DS3487 www.ti.com SNLS355C – MAY 1998 – REVISED APRIL 2013 DS3487 Quad TRI-STATE Line Driver Check for Samples: DS3487 FEATURES DESCRIPTION • • • • • • • The DS3487 quad RS-422 driver features four independent drivers which comply with EIA Standards for the electrical characteristics of balanced voltage digital interface circuits. The outputs are TRI-STATE structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. All input pins are PNP buffered to minimize input loading for either logic one or logic zero inputs. 1 2 Four Independent Drivers TRI-STATE Outputs Fast Propagation Times (typ 10 ns) TTL Compatible 5V Supply Output Rise and Fall Times Less than 15 ns Pin Compatible with DS8924 and MC3487 Block and Connection Diagrams Figure 1. Block Diagram Figure 2. PDIP Package- Top View See Package Number D0016A or NFG0016E Truth Table (1) Input (1) Control Non-Inverting Inverting Input Output Output H H H L L H L H X L Z Z L = Low logic state H = High logic state X = Irrelevant Z = TRI-STATE (high impedance) 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 1998–2013, Texas Instruments Incorporated DS3487 SNLS355C – MAY 1998 – REVISED APRIL 2013 www.ti.com These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. Absolute Maximum Ratings (1) (2) Supply Voltage 8V Input Voltage 5.5V −65°C to +150°C Storage Temperature Maximum Power Dissipation (3) at 25°C PDIP Package 1476 mW SOIC Package 1051 mW Lead Temperature (Soldering, 4 seconds) (1) 260°C “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be verified. They are not meant to imply that the devices should be operated at these limits. The table of “Electrical Characteristics” provides conditions for actual device operation. If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications. Derate PDIP molded package 11.9 mW/°C above 25°C. Derate SOIC package 8.41 mW/°C above 25°C. (2) (3) Operating Conditions Min Max Units 4.75 5.25 V 0 +70 °C Typ Max Units 0.8 V Supply Voltage, VCC DS3487 Temperature (TA) DS3487 Electrical Characteristics (1) (2) (3) (4) Parameter Test Conditions Min VIL Input Low Voltage VIH Input High Voltage IIL Input Low Current V IL = 0.5V −200 μA IIH Input High Current VIH = 2.7V 50 μA VIH = 5.5V 100 μA VCL Input Clamp Voltage I CL = −18 mA −1.5 V VOL Output Low Voltage I OL = 48 mA 0.5 V VOH Output High Voltage I OH = −20 mA IOS Output Short-Circuit Current −140 mA IOZ Output Leakage Current (TRI-STATE) −100 μA IOFF Output Leakage Current Power OFF 2.0 VCC = 0V Differential Output Voltage |VT|– VT| Difference in Differential Output Voltage ICC Power Supply Current 2 100 μA VO = 6V 100 μA VO = −0.25V −100 μA 0.4 V VO = 5.5V VT (3) (4) V VO = 0.5V Difference in Output Offset Voltage (2) 2.5 −40 |VOS– VOS| (1) V 2.0 V 0.4 V Active 50 80 mA TRI-STATE 35 60 mA Unless otherwise specified min/max limits apply across the 0°C to +70°C range for the DS3487. All typicals are given for VCC = 5V and TA = 25°C. All currents into device pins are positive, all currents out of device pins as negative. All voltages are referenced to ground unless otherwise specified. Only one output at a time should be shorted. Symbols and definitions correspond to EIA RS-422, where applicable. Submit Documentation Feedback Copyright © 1998–2013, Texas Instruments Incorporated Product Folder Links: DS3487 DS3487 www.ti.com SNLS355C – MAY 1998 – REVISED APRIL 2013 Switching Characteristics VCC = 5V, TA = 25°C Parameter Test Conditions Min Typ Max Units tPHL Input to Output 10 15 ns tPLH Input to Output 10 15 ns tTHL Differential Fall Time 10 15 ns tTLH Differential Rise Time 10 15 ns tPHZ Enable to Output RL = 200Ω, CL = 50 pF 17 25 ns tPLZ Enable to Output RL = 200Ω, CL = 50 pF 15 25 ns tPZH Enable to Output RL = ∞, CL = 50 pF, S1 Open 11 25 ns tPZL Enable to Output RL = 200Ω, CL = 50 pF, S2 Open 15 25 ns AC TEST CIRCUITS AND SWITCHING TIME WAVEFORMS Input pulse: f = MHz, 50%; tr = tf ≤ 15 ns. Figure 3. Propagation Delays S1 and S2 closed except as noted. CL includes probe and jig capacitance. Submit Documentation Feedback Copyright © 1998–2013, Texas Instruments Incorporated Product Folder Links: DS3487 3 DS3487 SNLS355C – MAY 1998 – REVISED APRIL 2013 www.ti.com Input pulse: f = MHz, 50%; tr = tf ≤ 15 ns. S1 = open for tPZH S2 = open for tPZL Figure 4. TRI-STATE Enable and Disable Delays Input pulse: f = MHz, 50%; tr = tf ≤ 15 ns. Figure 5. Differential Rise and Fall Times 4 Submit Documentation Feedback Copyright © 1998–2013, Texas Instruments Incorporated Product Folder Links: DS3487 DS3487 www.ti.com SNLS355C – MAY 1998 – REVISED APRIL 2013 REVISION HISTORY Changes from Revision B (April 2013) to Revision C • Page Changed layout of National Data Sheet to TI format ............................................................................................................ 4 Submit Documentation Feedback Copyright © 1998–2013, Texas Instruments Incorporated Product Folder Links: DS3487 5 PACKAGE OPTION ADDENDUM www.ti.com 1-Nov-2013 PACKAGING INFORMATION Orderable Device Status (1) DS3487M/NOPB Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM 0 to 70 DS3487M (4/5) ACTIVE SOIC D 16 48 DS3487MX NRND SOIC D 16 2500 TBD Call TI Call TI 0 to 70 DS3487M DS3487MX/NOPB ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM 0 to 70 DS3487M (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 1-Nov-2013 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 24-Apr-2013 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant DS3487MX SOIC D 16 2500 330.0 16.4 6.5 10.3 2.3 8.0 16.0 Q1 DS3487MX/NOPB SOIC D 16 2500 330.0 16.4 6.5 10.3 2.3 8.0 16.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 24-Apr-2013 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) DS3487MX SOIC D 16 2500 367.0 367.0 35.0 DS3487MX/NOPB SOIC D 16 2500 367.0 367.0 35.0 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated