TI SM320F2812KGDS150A

SM320F2812-HT
Digital Signal Processor
Data Manual
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Literature Number: SGUS062A
June 2009 – Revised April 2010
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Contents
1
2
3
2
........................................................................................................................... 11
1.1
SUPPORTS EXTREME TEMPERATURE APPLICATIONS ......................................................... 12
Introduction ...................................................................................................................... 13
2.1
Description ................................................................................................................. 13
2.2
Device Summary .......................................................................................................... 14
2.3
Die Layout .................................................................................................................. 15
2.4
Pin Assignments ........................................................................................................... 16
2.5
Signal Descriptions ........................................................................................................ 17
Functional Overview .......................................................................................................... 27
3.1
Memory Map ............................................................................................................... 28
3.2
Brief Descriptions .......................................................................................................... 31
3.2.1
C28x CPU ....................................................................................................... 31
3.2.2
Memory Bus (Harvard Bus Architecture) .................................................................... 31
3.2.3
Peripheral Bus .................................................................................................. 31
3.2.4
Real-Time JTAG and Analysis ................................................................................ 31
3.2.5
External Interface (XINTF) .................................................................................... 32
3.2.6
Flash ............................................................................................................. 32
3.2.7
L0, L1, H0 SARAMs ............................................................................................ 32
3.2.8
Boot ROM ....................................................................................................... 32
3.2.9
Security .......................................................................................................... 33
3.2.10 Peripheral Interrupt Expansion (PIE) Block ................................................................. 34
3.2.11 External Interrupts (XINT1, XINT2, XINT13, XNMI) ........................................................ 34
3.2.12 Oscillator and PLL .............................................................................................. 34
3.2.13 Watchdog ........................................................................................................ 34
3.2.14 Peripheral Clocking ............................................................................................. 34
3.2.15 Low-Power Modes .............................................................................................. 34
3.2.16 Peripheral Frames 0, 1, 2 (PFn) .............................................................................. 35
3.2.17 General-Purpose Input/Output (GPIO) Multiplexer ......................................................... 35
3.2.18 32-Bit CPU Timers (0, 1, 2) ................................................................................... 35
3.2.19 Control Peripherals ............................................................................................. 35
3.2.20 Serial Port Peripherals ......................................................................................... 36
3.3
Register Map ............................................................................................................... 36
3.4
Device Emulation Registers .............................................................................................. 39
3.5
External Interface, XINTF ................................................................................................ 39
3.5.1
Timing Registers ................................................................................................ 41
3.5.2
XREVISION Register ........................................................................................... 41
3.6
Interrupts .................................................................................................................... 42
3.6.1
External Interrupts .............................................................................................. 45
3.7
System Control ............................................................................................................ 46
3.8
OSC and PLL Block ....................................................................................................... 48
3.8.1
Loss of Input Clock ............................................................................................. 49
3.9
PLL-Based Clock Module ................................................................................................ 49
3.10 External Reference Oscillator Clock Option ........................................................................... 49
3.11 Watchdog Block ........................................................................................................... 50
3.12 Low-Power Modes Block ................................................................................................. 51
Features
Contents
Copyright © 2009–2010, Texas Instruments Incorporated
SM320F2812-HT
www.ti.com
4
5
6
SGUS062A – JUNE 2009 – REVISED APRIL 2010
....................................................................................................................... 52
4.1
32-Bit CPU-Timers 0/1/2 ................................................................................................. 52
4.2
Event Manager Modules (EVA, EVB) ................................................................................... 55
4.2.1
General-Purpose (GP) Timers ................................................................................ 58
4.2.2
Full-Compare Units ............................................................................................. 58
4.2.3
Programmable Deadband Generator ........................................................................ 58
4.2.4
PWM Waveform Generation .................................................................................. 58
4.2.5
Double Update PWM Mode ................................................................................... 58
4.2.6
PWM Characteristics ........................................................................................... 59
4.2.7
Capture Unit ..................................................................................................... 59
4.2.8
Quadrature-Encoder Pulse (QEP) Circuit ................................................................... 59
4.2.9
