
55
55
%
FMSCCK
Slave mode external CCLK
100
100
100
100
MHz
SelectMAP Mode Programming Switching
TSMDCCK/TSMCCKD
SelectMAP Data Setup/Hold
4.0/0.0
4.0/0.0
4.0/0.0
5.5/0.0
ns, Min
TSMCSCCK/TSMCCKCS
CSI_B Setup/Hold
4.0/0.0
4.0/0.0
4.0/0.0
4.5/0.0
ns, Min
TSMCCKW/TSMWCCK
RDWR_B Setup/Hold
10.0/0.0 10.0/0.0
10.0/0.0
13.5/0.0
ns, Min
TSMCKCSO
CSO_B clock to out
(330 Ω pull-up resistor required)
6
6
6
7
ns, Min
TSMCO
CCLK to DATA out in readback at 2.5V
6
6
6
7
ns, Max
CCLK to DATA out in readback at 1.8V
6
6
6
7
ns, Max
CCLK to BUSY out in readback at 2.5V
6
6
6
7
ns, Max
CCLK to BUSY out in readback at 1.8V
6
6
6
7
ns, Max
TSMCKBY
FSMCCK
Maximum Frequency with respect to
nominal CCLK
100
100
100
70
MHz, Max
FRBCCK
Maximum Readback Frequency with
respect to nominal CCLK
100
100
100
100
MHz, Max
FMCCKTOL
Frequency tolerance, master mode with
respect to nominal CCLK
55
55
55
55
%
3.0/2.0
3.0/2.0
3.0/2.0
4.0/2.0
ns, Min
Boundary-Scan Port Timing Specifications
TTAPTCK/TTCKTAP
TMS and TDI Setup time before TCK/
Hold time after TCK
TTCKTDO
TCK falling edge to TDO output valid at
2.5V
6
6
6
7
ns, Max
TCK falling edge to TDO output valid at
1.8V
6
6
6
7
ns, Max
FTCK
Maximum configuration TCK clock
frequency
66
66
66
66
MHz, Max
FTCKB_MIN
Minimum boundary-scan TCK clock
frequency when using IEEE Std 1149.6
(AC-JTAG). Minimum operating
temperature for IEEE Std 1149.6 is 0°C.
15
15
15
15
MHz, Min
FTCKB
Maximum boundary-scan TCK clock
frequency
66
66
66
66
MHz, Max
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
44
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 58: Configuration Switching Characteristics (Cont’d)
Symbol
Description
Speed Grade
Units
-3
-2
-1
-1L
ADDR[25:0], RS[1:0], FCS_B, FOE_B,
FWE_B outputs valid after CCLK rising
edge at 2.5V
6
6
6
7
ns
ADDR[25:0], RS[1:0], FCS_B, FOE_B,
FWE_B outputs valid after CCLK rising
edge at 1.8V
6
6
6
7
ns
TBPIDCC/TBPICCD
Setup/Hold on D[15:0] data input pins
4.0/0.0
4.0/0.0
4.0/0.0
5.0/0.0
ns
TINITADDR
Minimum period of initial ADDR[25:0]
address cycles
3
3
3
3
CCLK cycles
3.0/0.0
3.0/0.0
3.0/0.0
3.5/0.0
ns
BPI Master Flash Mode Programming Switching
TBPICCO(2)
SPI Master Flash Mode Programming Switching
TSPIDCC/TSPIDCCD
DIN Setup/Hold before/after the rising
CCLK edge
TSPICCM
MOSI clock to out at 2.5V
6
6
6
7
ns
MOSI clock to out at 1.8V
6
6
6
7
ns
FCS_B clock to out at 2.5V
6
6
6
7
ns
FCS_B clock to out at 1.8V
6
6
6
7
ns
FS[2:0] to INIT_B rising edge Setup and
Hold
2
2
2
2
µs
TMCCKL
Master CCLK clock Low time duty cycle
45/55
45/55
45/55
45/55
%, Min/Max
TMCCKH
Master CCLK clock High time duty cycle
45/55
45/55
45/55
45/55
%, Min/Max
TSPICCFC
TFSINIT/TFSINITH
CCLK Output (Master Modes)
CCLK Input (Slave Modes)
TSCCKL
Slave CCLK clock minimum Low time
2.5
2.5
2.5
2.5
ns, Min
TSCCKH
Slave CCLK clock minimum High time
2.5
2.5
2.5
2.5
ns, Min
Dynamic Reconfiguration Port (DRP) for MMCM Before and After DCLK
FDCK
Maximum frequency for DCLK
200
200
200
200
MHz
TMMCMDCK_DADDR/
TMMCMCKD_DADDR
DADDR Setup/Hold
1.25/
0.00
1.40/
0.00
1.63/
0.00
1.64/
0.00
ns
TMMCMDCK_DI/TMMCMCKD_DI
DI Setup/Hold
1.25/
0.00
1.40/
0.00
1.63/
0.00
1.64/
0.00
ns
TMMCMDCK_DEN/TMMCMCKD_DEN
DEN Setup/Hold time
1.25/
0.00
1.40/
0.00
1.63/
0.00
1.64/
0.00
ns
TMMCMDCK_DWE/TMMCMCKD_DWE
DWE Setup/Hold time
1.25/
0.00
1.40/
0.00
1.63/
0.00
1.64/
0.00
ns
TMMCMCKO_DO
CLK to out of DO(3)
2.60
3.02
3.64
3.68
ns
TMMCMCKO_DRDY
CLK to out of DRDY
0.32
0.34
0.38
0.38
ns
Notes:
1.
2.
3.
To support longer delays in configuration, use the design solutions described in Virtex-6 FPGA Configuration User Guide.
Only during configuration, the last edge is determined by a weak pull-up/pull-down resistor in the I/O.
DO will hold until next DRP operation.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
45
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Clock Buffers and Networks
Table 59: Global Clock Switching Characteristics (Including BUFGCTRL)
Symbol
Description
Speed Grade
-3
-2
-1
-1L
Units
TBCCCK_CE/TBCCKC_CE(1)
CE pins Setup/Hold
0.11/
0.00
0.13/
0.00
0.16/
0.00
0.13/
0.00
ns
TBCCCK_S/TBCCKC_S(1)
S pins Setup/Hold
0.11/
0.00
0.13/
0.00
0.16/
0.00
0.13/
0.00
ns
TBCCKO_O(2)
BUFGCTRL delay from I0/I1 to O
0.07
0.08
0.10
0.10
ns
Global clock tree (BUFG)
800
750
700
667
MHz
Maximum Frequency
FMAX
Notes:
1.
2.
TBCCCK_CE and TBCCKC_CE must be satisfied to assure glitch-free operation of the global clock when switching between clocks. These
parameters do not apply to the BUFGMUX_VIRTEX4 primitive that assures glitch-free operation. The other global clock setup and hold times
are optional; only needing to be satisfied if device operation requires simulation matches on a cycle-for-cycle basis when switching between
clocks.
TBGCKO_O (BUFG delay from I0 to O) values are the same as TBCCKO_O values.
Table 60: Input/Output Clock Switching Characteristics (BUFIO)
Symbol
TBIOCKO_O
Description
Speed Grade
Units
-3
-2
-1
-1L
Clock to out delay from I to O
0.14
0.16
0.18
0.21
ns
I/O clock tree (BUFIO)
800
800
710
710
MHz
Maximum Frequency
FMAX
Table 61: Regional Clock Switching Characteristics (BUFR)
Symbol
Description
Speed Grade
-3
-2
-1
-1L
Units
TBRCKO_O
Clock to out delay from
I to O
0.56
0.62
0.73
0.82
ns
TBRCKO_O_BYP
Clock to out delay from I to O with Divide Bypass
attribute set
0.28
0.31
0.36
0.41
ns
TBRDO_O
Propagation delay from CLR to O
0.69
0.74
0.80
1.12
ns
Regional clock tree (BUFR)
500
420
300
300
MHz
Maximum Frequency
FMAX(1)
Notes:
1.
The maximum input frequency to the BUFR is the BUFIO FMAX frequency.
