Virtex-6 FPGA Data Sheet: DC and Switching Characteristics DS152 (v2.10) October18, 2010 Advance Product Specification Virtex-6 FPGA Electrical Characteristics Virtex®-6 FPGAs are available in -3, -2, -1, and -1L speed grades, with -3 having the highest performance. Virtex-6 FPGA DC and AC characteristics are specified for both commercial and industrial grades. Except the operating temperature range or unless otherwise noted, all the DC and AC electrical parameters are the same for a particular speed grade (that is, the timing characteristics of a -1 speed grade industrial device are the same as for a -1 speed grade commercial device). However, only selected speed grades and/or devices might be available in the industrial range. All supply voltage and junction temperature specifications are representative of worst-case conditions. The parameters included are common to popular designs and typical applications. This Virtex-6 FPGA data sheet, part of an overall set of documentation on the Virtex-6 family of FPGAs, is available on the Xilinx website. All specifications are subject to change without notice. Virtex-6 FPGA DC Characteristics Table 1: Absolute Maximum Ratings (1) Symbol Description Units Internal supply voltage relative to GND –0.5 to 1.1 V For -1L devices: Internal supply voltage relative to GND –0.5 to 1.0 V Auxiliary supply voltage relative to GND –0.5 to 3.0 V VCCO Output drivers supply voltage relative to GND –0.5 to 3.0 V VBATT Key memory battery backup supply –0.5 to 3.0 V VFS External voltage supply for eFUSE programming(2) –0.5 to 3.0 V VREF Input reference voltage –0.5 to 3.0 V VIN(3) 2.5V or below I/O input voltage relative to GND(4) (user and dedicated I/Os) –0.5 to VCCO + 0.5 V VTS Voltage applied to 3-state 2.5V or below output(4) (user and dedicated I/Os) –0.5 to VCCO + 0.5 V TSTG Storage temperature (ambient) –65 to 150 °C TSOL Maximum soldering temperature(5) +220 °C Maximum junction temperature(5) +125 °C VCCINT VCCAUX Tj Notes: 1. 2. 3. 4. 5. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability. When not programming eFUSE, connect VFS to GND. 2.5V I/O absolute maximum limit applied to DC and AC signals. For I/O operation, refer to the Virtex-6 FPGA SelectIO Resources User Guide. For soldering guidelines and thermal considerations, see Virtex-6 FPGA Packaging and Pinout Specification. © 2009–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 1 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 2: Recommended Operating Conditions Symbol Description VCCINT VCCAUX VCCO(1)(3)(4) Min Max Units Internal supply voltage relative to GND, Tj = 0°C to +85°C 0.95 1.05 V For -1L commercial temperature range devices: internal supply voltage relative to GND, Tj = 0°C to +85°C 0.87 0.93 V For -1L industrial temperature range devices: internal supply voltage relative to GND, Tj = –40°C to +100°C 0.91 0.97 V Auxiliary supply voltage relative to GND, Tj = 0°C to +85°C 2.375 2.625 V Supply voltage relative to GND, Tj = 0°C to +85°C 1.14 2.625 V 2.5V supply voltage relative to GND, Tj = 0°C to +85°C GND – 0.20 2.625 V VIN 2.5V and below supply voltage relative to GND, Tj = 0°C to +85°C GND – 0.20 VCCO + 0.2 V IIN(6) Maximum current through any pin in a powered or unpowered bank when forward biasing the clamp diode. – 10 mA 1.0 2.5 V 2.375 2.625 V VBATT(2) VFS(7) Battery voltage relative to GND, Tj = 0°C to +85°C External voltage supply for eFUSE programming Notes: 1. 2. 3. 4. 5. 6. 7. Configuration data is retained even if VCCO drops to 0V. VBATT is required only when using bitstream encryption. If battery is not used, connect VBATT to either ground or VCCAUX. Includes VCCO of 1.2V, 1.5V, 1.8V, and 2.5V. The configuration supply voltage VCC_CONFIG is also known as VCCO_0. All voltages are relative to ground. A total of 100 mA per bank should not be exceeded. When not programming eFUSE, connect VFS to GND. Table 3: DC Characteristics Over Recommended Operating Conditions (1)(2) Symbol Description Min Typ Max Units VDRINT Data retention VCCINT voltage (below which configuration data might be lost) 0.75 – – V VDRI Data retention VCCAUX voltage (below which configuration data might be lost) 2.0 – – V IREF VREF leakage current per pin – – 10 µA Input or output leakage current per pin (sample-tested) – – 10 µA Die input capacitance at the pad – – 8 pF Pad pull-up (when selected) @ VIN = 0V, VCCO = 2.5V 20 – 80 µA Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.8V 8 – 40 µA Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.5V 5 – 30 µA Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.2V 1 – 20 µA IRPD Pad pull-down (when selected) @ VIN = 2.5V 3 – 80 µA IBATT Battery supply current – – 150 nA n Temperature diode ideality factor – 1.0002 – n r Series resistance – 5 – Ω IL CIN(3) IRPU Notes: 1. 2. 3. Typical values are specified at nominal voltage, 25°C. Maximum value specified for worst case process at 25°C. This measurement represents the die capacitance at the pad, not including the package. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 2 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Important Note Typical values for quiescent supply current are specified at nominal voltage, 85°C junction temperatures (Tj). Xilinx recommends analyzing static power consumption at Tj = 85°C because the majority of designs operate near the high end of the commercial temperature range. Quiescent supply current is specified by speed grade for Virtex-6 devices. Use the XPOWER™ Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate static power consumption for conditions other than those specified in Table 4. Table 4: Typical Quiescent Supply Current Symbol Description Device ICCINTQ Quiescent VCCINT supply current Quiescent VCCO supply current -2 (C & I)(1) -1 (C & I) -1L (C) -1L (I)(2) XC6VLX75T 927 927 927 656 741 mA XC6VLX130T 1563 1563 1563 1102 1245 mA XC6VLX195T 2059 2059 2059 1441 1628 mA XC6VLX240T 2478 2478 2478 1733 1957 mA XC6VLX365T 3001 3001 3001 2092 2363 mA XC6VLX550T N/A 4515 4515 3147 3555 mA XC6VLX760 N/A 5094 5094 3471 3921 mA XC6VSX315T 3476 3476 3476 2409 2721 mA XC6VSX475T N/A 5227 5227 3622 4091 mA XC6VHX250T 2906 2906 2906 N/A N/A mA XC6VHX255T N/A N/A mA XC6VHX380T N/A N/A mA N/A N/A mA N/A XC6VLX75T 1 1 1 1 1 mA XC6VLX130T 1 1 1 1 1 mA XC6VLX195T 1 1 1 1 1 mA XC6VLX240T 2 2 2 2 2 mA XC6VLX365T 2 2 2 2 2 mA XC6VLX550T N/A 3 3 3 3 mA XC6VLX760 N/A 3 3 3 3 mA XC6VSX315T 2 2 2 2 2 mA XC6VSX475T N/A 2 2 2 2 mA XC6VHX250T 1 1 1 N/A N/A mA XC6VHX255T N/A N/A mA XC6VHX380T N/A N/A mA N/A N/A mA XC6VHX565T DS152 (v2.10) October18, 2010 Advance Product Specification Units -3 (C) XC6VHX565T ICCOQ Speed and Temperature Grade N/A www.xilinx.com 3 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 4: Typical Quiescent Supply Current (Cont’d) Symbol Description Device ICCAUXQ Quiescent VCCAUX supply current Speed and Temperature Grade Units -3 (C) -2 (C & I)(1) -1 (C & I) -1L (C) -1L (I)(2) XC6VLX75T 45 45 45 45 45 mA XC6VLX130T 75 75 75 75 75 mA XC6VLX195T 113 113 113 113 113 mA XC6VLX240T 135 135 135 135 135 mA XC6VLX365T 191 191 191 191 191 mA XC6VLX550T N/A 286 286 286 286 mA XC6VLX760 N/A 387 387 387 387 mA XC6VSX315T 186 186 186 186 186 mA XC6VSX475T N/A 279 279 279 279 mA XC6VHX250T 152 152 152 N/A N/A mA XC6VHX255T N/A N/A mA XC6VHX380T N/A N/A mA N/A N/A mA XC6VHX565T N/A Notes: 1. 2. 3. 4. The XC6VLX550T, XC6VLX760, XC6VSX475T, and XC6VHX565T are not offered in -2I. Typical values are specified at nominal voltage, 85°C junction temperatures (Tj). -1, -2, and -3 industrial (I) grade devices have the same typical values as commercial (C) grade devices at 85°C, but higher values at 100°C. Use the XPE tool to calculate 100°C values. -1L industrial grade devices have the values specified in this column. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating. If DCI or differential signaling is used, more accurate quiescent current estimates can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 4 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Power-On Power Supply Requirements Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device initialization. The actual current consumed depends on the power-on ramp rate of the power supply. Virtex-6 devices require a power-on sequence of VCCINT, VCCAUX, and VCCO. If the requirement can not be met, then VCCAUX must always be powered prior to VCCO. VCCAUX and VCCO can be powered by the same supply, therefore, both VCCAUX and VCCO are permitted to ramp simultaneously. Similarly, for the power-down sequence, VCCO must be powered down prior to VCCAUX or if power by the same supply, VCCAUX and VCCO power-down simultaneously. Table 5 shows the minimum current, in addition to ICCQ, that are required by Virtex-6 devices for proper power-on and configuration. If the current minimums shown in Table 4 and Table 5 are met, the device powers on after all three supplies have passed through their power-on reset threshold voltages. The FPGA must be configured after VCCINT is applied. Once initialized and configured, use the XPOWER tools to estimate current drain on these supplies. Table 5: Power-On Current for Virtex-6 Devices ICCINTMIN ICCAUXMIN ICCOMIN Typ(1) Typ(1) Typ(1) XC6VLX75T See ICCINTQ in Table 4 ICCAUXQ + 10 ICCOQ + 30 mA per bank mA XC6VLX130T See ICCINTQ in Table 4 ICCAUXQ + 10 ICCOQ + 30 mA per bank mA XC6VLX195T See ICCINTQ in Table 4 ICCAUXQ + 40 ICCOQ + 30 mA per bank mA XC6VLX240T See ICCINTQ in Table 4 ICCAUXQ + 40 ICCOQ + 30 mA per bank mA XC6VLX365T See ICCINTQ in Table 4 ICCAUXQ + 40 ICCOQ + 30 mA per bank mA XC6VLX550T See ICCINTQ in Table 4 ICCAUXQ + 40 ICCOQ + 30 mA per bank mA XC6VLX760 See ICCINTQ in Table 4 ICCAUXQ + 40 ICCOQ + 30 mA per bank mA XC6VSX315T See ICCINTQ in Table 4 ICCAUXQ + 40 ICCOQ + 30 mA per bank mA XC6VSX475T See ICCINTQ in Table 4 ICCAUXQ + 50 ICCOQ + 30 mA per bank mA XC6VHX250T See ICCINTQ in Table 4 ICCAUXQ + 40 ICCOQ + 30 mA per bank mA Device Units XC6VHX255T mA XC6VHX380T mA XC6VHX565T mA Notes: 1. 2. Typical values are specified at nominal voltage, 25°C. Use the XPOWER™ Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate maximum power-on currents. Table 6: Power Supply Ramp Time Symbol Description Ramp Time Units VCCINT Internal supply voltage relative to GND 0.20 to 50.0 ms VCCO Output drivers supply voltage relative to GND 0.20 to 50.0 ms VCCAUX Auxiliary supply voltage relative to GND 0.20 to 50.0 ms DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 5 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics SelectIO™ DC Input and Output Levels Values for VIL and VIH are recommended input voltages. Values for IOL and IOH are guaranteed over the recommended operating conditions at the VOL and VOH test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at a minimum VCCO with the respective VOL and VOH voltage levels shown. Other standards are sample tested. Table 7: SelectIO DC Input and Output Levels I/O Standard VIH VIL VOL VOH IOL IOH V, Min V, Max V, Min V, Max V, Max V, Min mA mA LVCMOS25, LVDCI25 –0.3 0.7 1.7 VCCO + 0.3 0.4 VCCO – 0.4 Note(3) Note(3) LVCMOS18, LVDCI18 –0.3 35% VCCO 65% VCCO VCCO + 0.3 0.45 VCCO – 0.45 Note(4) Note(4) LVCMOS15, LVDCI15 –0.3 35% VCCO 65% VCCO VCCO + 0.3 25% VCCO 75% VCCO Note(4) Note(4) LVCMOS12 –0.3 35% VCCO 65% VCCO VCCO + 0.3 25% VCCO 75% VCCO Note(5) Note(5) HSTL I_12 –0.3 VREF – 0.1 VREF + 0.1 VCCO + 0.3 25% VCCO 75% VCCO 6.3 6.3 HSTL I(2) –0.3 VREF – 0.1 VREF + 0.1 VCCO + 0.3 0.4 VCCO – 0.4 8 –8 HSTL II(2) –0.3 VREF – 0.1 VREF + 0.1 VCCO + 0.3 0.4 VCCO – 0.4 16 –16 HSTL III(2) –0.3 VREF – 0.1 VREF + 0.1 VCCO + 0.3 0.4 VCCO – 0.4 24 –8 DIFF HSTL I(2) –0.3 50% VCCO – 0.1 50% VCCO + 0.1 VCCO + 0.3 – – – – DIFF HSTL II(2) –0.3 50% VCCO – 0.1 50% VCCO + 0.1 VCCO + 0.3 – – – – SSTL2 I –0.3 VREF – 0.15 VREF + 0.15 VCCO + 0.3 VTT – 0.61 VTT + 0.61 8.1 –8.1 SSTL2 II –0.3 VREF – 0.15 VREF + 0.15 VCCO + 0.3 VTT – 0.81 VTT + 0.81 16.2 –16.2 DIFF SSTL2 I –0.3 50% VCCO – 0.15 50% VCCO + 0.15 VCCO + 0.3 – – – – DIFF SSTL2 II –0.3 50% VCCO – 0.15 50% VCCO + 0.15 VCCO + 0.3 – – – – SSTL18 I –0.3 VREF – 0.125 VREF + 0.125 VCCO + 0.3 VTT – 0.47 VTT + 0.47 6.7 –6.7 SSTL18 II –0.3 VREF – 0.125 VREF + 0.125 VCCO + 0.3 VTT – 0.60 VTT + 0.60 13.4 –13.4 DIFF SSTL18 I –0.3 50% VCCO – 0.125 50% VCCO + 0.125 VCCO + 0.3 – – – – DIFF SSTL18 II –0.3 50% VCCO – 0.125 50% VCCO + 0.125 VCCO + 0.3 – – – – SSTL15 –0.3 VREF – 0.1 VREF + 0.1 VCCO + 0.3 VTT – 0.175 VTT + 0.175 14.3 14.3 Notes: 1. 2. 3. 4. 5. 6. Tested according to relevant specifications. Applies to both 1.5V and 1.8V HSTL. Using drive strengths of 2, 4, 6, 8, 12, 16, or 24 mA. Using drive strengths of 2, 4, 6, 8, 12, or 16 mA. Supported drive strengths of 2, 4, 6, or 8 mA. For detailed interface specific DC voltage levels, see the Virtex-6 FPGA SelectIO Resources User Guide. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 6 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics HT DC Specifications (HT_25) Table 8: HT DC Specifications Symbol Min Typ Max Units 2.38 2.5 2.63 V 480 600 885 mV –15 – 15 mV 440 600 760 mV Change in VOCM Magnitude –15 – 15 mV VID Input Differential Voltage 200 600 1000 mV Δ VID Change in VID Magnitude –15 – 15 mV VICM Input Common Mode Voltage 440 600 780 mV Change in VICM Magnitude –15 – 15 mV Min Typ Max Units 2.38 2.5 2.63 V VCCO DC Parameter Supply Voltage VOD Differential Output Voltage Δ VOD Change in VOD Magnitude VOCM Output Common Mode Voltage Δ VOCM Δ VICM Conditions RT = 100 Ω across Q and Q signals RT = 100 Ω across Q and Q signals LVDS DC Specifications (LVDS_25) Table 9: LVDS DC Specifications Symbol VCCO DC Parameter Conditions Supply Voltage VOH Output High Voltage for Q and Q RT = 100 Ω across Q and Q signals – – 1.675 V VOL Output Low Voltage for Q and Q RT = 100 Ω across Q and Q signals 0.825 – – V VODIFF Differential Output Voltage (Q – Q), Q = High (Q – Q), Q = High RT = 100 Ω across Q and Q signals 247 350 600 mV VOCM Output Common-Mode Voltage RT = 100 Ω across Q and Q signals 1.075 1.250 1.425 V VIDIFF Differential Input Voltage (Q – Q), Q = High (Q – Q), Q = High 100 350 600 mV VICM Input Common-Mode Voltage 0.3 1.2 2.2 V Min Typ Max Units 2.38 2.5 2.63 V Extended LVDS DC Specifications (LVDSEXT_25) Table 10: Extended LVDS DC Specifications Symbol VCCO DC Parameter Conditions Supply Voltage VOH Output High Voltage for Q and Q RT = 100 Ω across Q and Q signals – – 1.785 V VOL Output Low Voltage for Q and Q RT = 100 Ω across Q and Q signals 0.715 – – V VODIFF Differential Output Voltage (Q – Q), Q = High (Q – Q), Q = High RT = 100 Ω across Q and Q signals 350 – 840 mV VOCM Output Common-Mode Voltage RT = 100 Ω across Q and Q signals 1.075 1.250 1.425 V VIDIFF Differential Input Voltage (Q – Q), Q = High (Q – Q), Q = High Common-mode input voltage = 1.25V 100 – 1000 mV VICM Input Common-Mode Voltage Differential input voltage = ±350 mV 0.3 1.2 2.2 V DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 7 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics LVPECL DC Specifications (LVPECL_25) These values are valid when driving a 100Ω differential load only, i.e., a 100Ω resistor between the two receiver pins. The VOH levels are 200 mV below standard LVPECL levels and are compatible with devices tolerant of lower common-mode ranges. Table 11 summarizes the DC output specifications of LVPECL. For more information on using LVPECL, see the Virtex-6 FPGA SelectIO Resources User Guide. Table 11: LVPECL DC Specifications Symbol DC Parameter Min Typ Max Units VOH Output High Voltage VCC – 1.025 1.545 VCC – 0.88 V VOL Output Low Voltage VCC – 1.81 0.795 VCC – 1.62 V VICM Input Common-Mode Voltage 0.6 – 2.2 V 0.100 – 1.5 V VIDIFF Differential Input Voltage(1)(2) Notes: 1. 2. Recommended input maximum voltage not to exceed VCCAUX + 0.2V. Recommended input minimum voltage not to go below –0.5V. eFUSE Read Endurance Table 12 lists the maximum number of read cycle operations expected. For more information, see the Virtex-6 FPGA Configuration User Guide. Table 12: eFUSE Read Endurance Symbol Description DNA_CYCLES Number of DNA_PORT READ operations or JTAG ISC_DNA read command operations. Unaffected by SHIFT operations. AES_CYCLES Number of JTAG FUSE_KEY or FUSE_CNTL read command operations. Unaffected by SHIFT operations. DS152 (v2.10) October18, 2010 Advance Product Specification Speed Grade -3 -2 -1 30,000,000 30,000,000 -1L Units Read Cycles Read Cycles www.xilinx.com 8 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics GTX Transceiver Specifications GTX Transceiver DC Characteristics Table 13: Absolute Maximum Ratings for GTX Transceivers(1) Symbol Description Min Max Units MGTAVCC Analog supply voltage for the GTX transmitter and receiver circuits relative to GND –0.5 1.1 V MGTAVTT Analog supply voltage for the GTX transmitter and receiver termination circuits relative to GND –0.5 1.32 V MGTAVTTRCAL Analog supply voltage for the resistor calibration circuit of the GTX transceiver column –0.5 1.32 V VIN Receiver (RXP/RXN) and Transmitter (TXP/TXN) absolute input voltage –0.5 1.32 V VMGTREFCLK Reference clock absolute input voltage –0.5 1.32 V Notes: 1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability. Table 14: Recommended Operating Conditions for GTX Transceivers(1)(2) Symbol MGTAVCC Description Analog supply voltage for the GTX transmitter and receiver circuits relative to GND Speed Grade PLL Frequency Min Typ Max Units -3, -2(3) > 2.7 GHz 1.0 1.03 1.06 V -2(3) ≤ 2.7 GHz 0.95 1.0 1.06 V -1 ≤ 2.7 GHz 0.95 1.0 1.06 V -1L ≤ 2.7 GHz 0.95 1.0 1.05 V -3, MGTAVTT Analog supply voltage for the GTX transmitter and receiver termination circuits relative to GND All – 1.14 1.2 1.26 V MGTAVTTRCAL Analog supply voltage for the resistor calibration circuit of the GTX transceiver column All – 1.14 1.2 1.26 V Notes: 1. 2. 3. Each voltage listed requires the filter circuit described in Virtex-6 FPGA GTX Transceivers User Guide. Voltages are specified for the temperature range of Tj = –40°C to +100°C. If a GTX Quad contains transceivers operating with a mixture of PLL frequencies above and below 2.7 GHz, the MGTAVCC voltage supply must be in the range of 1.0V to 1.06V. Table 15: GTX Transceiver Supply Current (per Lane) (1)(2) Symbol Description Typ IMGTAVTT MGTAVTT supply current for one GTX transceiver 55.9 IMGTAVCC MGTAVCC supply current for one GTX transceiver 56.1 MGTRREF Precision reference resistor for internal calibration termination Max Note 2 100.0 ± 1% tolerance Units mA mA Ω Notes: 1. 2. Typical values are specified at nominal voltage, 25°C, with a 3.125 Gb/s line rate. Values for currents of other transceiver configurations and conditions can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 9 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 16: GTX Transceiver Quiescent Supply Current (per Lane) (1)(2)(3) Symbol Typ(4) Description IMGTAVTTQ Quiescent MGTAVTT supply current for one GTX transceiver 0.9 IMGTAVCCQ Quiescent MGTAVCC supply current for one GTX transceiver 3.5 Max Units Note 2 mA mA Notes: 1. 2. Device powered and unconfigured. Currents for conditions other than values specified in this table can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools. GTX transceiver quiescent supply current for an entire device can be calculated by multiplying the values in this table by the number of available GTX transceivers. Typical values are specified at nominal voltage, 25°C. 3. 4. GTX Transceiver DC Input and Output Levels Table 17 summarizes the DC output specifications of the GTX transceivers in Virtex-6 FPGAs. Consult the Virtex-6 FPGA GTX Transceivers User Guide for further details. Table 17: GTX Transceiver DC Specifications Symbol DVPPIN VIN VCMIN DC Parameter Conditions Min Typ Max Units Differential peak-to-peak input voltage External AC coupled ≤ 4.25 Gb/s 125 – 2000 mV External AC coupled > 4.25 Gb/s 175 – 2000 mV Absolute input voltage DC coupled MGTAVTT = 1.2V –400 – MGTAVTT mV Common mode input voltage DC coupled MGTAVTT = 1.2V – 2/3 MGTAVTT – mV – – 1000 mV DVPPOUT Differential peak-to-peak output Transmitter output swing is set to voltage (1) maximum setting VCMOUTDC DC common mode output voltage. RIN Differential input resistance 80 100 130 Ω ROUT Differential output resistance 80 100 120 Ω TOSKEW Transmitter output pair (TXP and TXN) intra-pair skew – 2 8 ps – 100 – nF Equation based Recommended external AC coupling CEXT capacitor(2) MGTAVTT – DVPPOUT/4 mV Notes: 1. 2. The output swing and preemphasis levels are programmable using the attributes discussed in the Virtex-6 FPGA GTX Transceivers User Guide and can result in values lower than reported in this table. Other values can be used as appropriate to conform to specific protocols and standards. X-Ref Target - Figure 1 +V P Single-Ended Voltage N 0 ds152_01_121509 Figure 1: Single-Ended Peak-to-Peak Voltage DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 10 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics X-Ref Target - Figure 2 +V Differential Voltage 0 –V P–N ds152_02_121509 Figure 2: Differential Peak-to-Peak Voltage Table 18 summarizes the DC specifications of the clock input of the GTX transceiver. Consult the Virtex-6 FPGA GTX Transceivers User Guide for further details. Table 18: GTX Transceiver Clock DC Input Level Specification Symbol DC Parameter Conditions Min Typ Max Units VIDIFF Differential peak-to-peak input voltage 210 800 2000 mV RIN Differential input resistance 90 100 130 Ω CEXT Required external AC coupling capacitor – 100 – nF GTX Transceiver Switching Characteristics Consult Virtex-6 FPGA GTX Transceivers User Guide for further information. Table 19: GTX Transceiver Performance Symbol Speed Grade Description Units -3 -2 -1 -1L 6.6 6.6 5.0 5.0 Gb/s FGTXMAX Maximum GTX transceiver data rate FGPLLMAX Maximum PLL frequency 3.3(1) 3.3(1) 2.7 2.7 GHz FGPLLMIN Minimum PLL frequency 1.2 1.2 1.2 1.2 GHz Notes: 1. See Table 14 for MGTAVCC requirements when PLL frequency is greater than 2.7 GHz. Table 20: GTX Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics Symbol FGTXDRPCLK Speed Grade Description GTXDRPCLK maximum frequency DS152 (v2.10) October18, 2010 Advance Product Specification -3 -2 -1 -1L 150 150 125 100 Units MHz www.xilinx.com 11 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 21: GTX Transceiver Reference Clock Switching Characteristics Symbol Description All Speed Grades Conditions Units Min Typ Max 62.5 – 650 MHz FGCLK Reference clock frequency range TRCLK Reference clock rise time 20% – 80% – 200 – ps TFCLK Reference clock fall time 80% – 20% – 200 – ps TDCREF Reference clock duty cycle Transceiver PLL only 45 50 55 % TLOCK Clock recovery frequency acquisition time Initial PLL lock – – 1 ms TPHASE Clock recovery phase acquisition time Lock to data after PLL has locked to the reference clock – – 200 µs X-Ref Target - Figure 3 TRCLK 80% 20% TFCLK ds152_05_042109 Figure 3: Reference Clock Timing Parameters Table 22: GTX Transceiver User Clock Switching Characteristics(1) Symbol Description FTXOUT TXOUTCLK maximum frequency FRXREC RXRECCLK maximum frequency TRX RXUSRCLK maximum frequency TRX2 RXUSRCLK2 maximum frequency TTX TXUSRCLK maximum frequency Conditions TXUSRCLK2 maximum frequency Units -3 -2 -1 -1L Internal 20-bit data path 330 330 250 250 MHz Internal 16-bit data path 412.5 412.5 312.5 250 MHz Internal 20-bit data path 330 330 250 250 MHz Internal 16-bit data path 412.5 412.5 312.5 250 MHz 412.5(2) 412.5(2) 312.5 250 MHz 1 byte interface 376 376 312.5 250 MHz 2 byte interface 406.25 406.25 312.5 250 MHz 4 byte interface TTX2 Speed Grade 206.25 206.25 156.25 125 MHz 412.5(3) 412.5(3) 312.5 250 MHz 1 byte interface 376 376 312.5 250 MHz 2 byte interface 406.25 406.25 312.5 250 MHz 4 byte interface 206.25 206.25 156.25 125 MHz Notes: 1. 2. 3. Clocking must be implemented as described in the Virtex-6 FPGA GTX Transceivers User Guide. 406.25 MHz when the RX elastic buffer is bypassed. 406.25 MHz when the TX buffer is bypassed. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 12 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 23: GTX Transceiver Transmitter Switching Characteristics Symbol Description FGTXTX Serial data rate range TRTX TX Rise time TFTX TX Fall time Condition Min Typ Max Units 0.480 – FGTXMAX Gb/s 20%–80% – 120 – ps 80%–20% – 120 – ps TLLSKEW TX lane-to-lane skew(1) – – 350 ps VTXOOBVDPP Electrical idle amplitude – – 15 mV TTXOOBTRANSITION Electrical idle transition time – – 75 ns – – 0.33 UI – – 0.17 UI – – 0.33 UI – – 0.15 UI – – 0.33 UI – – 0.14 UI – – 0.34 UI – – 0.16 UI – – 0.2 UI – – 0.1 UI – – 0.35 UI – – 0.16 UI – – 0.20 UI – – 0.08 UI – – 0.15 UI – – 0.06 UI – – 0.1 UI TJ6.5 Total Jitter(2)(3) Jitter(2)(3) DJ6.5 Deterministic TJ5.0 Total Jitter(2)(3) DJ5.0 Deterministic Jitter(2)(3) TJ4.25 Total Jitter(2)(3) Jitter(2)(3) DJ4.25 Deterministic TJ3.75 Total Jitter(2)(3) DJ3.75 Deterministic Jitter(2)(3) TJ3.125 Total Jitter(2)(3) Jitter(2)(3) DJ3.125 Deterministic TJ3.125L Total Jitter(2)(3) DJ3.125L Deterministic Jitter(2)(3) TJ2.5 Total Jitter(2)(3) Jitter(2)(3) DJ2.5 Deterministic TJ1.25 Total Jitter(2)(3) DJ1.25 Deterministic Jitter(2)(3) TJ600 Total Jitter(2)(3) Jitter(2)(3) DJ600 Deterministic TJ480 Total Jitter(2)(3) DJ480 Deterministic Jitter(2)(3) 6.5 Gb/s 5.0 Gb/s 4.25 Gb/s 3.75 Gb/s 3.125 Gb/s 3.125 Gb/s(4) 2.5 Gb/s(5) 1.25 Gb/s(6) 600 Mb/s 480 Mb/s – – 0.03 UI – – 0.1 UI – – 0.03 UI Notes: 1. 2. 3. 4. 5. 6. Using same REFCLK input with TXENPMAPHASEALIGN enabled for up to 12 consecutive transmitters (three fully populated GTX Quads). Using PLL_DIVSEL_FB = 2, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations. All jitter values are based on a bit-error ratio of 1e-12. PLL frequency at 1.5625 GHz and OUTDIV = 1. PLL frequency at 2.5 GHz and OUTDIV = 2. PLL frequency at 2.5 GHz and OUTDIV = 4. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 13 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 24: GTX Transceiver Receiver Switching Characteristics Symbol Description Min Typ Max Units RX oversampler not enabled 0.600 – FGTXMAX Gb/s RX oversampler enabled 0.480 – 0.600 Gb/s FGTXRX Serial data rate Time for RXELECIDLE to respond to loss or restoration of data – 75 – ns TRXELECIDLE RXOOBVDPP OOB detect threshold peak-to-peak 60 – 150 mV RXSST Receiver spread-spectrum tracking(1) Modulated @ 33 KHz –5000 – 0 ppm RXRL Run length (CID) Internal AC capacitor bypassed – – 512 UI Data/REFCLK PPM offset tolerance CDR 2nd-order CDR 2nd-order JT_SJ6.5 Sinusoidal Jitter(3) 6.5 Gb/s 0.44 – – UI JT_SJ5.0 Sinusoidal Jitter(3) 5.0 Gb/s 0.44 – – UI JT_SJ4.25 Sinusoidal Jitter(3) 4.25 Gb/s 0.44 – – UI JT_SJ3.75 Sinusoidal Jitter(3) 3.75 Gb/s 0.44 – – UI JT_SJ3.125 Sinusoidal Jitter(3) 3.125 Gb/s 0.45 – – UI 0.45 – – UI RXPPMTOL loop disabled –200 – 200 ppm loop enabled –2000 – 2000 ppm SJ Jitter Tolerance(2) JT_SJ3.125L Sinusoidal Jitter(3) Jitter(3) 3.125 Gb/s(5) JT_SJ2.5 Sinusoidal 0.5 – – UI JT_SJ1.25 Sinusoidal Jitter(3) 1.25 Gb/s(6) 0.5 – – UI JT_SJ600 Sinusoidal Jitter(3) 600 Mb/s 0.4 – – UI JT_SJ480 Jitter(3) 480 Mb/s 0.4 – – UI Sinusoidal SJ Jitter Tolerance with Stressed 2.5 Gb/s(4) Eye(2) JT_TJSE3.125 Total Jitter with Stressed Eye(7) 3.125 Gb/s 0.70 – – UI 5.0 Gb/s 0.70 – – UI JT_SJSE3.125 Sinusoidal Jitter with Stressed Eye(7) 3.125 Gb/s 0.1 – – UI 5.0 Gb/s 0.1 – – UI Notes: 1. 2. 3. 4. 5. 6. 7. Using PLL_RXDIVSEL_OUT = 1, 2, and 4. All jitter values are based on a bit error ratio of 1e–12. The frequency of the injected sinusoidal jitter is 80 MHz. PLL frequency at 1.5625 GHz and OUTDIV = 1. PLL frequency at 2.5 GHz and OUTDIV = 2. PLL frequency at 2.5 GHz and OUTDIV = 4. Composite jitter with RX equalizer enabled. DFE disabled. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 14 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics GTH Transceiver Specifications GTH Transceiver DC Characteristics Table 25: Absolute Maximum Ratings for GTH Transceivers(1) Symbol Description Min Max Units MGTHAVCC Analog supply voltage for the GTH transmitter, receiver, and common analog circuits –0.5 V MGTHAVCCRX Analog supply voltage for the GTH receiver circuits and common analog circuits –0.5 V MGTAVTT Analog supply voltage for the GTH transmitter termination circuits –0.5 V MGTHAVCCPLL Analog supply voltage for the GTH receiver and PLL circuits –0.5 V VIN Receiver (RXP/RXN) and Transmitter (TXP/TXN) absolute input voltage –0.5 V VMGTREFCLK Reference clock absolute input voltage –0.5 V Notes: 1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability. Table 26: Recommended Operating Conditions for GTH Transceivers (1)(2) Symbol Description Min Typ Max Units MGTHAVCC Analog supply voltage for the GTH transmitter, receiver, and common analog circuits 1.075 1.1 1.125 V MGTHAVCCRX Analog supply voltage for the GTH receiver circuits and common analog circuits 1.075 1.1 1.125 V MGTHAVTT Analog supply voltage for the GTH transmitter termination circuits 1.140 1.2 1.26 V MGTHAVCCPLL Analog supply voltage for the GTH receiver and PLL circuit 1.710 1.8 1.89 V Notes: 1. 2. Each voltage listed requires the filter circuit described in Virtex-6 FPGA GTH Transceivers User Guide. Voltages are specified for the temperature range of Tj = –40°C to +100°C. Table 27: GTH Transceiver Power Supply Sequencing (1)(2) Symbol Description Min Max Units THAVCC2HAVCCRX Maximum time between powering MGTHAVCC to when MGTHAVCCRX must be powered. 0 200 µs THAVCCRX2HAVCCPLL Minimum time between powering MGTHAVCCRX to when MGTHAVCCPLL can be powered. 10 – µs THAVCCRX2HAVTT Minimum time between powering MGTHAVCCRX to when MGTHAVTT can be powered. 10 – µs Notes: 1. 2. MGTHAVCCRX must be powered simultaneously or within THAVCC2HAVCCRX of MGTHAVCC, but it must not precede MGTHAVCC. MGTHAVCC and MGTHAVCCRX must be powered before MGTHAVCCPLL and MGTHAVTT. This minimum time is defined by THAVCCRX2HAVCCPLL and THAVCCRX2HAVTT. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 15 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Figure 4 shows the timing parameters in Table 27. X-Ref Target - Figure 4 MGTHAVCC (1.1V DC) THAVCC2HAVCCRX MGTHAVCCRX (1.1V DC) THAVCCRX2HAVCCPLL MGTHAVCCPLL (1.8V DC) THAVCCRX2HAVTT MGTHAVTT (1.2V DC) DS152_04_051110 Figure 4: GTH Transceiver Power Supply Power-On Sequencing Table 28: GTH Transceiver Supply Current (1)(2) Symbol Description Min Typ Max Units IMGTHAVCC MGTHAVCC supply current for one GTH Quad (4 lanes) mA IMGTHAVCCRX MGTHAVCCRX supply current for a GTH Quad (4 lanes) mA IMGTHAVTT MGTHAVTT supply current for one GTH Quad (4 lanes) mA IMGTHAVCCPLL MGTHAVCCPLL supply current for one GTH Quad (4 lanes) mA MGTRREF Precision reference resistor for internal calibration termination Ω 1000.0 ± 1% tolerance Notes: 1. 2. Typical values are specified at nominal voltage, 25°C, with a 10.3125 Gb/s line rate. Values for currents other than the values specified in this table can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools. Table 29: GTH Transceiver Quiescent Supply Current(1)(2)(3) Symbol Description Typ(4) Max Units IMGTHAVCCQ Quiescent MGTHAVCC Supply Current for one GTH Quad (4 lanes) mA IMGTHAVCCRXQ Quiescent MGTHAVCCRX Supply Current for one GTH Quad (4 lanes) mA IMGTHAVTTQ Quiescent MGTHAVTT Supply Current for one GTH Quad (4 lanes) mA IMGTHAVCCPLLQ Quiescent MGTHAVCCPLL Supply Current for one GTH Quad (4 lanes) mA Notes: 1. 2. 3. 4. Device powered and unconfigured. Currents for conditions other than values specified in this table can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools. GTH transceiver quiescent supply current for an entire device can be calculated by multiplying the values in this table by the number of available GTH transceivers. Typical values are specified at nominal voltage, 25°C. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 16 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics GTH Transceiver DC Input and Output Levels Table 30 summarizes the DC output specifications of the GTH transceivers in Virtex-6 FPGAs. Consult the Virtex-6 FPGA GTH Transceivers User Guide for further details. Table 30: GTH Transceiver DC Specifications Symbol DC Parameter Conditions Min Typ Max Units DVPPIN Differential peak-to-peak input voltage External AC coupled mV DVPPOUT Differential peak-to-peak output voltage (1) mV RIN Differential input resistance 100 Ω ROUT Differential output resistance 100 Ω TOSKEW Transmitter output pair (TXP and TXN) intra-pair skew CEXT Recommended external AC coupling capacitor(2) Transmitter output swing is set to maximum setting ps 100 nF Notes: 1. 2. The output swing and preemphasis levels are programmable using the attributes discussed in the Virtex-6 FPGA GTH Transceivers User Guide and can result in values lower than reported in this table. Other values can be used as appropriate to conform to specific protocols and standards. Table 31 summarizes the DC specifications of the clock input of the GTH transceiver. Consult theVirtex-6 FPGA GTH Transceivers User Guide for further details. Table 31: GTH Transceiver Clock DC Input Level Specification Symbol DC Parameter Conditions Min Typ Max Units ≤ 600 MHz 500 1600 mV > 600 MHz 600 1600 mV VIDIFF Differential peak-to-peak input voltage RIN Differential input resistance 100 Ω CEXT Required external AC coupling capacitor 100 nF DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 17 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics GTH Transceiver Switching Characteristics Consult Virtex-6 FPGA GTH Transceivers User Guide for further information. Table 32: GTH Transceiver Maximum Data Rate and PLL Frequency Range Symbol Description Conditions Speed Grade Units -3 -2 -1 PLL Output Divider = 1 11.182 11.182 10.32 Gb/s PLL Output Divider = 4 2.795 2.795 2.58 Gb/s PLL Output Divider = 1 9.92 9.92 9.92 Gb/s PLL Output Divider = 4 2.48 2.48 2.48 Gb/s FGTHMAX Maximum GTH transceiver data rate FGTHMIN Minimum GTH transceiver data rate(1) FGPLLMAX Maximum GTH PLL frequency 5.591 5.591 5.16 GHz FGPLLMIN Minimum GTH PLL frequency 4.96 4.96 4.96 GHz Notes: 1. Lower data rates can be achieved using FPGA logic based oversampling designs. Table 33: GTH Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics Symbol Speed Grade Description FGTHDRPCLK GTHDRPCLK maximum frequency -3 -2 -1 70 70 60 Units MHz Table 34: GTH Transceiver Reference Clock Switching Characteristics Symbol Description Conditions All Speed Grades Min Typ Max Units -1 speed grade 150 623 MHz -2 and -3 speed grades 150 670 MHz FGCLK Reference clock frequency range TRCLK Reference clock rise time 20% – 80% 200 ps TFCLK Reference clock fall time 80% – 20% 200 ps TDCREF Reference clock duty cycle CLK TLOCK Clock recovery frequency acquisition time Initial PLL lock ms TPHASE Clock recovery phase acquisition time Lock to data after PLL has locked to the reference clock µs 45 50 55 % X-Ref Target - Figure 5 TRCLK 80% 20% TFCLK ds152_05_042109 Figure 5: Reference Clock Timing Parameters DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 18 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 35: GTH Transceiver User Clock Switching Characteristics (1) Symbol Description Conditions Speed Grade -3 -2 -1 Units FTXOUT TXUSERCLKOUT maximum frequency 350 350 323 MHz FRXOUT RXUSERCLKOUT maximum frequency 350 350 323 MHz 16-bit data path 350 350 323 MHz 20-bit data path 280 280 258 MHz 32-bit data path 350 350 323 MHz 40-bit data path 280 280 258 MHz 64-bit data path 175 175 162 MHz 80-bit data path 140 140 129 MHz 64B/66B-bit data path 170 170 157 MHz 16-bit data path 350 350 323 MHz 20-bit data path 280 280 258 MHz 32-bit data path 350 350 323 MHz 40-bit data path 280 280 258 MHz 64-bit data path 175 175 162 MHz 80-bit data path 140 140 129 MHz 64B/66B-bit data path 170 170 157 MHz Typ Max Units TXUSERCLKIN maximum frequency FTXIN RXUSERCLKIN maximum frequency FRXIN Notes: 1. Clocking must be implemented as described in the Virtex-6 FPGA GTH Transceivers User Guide. Table 36: GTH Transceiver Transmitter Switching Characteristics Symbol Description TRTX TX Rise time TFTX TX Fall time TLLSKEW TX lane-to-lane skew Condition 20%–80% Min ps 80%–20% ps within one GTH Quad ps across multiple GTH Quads ps Transmitter Output Jitter(1)(2) TJ11.18 Total Jitter DJ11.18 Deterministic Jitter TJ10.3125 Total Jitter DJ10.3125 Deterministic Jitter TJ9.953 Total Jitter DJ9.953 Deterministic Jitter TJ2.667 Total Jitter DJ2.667 Deterministic Jitter TJ2.488 Total Jitter DJ2.488 Deterministic Jitter 11.181 Gb/s UI UI 10.3125 Gb/s UI UI 9.953 Gb/s UI UI 2.667 Gb/s UI UI 2.488 Gb/s UI UI Notes: 1. 2. These values are NOT intended for protocol specific compliance determinations. All jitter values are based on a bit-error ratio of 1e-12. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 19 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 37: GTH Transceiver Receiver Switching Characteristics Symbol RXRL RXPPMTOL SJ Jitter Description Min Typ Max Run length (CID) Units UI Data/REFCLK PPM offset tolerance –200 200 ppm Tolerance(1)(2)(3) JT_SJ11.18 Sinusoidal Jitter 11.18 Gb/s UI JT_SJ10.32 Sinusoidal Jitter 10.32 Gb/s UI JT_SJ9.95 Sinusoidal Jitter 9.95 Gb/s UI JT_SJ2.667 Sinusoidal Jitter 2.667 Gb/s UI JT_SJ2.48 Sinusoidal Jitter 2.48 Gb/s UI Notes: 1. 2. 3. These values are NOT intended for protocol specific compliance determinations. All jitter values are based on a bit error ratio of 1e–12. The frequency of the injected sinusoidal jitter is 80 MHz. Ethernet MAC Switching Characteristics Consult Virtex-6 FPGA Embedded Tri-mode Ethernet MAC User Guide for further information. Table 38: Maximum Ethernet MAC Performance Symbol FTEMACCLIENT FTEMACPHY Description Client interface maximum frequency Physical interface maximum frequency Conditions Speed Grade Units -3 -2 -1 -1L 10 Mb/s – 8-bit width 2.5(1) 2.5(1) 2.5(1) 2.5(1) MHz 100 Mb/s – 8-bit width 25(2) 25(2) 25(2) 25(2) MHz 1000 Mb/s – 8-bit width 125 125 125 125 MHz 1000 Mb/s – 16-bit width 62.5 62.5 62.5 62.5 MHz 2000 Mb/s – 16-bit width 125 125 125 N/A MHz 2500 Mb/s – 16-bit width 156.25 156.25 156.25 N/A MHz 10 Mb/s – 4-bit width 2.5 2.5 2.5 2.5 MHz 100 Mb/s – 4-bit width 25 25 25 25 MHz 1000 Mb/s – 8-bit width 125 125 125 125 MHz 2000 Mb/s – 8-bit width 250 250 250 N/A MHz 2500 Mb/s – 8-bit width 312.5 312.5 312.5 N/A MHz Notes: 1. 2. When not using clock enable, the FMAX is lowered to 1.25 MHz. When not using clock enable, the FMAX is lowered to 12.5 MHz. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 20 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Integrated Interface Block for PCI Express Designs Switching Characteristics More information and documentation on solutions for PCI Express designs can be found at: http://www.xilinx.com/technology/protocols/pciexpress.htm Table 39: Maximum Performance for PCI Express Designs Symbol Speed Grade Description -3 -2 -1 -1L Units FPIPECLK Pipe clock maximum frequency 250 250 250 250 MHz FUSERCLK User clock maximum frequency 500 500 250 250 MHz FDRPCLK DRP clock maximum frequency 250 250 250 250 MHz System Monitor Analog-to-Digital Converter Specification Table 40: Analog-to-Digital Specifications Parameter Symbol Comments/Conditions Min Typ Max Units AVDD = 2.5V ± 5%, VREFP = 1.25V, VREFN = 0V, ADCCLK = 5.2 MHz, Tj = –40°C to 100°C, Typical values at Tj=+35°C DC Accuracy: All external input channels. Both unipolar and bipolar modes. Resolution 10 – – Bits – – ±1 LSBs No missing codes (TMIN to TMAX) Guaranteed Monotonic – – ±0.9 LSBs Uncalibrated – ±2 ±30 LSBs Uncalibrated measured in bipolar mode – ±2 ±30 LSBs Uncalibrated - External Reference – ±0.2 ±2 % Uncalibrated - Internal Reference – ±2 – % Uncalibrated - External Reference – ±0.2 ±2 % Uncalibrated - Internal Reference – ±2 – % Deviation from ideal transfer function. External 1.25V reference – ±10 – LSBs Deviation from ideal transfer function. Internal reference – ±20 – LSBs Deviation from ideal transfer function. External 1.25V reference – ±1 ±2 LSBs Variation of FS code with temperature – ±0.01 – LSB/°C CMRRDC VN = VCM = 0.5V ± 0.5V, VP – VN = 100mV – 70 – dB Conversion Time - Continuous tCONV Number of CLK cycles 26 – 32 Conversion Time - Event tCONV Number of CLK cycles – – 21 T/H Acquisition Time tACQ Number of CLK cycles 4 – – DRP Clock Frequency DCLK DRP clock frequency 8 – 80 MHz ADC Clock Frequency ADCCLK Derived from DCLK 1 – 5.2 MHz 40 – 60 % Integral Nonlinearity INL Differential Nonlinearity DNL Unipolar Offset Error (1) Bipolar Offset Error (1) Gain Error Bipolar Gain Error (1) Total Unadjusted Error (Uncalibrated) Total Unadjusted Error (Calibrated) TUE TUE Calibrated Gain Temperature Coefficient DC Common-Mode Reject Conversion Rate(2) CLK Duty cycle DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 21 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 40: Analog-to-Digital Specifications (Cont’d) Parameter Symbol Comments/Conditions Min Typ Max Units Unipolar Operation 0 – 1 Volts Bipolar Operation –0.5 – +0.5 0 – +0.5 +0.5 – +0.6 Bandwidth – 20 – MHz Unipolar Operation 0 – 1 Volts Bipolar Operation –0.5 – +0.5 0 – +0.5 +0.5 – +0.6 Bandwidth – 10 – kHz A/D not converting, ADCCLK stopped – ±1.0 – µA – 10 – pF VCCINT and VCCAUX with calibration enabled. External 1.25V reference Tj = –40°C to 125°C. – – ±1.0 % Reading VCCINT and VCCAUX with calibration enabled. Internal reference Tj = –40°C to 100°C. – ±2 – % Reading Tj = –40°C to +125°C with calibration enabled. External 1.25V reference. – – ±4 °C Tj = –40°C to +100°C with calibration enabled. Internal reference. – ±5 – °C Analog Inputs(3) Dedicated Analog Inputs Input Voltage Range VP - VN Unipolar Common Mode Range (FS input) Bipolar Common Mode Range (FS input) Auxiliary Analog Inputs Input Voltage Range VAUXP[0] /VAUXN[0] to VAUXP[15] /VAUXN[15] Tj = –40°C to 100°C Unipolar Common Mode Range (FS input) Bipolar Common Mode Range (FS input) Input Leakage Current Input Capacitance On-chip Supply Monitor Error On-chip Temperature Monitor Error External Reference Inputs(4) Positive Reference Input Voltage Range VREFP Measured Relative to VREFN 1.20 1.25 1.30 Volts Negative Reference Input Voltage Range VREFN Measured Relative to AGND –50 0 100 mV Input current IREF ADCCLK = 5.2 MHz – – 100 µA Analog Power Supply AVDD Measured Relative to AVSS 2.375 2.5 2.625 Volts Analog Supply Current AIDD ADCCLK = 5.2 MHz – – 12 mA Power Requirements Notes: 1. 2. 3. 4. Offset errors are removed by enabling the System Monitor automatic gain calibration feature. See "System Monitor Timing" in the Virtex-6 FPGA System Monitor User Guide See "Analog Inputs" in the Virtex-6 FPGA System Monitor User Guide for a detailed description. Any variation in the reference voltage from the nominal VREFP = 1.25V and VREFN = 0V will result is a deviation from the ideal transfer function.This also impacts the accuracy of the internal sensor measurements (i.e., temperature and power supply). However, for external ratiometric type applications allowing reference to vary by ±4% is permitted. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 22 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Performance Characteristics This section provides the performance characteristics of some common functions and designs implemented in Virtex-6 devices. The numbers reported here are worst-case values; they have all been fully characterized. These values are subject to the same guidelines as the Switching Characteristics, page 24. Table 41: Interface Performances Speed Grade Description -3 -2 -1 -1L SDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 8) 710 Mb/s 710 Mb/s 650 Mb/s 585 Mb/s DDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 10) 1.4 Gb/s 1.3 Gb/s 1.25 Gb/s 1.1 Gb/s 710 Mb/s 710 Mb/s 650 Mb/s 585 Mb/s 1.4 Gb/s 1.3 Gb/s 1.0 Gb/s 0.9 Gb/s DDR2 800 Mb/s 800 Mb/s 800 Mb/s 606 Mb/s DDR3 1066 Mb/s 1066 Mb/s 800 Mb/s 606 Mb/s QDR II + SRAM 400 MHz 350 MHz 300 MHz – RLDRAM II 500 MHz 400 MHz 350 MHz – Networking Applications SDR LVDS receiver (SFI-4.1)(1) DDR LVDS receiver (SPI-4.2)(1) Maximum Physical Interface (PHY) Rate for Memory Interfaces(2)(3) Notes: 1. 2. 3. LVDS receivers are typically bounded with certain applications where specific DPA algorithms dominate deterministic performance. Verified on Xilinx memory characterization platforms designed according to the guidelines in theVirtex-6 FPGA Memory Interface Solutions User Guide. Consult theVirtex-6 FPGA Memory Interface Solutions Data Sheet for performance and feature information on memory interface cores (controller plus PHY). DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 23 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Switching Characteristics All values represented in this data sheet are based on these speed specifications: v1.10 for -3, -2, and -1; and v1.07 for -1L. Switching characteristics are specified on a per-speedgrade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows: Advance These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some underreporting might still occur. All specifications are always representative of worst-case supply voltage and junction temperature conditions. Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device. Table 42 correlates the current status of each Virtex-6 device on a per speed grade basis. Table 42: Virtex-6 Device Speed Grade Designations Device Speed Grade Designations Advance Preliminary Production Preliminary XC6VLX75T -3, -2, -1, -1L These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data. XC6VLX130T -3, -2, -1, -1L XC6VLX195T -3, -2, -1, -1L XC6VLX240T -3, -2, -1, -1L XC6VLX365T -3, -2, -1, -1L XC6VLX550T -2, -1, -1L Production XC6VLX760 -2, -1, -1L These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades. XC6VSX315T -3, -2, -1, -1L XC6VSX475T -2, -1, -1L XC6VHX250T -3, -2, -1 XC6VHX255T -3, -2, -1 XC6VHX380T -3, -2, -1 XC6VHX565T -2, -1 Testing of Switching Characteristics All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. DS152 (v2.10) October18, 2010 Advance Product Specification For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Virtex-6 devices. www.xilinx.com 24 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Production Silicon and ISE Software Status Table 43 lists the production released Virtex-6 family member, speed grade, and the minimum corresponding supported speed specification version and ISE software revisions. The ISE® software and speed specifications listed are the minimum releases required for production. All subsequent releases of software and speed specifications are valid. In some cases, a particular family member (and speed grade) is released to production before a speed specification is released with the correct label (Advance, Preliminary, Production). Any labeling discrepancies are corrected in subsequent speed specification releases. Table 43: Virtex-6 Device Production Software and Speed Specification Release Speed Grade Designations Device -3 -2 XC6VLX75T -1 -1L ISE 12.2 v1.08 ISE 12.3 v1.07 Patch XC6VLX130T ISE 12.1 v1.06 ISE 11.5 v1.05 ISE 11.5 v1.05 ISE 12.2 v1.05 XC6VLX195T ISE 12.1 v1.06 ISE 12.1 v1.06 ISE 12.1 v1.06 ISE 12.2 v1.04 XC6VLX240T ISE 12.1 v1.06 ISE 11.4.1 v1.04 ISE 11.4.1 v1.04 ISE 12.2 v1.04 XC6VLX365T ISE 12.2 v1.08 ISE 12.2 v1.04 XC6VLX550T N/A ISE 12.2 v1.07 ISE 12.2 v1.04 XC6VLX760 N/A ISE 12.2 v1.08 ISE 12.3 v1.07 Patch XC6VSX315T ISE 12.2 v1.08 ISE 12.1 v1.06 ISE 12.3 v1.07 Patch XC6VSX475T N/A ISE 12.2 v1.08 ISE 12.3 v1.07 Patch XC6VHX250T N/A XC6VHX255T N/A XC6VHX380T N/A XC6VHX565T N/A N/A Notes: 1. Blank entries indicate a device and/or speed grade in advance or preliminary status. IOB Pad Input/Output/3-State Switching Characteristics Table 44 summarizes the values of standard-specific data input delay adjustments, output delays terminating at pads (based on standard) and 3-state delays. TIOPI is described as the delay from IOB pad through the input buffer to the I-pin of an IOB pad. The delay varies depending on the capability of the SelectIO input buffer. TIOTP is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is disabled. The delay varies depending on the SelectIO capability of the output buffer. Table 45 summarizes the value of TIOTPHZ. TIOTPHZ is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is enabled (i.e., a high impedance state). TIOOP is described as the delay from the O pin to the IOB pad through the output buffer of an IOB pad. The delay varies depending on the capability of the SelectIO output buffer. Table 44: IOB Switching Characteristics I/O Standard TIOPI TIOOP TIOTP Speed Grade Speed Grade Speed Grade Units -3 -2 -1 -1L -3 -2 -1 -1L -3 -2 -1 -1L LVDS_25 0.85 0.94 1.09 1.08 1.45 1.54 1.68 1.62 1.45 1.54 1.68 1.62 ns LVDSEXT_25 0.85 0.94 1.09 1.08 1.53 1.65 1.84 1.73 1.53 1.65 1.84 1.73 ns HT_25 0.85 0.94 1.09 1.08 1.51 1.62 1.78 1.69 1.51 1.62 1.78 1.69 ns DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 25 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 44: IOB Switching Characteristics (Cont’d) I/O Standard TIOPI TIOOP TIOTP Speed Grade Speed Grade Speed Grade Units -3 -2 -1 -1L -3 -2 -1 -1L -3 -2 -1 -1L BLVDS_25 0.85 0.94 1.09 1.08 1.39 1.50 1.67 1.65 1.39 1.50 1.67 1.65 ns RSDS_25 (point to point) 0.85 0.94 1.09 1.08 1.45 1.54 1.68 1.62 1.45 1.54 1.68 1.62 ns HSTL_I 0.81 0.91 1.06 1.06 1.45 1.56 1.73 1.71 1.45 1.56 1.73 1.71 ns HSTL_II 0.81 0.91 1.06 1.06 1.44 1.56 1.74 1.72 1.44 1.56 1.74 1.72 ns HSTL_III 0.81 0.91 1.06 1.06 1.42 1.54 1.71 1.69 1.42 1.54 1.71 1.69 ns HSTL_I_18 0.81 0.91 1.06 1.06 1.47 1.58 1.75 1.72 1.47 1.58 1.75 1.72 ns HSTL_II_18 0.81 0.91 1.06 1.06 1.50 1.62 1.81 1.78 1.50 1.62 1.81 1.78 ns HSTL_III_18 0.81 0.91 1.06 1.06 1.42 1.54 1.71 1.69 1.42 1.54 1.71 1.69 ns SSTL2_I 0.81 0.91 1.06 1.06 1.49 1.60 1.77 1.74 1.49 1.60 1.77 1.74 ns SSTL2_II 0.81 0.91 1.06 1.06 1.42 1.54 1.72 1.71 1.42 1.54 1.72 1.71 ns SSTL15 0.81 0.91 1.06 1.06 1.42 1.54 1.71 1.69 1.42 1.54 1.71 1.69 ns LVCMOS25, Slow, 2 mA 0.51 0.57 0.66 0.70 5.09 5.46 6.01 5.63 5.09 5.46 6.01 5.63 ns LVCMOS25, Slow, 4 mA 0.51 0.57 0.66 0.70 3.30 3.49 3.79 3.65 3.30 3.49 3.79 3.65 ns LVCMOS25, Slow, 6 mA 0.51 0.57 0.66 0.70 2.62 2.81 3.08 2.95 2.62 2.81 3.08 2.95 ns LVCMOS25, Slow, 8 mA 0.51 0.57 0.66 0.70 2.21 2.41 2.72 2.59 2.21 2.41 2.72 2.59 ns LVCMOS25, Slow, 12 mA 0.51 0.57 0.66 0.70 1.80 1.95 2.17 2.10 1.80 1.95 2.17 2.10 ns LVCMOS25, Slow, 16 mA 0.51 0.57 0.66 0.70 1.89 2.05 2.29 2.21 1.89 2.05 2.29 2.21 ns LVCMOS25, Slow, 24 mA 0.51 0.57 0.66 0.70 1.68 1.82 2.02 1.98 1.68 1.82 2.02 1.98 ns LVCMOS25, Fast, 2 mA 0.51 0.57 0.66 0.70 5.12 5.49 6.04 5.62 5.12 5.49 6.04 5.62 ns LVCMOS25, Fast, 4 mA 0.51 0.57 0.66 0.70 3.28 3.50 3.82 3.65 3.28 3.50 3.82 3.65 ns LVCMOS25, Fast, 6 mA 0.51 0.57 0.66 0.70 2.56 2.73 2.99 2.88 2.56 2.73 2.99 2.88 ns LVCMOS25, Fast, 8 mA 0.51 0.57 0.66 0.70 2.11 2.33 2.65 2.53 2.11 2.33 2.65 2.53 ns LVCMOS25, Fast, 12 mA 0.51 0.57 0.66 0.70 1.74 1.88 2.08 2.03 1.74 1.88 2.08 2.03 ns LVCMOS25, Fast, 16 mA 0.51 0.57 0.66 0.70 1.77 1.92 2.13 2.08 1.77 1.92 2.13 2.08 ns LVCMOS25, Fast, 24 mA 0.51 0.57 0.66 0.70 1.66 1.79 1.99 1.96 1.66 1.79 1.99 1.96 ns LVCMOS18, Slow, 2 mA 0.55 0.61 0.71 0.73 4.21 4.47 4.87 4.30 4.21 4.47 4.87 4.30 ns LVCMOS18, Slow, 4 mA 0.55 0.61 0.71 0.73 2.79 2.96 3.21 2.94 2.79 2.96 3.21 2.94 ns LVCMOS18, Slow, 6 mA 0.55 0.61 0.71 0.73 2.30 2.43 2.64 2.47 2.30 2.43 2.64 2.47 ns LVCMOS18, Slow, 8 mA 0.55 0.61 0.71 0.73 2.01 2.11 2.27 2.24 2.01 2.11 2.27 2.24 ns LVCMOS18, Slow, 12 mA 0.55 0.61 0.71 0.73 1.88 1.99 2.15 2.10 1.88 1.99 2.15 2.10 ns LVCMOS18, Slow, 16 mA 0.55 0.61 0.71 0.73 1.84 1.95 2.11 2.04 1.84 1.95 2.11 2.04 ns LVCMOS18, Fast, 2 mA 0.55 0.61 0.71 0.73 4.00 4.23 4.57 4.08 4.00 4.23 4.57 4.08 ns LVCMOS18, Fast, 4 mA 0.55 0.61 0.71 0.73 2.62 2.76 2.97 2.74 2.62 2.76 2.97 2.74 ns LVCMOS18, Fast, 6 mA 0.55 0.61 0.71 0.73 2.15 2.28 2.46 2.32 2.15 2.28 2.46 2.32 ns LVCMOS18, Fast, 8 mA 0.55 0.61 0.71 0.73 1.90 1.99 2.13 2.14 1.90 1.99 2.13 2.14 ns LVCMOS18, Fast, 12 mA 0.55 0.61 0.71 0.73 1.69 1.80 1.97 1.88 1.69 1.80 1.97 1.88 ns LVCMOS18, Fast, 16 mA 0.55 0.61 0.71 0.73 1.63 1.74 1.91 1.88 1.63 1.74 1.91 1.88 ns LVCMOS15, Slow, 2 mA 0.64 0.73 0.85 0.85 3.43 3.77 4.29 3.91 3.43 3.77 4.29 3.91 ns DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 26 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 44: IOB Switching Characteristics (Cont’d) I/O Standard TIOPI TIOOP TIOTP Speed Grade Speed Grade Speed Grade Units -3 -2 -1 -1L -3 -2 -1 -1L -3 -2 -1 -1L LVCMOS15, Slow, 4 mA 0.64 0.73 0.85 0.85 2.58 2.79 3.10 2.93 2.58 2.79 3.10 2.93 ns LVCMOS15, Slow, 6 mA 0.64 0.73 0.85 0.85 2.08 2.32 2.68 2.50 2.08 2.32 2.68 2.50 ns LVCMOS15, Slow, 8 mA 0.64 0.73 0.85 0.85 1.81 1.98 2.23 2.24 1.81 1.98 2.23 2.24 ns LVCMOS15, Slow, 12 mA 0.64 0.73 0.85 0.85 1.76 1.91 2.13 2.07 1.76 1.91 2.13 2.07 ns LVCMOS15, Slow, 16 mA 0.64 0.73 0.85 0.85 1.69 1.83 2.04 1.98 1.69 1.83 2.04 1.98 ns LVCMOS15, Fast, 2 mA 0.64 0.73 0.85 0.85 3.44 3.77 4.28 3.91 3.44 3.77 4.28 3.91 ns LVCMOS15, Fast, 4 mA 0.64 0.73 0.85 0.85 2.37 2.53 2.78 2.66 2.37 2.53 2.78 2.66 ns LVCMOS15, Fast, 6 mA 0.64 0.73 0.85 0.85 1.80 2.05 2.42 2.16 1.80 2.05 2.42 2.16 ns LVCMOS15, Fast, 8 mA 0.64 0.73 0.85 0.85 1.76 1.90 2.11 2.04 1.76 1.90 2.11 2.04 ns LVCMOS15, Fast, 12 mA 0.64 0.73 0.85 0.85 1.64 1.77 1.97 1.90 1.64 1.77 1.97 1.90 ns LVCMOS15, Fast, 16 mA 0.64 0.73 0.85 0.85 1.62 1.76 1.96 1.92 1.62 1.76 1.96 1.92 ns LVCMOS12, Slow, 2 mA 0.72 0.81 0.93 0.95 3.14 3.39 3.75 3.54 3.14 3.39 3.75 3.54 ns LVCMOS12, Slow, 4 mA 0.72 0.81 0.93 0.95 2.43 2.63 2.93 2.79 2.43 2.63 2.93 2.79 ns LVCMOS12, Slow, 6 mA 0.72 0.81 0.93 0.95 1.92 2.11 2.41 2.26 1.92 2.11 2.41 2.26 ns LVCMOS12, Slow, 8 mA 0.72 0.81 0.93 0.95 1.87 2.02 2.25 2.17 1.87 2.02 2.25 2.17 ns LVCMOS12, Fast, 2 mA 0.72 0.81 0.93 0.95 2.71 2.98 3.39 3.11 2.71 2.98 3.39 3.11 ns LVCMOS12, Fast, 4 mA 0.72 0.81 0.93 0.95 1.93 2.16 2.51 2.31 1.93 2.16 2.51 2.31 ns LVCMOS12, Fast, 6 mA 0.72 0.81 0.93 0.95 1.75 1.89 2.11 2.05 1.75 1.89 2.11 2.05 ns LVCMOS12, Fast, 8 mA 0.72 0.81 0.93 0.95 1.69 1.82 2.02 1.98 1.69 1.82 2.02 1.98 ns LVDCI_25 0.51 0.57 0.66 0.70 2.05 2.14 2.26 2.26 2.05 2.14 2.26 2.26 ns LVDCI_18 0.55 0.61 0.71 0.73 2.07 2.23 2.47 2.38 2.07 2.23 2.47 2.38 ns LVDCI_15 0.64 0.73 0.85 0.85 1.85 2.01 2.24 2.18 1.85 2.01 2.24 2.18 ns LVDCI_DV2_25 0.51 0.57 0.66 0.70 1.71 1.83 2.01 2.00 1.71 1.83 2.01 2.00 ns LVDCI_DV2_18 0.55 0.61 0.71 0.73 1.69 1.81 2.00 1.98 1.69 1.81 2.00 1.98 ns LVDCI_DV2_15 0.64 0.73 0.85 0.85 1.68 1.77 1.91 1.98 1.68 1.77 1.91 1.98 ns LVPECL_25 0.85 0.94 1.09 1.08 1.38 1.49 1.65 1.64 1.38 1.49 1.65 1.64 ns HSTL_I_12 0.81 0.91 1.06 1.06 1.48 1.60 1.78 1.74 1.48 1.60 1.78 1.74 ns HSTL_I_DCI 0.81 0.91 1.06 1.06 1.40 1.50 1.66 1.64 1.40 1.50 1.66 1.64 ns HSTL_II_DCI 0.81 0.91 1.06 1.06 1.37 1.49 1.68 1.66 1.37 1.49 1.68 1.66 ns HSTL_II_T_DCI 0.81 0.91 1.06 1.06 1.40 1.50 1.66 1.64 1.40 1.50 1.66 1.64 ns HSTL_III_DCI 0.81 0.91 1.06 1.06 1.34 1.45 1.62 1.61 1.34 1.45 1.62 1.61 ns HSTL_I_DCI_18 0.81 0.91 1.06 1.06 1.42 1.53 1.68 1.66 1.42 1.53 1.68 1.66 ns HSTL_II_DCI_18 0.81 0.91 1.06 1.06 1.36 1.46 1.62 1.59 1.36 1.46 1.62 1.59 ns HSTL_II _T_DCI_18 0.81 0.91 1.06 1.06 1.42 1.53 1.68 1.66 1.42 1.53 1.68 1.66 ns HSTL_III_DCI_18 0.81 0.91 1.06 1.06 1.43 1.54 1.69 1.67 1.43 1.54 1.69 1.67 ns DIFF_HSTL_I_18 0.85 0.94 1.09 1.08 1.47 1.58 1.75 1.72 1.47 1.58 1.75 1.72 ns DIFF_HSTL_I_DCI_18 0.85 0.94 1.09 1.08 1.42 1.53 1.68 1.66 1.42 1.53 1.68 1.66 ns DIFF_HSTL_I 0.85 0.94 1.09 1.08 1.45 1.56 1.73 1.71 1.45 1.56 1.73 1.71 ns DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 27 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 44: IOB Switching Characteristics (Cont’d) I/O Standard TIOPI TIOOP TIOTP Speed Grade Speed Grade Speed Grade Units -3 -2 -1 -1L -3 -2 -1 -1L -3 -2 -1 -1L DIFF_HSTL_I_DCI 0.85 0.94 1.09 1.08 1.40 1.50 1.66 1.64 1.40 1.50 1.66 1.64 ns DIFF_HSTL_II_18 0.85 0.94 1.09 1.08 1.50 1.62 1.81 1.78 1.50 1.62 1.81 1.78 ns DIFF_HSTL_II_DCI_18 0.85 0.94 1.09 1.08 1.36 1.46 1.62 1.59 1.36 1.46 1.62 1.59 ns DIFF_HSTL_II _T_DCI_18 0.85 0.94 1.09 1.08 1.42 1.53 1.68 1.66 1.42 1.53 1.68 1.66 ns DIFF_HSTL_II 0.85 0.94 1.09 1.08 1.44 1.56 1.74 1.72 1.44 1.56 1.74 1.72 ns DIFF_HSTL_II_DCI 0.85 0.94 1.09 1.08 1.37 1.49 1.68 1.66 1.37 1.49 1.68 1.66 ns SSTL2_I_DCI 0.81 0.91 1.06 1.06 1.42 1.53 1.70 1.68 1.42 1.53 1.70 1.68 ns SSTL2_II_DCI 0.81 0.91 1.06 1.06 1.39 1.50 1.67 1.69 1.39 1.50 1.67 1.69 ns SSTL2_II_T_DCI 0.81 0.91 1.06 1.06 1.42 1.53 1.70 1.68 1.42 1.53 1.70 1.68 ns SSTL18_I 0.81 0.91 1.06 1.06 1.47 1.58 1.75 1.73 1.47 1.58 1.75 1.73 ns SSTL18_II 0.81 0.91 1.06 1.06 1.39 1.50 1.67 1.66 1.39 1.50 1.67 1.66 ns SSTL18_I_DCI 0.81 0.91 1.06 1.06 1.40 1.51 1.67 1.65 1.40 1.51 1.67 1.65 ns SSTL18_II_DCI 0.81 0.91 1.06 1.06 1.36 1.47 1.63 1.62 1.36 1.47 1.63 1.62 ns SSTL18_II_T_DCI 0.81 0.91 1.06 1.06 1.40 1.51 1.67 1.65 1.40 1.51 1.67 1.65 ns SSTL15_T_DCI 0.81 0.91 1.06 1.06 1.41 1.52 1.68 1.66 1.41 1.52 1.68 1.66 ns SSTL15_DCI 0.81 0.91 1.06 1.06 1.41 1.52 1.68 1.66 1.41 1.52 1.68 1.66 ns DIFF_SSTL2_I 0.85 0.94 1.09 1.08 1.49 1.60 1.77 1.74 1.49 1.60 1.77 1.74 ns DIFF_SSTL2_I_DCI 0.85 0.94 1.09 1.08 1.42 1.53 1.70 1.68 1.42 1.53 1.70 1.68 ns DIFF_SSTL2_II 0.85 0.94 1.09 1.08 1.42 1.54 1.72 1.71 1.42 1.54 1.72 1.71 ns DIFF_SSTL2_II_DCI 0.85 0.94 1.09 1.08 1.39 1.50 1.67 1.69 1.39 1.50 1.67 1.69 ns DIFF_SSTL2_II_T_DCI 0.85 0.94 1.09 1.08 1.42 1.53 1.70 1.68 1.42 1.53 1.70 1.68 ns DIFF_SSTL18_I 0.85 0.94 1.09 1.08 1.47 1.58 1.75 1.73 1.47 1.58 1.75 1.73 ns DIFF_SSTL18_I_DCI 0.85 0.94 1.09 1.08 1.40 1.51 1.67 1.65 1.40 1.51 1.67 1.65 ns DIFF_SSTL18_II 0.85 0.94 1.09 1.08 1.39 1.50 1.67 1.66 1.39 1.50 1.67 1.66 ns DIFF_SSTL18_II_DCI 0.85 0.94 1.09 1.08 1.36 1.47 1.63 1.62 1.36 1.47 1.63 1.62 ns DIFF_SSTL18_II_T_DCI 0.85 0.94 1.09 1.08 1.40 1.51 1.67 1.65 1.40 1.51 1.67 1.65 ns DIFF_SSTL15 0.81 0.91 1.06 1.06 1.42 1.54 1.71 1.69 1.42 1.54 1.71 1.69 ns DIFF_SSTL15_DCI 0.81 0.91 1.06 1.06 1.41 1.52 1.68 1.66 1.41 1.52 1.68 1.66 ns DIFF_SSTL15_T_DCI 0.81 0.91 1.06 1.06 1.41 1.52 1.68 1.66 1.41 1.52 1.68 1.66 ns Table 45: IOB 3-state ON Output Switching Characteristics (TIOTPHZ) Symbol TIOTPHZ DS152 (v2.10) October18, 2010 Advance Product Specification Description T input to Pad high-impedance Speed Grade -3 -2 -1 -1L 0.86 0.92 0.99 0.99 Units ns www.xilinx.com 28 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics I/O Standard Adjustment Measurement Methodology Input Delay Measurements Table 46 shows the test setup parameters used for measuring input delay. Table 46: Input Delay Measurement Methodology Description I/O Standard Attribute VL (1)(2) VH(1)(2) VMEAS VREF (1)(4)(5) (1)(3)(5) LVCMOS, 2.5V LVCMOS25 0 2.5 1.25 – LVCMOS, 1.8V LVCMOS18 0 1.8 0.9 – LVCMOS, 1.5V LVCMOS15 0 1.5 0.75 – HSTL (High-Speed Transceiver Logic), Class I & II HSTL_I, HSTL_II VREF – 0.5 VREF + 0.5 VREF 0.75 HSTL, Class III HSTL_III VREF – 0.5 VREF + 0.5 VREF 0.90 HSTL, Class I & II, 1.8V HSTL_I_18, HSTL_II_18 VREF – 0.5 VREF + 0.5 VREF 0.90 HSTL, Class III 1.8V HSTL_III_18 VREF – 0.5 VREF + 0.5 VREF 1.08 SSTL (Stub Terminated Transceiver Logic), Class I & II, 3.3V SSTL3_I, SSTL3_II VREF – 1.00 VREF + 1.00 VREF 1.5 SSTL, Class I & II, 2.5V SSTL2_I, SSTL2_II VREF – 0.75 VREF + 0.75 VREF 1.25 SSTL, Class I & II, 1.8V SSTL18_I, SSTL18_II VREF – 0.5 VREF + 0.5 VREF 0.90 1.2 + 0.125 0(6) – 1.2 + 0.125 0(6) – 0.6 + 0.125 0(6) – LVDS (Low-Voltage Differential Signaling), 2.5V LVDSEXT (LVDS Extended Mode), 2.5V HT (HyperTransport), 2.5V LVDS_25 LVDSEXT_25 LDT_25 1.2 – 0.125 1.2 – 0.125 0.6 – 0.125 Notes: 1. 2. 3. 4. 5. 6. The input delay measurement methodology parameters for LVDCI are the same for LVCMOS standards of the same voltage. Input delay measurement methodology parameters for HSLVDCI are the same as for HSTL_II standards of the same voltage. Parameters for all other DCI standards are the same for the corresponding non-DCI standards. Input waveform switches between VLand VH. Measurements are made at typical, minimum, and maximum VREF values. Reported delays reflect worst case of these measurements. VREF values listed are typical. Input voltage level from which measurement starts. This is an input voltage reference that bears no relation to the VREF / VMEAS parameters found in IBIS models and/or noted in Figure 6. The value given is the differential input voltage. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 29 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Output Delay Measurements X-Ref Target - Figure 7 FPGA Output Output delays are measured using a Tektronix P6245 TDS500/600 probe (< 1 pF) across approximately 4" of FR4 microstrip trace. Standard termination was used for all testing. The propagation delay of the 4" trace is characterized separately and subtracted from the final measurement, and is therefore not included in the generalized test setups shown in Figure 6 and Figure 7. + RREF VMEAS CREF – ds152_07_042109 X-Ref Target - Figure 6 Figure 7: Differential Test Setup VREF Measurements and test conditions are reflected in the IBIS models except where the IBIS format precludes it. Parameters VREF , RREF , CREF , and VMEAS fully describe the test conditions for each I/O standard. The most accurate prediction of propagation delay in any given application can be obtained through IBIS simulation, using the following method: RREF FPGA Output VMEAS (voltage level when taking delay measurement) 1. Simulate the output driver of choice into the generalized test setup, using values from Table 47. CREF (probe capacitance) 2. Record the time to VMEAS . 3. Simulate the output driver of choice into the actual PCB trace and load, using the appropriate IBIS model or capacitance value to represent the load. ds152_06_042109 Figure 6: Single Ended Test Setup 4. Record the time to VMEAS . 5. Compare the results of steps 2 and 4. The increase or decrease in delay yields the actual propagation delay of the PCB trace. Table 47: Output Delay Measurement Methodology I/O Standard Attribute Description RREF (Ω) CREF(1) (pF) VMEAS (V) VREF (V) LVCMOS, 2.5V LVCMOS25 1M 0 1.25 0 LVCMOS, 1.8V LVCMOS18 1M 0 0.9 0 LVCMOS, 1.5V LVCMOS15 1M 0 0.75 0 LVCMOS, 1.2V LVCMOS12 1M 0 0.75 0 HSTL (High-Speed Transceiver Logic), Class I HSTL_I 50 0 VREF 0.75 HSTL, Class II HSTL_II 25 0 VREF 0.75 HSTL, Class III HSTL_III 50 0 0.9 1.5 HSTL, Class I, 1.8V HSTL_I_18 50 0 VREF 0.9 HSTL, Class II, 1.8V HSTL_II_18 25 0 VREF 0.9 HSTL, Class III, 1.8V HSTL_III_18 50 0 1.1 1.8 SSTL (Stub Series Terminated Logic), Class I, 1.8V SSTL18_I 50 0 VREF 0.9 SSTL, Class II, 1.8V SSTL18_II 25 0 VREF 0.9 SSTL, Class I, 2.5V SSTL2_I 50 0 VREF 1.25 SSTL, Class II, 2.5V SSTL2_II 25 0 VREF 1.25 LVDS (Low-Voltage Differential Signaling), 2.5V LVDS_25 100 0 0(2) 1.2 LVDSEXT (LVDS Extended Mode), 2.5V LVDS_25 100 0 0(2) 1.2 BLVDS (Bus LVDS), 2.5V BLVDS_25 100 0 0(2) 0 DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 30 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 47: Output Delay Measurement Methodology (Cont’d) I/O Standard Attribute Description HT (HyperTransport), 2.5V LDT_25 RREF (Ω) CREF(1) (pF) VMEAS (V) VREF (V) 100 0 0(2) 0.6 0 LVPECL (Low-Voltage Positive Emitter-Coupled Logic), 2.5V LVPECL_25 100 0 0(2) LVDCI/HSLVDCI, 2.5V LVDCI_25, HSLVDCI_25 1M 0 1.25 0 LVDCI/HSLVDCI, 1.8V LVDCI_18, HSLVDCI_18 1M 0 0.9 0 LVDCI/HSLVDCI, 1.5V LVDCI_15, HSLVDCI_15 1M 0 0.75 0 HSTL (High-Speed Transceiver Logic), Class I & II, with DCI HSTL_I_DCI, HSTL_II_DCI 50 0 VREF 0.75 HSTL, Class III, with DCI HSTL_III_DCI 50 0 0.9 1.5 HSTL, Class I & II, 1.8V, with DCI HSTL_I_DCI_18, HSTL_II_DCI_18 50 0 VREF 0.9 HSTL, Class III, 1.8V, with DCI HSTL_III_DCI_18 50 0 1.1 1.8 SSTL (Stub Series Termi.Logic), Class I & II, 1.8V, with DCI SSTL18_I_DCI, SSTL18_II_DCI 50 0 VREF 0.9 SSTL, Class I & II, 2.5V, with DCI 50 0 VREF 1.25 SSTL2_I_DCI, SSTL2_II_DCI Notes: 1. 2. CREF is the capacitance of the probe, nominally 0 pF. The value given is the differential output voltage. Input/Output Logic Switching Characteristics Table 48: ILOGIC Switching Characteristics Symbol Description Speed Grade -3 -2 -1 -1L Units Setup/Hold TICE1CK/TICKCE1 CE1 pin Setup/Hold with respect to CLK 0.21/ 0.03 0.25/ 0.04 0.27/ 0.04 0.31/ 0.05 ns TISRCK/TICKSR SR pin Setup/Hold with respect to CLK 0.66/ –0.08 0.78/ –0.08 0.96/ –0.08 1.09/ –0.11 ns TIDOCK/TIOCKD D pin Setup/Hold with respect to CLK without Delay 0.07/ 0.41 0.08/ 0.46 0.10/ 0.54 0.11/ 0.64 ns TIDOCKD/TIOCKDD DDLY pin Setup/Hold with respect to CLK (using IODELAY) 0.10/ 0.32 0.12/ 0.36 0.14/ 0.42 0.16/ 0.50 ns TIDI D pin to O pin propagation delay, no Delay 0.15 0.17 0.20 0.23 ns TIDID DDLY pin to O pin propagation delay (using IODELAY) 0.19 0.22 0.25 0.28 ns TIDLO D pin to Q1 pin using flip-flop as a latch without Delay 0.48 0.54 0.64 0.73 ns TIDLOD DDLY pin to Q1 pin using flip-flop as a latch (using IODELAY) 0.52 0.58 0.68 0.78 ns TICKQ CLK to Q outputs 0.54 0.61 0.70 0.93 ns TRQ_ILOGIC SR pin to OQ/TQ out 0.85 0.97 1.15 1.32 ns TGSRQ_ILOGIC Global Set/Reset to Q outputs 7.60 7.60 10.51 10.51 ns Minimum Pulse Width, SR inputs 0.78 0.95 1.20 1.30 ns, Min Combinatorial Sequential Delays Set/Reset TRPW_ILOGIC DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 31 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 49: OLOGIC Switching Characteristics Symbol Speed Grade Description -3 -2 -1 -1L Units Setup/Hold TODCK/TOCKD D1/D2 pins Setup/Hold with respect to CLK 0.45/ –0.08 0.50/ –0.08 0.54/ –0.08 0.69/ –0.11 ns TOOCECK/TOCKOCE OCE pin Setup/Hold with respect to CLK 0.17/ –0.03 0.20/ –0.03 0.22/ –0.03 0.27/ –0.04 ns TOSRCK/TOCKSR SR pin Setup/Hold with respect to CLK 0.59/ –0.24 0.62/ –0.24 0.71/ –0.24 0.79/ –0.35 ns TOTCK/TOCKT T1/T2 pins Setup/Hold with respect to CLK 0.44/ –0.07 0.51/ –0.07 0.56/ –0.07 0.68/ –0.13 ns TOTCECK/TOCKTCE TCE pin Setup/Hold with respect to CLK 0.15/ –0.04 0.19/ –0.04 0.21/ –0.04 0.29/ –0.05 ns D1 to OQ out or T1 to TQ out 0.78 0.87 1.01 1.15 ns TOCKQ CLK to OQ/TQ out 0.54 0.61 0.71 0.80 ns TRQ SR pin to OQ/TQ out 0.80 0.90 1.05 1.19 ns TGSRQ Global Set/Reset to Q outputs 7.60 7.60 10.51 10.51 ns Minimum Pulse Width, SR inputs 0.78 0.95 1.20 1.30 ns, Min Combinatorial TDOQ Sequential Delays Set/Reset TRPW DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 32 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Input Serializer/Deserializer Switching Characteristics Table 50: ISERDES Switching Characteristics Symbol Description Speed Grade -3 -2 -1 -1L Units Setup/Hold for Control Lines TISCCK_BITSLIP/ TISCKC_BITSLIP BITSLIP pin Setup/Hold with respect to CLKDIV 0.07/ 0.15 0.08/ 0.16 0.09/ 0.17 0.14/ 0.17 ns TISCCK_CE / TISCKC_CE(2) CE pin Setup/Hold with respect to CLK (for CE1) 0.20/ 0.03 0.25/ 0.04 0.27/ 0.04 0.31/ 0.05 ns TISCCK_CE2 / TISCKC_CE2(2) CE pin Setup/Hold with respect to CLKDIV (for CE2) 0.01/ 0.27 0.01 0.29 0.01/ 0.31 –0.05/ 0.35 ns TISDCK_D /TISCKD_D D pin Setup/Hold with respect to CLK 0.07/ 0.08 0.08/ 0.09 0.09/ 0.11 0.11/ 0.19 ns TISDCK_DDLY /TISCKD_DDLY DDLY pin Setup/Hold with respect to CLK (using IODELAY)(1) 0.10/ 0.05 0.12/ 0.06 0.14/ 0.07 0.16/ 0.15 ns TISDCK_D_DDR /TISCKD_D_DDR D pin Setup/Hold with respect to CLK at DDR mode 0.07/ 0.08 0.08/ 0.09 0.09/ 0.11 0.11/ 0.19 ns TISDCK_DDLY_DDR TISCKD_DDLY_DDR D pin Setup/Hold with respect to CLK at DDR mode (using IODELAY)(1) 0.10/ 0.05 0.12/ 0.06 0.14/ 0.07 0.16/ 0.15 ns CLKDIV to out at Q pin 0.57 0.66 0.75 0.88 ns D input to DO output pin 0.19 0.22 0.25 0.28 ns Setup/Hold for Data Lines Sequential Delays TISCKO_Q Propagation Delays TISDO_DO Notes: 1. 2. Recorded at 0 tap value. TISCCK_CE2 and TISCKC_CE2 are reported as TISCCK_CE/TISCKC_CE in TRACE report. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 33 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Output Serializer/Deserializer Switching Characteristics Table 51: OSERDES Switching Characteristics Symbol Description Speed Grade -3 -2 -1 -1L Units Setup/Hold TOSDCK_D/TOSCKD_D D input Setup/Hold with respect to CLKDIV 0.23/ –0.10 0.28/ –0.10 0.31/ –0.10 0.36/ –0.15 ns TOSDCK_T/TOSCKD_T(1) T input Setup/Hold with respect to CLK 0.44/ –0.10 0.51/ –0.09 0.56/ –0.08 0.68/ –0.15 ns TOSDCK_T2/TOSCKD_T2(1) T input Setup/Hold with respect to CLKDIV 0.25/ –0.10 0.27/ –0.09 0.31/ –0.08 0.47/ –0.15 ns TOSCCK_OCE/TOSCKC_OCE OCE input Setup/Hold with respect to CLK 0.17/ –0.03 0.20/ –0.03 0.22/ –0.03 0.27/ –0.04 ns TOSCCK_S SR (Reset) input Setup with respect to CLKDIV 0.07 0.07 0.07 0.08 ns TOSCCK_TCE/TOSCKC_TCE TCE input Setup/Hold with respect to CLK 0.15/ –0.04 0.19/ –0.04 0.21/ –0.04 0.29/ –0.05 ns TOSCKO_OQ Clock to out from CLK to OQ 0.63 0.71 0.82 0.93 ns TOSCKO_TQ Clock to out from CLK to TQ 0.63 0.71 0.82 0.93 ns T input to TQ Out 0.76 0.84 0.97 1.11 ns Sequential Delays Combinatorial TOSDO_TTQ Notes: 1. TOSDCK_T2 and TOSCKD_T2 are reported as TOSDCK_T/TOSCKD_T in TRACE report. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 34 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Input/Output Delay Switching Characteristics Table 52: Input/Output Delay Switching Characteristics Symbol Speed Grade Description -3 -2 -1 -1L Units IDELAYCTRL TDLYCCO_RDY FIDELAYCTRL_REF Reset to Ready for IDELAYCTRL 3.00 3.00 3.00 3.25 µs Attribute REFCLK frequency = 200.0(1) 200 200 200 200 MHz Attribute REFCLK frequency = 300.0(1) 300 300 – – MHz ±10 ±10 ±10 ±10 MHz 50.00 50.00 50.00 52.50 ns IDELAYCTRL_REF_PRECISION REFCLK precision TIDELAYCTRL_RPW Minimum Reset pulse width IODELAY TIDELAYRESOLUTION TIDELAYPAT_JIT IODELAY Chain Delay Resolution 1/(32 x 2 x FREF) ps Pattern dependent period jitter in delay chain for clock pattern.(2) 0 0 0 0 ps per tap Pattern dependent period jitter in delay chain for random data pattern (PRBS 23).(3) ±5 ±5 ±5 ±5 ps per tap Pattern dependent period jitter in delay chain for random data pattern (PRBS 23).(4) ±9 ±9 ±9 ±9 ps per tap TIODELAY_CLK_MAX Maximum frequency of CLK input to IODELAY 500.00 420.00 300.00 300.00 MHz TIODCCK_CE / TIODCKC_CE CE pin Setup/Hold with respect to CK 0.45/ –0.09 0.53/ –0.09 0.65/ –0.09 0.84/ –0.14 ns TIODCK_INC/ TIODCKC_INC INC pin Setup/Hold with respect to CK 0.23/ –0.02 0.27/ –0.01 0.31/ 0.00 0.27/ –0.04 ns TIODCCK_RST/ TIODCKC_RST RST pin Setup/Hold with respect to CK 0.57/ –0.08 0.62/ –0.08 0.69/ –0.08 0.74/ –0.13 ns TIODDO_T TSCONTROL delay to MUXE/MUXF switching and through IODELAY Note 5 Note 5 Note 5 Note 5 ps TIODDO_IDATAIN Propagation delay through IODELAY Note 5 Note 5 Note 5 Note 5 ps TIODDO_ODATAIN Propagation delay through IODELAY Note 5 Note 5 Note 5 Note 5 ps Notes: 1. 2. 3. 4. 5. Average Tap Delay at 200 MHz = 78 ps, at 300 MHz = 52 ps. When HIGH_PERFORMANCE mode is set to TRUE or FALSE. When HIGH_PERFORMANCE mode is set to TRUE When HIGH_PERFORMANCE mode is set to FALSE. Delay depends on IODELAY tap setting. See TRACE report for actual values. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 35 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics CLB Switching Characteristics Table 53: CLB Switching Characteristics Symbol Speed Grade Description Units -3 -2 -1 -1L An – Dn LUT address to A 0.06 0.07 0.07 0.09 ns, Max An – Dn LUT address to AMUX/CMUX 0.18 0.20 0.22 0.25 ns, Max An – Dn LUT address to BMUX_A 0.28 0.31 0.36 0.40 ns, Max TITO An – Dn inputs to A – D Q outputs 0.59 0.67 0.79 0.85 ns, Max TAXA AX inputs to AMUX output 0.31 0.35 0.42 0.44 ns, Max TAXB AX inputs to BMUX output 0.35 0.39 0.47 0.50 ns, Max TAXC AX inputs to CMUX output 0.39 0.44 0.52 0.56 ns, Max TAXD AX inputs to DMUX output 0.42 0.47 0.55 0.60 ns, Max TBXB BX inputs to BMUX output 0.30 0.34 0.39 0.44 ns, Max TBXD BX inputs to DMUX output 0.38 0.43 0.50 0.55 ns, Max TCXB CX inputs to CMUX output 0.26 0.29 0.34 0.37 ns, Max TCXD CX inputs to DMUX output 0.30 0.34 0.40 0.44 ns, Max TDXD DX inputs to DMUX output 0.30 0.33 0.38 0.43 ns, Max TOPCYA An input to COUT output 0.32 0.36 0.41 0.47 ns, Max TOPCYB Bn input to COUT output 0.32 0.36 0.41 0.47 ns, Max TOPCYC Cn input to COUT output 0.27 0.30 0.34 0.40 ns, Max TOPCYD Dn input to COUT output 0.25 0.28 0.32 0.37 ns, Max TAXCY AX input to COUT output 0.25 0.28 0.33 0.36 ns, Max TBXCY BX input to COUT output 0.22 0.24 0.28 0.31 ns, Max TCXCY CX input to COUT output 0.15 0.17 0.20 0.22 ns, Max TDXCY DX input to COUT output 0.14 0.16 0.19 0.21 ns, Max TBYP CIN input to COUT output 0.06 0.07 0.08 0.09 ns, Max TCINA CIN input to AMUX output 0.21 0.24 0.28 0.30 ns, Max TCINB CIN input to BMUX output 0.23 0.25 0.29 0.31 ns, Max TCINC CIN input to CMUX output 0.23 0.26 0.30 0.33 ns, Max TCIND CIN input to DMUX output 0.25 0.29 0.33 0.36 ns, Max TCKO Clock to AQ – DQ outputs 0.29 0.33 0.39 0.44 ns, Max TSHCKO Clock to AMUX – DMUX outputs 0.36 0.40 0.47 0.53 ns, Max Combinatorial Delays TILO Sequential Delays Setup and Hold Times of CLB Flip-Flops Before/After Clock CLK TDICK/TCKDI A – D input to CLK on A – D Flip Flops 0.30/ 0.17 0.36/ 0.18 0.43/ 0.20 0.44/ 0.25 ns, Min TCECK_CLB/ TCKCE_CLB CE input to CLK on A – D Flip Flops 0.20/ 0.00 0.25/ 0.00 0.32/ 0.00 0.32/ 0.01 ns, Min TSRCK/TCKSR SR input to CLK on A – D Flip Flops 0.39/ –0.07 0.44/ –0.07 0.52/ –0.07 0.58/ –0.08 ns, Min TCINCK/TCKCIN CIN input to CLK on A – D Flip Flops 0.16/ 0.12 0.19/ 0.14 0.24/ 0.16 0.23/ 0.22 ns, Min DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 36 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 53: CLB Switching Characteristics (Cont’d) Symbol Speed Grade Description -3 -2 -1 -1L Units Set/Reset TSRMIN SR input minimum pulse width 0.90 0.90 0.97 0.80 ns, Min TRQ Delay from SR input to AQ – DQ flip-flops 0.52 0.58 0.68 0.77 ns, Max TCEO Delay from CE input to AQ – DQ flip-flops 0.41 0.48 0.59 0.61 ns, Max FTOG Toggle frequency (for export control) 1412.00 1286.40 1098.00 1098.00 MHz Notes: 1. 2. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. These items are of interest for Carry Chain applications. CLB Distributed RAM Switching Characteristics (SLICEM Only) Table 54: CLB Distributed RAM Switching Characteristics Symbol Speed Grade Description -3 -2 -1 -1L Units Sequential Delays TSHCKO Clock to A – B outputs 0.92 1.10 1.36 1.49 ns, Max TSHCKO_1 Clock to AMUX – BMUX outputs 1.19 1.40 1.71 1.87 ns, Max Setup and Hold Times Before/After Clock CLK TDS/TDH A – D inputs to CLK 0.62/ 0.18 0.72/ 0.20 0.88/ 0.22 0.98/ 0.23 ns, Min TAS/TAH Address An inputs to clock 0.19/ 0.52 0.22/ 0.59 0.27/ 0.66 0.30/ 0.75 ns, Min TWS/TWH WE input to clock 0.27/ 0.00 0.32/ 0.00 0.40/ 0.00 0.47/ –0.03 ns, Min TCECK/TCKCE CE input to CLK 0.28/ –0.01 0.34/ –0.01 0.41/ –0.01 0.48/ –0.05 ns, Min TMPW Minimum pulse width 0.70 0.82 1.00 1.04 ns, Min TMCP Minimum clock period 1.40 1.64 2.00 2.08 ns, Min Clock CLK Notes: 1. 2. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. TSHCKO also represents the CLK to XMUX output. Refer to TRACE report for the CLK to XMUX path. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 37 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics CLB Shift Register Switching Characteristics (SLICEM Only) Table 55: CLB Shift Register Switching Characteristics Symbol Speed Grade Description -3 -2 -1 -1L Units Sequential Delays TREG Clock to A – D outputs 1.11 1.30 1.58 1.74 ns, Max TREG_MUX Clock to AMUX – DMUX output 1.37 1.60 1.93 2.12 ns, Max TREG_M31 Clock to DMUX output via M31 output 1.08 1.27 1.55 1.74 ns, Max Setup and Hold Times Before/After Clock CLK TWS/TWH WE input 0.05/ 0.00 0.07/ 0.00 0.09/ 0.00 0.11/ 0.03 ns, Min TCECK/TCKCE CE input to CLK 0.06/ –0.01 0.08/ –0.01 0.10/ –0.01 0.12/ 0.02 ns, Min TDS/TDH A – D inputs to CLK 0.64/ 0.18 0.76/ 0.21 0.94/ 0.24 1.07/ 0.23 ns, Min Minimum pulse width 0.60 0.70 0.85 0.89 ns, Min Clock CLK TMPW Notes: 1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 38 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Block RAM and FIFO Switching Characteristics Table 56: Block RAM and FIFO Switching Characteristics Symbol Speed Grade Description Units -3 -2 -1 -1L 1.60 1.79 2.08 2.36 ns, Max Clock CLK to DOUT output (with output register)(4)(5) 0.60 0.66 0.75 0.83 ns, Max Clock CLK to DOUT output with ECC (without output register)(2)(3) 2.62 2.89 3.30 3.73 ns, Max Clock CLK to DOUT output with ECC (with output register)(4)(5) 0.71 0.77 0.86 0.94 ns, Max Clock CLK to DOUT output with Cascade (without output register)(2) 2.49 2.77 3.18 3.61 ns, Max Clock CLK to DOUT output with Cascade (with output register)(4) 1.29 1.41 1.58 1.79 ns, Max Clock CLK to FIFO flags outputs(6) 0.74 0.81 0.91 0.98 ns, Max 0.90 0.98 1.09 1.21 ns, Max Block RAM and FIFO Clock-to-Out Delays TRCKO_DO and TRCKO_DO_REG(1) Clock CLK to DOUT output (without output register)(2)(3) TRCKO_DO_ECC and TRCKO_DO_ECC_REG TRCKO_CASC and TRCKO_CASC_REG TRCKO_FLAGS outputs(7) TRCKO_POINTERS Clock CLK to FIFO pointers TRCKO_SDBIT_ECC and TRCKO_SDBIT_ECC_REG Clock CLK to BITERR (with output register) 0.62 0.68 0.76 0.82 ns, Max Clock CLK to BITERR (without output register) 2.21 2.46 2.84 3.23 ns, Max TRCKO_PARITY_ECC Clock CLK to ECCPARITY in ECC encode only mode 0.86 0.94 1.06 1.18 ns, Max TRCKO_RDADDR_ECC and TRCKO_RDADDR_ECC_REG Clock CLK to RDADDR output with ECC (without output register) 0.73 0.79 0.90 1.00 ns, Max Clock CLK to RDADDR output with ECC (with output register) 0.76 0.82 0.92 1.02 ns, Max Setup and Hold Times Before/After Clock CLK TRCCK_ADDR/TRCKC_ADDR ADDR inputs(8) 0.47/ 0.27 0.53/ 0.29 0.62/ 0.32 0.66/ 0.34 ns, Min TRDCK_DI/TRCKD_DI DIN inputs(9) 0.84/ 0.30 0.95/ 0.32 1.11/ 0.34 1.26/ 0.36 ns, Min TRDCK_DI_ECC/TRCKD_DI_ECC DIN inputs with block RAM ECC in standard mode(9) 0.47/ 0.30 0.52/ 0.32 0.59/ 0.34 0.68/ 0.36 ns, Min DIN inputs with block RAM ECC encode only(9) 0.68/ 0.30 0.75/ 0.32 0.85/ 0.34 0.97/ 0.36 ns, Min DIN inputs with FIFO ECC in standard mode(9) 0.77/ 0.30 0.87/ 0.32 1.02/ 0.34 1.16/ 0.36 ns, Min TRCCK_CLK/TRCKC_CLK Inject single/double bit error in ECC mode 0.90/ 0.27 1.02/ 0.28 1.20/ 0.29 1.56/ 0.29 ns, Min TRCCK_RDEN/TRCKC_RDEN Block RAM Enable (EN) input 0.31/ 0.26 0.35/ 0.27 0.41/ 0.30 0.44/ 0.31 ns, Min TRCCK_REGCE/TRCKC_REGCE CE input of output register 0.18/ 0.25 0.19/ 0.27 0.22/ 0.31 0.24/ 0.33 ns, Min TRCCK_RSTREG/TRCKC_RSTREG Synchronous RSTREG input 0.22/ 0.23 0.24/ 0.24 0.28/ 0.26 0.31/ 0.27 ns, Min TRCCK_RSTRAM/TRCKC_RSTRAM Synchronous RSTRAM input 0.32/ 0.23 0.36/ 0.24 0.41/ 0.27 0.46/ 0.29 ns, Min DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 39 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 56: Block RAM and FIFO Switching Characteristics (Cont’d) Symbol Speed Grade Description -3 -2 -1 -1L Units TRCCK_WE/TRCKC_WE Write Enable (WE) input (Block RAM only) 0.44/ 0.19 0.47/ 0.25 0.52/ 0.35 0.67/ 0.24 ns, Min TRCCK_WREN/TRCKC_WREN WREN FIFO inputs 0.47/ 0.26 0.50/ 0.27 0.55/ 0.30 0.68/ 0.31 ns, Min TRCCK_RDEN/TRCKC_RDEN RDEN FIFO inputs 0.46/ 0.26 0.50/ 0.27 0.55/ 0.30 0.67/ 0.31 ns, Min Reset RST to FIFO Flags/Pointers(10) 0.90 0.98 1.10 1.23 ns, Max 0.22/ 0.23 0.24/ 0.24 0.28/ 0.26 0.31/ 0.27 ns, Min Block RAM (Write First and No Change modes) 600 540 450 340 MHz Block RAM (Read First mode) 525 475 400 275 MHz Block RAM (SDP mode) 525 475 400 275 MHz Block RAM Cascade (Write First and No Change modes) 550 490 400 300 MHz Block RAM Cascade (Read First mode) 475 425 350 235 MHz FMAX_FIFO FIFO in all modes 600 540 450 340 MHz FMAX_ECC Block RAM and FIFO in ECC configuration 450 400 325 250 MHz Reset Delays TRCO_FLAGS TRCCK_RSTREG/TRCKC_RSTREG FIFO reset timing(11) Maximum Frequency FMAX FMAX_CASCADE Notes: 1. 2. 3. 4. 5. 6. 7. 8. TRACE will report all of these parameters as TRCKO_DO. TRCKO_DOR includes TRCKO_DOW, TRCKO_DOPR, and TRCKO_DOPW as well as the B port equivalent timing parameters. These parameters also apply to synchronous FIFO with DO_REG = 0. TRCKO_DO includes TRCKO_DOP as well as the B port equivalent timing parameters. These parameters also apply to multirate (asynchronous) and synchronous FIFO with DO_REG = 1. TRCKO_FLAGS includes the following parameters: TRCKO_AEMPTY, TRCKO_AFULL, TRCKO_EMPTY, TRCKO_FULL, TRCKO_RDERR, TRCKO_WRERR. TRCKO_POINTERS includes both TRCKO_RDCOUNT and TRCKO_WRCOUNT. The ADDR setup and hold must be met when EN is asserted (even when WE is deasserted). Otherwise, block RAM data corruption is possible. 9. TRCKO_DI includes both A and B inputs as well as the parity inputs of A and B. 10. TRCO_FLAGS includes the following flags: AEMPTY, AFULL, EMPTY, FULL, RDERR, WRERR, RDCOUNT, and WRCOUNT. 11. The FIFO reset must be asserted for at least three positive clock edges. DSP48E1 Switching Characteristics Table 57: DSP48E1 Switching Characteristics Symbol Description Speed -3 -2 -1 -1L Units Setup and Hold Times of Data/Control Pins to the Input Register Clock TDSPDCK_{A, ACIN; B, BCIN}_{AREG; BREG}/ TDSPCKD_{A, ACIN; B, BCIN}_{AREG; BREG} {A, ACIN, B, BCIN} input to {A, B} register CLK 0.25/ 0.27 0.29/ 0.30 0.35/ 0.34 0.46/ 0.39 ns TDSPDCK_C_CREG/TDSPCKD_C_CREG C input to C register CLK 0.16/ 0.20 0.19/ 0.22 0.22/ 0.24 0.33/ 0.30 ns TDSPDCK_D_DREG/TDSPCKD_D_DREG D input to D register CLK 0.07/ 0.31 0.10/ 0.34 0.15/ 0.39 0.24/ 0.45 ns DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 40 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 57: DSP48E1 Switching Characteristics (Cont’d) Symbol Description Speed -3 -2 -1 -1L Units Setup and Hold Times of Data Pins to the Pipeline Register Clock TDSPDCK_{A, ACIN, B, BCIN}_MREG_MULT/ TDSPCKD_{A, ACIN, B, BCIN}_MREG_MULT {A, ACIN, B, BCIN} input to M register CLK 2.36/ 0.04 2.70/ 0.04 3.21/ 0.04 3.66/ 0.02 ns TDSPDCK_{A, D}_ADREG/ TDSPCKD_{A, D}_ADREG {A, D} input to AD register CLK 1.24/ 0.10 1.42/ 0.12 1.69/ 0.13 1.91/ 0.16 ns Setup and Hold Times of Data/Control Pins to the Output Register Clock TDSPDCK_{A, ACIN, B, BCIN}_PREG_MULT/ TDSPCKD_{A, ACIN, B, BCIN}_PREG_MULT {A, ACIN, B, BCIN} input to P register CLK using multiplier 3.83/ –0.13 4.37/ –0.13 5.20/ –0.13 5.94/ –0.24 ns TDSPDCK_D_PREG_MULT/ TDSPCKD_D_PREG_MULT D input to P register CLK 3.62/ –0.47 4.13/ –0.47 4.90/ –0.47 5.61/ –0.77 ns TDSPDCK_{A, ACIN, B, BCIN}_PREG/ TDSPCKD_{A, ACIN, B, BCIN}_PREG {A, ACIN, B, BCIN} input to P register CLK not using multiplier 1.59/ –0.13 1.81/ –0.13 2.15/ –0.13 2.44/ –0.24 ns TDSPDCK_C_PREG/ TDSPCKD_C_PREG C input to P register CLK 1.42/ –0.10 1.61/ –0.10 1.91/ –0.10 2.16/ –0.19 ns TDSPDCK_{PCIN, CARRYCASCIN, MULTSIGNIN}_PREG/ TDSPCKD_{PCIN, CARRYCASCIN, MULTSIGNIN}_PREG {PCIN, CARRYCASCIN, MULTSIGNIN} input to P register CLK 1.23/ –0.02 1.41/ –0.02 1.67/ –0.02 1.91/ –0.07 ns TDSPDCK_{CEA; CEB}_{AREG; BREG}/ TDSPCKD_{CEA; CEB}_{AREG; BREG} {CEA; CEB} input to {A; B} register CLK 0.14/ 0.19 0.17/ 0.22 0.22/ 0.25 0.30/ 0.28 ns TDSPDCK_CEC_CREG/ TDSPCKD_CEC_CREG CEC input to C register CLK 0.15/ 0.18 0.18/ 0.20 0.24/ 0.23 0.31/ 0.26 ns TDSPDCK_CED_DREG/ TDSPCKD_CED_DREG CED input to D register CLK 0.20/ 0.12 0.24/ 0.13 0.31/ 0.14 0.43/ 0.16 ns TDSPDCK_CEM_MREG/ TDSPCKD_CEM_MREG CEM input to M register CLK 0.16/ 0.19 0.20/ 0.21 0.26/ 0.25 0.32/ 0.28 ns TDSPDCK_CEP_PREG/ TDSPCKD_CEP_PREG CEP input to P register CLK 0.32/ 0.02 0.38/ 0.02 0.46/ 0.03 0.54/ 0.04 ns TDSPDCK_{RSTA; RSTB}_{AREG; BREG}/ TDSPCKD_{RSTA; RSTB}_{AREG; BREG} {RSTA, RSTB} input to {A, B} register CLK 0.27/ 0.17 0.31/ 0.19 0.38/ 0.22 0.41/ 0.25 ns TDSPDCK_RSTC_CREG/ TDSPCKD_RSTC_CREG RSTC input to C register CLK 0.18/ 0.08 0.20/ 0.08 0.23/ 0.09 0.27/ 0.11 ns TDSPDCK_RSTD_DREG/ TDSPCKD_RSTD_DREG RSTD input to D register CLK 0.28/ 0.15 0.32/ 0.16 0.38/ 0.19 0.45/ 0.21 ns TDSPDCK_RSTM_MREG/ TDSPCKD_RSTM_MREG RSTM input to M register CLK 0.20/ 0.24 0.23/ 0.26 0.26/ 0.30 0.29/ 0.34 ns TDSPDCK_RSTP_PREG/ TDSPCKD_RSTP_PREG RSTP input to P register CLK 0.26/ 0.04 0.30/ 0.04 0.35/ 0.05 0.43/ 0.06 ns Setup and Hold Times of the CE Pins Setup and Hold Times of the RST Pins Combinatorial Delays from Input Pins to Output Pins TDSPDO_{A, B}_{P, CARRYOUT}_MULT {A, B} input to {P, CARRYOUT} output using multiplier 3.76 4.29 5.08 5.87 ns TDSPDO_D_{P, CARRYOUT}_MULT D input to {P, CARRYOUT} output using multiplier 3.57 4.07 4.82 5.57 ns TDSPDO_{A, B}_{P, CARRYOUT} {A, B} input to {P, CARRYOUT} output not using multiplier 1.55 1.76 2.07 2.41 ns TDSPDO_{C, CARRYIN}_{P, CARRYOUT} {C, CARRYIN} input to {P, CARRYOUT} output 1.38 1.56 1.83 2.13 ns DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 41 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 57: DSP48E1 Switching Characteristics (Cont’d) Symbol Description Speed -3 -2 -1 -1L Units Combinatorial Delays from Input Pins to Cascading Output Pins TDSPDO_{A; B}_{ACOUT; BCOUT} {A, B} input to {ACOUT, BCOUT} output 0.49 0.56 0.65 0.73 ns TDSPDO_{A, B}_{PCOUT, CARRYCASCOUT, {A, B} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output using multiplier 3.87 4.42 5.24 6.09 ns D input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output using multiplier 3.66 4.17 4.94 5.76 ns TDSPDO_{A, B}_{PCOUT, CARRYCASCOUT, MULTSIGNOUT} {A, B} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output not using multiplier 1.64 1.86 2.19 2.60 ns TDSPDO__{C, CARRYIN}_{PCOUT, CARRYCASCOUT,MULTSIGNOUT} {C, CARRYIN} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output 1.46 1.66 1.95 2.32 ns MULTSIGNOUT}_MULT TDSPDO_D_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_MULT Combinatorial Delays from Cascading Input Pins to All Output Pins TDSPDO_{ACIN, BCIN}_{P, CARRYOUT}_MULT {ACIN, BCIN} input to {P, CARRYOUT} output using multiplier 3.67 4.19 4.97 5.75 ns TDSPDO_{ACIN, BCIN}_{P, CARRYOUT {ACIN, BCIN} input to {P, CARRYOUT} output not using multiplier 1.43 1.63 1.92 2.25 ns TDSPDO_{ACIN; BCIN}_{ACOUT; BCOUT} {ACIN, BCIN} input to {ACOUT, BCOUT} output 0.36 0.42 0.49 0.56 ns TDSPDO_{ACIN, BCIN}_{PCOUT, CARRYCASCOUT, {ACIN, BCIN} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output using multiplier 3.76 4.29 5.10 5.94 ns {ACIN, BCIN} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output not using multiplier 1.52 1.73 2.05 2.44 ns {PCIN, CARRYCASCIN, MULTSIGNIN} input to {P, CARRYOUT} output 1.19 1.35 1.60 1.87 ns {PCIN, CARRYCASCIN, MULTSIGNIN} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output 1.28 1.46 1.72 2.06 ns MULTSIGNOUT}_MULT TDSPDO_{ACIN, BCIN}_{PCOUT, CARRYCASCOUT, MULTSIGNOUT} TDSPDO_{PCIN, CARRYCASCIN, MULTSIGNIN}_ {P, CARRYOUT} TDSPDO_{PCIN, CARRYCASCIN, MULTSIGNIN}_ {PCOUT, CARRYCASCOUT, MULTSIGNOUT} Clock to Outs from Output Register Clock to Output Pins TDSPCKO_{P, CARRYOUT}_PREG CLK (PREG) to {P, CARRYOUT} output 0.38 0.43 0.50 