External ADC Start-of-Conversion ........................................................................... 59
4.3
Enhanced Analog-to-Digital Converter (ADC) Module ............................................................... 60
4.4
Enhanced Controller Area Network (eCAN) Module .................................................................. 65
4.5
Multichannel Buffered Serial Port (McBSP) Module .................................................................. 69
4.6
Serial Communications Interface (SCI) Module ....................................................................... 73
4.7
Serial Peripheral Interface (SPI) Module ............................................................................... 76
4.8
GPIO MUX ................................................................................................................. 79
Development Support ........................................................................................................ 82
5.1
Device and Development Support Tool Nomenclature ............................................................... 82
5.2
Documentation Support ................................................................................................... 83
Electrical Specifications ..................................................................................................... 85
6.1
Absolute Maximum Ratings .............................................................................................. 85
6.2
Recommended Operating Conditions .................................................................................. 86
6.3
Electrical Characteristics ................................................................................................. 86
Peripherals
6.4
Current Consumption by Power-Supply Pins Over Recommended Operating Conditions During
Low-Power Modes at 150-MHz SYSCLKOUT ......................................................................... 88
6.5
Current Consumption Graphs
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
............................................................................................ 89
Reducing Current Consumption ......................................................................................... 90
Power Sequencing Requirements ....................................................................................... 90
Signal Transition Levels .................................................................................................. 91
Timing Parameter Symbology ........................................................................................... 92
General Notes on Timing Parameters .................................................................................. 93
Test Load Circuit .......................................................................................................... 93
Device Clock Table ........................................................................................................ 94
Clock Requirements and Characteristics ............................................................................... 94
6.13.1 Input Clock Requirements ..................................................................................... 94
6.13.2 Output Clock Characteristics .................................................................................. 95
Reset Timing ............................................................................................................... 96
Low-Power Mode Wakeup Timing ..................................................................................... 100
Event Manager Interface ................................................................................................ 104
6.16.1 PWM Timing ................................................................................................... 104
6.16.2 Interrupt Timing ................................................................................................ 106
General-Purpose Input/Output (GPIO) – Output Timing ............................................................ 107
General-Purpose Input/Output (GPIO) – Input Timing .............................................................. 108
SPI Master Mode Timing ................................................................................................ 109
Copyright © 2009–2010, Texas Instruments Incorporated
Contents
3
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
7
................................................................................................. 113
..................................................................................... 117
6.22 XINTF Signal Alignment to XCLKOUT ................................................................................ 121
6.23 External Interface Read Timing ........................................................................................ 122
6.24 External Interface Write Timing ........................................................................................ 123
6.25 External Interface Ready-on-Read Timing With One External Wait State ....................................... 125
6.26 External Interface Ready-on-Write Timing With One External Wait State ........................................ 128
6.27 XHOLD and XHOLDA ................................................................................................... 131
6.28 XHOLD/XHOLDA Timing ............................................................................................... 132
6.29 On-Chip Analog-to-Digital Converter .................................................................................. 134
6.29.1 ADC Absolute Maximum Ratings ........................................................................... 134
6.29.2 ADC Electrical Characteristics Over Recommended Operating Conditions ........................... 135
6.29.3 Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK) ...................... 136
6.29.4 ADC Power-Up Control Bit Timing .......................................................................... 137
6.29.5 Detailed Description .......................................................................................... 138
6.29.5.1 Reference Voltage ................................................................................ 138
6.29.5.2 Analog Inputs ..................................................................................... 138
6.29.5.3 Converter .......................................................................................... 138
6.29.5.4 Conversion Modes ............................................................................... 138
6.29.6 Sequential Sampling Mode (Single Channel) (SMODE = 0) ............................................ 138
6.29.7 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1) .......................................... 140
6.29.8 Definitions of Specifications and Terminology ............................................................. 141
6.29.8.1 Integral Nonlinearity .............................................................................. 141
6.29.8.2 Differential Nonlinearity .......................................................................... 141
6.29.8.3 Zero Offset ........................................................................................ 141
6.29.8.4 Gain Error ......................................................................................... 141
6.29.8.5 Signal-to-Noise Ratio + Distortion (SINAD) ................................................... 141
6.29.8.6 Effective Number of Bits (ENOB) ............................................................... 141
6.29.8.7 Total Harmonic Distortion (THD) ............................................................... 141
6.29.8.8 Spurious Free Dynamic Range (SFDR) ....................................................... 141
6.30 Multichannel Buffered Serial Port (McBSP) Timing ................................................................. 142
6.30.1 McBSP Transmit and Receive Timing ...................................................................... 142
6.30.2 McBSP as SPI Master or Slave Timing .................................................................... 145
6.31 Flash Timing .............................................................................................................. 149
6.31.1 Recommended Operating Conditions ...................................................................... 149
Mechanical Data .............................................................................................................. 151
4
Contents
6.20
SPI Slave Mode Timing
6.21
External Interface (XINTF) Timing
Copyright © 2009–2010, Texas Instruments Incorporated
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
List of Figures
2-1
SM320F2812 Die Layout ........................................................................................................ 15
2-2
SM320F2812 172-Pin HFG CQFP (Top View) ............................................................................... 16
3-1
Functional Block Diagram ....................................................................................................... 28
3-2
F2812 Memory Map (See Notes A. Through G.)
3-3
External Interface Block Diagram .............................................................................................. 40
3-4
Interrupt Sources ................................................................................................................. 42
3-5
Multiplexing of Interrupts Using the PIE Block
43
3-6
Clock and Reset Domains
46
3-7
3-8
3-9
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
5-1
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
............................................................................
...............................................................................
......................................................................................................
OSC and PLL Block ..............................................................................................................
Recommended Crystal/Clock Connection ....................................................................................
Watchdog Module ................................................................................................................
CPU-Timers .......................................................................................................................
CPU-Timer Interrupts Signals and Output Signal (See Notes A. and B.) .................................................
Event Manager A Functional Block Diagram (See Note A.) ................................................................
Block Diagram of the F2812 ADC Module ....................................................................................
ADC Pin Connections With Internal Reference (See Notes A and B).....................................................
ADC Pin Connections With External Reference .............................................................................
eCAN Block Diagram and Interface Circuit ...................................................................................
eCAN Memory Map ..............................................................................................................
McBSP Module With FIFO ......................................................................................................
Serial Communications Interface (SCI) Module Block Diagram............................................................
Serial Peripheral Interface Module Block Diagram (Slave Mode)..........................................................
GPIO/Peripheral Pin Multiplexing ..............................................................................................
28x Device Nomenclature .......................................................................................................
SM320F2812-HT Life Expectancy Curve .....................................................................................
Typical Current Consumption Over Frequency...............................................................................
Typical Power Consumption Over Frequency ................................................................................
F2812 Typical Power-Up and Power-Down Sequence – Option 2 ........................................................
Output Levels .....................................................................................................................
Input Levels .......................................................................................................................
3.3-V Test Load Circuit ..........................................................................................................
Clock Timing ......................................................................................................................
Power-on Reset in Microcomputer Mode (XMP/MC = 0) (See Note A) ...................................................
Power-on Reset in Microprocessor Mode (XMP/MC = 1)...................................................................
Warm Reset in Microcomputer Mode ..........................................................................................
Effect of Writing Into PLLCR Register .........................................................................................
IDLE Entry and Exit Timing ....................................................................................................
STANDBY Entry and Exit Timing .............................................................................................
HALT Wakeup Using XNMI ...................................................................................................
PWM Output Timing ............................................................................................................
TDIRx Timing ....................................................................................................................
EVASOC Timing ................................................................................................................
EVBSOC Timing ................................................................................................................
External Interrupt Timing .......................................................................................................
General-Purpose Output Timing ..............................................................................................
GPIO Input Qualifier – Example Diagram for QUALPRD = 1 .............................................................