Table 62: Horizontal Clock Buffer Switching Characteristics (BUFH)
Symbol
Description
Speed Grade
-3
-2
-1
-1L
Units
TBHCKO_O
BUFH delay from I to O
0.10
0.11
0.13
0.15
ns
TBHCCK_CE/TBHCKC_CE
CE pin Setup and Hold
0.04/
0.04
0.04/
0.04
0.05/
0.05
0.04/
0.04
ns
Horizontal clock buffer (BUFH)
800
750
700
667
MHz
Maximum Frequency
FMAX
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
46
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
MMCM Switching Characteristics
Table 63: MMCM Specification
Symbol
Speed Grade
Description
-3
-2
-1
-1L
Units
FINMAX
Maximum Input Clock Frequency
800
750
700
700
MHz
FINMIN
Minimum Input Clock Frequency
10
10
10
10
MHz
FINJITTER
Maximum Input Clock Period Jitter
FINDUTY
Allowable Input Duty Cycle: 19—49 MHz
25/75
%
Allowable Input Duty Cycle: 50—199 MHz
30/70
%
Allowable Input Duty Cycle: 200—399 MHz
35/65
%
Allowable Input Duty Cycle: 400—499 MHz
40/60
%
Allowable Input Duty Cycle: >500 MHz
45/55
%
< 20% of clock input period or 1 ns Max
FMIN_PSCLK
Minimum Dynamic Phase Shift Clock Frequency
0.01
0.01
0.01
0.01
MHz
FMAX_PSCLK
Maximum Dynamic Phase Shift Clock Frequency
550
500
450
450
MHz
FVCOMIN
Minimum MMCM VCO Frequency
600
600
600
600
MHz
FVCOMAX
Maximum MMCM VCO Frequency
FBANDWIDTH
TSTATPHAOFFSET
TOUTJITTER
1600
1440
1200
1200
MHz
Low MMCM Bandwidth at
Typical(1)
1.00
1.00
1.00
1.00
MHz
High MMCM Bandwidth at
Typical(1)
4.00
4.00
4.00
4.00
MHz
0.12
0.12
0.12
0.12
ns
Static Phase Offset of the MMCM
MMCM Output
Outputs(2)
Jitter(3)
Note 1
TOUTDUTY
MMCM Output Clock Duty Cycle
TLOCKMAX
FOUTMAX
Precision(4)
0.15
0.20
0.20
0.20
ns
MMCM Maximum Lock Time
100
100
100
100
µs
MMCM Maximum Output Frequency
800
750
700
700
MHz
4.69
4.69
4.69
4.69
MHz
Frequency(5)(6)
FOUTMIN
MMCM Minimum Output
TEXTFDVAR
External Clock Feedback Variation
RSTMINPULSE
Minimum Reset Pulse Width
1.5
1.5
1.5
1.5
ns
FPFDMAX
Maximum Frequency at the Phase Frequency
Detector with Bandwidth Set to High or Optimized
550
500
450
450
MHz
Maximum Frequency at the Phase Frequency
Detector with Bandwidth Set to Low
300
300
300
300
MHz
FPFDMIN
Minimum Frequency at the Phase Frequency
Detector
10.00
10.00
10.00
10.00
MHz
TFBDELAY
Maximum Delay in the Feedback Path
TMMCMDCK_PSEN/
TMMCMCKD_PSEN
Setup and Hold of Phase Shift Enable
1.04
0.00
1.04
0.00
1.04
0.00
1.04
0.00
ns
TMMCMDCK_PSINCDEC/
TMMCMCKD_PSINCDEC
Setup and Hold of Phase Shift
Increment/Decrement
1.04
0.00
1.04
0.00
1.04
0.00
1.04
0.00
ns
TMMCMCKO_PSDONE
Phase Shift Clock-to-Out of PSDONE
0.32
0.34
0.38
0.38
ns
< 20% of clock input period or 1 ns Max
3 ns Max or one CLKIN cycle
Notes:
1.
2.
3.
4.
5.
6.
The MMCM does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies.
The static offset is measured between any MMCM outputs with identical phase.
Values for this parameter are available in the Architecture Wizard.
Includes global clock buffer.
Calculated as FVCO/128 assuming output duty cycle is 50%.
When CASCADE4_OUT = TRUE, FOUTMIN is 0.036 MHz.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
47
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Virtex-6 Device Pin-to-Pin Output Parameter Guidelines
All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are
listed in Table 64. Values are expressed in nanoseconds unless otherwise noted.
Table 64: Global Clock Input to Output Delay Without MMCM
Symbol
Description
Device
Speed Grade
-3
-2
-1
-1L
Units
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, without MMCM.