0.57 ns TDSPCKO_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_PREG CLK (PREG) to {CARRYCASCOUT, PCOUT, MULTSIGNOUT} output 0.50 0.56 0.66 0.76 ns Clock to Outs from Pipeline Register Clock to Output Pins TDSPCKO_{P, CARRYOUT}_MREG CLK (MREG) to {P, CARRYOUT} output 1.72 1.96 2.30 2.69 ns TDSPCKO_{PCOUT, CARRYCASCOUT, CLK (MREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output 1.81 2.06 2.43 2.88 ns TDSPCKO_{P, CARRYOUT}_ADREG_MULT CLK (ADREG) to {P, CARRYOUT} output 2.79 3.16 3.72 4.32 ns TDSPCKO_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_ADREG_MULT CLK (ADREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output 2.87 3.26 3.84 4.51 ns MULTSIGNOUT}_MREG DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 42 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 57: DSP48E1 Switching Characteristics (Cont’d) Symbol Speed Description -3 -2 -1 -1L Units Clock to Outs from Input Register Clock to Output Pins TDSPCKO_{P, CARRYOUT}_{AREG, BREG}_MULT CLK (AREG, BREG) to {P, CARRYOUT} output using multiplier 3.97 4.52 5.36 6.20 ns TDSPCKO_{P, CARRYOUT}_{AREG, BREG} CLK (AREG, BREG) to {P, CARRYOUT} output not using multiplier 1.70 1.93 2.27 2.65 ns TDSPCKO_{P, CARRYOUT}_CREG CLK (CREG) to {P, CARRYOUT} output 1.70 1.93 2.27 2.80 ns TDSPCKO_{P, CARRYOUT}_DREG_MULT CLK (DREG) to {P, CARRYOUT} output 3.89 4.44 5.25 6.07 ns Clock to Outs from Input Register Clock to Cascading Output Pins TDSPCKO_{ACOUT; BCOUT}_{AREG; BREG} CLK (AREG, BREG) to {P, CARRYOUT} output 0.66 0.76 0.89 1.01 ns TDSPCKO_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_{AREG, BREG}_MULT CLK (AREG, BREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output using multiplier 4.05 4.63 5.49 6.39 ns TDSPCKO_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_{AREG, BREG} CLK (AREG, BREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output not using multiplier 1.79 2.03 2.40 2.84 ns TDSPCKO_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_DREG_MULT CLK (DREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output using multiplier 3.98 4.54 5.38 6.26 ns TDSPCKO_{PCOUT, CARRYCASCOUT, MULTSIGNOUT}_CREG CLK (CREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output 1.78 2.03 2.40 2.99 ns FMAX With all registers used 600 540 450 410 MHz FMAX_PATDET With pattern detector 551 483 408 356 MHz FMAX_MULT_NOMREG Two register multiply without MREG 356 311 262 224 MHz FMAX_MULT_NOMREG_PATDET Two register multiply without MREG with pattern detect 327 286 241 211 MHz FMAX_PREADD_MULT_NOADREG Without ADREG 398 347 292 254 MHz FMAX_PREADD_MULT_NOADREG_PATDET Without ADREG with pattern detect 398 347 292 254 MHz FMAX_NOPIPELINEREG Without pipeline registers (MREG, ADREG) 266 233 196 171 MHz FMAX_NOPIPELINEREG_PATDET Without pipeline registers (MREG, ADREG) with pattern detect 250 219 184 160 MHz Maximum Frequency Configuration Switching Characteristics Table 58: Configuration Switching Characteristics Symbol Description Speed Grade -3 -2 -1 -1L Units Power-up Timing Characteristics TPL(1) Program Latency 5 5 5 5 ms, Max TPOR(1) Power-on-Reset 15/55 15/55 15/55 15/55 ms, Min/Max TICCK CCLK (output) delay 400 400 400 400 ns, Min TPROGRAM Program Pulse Width 250 250 250 250 ns, Min DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 43 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 58: Configuration Switching Characteristics (Cont’d) Symbol Description Speed Grade -3 -2 -1 -1L Units Master/Slave Serial Mode Programming Switching TDCCK/TCCKD DIN Setup/Hold, slave mode 4.0/0.0 4.0/0.0 4.0/0.0 4.5/0.0 ns, Min TDSCCK/TSCCKD DIN Setup/Hold, master mode 4.0/0.0 4.0/0.0 4.0/0.0 5.0/0.0 ns, Min TCCO DOUT at 2.5V 6 6 6 7 ns, Max DOUT at 1.8V 6 6 6 7 ns, Max FMCCK Maximum CCLK frequency, serial modes 100 100 100 100 MHz, Max FMCCKTOL Frequency Tolerance, master mode with respect to nominal CCLK. 55 55 55 55 % FMSCCK Slave mode external CCLK 100 100 100 100 MHz SelectMAP Mode Programming Switching TSMDCCK/TSMCCKD SelectMAP Data Setup/Hold 4.0/0.0 4.0/0.0 4.0/0.0 5.5/0.0 ns, Min TSMCSCCK/TSMCCKCS CSI_B Setup/Hold 4.0/0.0 4.0/0.0 4.0/0.0 4.5/0.0 ns, Min TSMCCKW/TSMWCCK RDWR_B Setup/Hold 10.0/0.0 10.0/0.0 10.0/0.0 13.5/0.0 ns, Min TSMCKCSO CSO_B clock to out (330 Ω pull-up resistor required) 6 6 6 7 ns, Min TSMCO CCLK to DATA out in readback at 2.5V 6 6 6 7 ns, Max CCLK to DATA out in readback at 1.8V 6 6 6 7 ns, Max CCLK to BUSY out in readback at 2.5V 6 6 6 7 ns, Max CCLK to BUSY out in readback at 1.8V 6 6 6 7 ns, Max TSMCKBY FSMCCK Maximum Frequency with respect to nominal CCLK 100 100 100 70 MHz, Max FRBCCK Maximum Readback Frequency with respect to nominal CCLK 100 100 100 100 MHz, Max FMCCKTOL Frequency tolerance, master mode with respect to nominal CCLK 55 55 55 55 % 3.0/2.0 3.0/2.0 3.0/2.0 4.0/2.0 ns, Min Boundary-Scan Port Timing Specifications TTAPTCK/TTCKTAP TMS and TDI Setup time before TCK/ Hold time after TCK TTCKTDO TCK falling edge to TDO output valid at 2.5V 6 6 6 7 ns, Max TCK falling edge to TDO output valid at 1.8V 6 6 6 7 ns, Max FTCK Maximum configuration TCK clock frequency 66 66 66 66 MHz, Max FTCKB_MIN Minimum boundary-scan TCK clock frequency when using IEEE Std 1149.6 (AC-JTAG). Minimum operating temperature for IEEE Std 1149.6 is 0°C. 15 15 15 15 MHz, Min FTCKB Maximum boundary-scan TCK clock frequency 66 66 66 66 MHz, Max DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 44 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 58: Configuration Switching Characteristics (Cont’d) Symbol Description Speed Grade Units -3 -2 -1 -1L ADDR[25:0], RS[1:0], FCS_B, FOE_B, FWE_B outputs valid after CCLK rising edge at 2.5V 6 6 6 7 ns ADDR[25:0], RS[1:0], FCS_B, FOE_B, FWE_B outputs valid after CCLK rising edge at 1.8V 6 6 6 7 ns TBPIDCC/TBPICCD Setup/Hold on D[15:0] data input pins 4.0/0.0 4.0/0.0 4.0/0.0 5.0/0.0 ns TINITADDR Minimum period of initial ADDR[25:0] address cycles 3 3 3 3 CCLK cycles 3.0/0.0 3.0/0.0 3.0/0.0 3.5/0.0 ns BPI Master Flash Mode Programming Switching TBPICCO(2) SPI Master Flash Mode Programming Switching TSPIDCC/TSPIDCCD DIN Setup/Hold before/after the rising CCLK edge TSPICCM MOSI clock to out at 2.5V 6 6 6 7 ns MOSI clock to out at 1.8V 6 6 6 7 ns FCS_B clock to out at 2.5V 6 6 6 7 ns FCS_B clock to out at 1.8V 6 6 6 7 ns FS[2:0] to INIT_B rising edge Setup and Hold 2 2 2 2 µs TMCCKL Master CCLK clock Low time duty cycle 45/55 45/55 45/55 45/55 %, Min/Max TMCCKH Master CCLK clock High time duty cycle 45/55 45/55 45/55 45/55 %, Min/Max TSPICCFC TFSINIT/TFSINITH CCLK Output (Master Modes) CCLK Input (Slave Modes) TSCCKL Slave CCLK clock minimum Low time 2.5 2.5 2.5 2.5 ns, Min TSCCKH Slave CCLK clock minimum High time 2.5 2.5 2.5 2.5 ns, Min Dynamic Reconfiguration Port (DRP) for MMCM Before and After DCLK FDCK Maximum frequency for DCLK 200 200 200 200 MHz TMMCMDCK_DADDR/ TMMCMCKD_DADDR DADDR Setup/Hold 1.25/ 0.00 1.40/ 0.00 1.63/ 0.00 1.64/ 0.00 ns TMMCMDCK_DI/TMMCMCKD_DI DI Setup/Hold 1.25/ 0.00 1.40/ 0.00 1.63/ 0.00 1.64/ 0.00 ns TMMCMDCK_DEN/TMMCMCKD_DEN DEN Setup/Hold time 1.25/ 0.00 1.40/ 0.00 1.63/ 0.00 1.64/ 0.00 ns TMMCMDCK_DWE/TMMCMCKD_DWE DWE Setup/Hold time 1.25/ 0.00 1.40/ 0.00 1.63/ 0.00 1.64/ 0.00 ns TMMCMCKO_DO CLK to out of DO(3) 2.60 3.02 3.64 3.68 ns TMMCMCKO_DRDY CLK to out of DRDY 0.32 0.34 0.38 0.38 ns Notes: 1. 2. 3. To support longer delays in configuration, use the design solutions described in Virtex-6 FPGA Configuration User Guide. Only during configuration, the last edge is determined by a weak pull-up/pull-down resistor in the I/O. DO will hold until next DRP operation. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 45 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Clock Buffers and Networks Table 59: Global Clock Switching Characteristics (Including BUFGCTRL) Symbol Description Speed Grade -3 -2 -1 -1L Units TBCCCK_CE/TBCCKC_CE(1) CE pins Setup/Hold 0.11/ 0.00 0.13/ 0.00 0.16/ 0.00 0.13/ 0.00 ns TBCCCK_S/TBCCKC_S(1) S pins Setup/Hold 0.11/ 0.00 0.13/ 0.00 0.16/ 0.00 0.13/ 0.00 ns TBCCKO_O(2) BUFGCTRL delay from I0/I1 to O 0.07 0.08 0.10 0.10 ns Global clock tree (BUFG) 800 750 700 667 MHz Maximum Frequency FMAX Notes: 1. 2. TBCCCK_CE and TBCCKC_CE must be satisfied to assure glitch-free operation of the global clock when switching between clocks. These parameters do not apply to the BUFGMUX_VIRTEX4 primitive that assures glitch-free operation. The other global clock setup and hold times are optional; only needing to be satisfied if device operation requires simulation matches on a cycle-for-cycle basis when switching between clocks. TBGCKO_O (BUFG delay from I0 to O) values are the same as TBCCKO_O values. Table 60: Input/Output Clock Switching Characteristics (BUFIO) Symbol TBIOCKO_O Description Speed Grade Units -3 -2 -1 -1L Clock to out delay from I to O 0.14 0.16 0.18 0.21 ns I/O clock tree (BUFIO) 800 800 710 710 MHz Maximum Frequency FMAX Table 61: Regional Clock Switching Characteristics (BUFR) Symbol Description Speed Grade -3 -2 -1 -1L Units TBRCKO_O Clock to out delay from I to O 0.56 0.62 0.73 0.82 ns TBRCKO_O_BYP Clock to out delay from I to O with Divide Bypass attribute set 0.28 0.31 0.36 0.41 ns TBRDO_O Propagation delay from CLR to O 0.69 0.74 0.80 1.12 ns Regional clock tree (BUFR) 500 420 300 300 MHz Maximum Frequency FMAX(1) Notes: 1. The maximum input frequency to the BUFR is the BUFIO FMAX frequency. Table 62: Horizontal Clock Buffer Switching Characteristics (BUFH) Symbol Description Speed Grade -3 -2 -1 -1L Units TBHCKO_O BUFH delay from I to O 0.10 0.11 0.13 0.15 ns TBHCCK_CE/TBHCKC_CE CE pin Setup and Hold 0.04/ 0.04 0.04/ 0.04 0.05/ 0.05 0.04/ 0.04 ns Horizontal clock buffer (BUFH) 800 750 700 667 MHz Maximum Frequency FMAX DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 46 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics MMCM Switching Characteristics Table 63: MMCM Specification Symbol Speed Grade Description -3 -2 -1 -1L Units FINMAX Maximum Input Clock Frequency 800 750 700 700 MHz FINMIN Minimum Input Clock Frequency 10 10 10 10 MHz FINJITTER Maximum Input Clock Period Jitter FINDUTY Allowable Input Duty Cycle: 19—49 MHz 25/75 % Allowable Input Duty Cycle: 50—199 MHz 30/70 % Allowable Input Duty Cycle: 200—399 MHz 35/65 % Allowable Input Duty Cycle: 400—499 MHz 40/60 % Allowable Input Duty Cycle: >500 MHz 45/55 % < 20% of clock input period or 1 ns Max FMIN_PSCLK Minimum Dynamic Phase Shift Clock Frequency 0.01 0.01 0.01 0.01 MHz FMAX_PSCLK Maximum Dynamic Phase Shift Clock Frequency 550 500 450 450 MHz FVCOMIN Minimum MMCM VCO Frequency 600 600 600 600 MHz FVCOMAX Maximum MMCM VCO Frequency FBANDWIDTH TSTATPHAOFFSET TOUTJITTER 1600 1440 1200 1200 MHz Low MMCM Bandwidth at Typical(1) 1.00 1.00 1.00 1.00 MHz High MMCM Bandwidth at Typical(1) 4.00 4.00 4.00 4.00 MHz 0.12 0.12 0.12 0.12 ns Static Phase Offset of the MMCM MMCM Output Outputs(2) Jitter(3) Note 1 TOUTDUTY MMCM Output Clock Duty Cycle TLOCKMAX FOUTMAX Precision(4) 0.15 0.20 0.20 0.20 ns MMCM Maximum Lock Time 100 100 100 100 µs MMCM Maximum Output Frequency 800 750 700 700 MHz 4.69 4.69 4.69 4.69 MHz Frequency(5)(6) FOUTMIN MMCM Minimum Output TEXTFDVAR External Clock Feedback Variation RSTMINPULSE Minimum Reset Pulse Width 1.5 1.5 1.5 1.5 ns FPFDMAX Maximum Frequency at the Phase Frequency Detector with Bandwidth Set to High or Optimized 550 500 450 450 MHz Maximum Frequency at the Phase Frequency Detector with Bandwidth Set to Low 300 300 300 300 MHz FPFDMIN Minimum Frequency at the Phase Frequency Detector 10.00 10.00 10.00 10.00 MHz TFBDELAY Maximum Delay in the Feedback Path TMMCMDCK_PSEN/ TMMCMCKD_PSEN Setup and Hold of Phase Shift Enable 1.04 0.00 1.04 0.00 1.04 0.00 1.04 0.00 ns TMMCMDCK_PSINCDEC/ TMMCMCKD_PSINCDEC Setup and Hold of Phase Shift Increment/Decrement 1.04 0.00 1.04 0.00 1.04 0.00 1.04 0.00 ns TMMCMCKO_PSDONE Phase Shift Clock-to-Out of PSDONE 0.32 0.34 0.38 0.38 ns < 20% of clock input period or 1 ns Max 3 ns Max or one CLKIN cycle Notes: 1. 2. 3. 4. 5. 6. The MMCM does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies. The static offset is measured between any MMCM outputs with identical phase. Values for this parameter are available in the Architecture Wizard. Includes global clock buffer. Calculated as FVCO/128 assuming output duty cycle is 50%. When CASCADE4_OUT = TRUE, FOUTMIN is 0.036 MHz. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 47 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Virtex-6 Device Pin-to-Pin Output Parameter Guidelines All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are listed in Table 64. Values are expressed in nanoseconds unless otherwise noted. Table 64: Global Clock Input to Output Delay Without MMCM Symbol Description Device Speed Grade -3 -2 -1 -1L Units LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, without MMCM. TICKOF Global Clock input and OUTFF without MMCM XC6VLX75T 4.91 5.32 5.88 6.02 ns XC6VLX130T 4.89 5.33 6.00 6.13 ns XC6VLX195T 5.02 5.46 6.13 6.27 ns XC6VLX240T 5.02 5.46 6.13 6.27 ns XC6VLX365T 5.30 5.75 6.43 6.37 ns XC6VLX550T N/A 6.02 6.72 6.60 ns XC6VLX760 N/A 6.26 6.97 6.87 ns XC6VSX315T 5.40 5.85 6.54 6.49 ns XC6VSX475T N/A 6.01 6.71 6.61 ns XC6VHX250T 5.18 5.63 6.30 N/A ns XC6VHX255T 5.20 5.66 6.34 N/A ns XC6VHX380T 5.38 5.84 6.53 N/A ns XC6VHX565T N/A 5.85 6.56 N/A ns Notes: 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 48 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 65: Global Clock Input to Output Delay With MMCM Symbol Description Device Speed Grade -3 -2 -1 -1L Units LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with MMCM. TICKOFMMCMGC Global Clock Input and OUTFF with MMCM XC6VLX75T 2.34 2.50 2.77 2.85 ns XC6VLX130T 2.35 2.51 2.78 2.87 ns XC6VLX195T 2.36 2.52 2.79 2.88 ns XC6VLX240T 2.36 2.52 2.79 2.88 ns XC6VLX365T 2.37 2.53 2.79 2.89 ns XC6VLX550T N/A 2.55 2.82 2.93 ns XC6VLX760 N/A 2.54 2.82 2.92 ns XC6VSX315T 2.35 2.51 2.79 2.87 ns XC6VSX475T N/A 2.43 2.70 2.79 ns XC6VHX250T 2.36 2.53 2.80 N/A ns XC6VHX255T 2.46 2.63 2.91 N/A ns XC6VHX380T 2.39 2.59 2.83 N/A ns XC6VHX565T N/A 2.54 2.81 N/A ns Notes: 1. 2. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. MMCM output jitter is already included in the timing calculation. Table 66: Clock-Capable Clock Input to Output Delay With MMCM Symbol Description Device Speed Grade -3 -2 -1 -1L Units LVCMOS25 Clock-capable Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with MMCM. TICKOFMMCMCC Clock-capable Clock Input and OUTFF with MMCM XC6VLX75T 2.22 2.38 2.63 2.72 ns XC6VLX130T 2.24 2.39 2.65 2.74 ns XC6VLX195T 2.24 2.40 2.65 2.75 ns XC6VLX240T 2.24 2.40 2.65 2.75 ns XC6VLX365T 2.25 2.42 2.65 2.76 ns XC6VLX550T N/A 2.43 2.68 2.80 ns XC6VLX760 N/A 2.42 2.69 2.79 ns XC6VSX315T 2.23 2.38 2.65 2.73 ns XC6VSX475T N/A 2.30 2.57 2.66 ns XC6VHX250T 2.25 2.41 2.67 N/A ns XC6VHX255T 2.35 2.51 2.78 N/A ns XC6VHX380T 2.27 2.43 2.69 N/A ns XC6VHX565T N/A 2.41 2.68 N/A ns Notes: 1. 2. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. MMCM output jitter is already included in the timing calculation. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 49 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Virtex-6 Device Pin-to-Pin Input Parameter Guidelines All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are listed in Table 67. Values are expressed in nanoseconds unless otherwise noted. Table 67: Global Clock Input Setup and Hold Without MMCM Symbol Description Device Speed Grade -3 -2 -1 -1L Units Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1) TPSFD/ TPHFD Full Delay (Legacy Delay or Default Delay) Global Clock Input and IFF(2) without MMCM XC6VLX75T 1.33/ 0.03 1.44/ 0.03 1.75/ 0.03 2.18/ –0.22 ns XC6VLX130T 1.31/ –0.08 1.54/ –0.08 1.88/ –0.08 2.31/ –0.12 ns XC6VLX195T 1.36/ –0.11 1.60/ –0.11 1.97/ –0.11 2.40/ –0.25 ns XC6VLX240T 1.36/ –0.11 1.60/ –0.11 1.97/ –0.11 2.40/ –0.25 ns XC6VLX365T 1.79/ –0.28 1.87/ –0.28 2.17/ –0.28 2.48/ –0.24 ns XC6VLX550T N/A 2.22/ –0.12 2.36/ –0.12 2.77/ –0.26 ns XC6VLX760 N/A 2.19/ –0.24 2.35/ –0.24 2.71/ –0.21 ns XC6VSX315T 1.75/ –0.09 1.85/ –0.09 2.06/ –0.09 2.47/ –0.24 ns XC6VSX475T N/A 2.14/ –0.14 2.31/ –0.14 2.71/ –0.30 ns XC6VHX250T 1.93/ –0.22 2.04/ –0.22 2.25/ –0.22 N/A ns XC6VHX255T 1.81/ –0.33 2.11/ –0.33 2.56/ –0.33 N/A ns XC6VHX380T 1.93/ –0.11 2.04/ –0.11 2.25/ –0.11 N/A ns XC6VHX565T N/A 2.38/ –0.12 2.54/ –0.12 N/A ns Notes: 1. 2. 3. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. IFF = Input Flip-Flop or Latch A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 50 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 68: Global Clock Input Setup and Hold With MMCM Symbol Description Device Speed Grade -3 -2 -1 -1L Units Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1) TPSMMCMGC/ TPHMMCMGC No Delay Global Clock Input and IFF(2) with MMCM XC6VLX75T 1.45/ –0.18 1.57/ –0.18 1.72/ –0.18 1.78/ –0.08 ns XC6VLX130T 1.53/ –0.18 1.65/ –0.18 1.81/ –0.18 1.87/ –0.07 ns XC6VLX195T 1.54/ –0.17 1.66/ –0.17 1.82/ –0.17 1.87/ –0.08 ns XC6VLX240T 1.54/ –0.17 1.66/ –0.17 1.82/ –0.17 1.87/ –0.08 ns XC6VLX365T 1.55/ –0.18 1.67/ –0.18 1.83/ –0.18 1.87/ –0.07 ns XC6VLX550T N/A 1.84/ –0.17 2.02/ –0.17 2.06/ –0.06 ns XC6VLX760 N/A 2.26/ –0.13 2.49/ –0.13 2.06/ –0.03 ns XC6VSX315T 1.56/ –0.18 1.68/ –0.18 1.84/ –0.18 1.89/ –0.08 ns XC6VSX475T N/A 1.85/ –0.23 2.03/ –0.23 2.07/ –0.13 ns XC6VHX250T 1.52/ –0.17 1.64/ –0.17 1.80/ –0.17 N/A ns XC6VHX255T 1.52/ –0.12 1.64/ –0.12 1.80/ –0.12 N/A ns XC6VHX380T 1.68/ –0.16 1.81/ –0.16 1.99/ –0.16 N/A ns XC6VHX565T N/A 1.81/ –0.16 1.99/ –0.16 N/A ns Notes: 1. 2. 3. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. IFF = Input Flip-Flop or Latch Use IBIS to determine any duty-cycle distortion incurred using various standards. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 51 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 69: Clock-Capable Clock Input Setup and Hold With MMCM Symbol Description Device Speed Grade -3 -2 -1 -1L Units Input Setup and Hold Time Relative to Clock-capable Clock Input Signal for LVCMOS25 Standard.(1) TPSMMCMCC/ TPHMMCMCC No Delay Clock-capable Clock Input and XC6VLX75T IFF(2) with MMCM 1.56/ –0.25 1.69/ –0.25 1.86/ –0.25 1.91/ –0.15 ns XC6VLX130T 1.64/ –0.25 1.78/ –0.25 1.95/ –0.25 2.00/ –0.14 ns XC6VLX195T 1.65/ –0.24 1.79/ –0.24 1.96/ –0.24 2.01/ –0.15 ns XC6VLX240T 1.65/ –0.24 1.79/ –0.24 1.96/ –0.24 2.01/ –0.15 ns XC6VLX365T 1.66/ –0.25 1.79/ –0.25 1.97/ –0.25 2.02/ –0.15 ns XC6VLX550T N/A 1.97/ –0.24 2.16/ –0.24 2.19/ –0.14 ns XC6VLX760 N/A 2.39/ –0.20 2.63/ –0.20 2.21/ –0.10 ns XC6VSX315T 1.67/ –0.25 1.80/ –0.25 1.98/ –0.25 2.03/ –0.16 ns XC6VSX475T N/A 1.98/ –0.29 2.17/ –0.29 2.21/ –0.20 ns XC6VHX250T 1.63/ –0.24 1.76/ –0.24 1.94/ –0.24 N/A ns XC6VHX255T 1.63/ –0.19 1.76/ –0.19 1.94/ –0.19 N/A ns XC6VHX380T 1.80/ –0.23 1.94/ –0.23 2.13/ –0.23 N/A ns XC6VHX565T N/A 1.94/ –0.23 2.13/ –0.23 N/A ns Notes: 1. 2. 3. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. IFF = Input Flip-Flop or Latch Use IBIS to determine any duty-cycle distortion incurred using various standards. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 52 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Clock Switching Characteristics The parameters in this section provide the necessary values for calculating timing budgets for Virtex-6 FPGA clock transmitter and receiver data-valid windows. Table 70: Duty Cycle Distortion and Clock-Tree Skew Symbol Description TDCD_CLK Global Clock Tree Duty Cycle Distortion(1) TCKSKEW Global Clock Tree Skew(2) Device Speed Grade Units -3 -2 -1 -1L 0.12 0.12 0.12 0.12 ns XC6VLX75T 0.15 0.16 0.18 0.17 ns XC6VLX130T 0.25 0.26 0.29 0.28 ns XC6VLX195T 0.26 0.27 0.31 0.30 ns XC6VLX240T 0.26 0.27 0.31 0.30 ns XC6VLX365T 0.28 0.29 0.31 0.31 ns XC6VLX550T N/A 0.50 0.54 0.54 ns XC6VLX760 N/A 0.51 0.56 0.56 ns XC6VSX315T 0.27 0.28 0.32 0.30 ns XC6VSX475T N/A 0.39 0.44 0.42 ns XC6VHX250T 0.25 0.26 0.29 N/A ns XC6VHX255T 0.35 0.37 0.41 N/A ns XC6VHX380T 0.45 0.47 0.52 N/A ns XC6VHX565T N/A 0.46 0.51 N/A ns All TDCD_BUFIO I/O clock tree duty cycle distortion All 0.08 0.08 0.08 0.08 ns TBUFIOSKEW I/O clock tree skew across one clock region All 0.03 0.03 0.03 0.02 ns TBUFIOSKEW2 I/O clock tree skew across three clock regions All 0.10 0.12 0.23 0.12 ns TDCD_BUFR Regional clock tree duty cycle distortion All 0.15 0.15 0.15 0.15 ns Notes: 1. 2. These parameters represent the worst-case duty cycle distortion observable at the pins of the device using LVDS output buffers. For cases where other I/O standards are used, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times. The TCKSKEW value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 53 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 71: Package Skew Symbol TPKGSKEW Description Package Skew(1) Device XC6VLX75T XC6VLX130T XC6VLX195T XC6VLX240T XC6VLX365T XC6VLX550T XC6VLX760 XC6VSX315T XC6VSX475T XC6VHX250T XC6VHX255T Package Value Units FF484 82 ps FF784 108 ps FF484 78 ps FF784 126 ps FF1156 165 ps FF784 128 ps FF1156 131 ps FF784 146 ps FF1156 182 ps FF1759 187 ps FF1156 137 ps FF1759 156 ps FF1759 159 ps FF1760 202 ps FF1760 194 ps FF1156 139 ps FF1759 162 ps FF1156 131 ps FF1759 161 ps FF1154 159 ps FF1155 FF1923 ps 220 FF1154 XC6VHX380T XC6VHX565T ps ps FF1155 172 ps FF1923 227 ps FF1924 220 ps FF1923 ps FF1924 ps Notes: 1. 2. These values represent the worst-case skew between any two SelectIO resources in the package: shortest flight time to longest flight time from Pad to Ball (7.0 ps per mm). Package trace length information is available for these device/package combinations. This information can be used to deskew the package. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 54 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Table 72: Sample Window Symbol Description Device Speed Grade -3 -2 -1 -1L Units TSAMP Sampling Error at Receiver Pins(1) All 510 560 610 670 ps TSAMP_BUFIO Sampling Error at Receiver Pins using BUFIO(2) All 300 350 400 440 ps Notes: 1. 2. This parameter indicates the total sampling error of Virtex-6 FPGA DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the MMCM to capture the DDR input registers’ edges of operation. These measurements include: - CLK0 MMCM jitter - MMCM accuracy (phase offset) - MMCM phase shift resolution These measurements do not include package or clock tree skew. This parameter indicates the total sampling error of Virtex-6 FPGA DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the BUFIO clock network and IODELAY to capture the DDR input registers’ edges of operation. These measurements do not include package or clock tree skew. Table 73: Pin-to-Pin Setup/Hold and Clock-to-Out Symbol Speed Grade Description -3 Units -2 -1 -1L –0.28 1.09 –0.28 1.16 –0.28 1.33 –0.18 1.79 ns 4.22 4.59 5.22 5.63 ns Data Input Setup and Hold Times Relative to a Forwarded Clock Input Pin Using BUFIO TPSCS/TPHCS Setup/Hold of I/O clock Pin-to-Pin Clock-to-Out Using BUFIO TICKOFCS Clock-to-Out of I/O clock Revision History The following table shows the revision history for this document: Date Version 06/24/09 1.0 Initial Xilinx release. 07/16/09 1.1 Revised the maximum VCCAUX and VIN numbers in Table 2, page 2. Removed empty column from Table 3, page 2. Revised specifications on Table 20, page 11. Updated Table 38, page 20 and added notes 1 and 2. Revised TDLYCCO_RDY, TIDELAYCTRL_RPW, and TIDELAYPAT_JIT in Table 52, page 35. Updated Table 57, page 40 to more closely match the DSP48E1 speed specifications. Updated TTAPTCK/TTCKTAP in Table 58, page 43. Updated XC6VLX130T parameters in Table 67 through Table 69, page 52. 08/19/09 1.2 Added values for -1L voltages and speed grade in all pertinent tables. Added VFS and notes to Table 1 and Table 2. Removed DVPPIN from the example in Figure 2. Added networking applications to Table 41, page 23. Changed and added to the block RAM FMAX section in Table 56, page 39 including removing Note 12. Changed FPFDMAX values and corrected units for TSTATPHAOFFSET and TOUTDUTY in Table 63, page 47. Updated Table 70, page 53. 09/16/09 2.0 Added Virtex-6 HXT devices to entire document including GTH Transceiver Specifications. Updated speed specifications as described in Switching Characteristics, includes changes in Table 50, Table 56, Table 57, and Table 65 through Table 69. Comprehensive changes to Table 14, Table 15, and Table 16. Added conditions to DVPPOUT and revised description of TOSKEW in Table 17. Removed VISE specification and note from Table 18. Added note 3 to Table 23. Updated note 3 in Table 24. Updated LVCMOS25 delays in Table 44. Updated specification for TIOTPHZ in Table 45. Removed TBUFHSKEW from Table 70, page 53 and added values for TBUFIOSKEW. Added values in Table 73. DS152 (v2.10) October18, 2010 Advance Product Specification Description of Revisions www.xilinx.com 55 Virtex-6 FPGA Data Sheet: DC and Switching Characteristics Date Version Description of Revisions 01/18/10 2.1 Changed absolute maximum ratings for both VIN and VTS in Table 1. Added data to Table 3. Added data to Table 5. Updated SSTL15 in Table 7. Updated VOCM and VOD values in Table 8. Added eFUSE endurance Table 12. Added values to VMGTREFCLK and VIN in Table 13, page 9. Added values and updated tables in the GTX Transceiver Specifications and GTH Transceiver Specifications sections. Added Table 27 and Figure 4. Revised parameters and values in Table 39. Updated Table 40, page 21. Added data to Table 41. Updated speed specification to v1.04 with appropriate changes to Table 42 and Table 43 including production release of the XC6VLX240T for -1 and -2 speed grades. Speed specification changes and numerous updates also made to Table 44, and Table 48 through Table 70. Added data to Table 72 and Table 73. 02/09/10 2.2 Revised description of CIN in Table 3. Clarified values in Table 5. Fixed SDR LVDS unit error in Table 41. 04/12/10 2.3 Added note 3 and update value of n in Table 3. Clarified simultaneous power-down in Power-On Power Supply Requirements. Updated external reference junction temperatures in Table 40, Analog-to-Digital Specifications. Updated speed specification to v1.05 with appropriate changes to Table 42 and Table 43 including production release of the XC6VLX130T for -1 and -2 speed grades. Fixed note 4 in Table 47. Increased the -2 specification for FIDELAYCTRL_REF and clarified units for TIDELAYPAT_JIT in Table 52. Added note 1 to Table 61. 05/11/10 2.4 Updated FRXREC in Table 22. Revised FIDELAYCTRL_REF in Table 52. Removed TRCKO_PARITY_ECC: Clock CLK to ECCPARITY in standard ECC mode row in Table 56. Added XC6VLX130T values to Table 71. 05/26/10 2.5 Added XC6VLX195T data to Table 5. Updated values in Table 22 including adding note 2 and note 3. Updated speed specification to v1.06 with appropriate changes to Table 42 and Table 43 including production release of the XC6VLX195T for -1 and -2 speed grades. Added XC6VLX195T values to Table 71. 07/16/10 2.6 Changed Table 42 and Table 43 to production status on the -3 speed grade XC6VLX130T, XC6VLX195T, and XC6VLX240T devices. Added XC6VHX250Tdata to Table 4 and Table 71. Added Note 6 to Table 63. 07/23/10 2.7 Changed Table 42 and Table 43 to production status on the XC6VLX75T, XC6VLX365T, XC6VLX550T, XC6VLX760, XC6VSX315T, and XC6VSX475T devices using ISE 12.2 software with speed specification v1.08. Updated VCMOUTDC equation to MGTAVTT – DVPPOUT/4 in Table 17. Updated some -3, -2, -1 specifications in Table 64 through Table 71. Added and updated -1L specifications to Table 41 and for most switching characteristics tables. 07/30/10 2.8 Changed Table 42 and Table 43 to production status on the -1L speed grade for the XC6VLX130T, XC6VLX195T, XC6VLX240T, XC6VLX365T, and XC6VLX550T devices using ISE 12.2 software with current speed specifications. Also updated the speed specifications for XC6VLX75T, XC6VLX550T, and XC6VSX315T. Updated VCCINT specifications for -1L speed grade industrial temperature range devices in Table 2. 09/20/10 2.9 In Table 32, changed FGPLLMAX specification in -3 column from 5.951 to 5.591. In Table 40, changed FMAX for the DCLK from 250 MHz to 80 MHz. 10/18/10 2.10 The specification change in version 2.9, Table 40 is described in XCN10032, Virtex-6 FPGA: GTX Transceiver User Guide, Family Data Sheet (SYSMON DCLK), and JTAG ID Changes In this version (2.10), -1L(I) data is added to Table 4 and clarified in Note 2. Changed Table 42 and Table 43 to production status on the -1L speed grade XC6VLX75T, XC6VLX760, XC6VSX315T, and XC6VSX475T devices using ISE 12.3 software with current speed specifications. Revised the XC6VLX760 -1L speed specification for TPHMMCMGC in Table 68 and TPHMMCMCC in Table 69. Notice of Disclaimer THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS. DS152 (v2.10) October18, 2010 Advance Product Specification www.xilinx.com 56