Copyright © 2009–2010, Texas Instruments Incorporated
List of Figures
28
48
49
50
52
53
58
61
62
63
66
67
70
75
78
81
83
87
89
90
91
92
92
93
96
98
99
99
99
100
102
104
105
106
106
106
107
108
108
5
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
6-23
General-Purpose Input Timing ................................................................................................ 109
6-24
SPI Master Mode External Timing (Clock Phase = 0) ..................................................................... 110
6-25
SPI Master External Timing (Clock Phase = 1) ............................................................................. 112
6-26
SPI Slave Mode External Timing (Clock Phase = 0) ....................................................................... 114
6-27
SPI Slave Mode External Timing (Clock Phase = 1) ....................................................................... 116
6-28
Relationship Between XTIMCLK and SYSCLKOUT ....................................................................... 120
6-29
Example Read Access ......................................................................................................... 122
6-30
Example Write Access ......................................................................................................... 124
6-31
Example Read With Synchronous XREADY Access
6-32
Example Read With Asynchronous XREADY Access ..................................................................... 127
6-33
Write With Synchronous XREADY Access .................................................................................. 129
6-34
Write With Asynchronous XREADY Access
6-35
External Interface Hold Waveform ............................................................................................ 132
6-36
XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK) .................................................. 133
6-37
ADC Analog Input Impedance Model ........................................................................................ 137
6-38
ADC Power-Up Control Bit Timing
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6
......................................................................
................................................................................
...........................................................................................
Sequential Sampling Mode (Single-Channel) Timing ......................................................................
Simultaneous Sampling Mode Timing .......................................................................................
McBSP Receive Timing ........................................................................................................
McBSP Transmit Timing .......................................................................................................
McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 ...................................................
McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 ...................................................
McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 ...................................................
McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 ...................................................
List of Figures
126
130
137
139
140
144
144
145
146
147
148
Copyright © 2009–2010, Texas Instruments Incorporated
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
List of Tables
2-1
Hardware Features ............................................................................................................... 14
2-2
Bare Die Information ............................................................................................................. 15
2-3
Signal Descriptions
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
.............................................................................................................. 17
Addresses of Flash Sectors in F2812 ......................................................................................... 29
Wait States ........................................................................................................................ 30
Boot Mode Selection ............................................................................................................. 33
Peripheral Frame 0 Registers .................................................................................................. 37
Peripheral Frame 1 Registers .................................................................................................. 37
Peripheral Frame 2 Registers .................................................................................................. 38
Device Emulation Registers..................................................................................................... 39
XINTF Configuration and Control Register Mappings ....................................................................... 41
XREVISION Register Bit Definitions ........................................................................................... 41
PIE Peripheral Interrupts ....................................................................................................... 43
PIE Configuration and Control Registers ..................................................................................... 44
External Interrupts Registers ................................................................................................... 45
PLL, Clocking, Watchdog, and Low-Power Mode Registers .............................................................. 47
PLLCR Register Bit Definitions ................................................................................................. 48
Possible PLL Configuration Modes ............................................................................................ 49
F2812 Low-Power Modes ....................................................................................................... 51
CPU-Timers 0, 1, 2 Configuration and Control Registers ................................................................... 54
Module and Signal Names for EVA and EVB ................................................................................ 55
EVA Registers ................................................................................................................... 56
ADC Registers ................................................................................................................... 64
3.3-V eCAN Transceivers for the SM320F2812 DSP ....................................................................... 66
CAN Registers Map ............................................................................................................. 68
McBSP Register Summary ...................................................................................................... 71
SCI-A Registers .................................................................................................................. 74
SCI-B Registers .................................................................................................................. 74
SPI Registers .................................................................................................................... 77
GPIO Mux Registers ............................................................................................................ 79
GPIO Data Registers ............................................................................................................ 80
Typical Current Consumption by Various Peripherals (at 150 MHz) ..................................................... 90
Recommended Low-Dropout Regulators ..................................................................................... 91
Clock Table and Nomenclature................................................................................................. 94
Input Clock Frequency .......................................................................................................... 94
XCLKIN Timing Requirements – PLL Bypassed or Enabled .............................................................. 95
XCLKIN Timing Requirements – PLL Disabled .............................................................................. 95
Possible PLL Configuration Modes ........................................................................................... 95
XCLKOUT Switching Characteristics (PLL Bypassed or Enabled) ....................................................... 95
Reset (XRS) Timing Requirements ........................................................................................... 96
IDLE Mode Switching Characteristics ....................................................................................... 100
STANDBY Mode Switching Characteristics ................................................................................ 101
HALT Mode Switching Characteristics ...................................................................................... 103
PWM Switching Characteristics .............................................................................................. 105
Timer and Capture Unit Timing Requirements ............................................................................. 105
External ADC Start-of-Conversion – EVA – Switching Characteristics ................................................. 106
Copyright © 2009–2010, Texas Instruments Incorporated
List of Tables
7
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6-47
6-48
6-49
6-50
6-51
6-52
6-53
6-54
6-55
6-56
6-57
6-58
6-59
6-60
6-61
6-62
6-63
8
www.ti.com
.................................................