TICKOF
Global Clock input and OUTFF without
MMCM
XC6VLX75T
4.91
5.32
5.88
6.02
ns
XC6VLX130T
4.89
5.33
6.00
6.13
ns
XC6VLX195T
5.02
5.46
6.13
6.27
ns
XC6VLX240T
5.02
5.46
6.13
6.27
ns
XC6VLX365T
5.30
5.75
6.43
6.37
ns
XC6VLX550T
N/A
6.02
6.72
6.60
ns
XC6VLX760
N/A
6.26
6.97
6.87
ns
XC6VSX315T
5.40
5.85
6.54
6.49
ns
XC6VSX475T
N/A
6.01
6.71
6.61
ns
XC6VHX250T
5.18
5.63
6.30
N/A
ns
XC6VHX255T
5.20
5.66
6.34
N/A
ns
XC6VHX380T
5.38
5.84
6.53
N/A
ns
XC6VHX565T
N/A
5.85
6.56
N/A
ns
Notes:
1.
Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all
accessible IOB and CLB flip-flops are clocked by the global clock net.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
48
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 65: Global Clock Input to Output Delay With MMCM
Symbol
Description
Device
Speed Grade
-3
-2
-1
-1L
Units
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with MMCM.
TICKOFMMCMGC
Global Clock Input and OUTFF with
MMCM
XC6VLX75T
2.34
2.50
2.77
2.85
ns
XC6VLX130T
2.35
2.51
2.78
2.87
ns
XC6VLX195T
2.36
2.52
2.79
2.88
ns
XC6VLX240T
2.36
2.52
2.79
2.88
ns
XC6VLX365T
2.37
2.53
2.79
2.89
ns
XC6VLX550T
N/A
2.55
2.82
2.93
ns
XC6VLX760
N/A
2.54
2.82
2.92
ns
XC6VSX315T
2.35
2.51
2.79
2.87
ns
XC6VSX475T
N/A
2.43
2.70
2.79
ns
XC6VHX250T
2.36
2.53
2.80
N/A
ns
XC6VHX255T
2.46
2.63
2.91
N/A
ns
XC6VHX380T
2.39
2.59
2.83
N/A
ns
XC6VHX565T
N/A
2.54
2.81
N/A
ns
Notes:
1.
2.
Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all
accessible IOB and CLB flip-flops are clocked by the global clock net.
MMCM output jitter is already included in the timing calculation.
Table 66: Clock-Capable Clock Input to Output Delay With MMCM
Symbol
Description
Device
Speed Grade
-3
-2
-1
-1L
Units
LVCMOS25 Clock-capable Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with MMCM.
TICKOFMMCMCC
Clock-capable Clock Input and OUTFF
with MMCM
XC6VLX75T
2.22
2.38
2.63
2.72
ns
XC6VLX130T
2.24
2.39
2.65
2.74
ns
XC6VLX195T
2.24
2.40
2.65
2.75
ns
XC6VLX240T
2.24
2.40
2.65
2.75
ns
XC6VLX365T
2.25
2.42
2.65
2.76
ns
XC6VLX550T
N/A
2.43
2.68
2.80
ns
XC6VLX760
N/A
2.42
2.69
2.79
ns
XC6VSX315T
2.23
2.38
2.65
2.73
ns
XC6VSX475T
N/A
2.30
2.57
2.66
ns
XC6VHX250T
2.25
2.41
2.67
N/A
ns
XC6VHX255T
2.35
2.51
2.78
N/A
ns
XC6VHX380T
2.27
2.43
2.69
N/A
ns
XC6VHX565T
N/A
2.41
2.68
N/A
ns
Notes:
1.
2.
Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all
accessible IOB and CLB flip-flops are clocked by the global clock net.
MMCM output jitter is already included in the timing calculation.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
49
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Virtex-6 Device Pin-to-Pin Input Parameter Guidelines
All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are
listed in Table 67. Values are expressed in nanoseconds unless otherwise noted.
Table 67: Global Clock Input Setup and Hold Without MMCM
Symbol
Description
Device
Speed Grade
-3
-2
-1
-1L
Units
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1)
TPSFD/ TPHFD
Full Delay (Legacy Delay or Default
Delay)
Global Clock Input and IFF(2) without
MMCM
XC6VLX75T
1.33/
0.03
1.44/
0.03
1.75/
0.03
2.18/
–0.22
ns
XC6VLX130T
1.31/
–0.08
1.54/
–0.08
1.88/
–0.08
2.31/
–0.12
ns
XC6VLX195T
1.36/
–0.11
1.60/
–0.11
1.97/
–0.11
2.40/
–0.25
ns
XC6VLX240T
1.36/
–0.11
1.60/
–0.11
1.97/
–0.11
2.40/
–0.25
ns
XC6VLX365T
1.79/
–0.28
1.87/
–0.28
2.17/
–0.28
2.48/
–0.24
ns
XC6VLX550T
N/A
2.22/
–0.12
2.36/
–0.12
2.77/
–0.26
ns
XC6VLX760
N/A
2.19/
–0.24
2.35/
–0.24
2.71/
–0.21
ns
XC6VSX315T
1.75/
–0.09
1.85/
–0.09
2.06/
–0.09
2.47/
–0.24
ns
XC6VSX475T
N/A
2.14/
–0.14
2.31/
–0.14
2.71/
–0.30
ns
XC6VHX250T
1.93/
–0.22
2.04/
–0.22
2.25/
–0.22
N/A
ns
XC6VHX255T
1.81/
–0.33
2.11/
–0.33
2.56/
–0.33
N/A
ns
XC6VHX380T
1.93/
–0.11
2.04/
–0.11
2.25/
–0.11
N/A
ns
XC6VHX565T
N/A
2.38/
–0.12
2.54/
–0.12
N/A
ns
Notes:
1.
2.
3.
Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the
Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global
Clock input signal using the fastest process, lowest temperature, and highest voltage.
IFF = Input Flip-Flop or Latch
A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0"
is listed, there is no positive hold time.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
50
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 68: Global Clock Input Setup and Hold With MMCM
Symbol
Description
Device
Speed Grade
-3
-2
-1
-1L
Units
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1)
TPSMMCMGC/
TPHMMCMGC
No Delay Global Clock Input and IFF(2)
with MMCM
XC6VLX75T
1.45/
–0.18
1.57/
–0.18
1.72/
–0.18
1.78/
–0.08
ns
XC6VLX130T
1.53/
–0.18
1.65/
–0.18
1.81/
–0.18
1.87/
–0.07
ns
XC6VLX195T
1.54/
–0.17
1.66/
–0.17
1.82/
–0.17
1.87/
–0.08
ns
XC6VLX240T
1.54/
–0.17
1.66/
–0.17
1.82/
–0.17
1.87/
–0.08
ns
XC6VLX365T
1.55/
–0.18
1.67/
–0.18
1.83/
–0.18
1.87/
–0.07
ns
XC6VLX550T
N/A
1.84/
–0.17
2.02/
–0.17
2.06/
–0.06
ns
XC6VLX760
N/A
2.26/
–0.13
2.49/
–0.13
2.06/
–0.03
ns
XC6VSX315T
1.56/
–0.18
1.68/
–0.18
1.84/
–0.18
1.89/
–0.08
ns
XC6VSX475T
N/A
1.85/
–0.23
2.03/
–0.23
2.07/
–0.13
ns
XC6VHX250T
1.52/
–0.17
1.64/
–0.17
1.80/
–0.17
N/A
ns
XC6VHX255T
1.52/
–0.12
1.64/
–0.12
1.80/
–0.12
N/A
ns
XC6VHX380T
1.68/
–0.16
1.81/
–0.16
1.99/
–0.16
N/A
ns
XC6VHX565T
N/A
1.81/
–0.16
1.99/
–0.16
N/A
ns
Notes:
1.
2.
3.
Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the
Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global
Clock input signal using the fastest process, lowest temperature, and highest voltage.