Interrupt Switching Characteristics ...........................................................................................
Interrupt Timing Requirements ................................................................................................
General-Purpose Output Switching Characteristics ........................................................................
General-Purpose Input Timing Requirements ..............................................................................
SPI Master Mode External Timing (Clock Phase = 0) ....................................................................
SPI Master Mode External Timing (Clock Phase = 1) ....................................................................
SPI Slave Mode External Timing (Clock Phase = 0) ......................................................................
SPI Slave Mode External Timing (Clock Phase = 1) ......................................................................
Relationship Between Parameters Configured in XTIMING and Duration of Pulse ...................................
XTIMING Register Configuration Restrictions ..............................................................................
Valid and Invalid Timing .......................................................................................................
XTIMING Register Configuration Restrictions ..............................................................................
Valid and Invalid Timing when using Synchronous XREADY ............................................................
XTIMING Register Configuration Restrictions ..............................................................................
XTIMING Register Configuration Restrictions ..............................................................................
Asynchronous XREADY ......................................................................................................
XINTF Clock Configurations ...................................................................................................
External Memory Interface Read Switching Characteristics .............................................................
External Memory Interface Read Timing Requirements ..................................................................
External Memory Interface Write Switching Characteristics ..............................................................
External Memory Interface Read Switching Characteristics (Ready-on-Read, 1 Wait State) .......................
External Memory Interface Read Timing Requirements (Ready-on-Read, 1 Wait State) ............................
Synchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State) .......................................
Asynchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State) ......................................
External Memory Interface Write Switching Characteristics (Ready-on-Write, 1 Wait State) ........................
Synchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State) .......................................
Asynchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State) ......................................
XHOLD/XHOLDA Timing Requirements (XCLKOUT = XTIMCLK) ......................................................
XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK) .................................................
DC Specifications ..............................................................................................................
AC Specifications ..............................................................................................................
Current Consumption ..........................................................................................................
ADC Power-Up Delays ........................................................................................................
Sequential Sampling Mode Timing ..........................................................................................
Simultaneous Sampling Mode Timing .......................................................................................
McBSP Timing Requirements ................................................................................................
McBSP Switching Characteristics ...........................................................................................
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0) ...............................
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0) ...........................
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0) ...............................
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0) ...........................
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1) ...............................
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1) ...........................
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1) ...............................
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1) ...........................
Flash Parameters at 150-MHz SYSCLKOUT ..............................................................................
Flash/OTP Access Timing ....................................................................................................
External ADC Start-of-Conversion – EVB – Switching Characteristics
List of Tables
106
106
107
107
108
109
111
113
115
117
117
117
118
118
118
119
119
119
122
122
123
125
125
125
125
128
128
128
132
133
135
136
136
137
139
140
142
143
145
145
146
146
147
147
148
148
149
149
Copyright © 2009–2010, Texas Instruments Incorporated
SM320F2812-HT
www.ti.com
6-64
Minimum Required Wait-States at Different Frequencies
Copyright © 2009–2010, Texas Instruments Incorporated
SGUS062A – JUNE 2009 – REVISED APRIL 2010
................................................................
List of Tables
149
9
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
10
List of Tables
www.ti.com
Copyright © 2009–2010, Texas Instruments Incorporated
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Digital Signal Processor
Check for Samples: SM320F2812-HT
1
Features
12
• High-Performance Static CMOS Technology
– 150 MHz (6.67 ns Cycle Time)
– Low Power (1.8 V Core at 135 MHz, 1.9 V,
Core at 150 MHz, 3.3 V I/O) Design
– 3.3 V Flash Voltage
• JTAG Boundary Scan Support (1)
• High-Performance 32 Bit CPU (TMS320C28x)
– 16 × 16 and 32 x 32 MAC Operations
– 16 × 16 Dual MAC
– Harvard Bus Architecture
– Atomic Operations
– Fast Interrupt Response and Processing
– Unified Memory Programming Model
– 4M Linear Program Address Reach
– 4M Linear Data Address Reach
– Code-Efficient (in C/C++ and Assembly)
– TMS320F24x/LF240x Processor Source Code
Compatible
• On-Chip Memory
– Flash Devices: Up to 128K × 16 Flash (Four
8K × 16 and Six 16K × 16 Sectors)
– ROM Devices: Up to 128K × 16 ROM
– 1K × 16 OTP ROM
– L0 and L1: 2 Blocks of 4K × 16 Each
Single-Access RAM (SARAM)
– H0: 1 Block of 8K × 16 SARAM
– M0 and M1: 2 Blocks of 1K × 16 Each
SARAM
• Boot ROM (4K × 16)
– With Software Boot Modes
– Standard Math Tables
• External Interface
– Up to 1M Total Memory
– Programmable Wait States
– Programmable Read/Write Strobe Timing
– Three Individual Chip Selects
• Clock and System Control
– Dynamic PLL Ratio Changes Supported
– On-Chip Oscillator
– Watchdog Timer Module
• Three External Interrupts
• Peripheral Interrupt Expansion (PIE) Block That
Supports 45 Peripheral Interrupts
• 128 Bit Security Key/Lock
– Protects Flash/ROM/OTP and L0/L1 SARAM
– Prevents Firmware Reverse Engineering
• Three 32 Bit CPU Timers
• Motor Control Peripherals
– Two Event Managers (EVA, EVB)
– Compatible to 240xA Devices
• Serial Port Peripherals
– Serial Peripheral Interface (SPI)
– Two Serial Communications Interfaces
(SCIs), Standard UART
– Enhanced Controller Area Network (eCAN)
– Multichannel Buffered Serial Port (McBSP)
With SPI Mode
• 12 Bit ADC, 16 Channels
– 2 × 8 Channel Input Multiplexer
– Two Sample-and-Hold
– Single/Simultaneous Conversions
– Fast Conversion Rate: 80 ns/12.5 MSPS
• Up to 56 Individually Programmable,
Multiplexed General-Purpose Input / Output
(GPIO) Pins
• Advanced Emulation Features
– Analysis and Breakpoint Functions
– Real-Time Debug via Hardware
• Development Tools Include
– ANSI C/C++ Compiler/Assembler/Linker
– Supports TMS320C24x™/240x Instructions
– Code Composer Studio™ IDE
– DSP/BIOS™
– JTAG Scan Controllers [Texas Instruments
(TI) or Third-Party]
– Evaluation Modules
– Broad Third-Party Digital Motor Control
Support
• Low-Power Modes and Power Savings
– IDLE, STANDBY, HALT Modes Supported
– Disable Individual Peripheral Clocks
xxx
xxx
xxx
xxx
xxx
(1) IEEE Standard 1149.1-1990, IEEE Standard Test-Access Port
TMS320C24x, Code Composer Studio, DSP/BIOS, C28x, TMS320C2000, TMS320C54x, TMS320C55x, TMS320C28x are trademarks of
Texas Instruments.
eZdsp is a trademark of Spectrum Digital Incorporated.
1
2
Copyright © 2009–2010, Texas Instruments Incorporated
Features
11
SM320F2812-HT
SGUS062A
xxx – JUNE 2009 – REVISED APRIL 2010
1.1
•
•
•
•
•
•
•
•
(2)
12
www.ti.com
SUPPORTS EXTREME TEMPERATURE APPLICATIONS
Controlled Baseline
One Assembly/Test Site
One Fabrication Site
Available in Extreme (–55°C/220°C) Temperature Range (2)
Extended Product Life Cycle
Extended Product-Change Notification
Product Traceability
Texas Instruments high temperature products utilize highly optimized silicon (die) solutions with
design and process enhancements to maximize performance over extended temperatures.
Custom temperature ranges available
Features
Copyright © 2009–2010, Texas Instruments Incorporated
SM320F2812-HT
www.ti.com
2
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Introduction
This section provides a summary of the device features, lists the pin assignments, and describes the
function of each pin. This document also provides detailed descriptions of peripherals, electrical
specifications, parameter measurement information, and mechanical data about the available packaging.
2.1
3
Description
The SM320F2812 device, member of the C28xE DSP generation, is a highly integrated, high-performance
solution for demanding control applications. The functional blocks and the memory maps are described in
Section 3, Functional Overview.
Throughout this document SM320F2812 is abbreviated as F2812.
3
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2009–2010, Texas Instruments Incorporated
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
2.2
www.ti.com
Device Summary
Table 2-1 provides a summary of the device features.
Table 2-1. Hardware Features
FEATURE
F2812
Instruction Cycle (at 150 MHz)
6.67 ns
Single-Access RAM (SARAM) (16 bit word)
18K
3.3 V On-Chip Flash (16 bit word)
128K
On-Chip ROM (16-bit word)
—
Code Security for On-Chip Flash/SARAM/OTP/ROM
Yes
Boot ROM
Yes
OTP ROM (1K × 16)
Yes
External Memory Interface
Yes
Event Managers A and B (EVA and EVB)
EVA, EVB
• General-Purpose (GP) Timers
4
• Compare (CMP)/PWM
16
• Capture (CAP)/QEP Channels
6/2
Watchdog Timer
Yes
12 Bit ADC
Yes
• Channels
16
32 Bit CPU Timers
3
SPI
Yes
SCIA, SCIB
SCIA, SCIB
CAN
Yes
McBSP
Yes
Digital I/O Pins (Shared)
56
External Interrupts
3
Supply Voltage
Temperature Options
14
1.8-V Core, (135 MHz) 1.9-V Core
(150 MHz), 3.3-V I/O
S: –55°C to 220°C
Introduction
Yes
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
2.3
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Die Layout
The SM320F2812 die layout is shown in Figure 2-1. See Table 2-3 for a description of each pad's
function.
Figure 2-1. SM320F2812 Die Layout
Table 2-2. Bare Die Information
DIE SIZE
219.4 x 207.0 (mils);
5572.0 x 5258.0 (mm)
DIE PAD SIZE
55.0 x 64.0 (mm)
DIE PAD
COORDINATES
DIE
THICKNESS
DIE PAD
COMPOSITI
ON
BACKSIDE
FINISH
BACKSIDE
POTENTIAL
See Table 2-3
11.0 mils
AlCu/TiN
Silicon with
backgrind
Ground
Introduction
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
15
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
2.4
www.ti.com
Pin Assignments
XA[11]
TDI
XA[10]
V
V DD
TDO
TMS
XA[9]
C3TRIP
C2TRIP
C1TRIP
XA[8]
XCLKOUT
XA[7]
TCLKINA
TDIRA
T2CTRIP / EVASOC
V DDIO
V SS
V DD
XA[6]
T1CTRIP_PDPINTA
CAP3_QEPI1
XA[5]
CAP2_QEP2
CAP1_QEP1
V SS
T2PWM_T2CMP
XA[4]
T1PWM_T1CMP
PWM6
V DD
V SS
PWM5
XD[13]
XD[12]
PWM4
PWM3
PWM2
PWM1
SCIRXDB
SCITXDB
CANRXA
The SM320F2812 172-pin HFG ceramic quad flatpack (CQFP) pin assignments are shown in Figure 2-2.