IFF = Input Flip-Flop or Latch
Use IBIS to determine any duty-cycle distortion incurred using various standards.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
51
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 69: Clock-Capable Clock Input Setup and Hold With MMCM
Symbol
Description
Device
Speed Grade
-3
-2
-1
-1L
Units
Input Setup and Hold Time Relative to Clock-capable Clock Input Signal for LVCMOS25 Standard.(1)
TPSMMCMCC/
TPHMMCMCC
No Delay Clock-capable Clock Input and XC6VLX75T
IFF(2) with MMCM
1.56/
–0.25
1.69/
–0.25
1.86/
–0.25
1.91/
–0.15
ns
XC6VLX130T
1.64/
–0.25
1.78/
–0.25
1.95/
–0.25
2.00/
–0.14
ns
XC6VLX195T
1.65/
–0.24
1.79/
–0.24
1.96/
–0.24
2.01/
–0.15
ns
XC6VLX240T
1.65/
–0.24
1.79/
–0.24
1.96/
–0.24
2.01/
–0.15
ns
XC6VLX365T
1.66/
–0.25
1.79/
–0.25
1.97/
–0.25
2.02/
–0.15
ns
XC6VLX550T
N/A
1.97/
–0.24
2.16/
–0.24
2.19/
–0.14
ns
XC6VLX760
N/A
2.39/
–0.20
2.63/
–0.20
2.21/
–0.10
ns
XC6VSX315T
1.67/
–0.25
1.80/
–0.25
1.98/
–0.25
2.03/
–0.16
ns
XC6VSX475T
N/A
1.98/
–0.29
2.17/
–0.29
2.21/
–0.20
ns
XC6VHX250T
1.63/
–0.24
1.76/
–0.24
1.94/
–0.24
N/A
ns
XC6VHX255T
1.63/
–0.19
1.76/
–0.19
1.94/
–0.19
N/A
ns
XC6VHX380T
1.80/
–0.23
1.94/
–0.23
2.13/
–0.23
N/A
ns
XC6VHX565T
N/A
1.94/
–0.23
2.13/
–0.23
N/A
ns
Notes:
1.
2.
3.
Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the
Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global
Clock input signal using the fastest process, lowest temperature, and highest voltage.
IFF = Input Flip-Flop or Latch
Use IBIS to determine any duty-cycle distortion incurred using various standards.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
52
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Clock Switching Characteristics
The parameters in this section provide the necessary values for calculating timing budgets for Virtex-6 FPGA clock
transmitter and receiver data-valid windows.
Table 70: Duty Cycle Distortion and Clock-Tree Skew
Symbol
Description
TDCD_CLK
Global Clock Tree Duty Cycle
Distortion(1)
TCKSKEW
Global Clock Tree Skew(2)
Device
Speed Grade
Units
-3
-2
-1
-1L
0.12
0.12
0.12
0.12
ns
XC6VLX75T
0.15
0.16
0.18
0.17
ns
XC6VLX130T
0.25
0.26
0.29
0.28
ns
XC6VLX195T
0.26
0.27
0.31
0.30
ns
XC6VLX240T
0.26
0.27
0.31
0.30
ns
XC6VLX365T
0.28
0.29
0.31
0.31
ns
XC6VLX550T
N/A
0.50
0.54
0.54
ns
XC6VLX760
N/A
0.51
0.56
0.56
ns
XC6VSX315T
0.27
0.28
0.32
0.30
ns
XC6VSX475T
N/A
0.39
0.44
0.42
ns
XC6VHX250T
0.25
0.26
0.29
N/A
ns
XC6VHX255T
0.35
0.37
0.41
N/A
ns
XC6VHX380T
0.45
0.47
0.52
N/A
ns
XC6VHX565T
N/A
0.46
0.51
N/A
ns
All
TDCD_BUFIO
I/O clock tree duty cycle distortion
All
0.08
0.08
0.08
0.08
ns
TBUFIOSKEW
I/O clock tree skew across one clock
region
All
0.03
0.03
0.03
0.02
ns
TBUFIOSKEW2
I/O clock tree skew across three clock
regions
All
0.10
0.12
0.23
0.12
ns
TDCD_BUFR
Regional clock tree duty cycle
distortion
All
0.15
0.15
0.15
0.15
ns
Notes:
1.
2.
These parameters represent the worst-case duty cycle distortion observable at the pins of the device using LVDS output buffers. For cases
where other I/O standards are used, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical
rise/fall times.
The TCKSKEW value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree
skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor
and Timing Analyzer tools to evaluate clock skew specific to your application.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
53
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 71: Package Skew
Symbol
TPKGSKEW
Description
Package
Skew(1)
Device
XC6VLX75T
XC6VLX130T
XC6VLX195T
XC6VLX240T
XC6VLX365T
XC6VLX550T
XC6VLX760
XC6VSX315T
XC6VSX475T
XC6VHX250T
XC6VHX255T
Package
Value
Units
FF484
82
ps
FF784
108
ps
FF484
78
ps
FF784
126
ps
FF1156
165
ps
FF784
128
ps
FF1156
131
ps
FF784
146
ps
FF1156
182
ps
FF1759
187
ps
FF1156
137
ps
FF1759
156
ps
FF1759
159
ps
FF1760
202
ps
FF1760
194
ps
FF1156
139
ps
FF1759
162
ps
FF1156
131
ps
FF1759
161
ps
FF1154
159
ps
FF1155
FF1923
ps
220
FF1154
XC6VHX380T
XC6VHX565T
ps
ps
FF1155
172
ps
FF1923
227
ps
FF1924
220
ps
FF1923
ps
FF1924
ps
Notes:
1.
2.
These values represent the worst-case skew between any two SelectIO resources in the package: shortest flight time to longest flight time
from Pad to Ball (7.0 ps per mm).
Package trace length information is available for these device/package combinations. This information can be used to deskew the package.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
54
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Table 72: Sample Window
Symbol
Description
Device
Speed Grade
-3
-2
-1
-1L
Units
TSAMP
Sampling Error at Receiver Pins(1)
All
510
560
610
670
ps
TSAMP_BUFIO
Sampling Error at Receiver Pins using
BUFIO(2)
All
300
350
400
440
ps
Notes:
1.
2.
This parameter indicates the total sampling error of Virtex-6 FPGA DDR input registers, measured across voltage, temperature, and
process. The characterization methodology uses the MMCM to capture the DDR input registers’ edges of operation. These measurements
include:
- CLK0 MMCM jitter
- MMCM accuracy (phase offset)
- MMCM phase shift resolution
These measurements do not include package or clock tree skew.
This parameter indicates the total sampling error of Virtex-6 FPGA DDR input registers, measured across voltage, temperature, and
process. The characterization methodology uses the BUFIO clock network and IODELAY to capture the DDR input registers’ edges of
operation. These measurements do not include package or clock tree skew.
Table 73: Pin-to-Pin Setup/Hold and Clock-to-Out
Symbol
Speed Grade
Description
-3
Units
-2
-1
-1L
–0.28
1.09
–0.28
1.16
–0.28
1.33
–0.18
1.79
ns
4.22
4.59
5.22
5.63
ns
Data Input Setup and Hold Times Relative to a Forwarded Clock Input Pin Using BUFIO
TPSCS/TPHCS
Setup/Hold of I/O clock
Pin-to-Pin Clock-to-Out Using BUFIO
TICKOFCS
Clock-to-Out of I/O clock
Revision History
The following table shows the revision history for this document:
Date
Version
06/24/09
1.0
Initial Xilinx release.
07/16/09
1.1
Revised the maximum VCCAUX and VIN numbers in Table 2, page 2. Removed empty column from
Table 3, page 2. Revised specifications on Table 20, page 11. Updated Table 38, page 20 and added
notes 1 and 2. Revised TDLYCCO_RDY, TIDELAYCTRL_RPW, and TIDELAYPAT_JIT in Table 52, page 35.
Updated Table 57, page 40 to more closely match the DSP48E1 speed specifications. Updated
TTAPTCK/TTCKTAP in Table 58, page 43. Updated XC6VLX130T parameters in Table 67 through
Table 69, page 52.
08/19/09
1.2
Added values for -1L voltages and speed grade in all pertinent tables. Added VFS and notes to Table 1
and Table 2. Removed DVPPIN from the example in Figure 2. Added networking applications to
Table 41, page 23. Changed and added to the block RAM FMAX section in Table 56, page 39 including
removing Note 12. Changed FPFDMAX values and corrected units for TSTATPHAOFFSET and TOUTDUTY
in Table 63, page 47. Updated Table 70, page 53.
09/16/09
2.0
Added Virtex-6 HXT devices to entire document including GTH Transceiver Specifications. Updated
speed specifications as described in Switching Characteristics, includes changes in Table 50,
Table 56, Table 57, and Table 65 through Table 69. Comprehensive changes to Table 14, Table 15, and
Table 16. Added conditions to DVPPOUT and revised description of TOSKEW in Table 17. Removed VISE
specification and note from Table 18. Added note 3 to Table 23. Updated note 3 in Table 24. Updated
LVCMOS25 delays in Table 44. Updated specification for TIOTPHZ in Table 45. Removed TBUFHSKEW
from Table 70, page 53 and added values for TBUFIOSKEW. Added values in Table 73.
DS152 (v2.10) October18, 2010
Advance Product Specification
Description of Revisions
www.xilinx.com
55
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
Date
Version
Description of Revisions
01/18/10
2.1
Changed absolute maximum ratings for both VIN and VTS in Table 1. Added data to Table 3. Added
data to Table 5. Updated SSTL15 in Table 7. Updated VOCM and VOD values in Table 8. Added eFUSE
endurance Table 12. Added values to VMGTREFCLK and VIN in Table 13, page 9. Added values and
updated tables in the GTX Transceiver Specifications and GTH Transceiver Specifications sections.
Added Table 27 and Figure 4. Revised parameters and values in Table 39. Updated Table 40, page 21.
Added data to Table 41. Updated speed specification to v1.04 with appropriate changes to Table 42
and Table 43 including production release of the XC6VLX240T for -1 and -2 speed grades. Speed
specification changes and numerous updates also made to Table 44, and Table 48 through Table 70.
Added data to Table 72 and Table 73.
02/09/10
2.2
Revised description of CIN in Table 3. Clarified values in Table 5. Fixed SDR LVDS unit error in
Table 41.
04/12/10
2.3
Added note 3 and update value of n in Table 3. Clarified simultaneous power-down in Power-On Power
Supply Requirements. Updated external reference junction temperatures in Table 40, Analog-to-Digital
Specifications. Updated speed specification to v1.05 with appropriate changes to Table 42 and
Table 43 including production release of the XC6VLX130T for -1 and -2 speed grades. Fixed note 4 in
Table 47. Increased the -2 specification for FIDELAYCTRL_REF and clarified units for TIDELAYPAT_JIT in
Table 52. Added note 1 to Table 61.
05/11/10
2.4
Updated FRXREC in Table 22. Revised FIDELAYCTRL_REF in Table 52. Removed TRCKO_PARITY_ECC:
Clock CLK to ECCPARITY in standard ECC mode row in Table 56. Added XC6VLX130T values to
Table 71.
05/26/10
2.5
Added XC6VLX195T data to Table 5. Updated values in Table 22 including adding note 2 and note 3.
Updated speed specification to v1.06 with appropriate changes to Table 42 and Table 43 including
production release of the XC6VLX195T for -1 and -2 speed grades. Added XC6VLX195T values to
Table 71.
07/16/10
2.6
Changed Table 42 and Table 43 to production status on the -3 speed grade XC6VLX130T,
XC6VLX195T, and XC6VLX240T devices. Added XC6VHX250Tdata to Table 4 and Table 71. Added
Note 6 to Table 63.
07/23/10
2.7
Changed Table 42 and Table 43 to production status on the XC6VLX75T, XC6VLX365T, XC6VLX550T,
XC6VLX760, XC6VSX315T, and XC6VSX475T devices using ISE 12.2 software with speed
specification v1.08. Updated VCMOUTDC equation to MGTAVTT – DVPPOUT/4 in Table 17. Updated
some -3, -2, -1 specifications in Table 64 through Table 71. Added and updated -1L specifications to
Table 41 and for most switching characteristics tables.
07/30/10
2.8
Changed Table 42 and Table 43 to production status on the -1L speed grade for the XC6VLX130T,
XC6VLX195T, XC6VLX240T, XC6VLX365T, and XC6VLX550T devices using ISE 12.2 software with
current speed specifications. Also updated the speed specifications for XC6VLX75T, XC6VLX550T,
and XC6VSX315T. Updated VCCINT specifications for -1L speed grade industrial temperature range
devices in Table 2.
09/20/10
2.9
In Table 32, changed FGPLLMAX specification in -3 column from 5.951 to 5.591. In Table 40, changed
FMAX for the DCLK from 250 MHz to 80 MHz.
10/18/10
2.10
The specification change in version 2.9, Table 40 is described in XCN10032, Virtex-6 FPGA: GTX
Transceiver User Guide, Family Data Sheet (SYSMON DCLK), and JTAG ID Changes
In this version (2.10), -1L(I) data is added to Table 4 and clarified in Note 2. Changed Table 42 and
Table 43 to production status on the -1L speed grade XC6VLX75T, XC6VLX760, XC6VSX315T, and
XC6VSX475T devices using ISE 12.3 software with current speed specifications. Revised the
XC6VLX760 -1L speed specification for TPHMMCMGC in Table 68 and TPHMMCMCC in Table 69.
Notice of Disclaimer
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO
APPLICABLE LAWS AND REGULATIONS.
DS152 (v2.10) October18, 2010
Advance Product Specification
www.xilinx.com
56