See Table 2-3 for a description of each pin’s function(s).
87
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
129
130
XZCS6AND7
TESTSEL
TRST
TCK
EMU0
XA[12]
XD[14]
XF_XPLLDIS
XA[13]
VSS
VDD
XA[14]
VDDIO
EMU1
XD[15]
XA[15]
XINT1_XBIO
XNMI_XINT13
XINT2_ADCSOC
XA[16]
VDD
SCITXDA
XA[17]
SCIRXDA
XA[18]
XHOLD
XRS
XREADY
VDD1
VSS1
ADCBGREFIN
VSSA2
VDDA2
ADCINA7
ADCINA6
ADCINA5
ADCINA4
ADCINA3
ADCINA2
ADCINA1
ADCINA0
ADCLO
VSSAIO
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
86
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
172
XZCS2
CANTXA
VSS
XA[3]
XWE
T4CTRIP/EVBSOC
XHOLDA
VDDIO
XA[2]
T3CTRIP_PDPINTB
VSS
X1/XCLKIN
X2
VDD
XD[11]
XD[10]
TCLKINB
TDIRB
VDD3VFL
XD[9]
TEST1
TEST2
XD[8]
VDDIO
C6TRIP
C5TRIP
C4TRIP
CAP6_QEPI2
CAP5_QEP4
VSS
CAP4_QEP3
VDD
T4PWM_T4CMP
XD[7]
T3PWM_T3CMP
VSS
XR/W
PWM12
PWM11
PWM10
PWM9
PWM8
PWM7
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
V DDAIO
ADCINB0
ADCINB1
ADCINB2
ADCINB3
ADCINB4
ADCINB5
ADCINB6
ADCINB7
ADCREFM
ADCREFP
AVSSREFBG
AVDDREFBG
V DDA1
V SSA1
ADCRESEXT
XMP/ MC
XA[0]
MDRA
XD[0]
MDXA
V DD
XD[1]
MCLKRA
MFSXA
XD[2]
MCLKXA
MFSRA
XD[3]
V DDIO
V SS
XD[4]
SPICLKA
SPISTEA
XD[5]
V DD
V SS
XD[6]
SPISIMOA
SPISOMIA
XRD
XA[1]
XZCS0AND1
1
Figure 2-2. SM320F2812 172-Pin HFG CQFP (Top View)
16
Introduction
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
2.5
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Signal Descriptions
Table 2-3 specifies the signals on the F2812 device. All digital inputs are TTL-compatible. All outputs are
3.3 V with CMOS levels. Inputs are not 5 V tolerant. A 100 mA (or 20 mA) pullup/pulldown is used.
Table 2-3. Signal Descriptions (1)
PIN NO.
NAME
172-PIN
HFG
DIE PAD
NO.
DIE PAD
X-CENTER
(mm)
DIE PAD
Y-CENTER
(mm)
I/O/Z (2)
PU/PD (3)
DESCRIPTION
XINTF SIGNALS
XA[18]
154
173
42.6
2281.5
O/Z
–
XA[17]
152
171
42.6
2485.3
O/Z
–
XA[16]
149
167
42.6
2819.6
O/Z
–
XA[15]
145
163
42.6
3182.9
O/Z
–
XA[14]
141
157
42.6
3774.9
O/Z
–
XA[13]
138
154
42.6
4029.4
O/Z
–
XA[12]
135
151
42.6
4401.3
O/Z
–
XA[11]
129
145
255.7
5057.5
O/Z
XA[10]
127
143
474.4
5057.5
O/Z
–
XA[9]
122
138
996.5
5057.5
O/Z
–
XA[8]
118
134
1492.4
5057.5
O/Z
–
XA[7]
116
131
1825.2
5057.5
O/Z
–
XA[6]
109
124
2566.0
5057.5
O/Z
–
XA[5]
106
121
2937.9
5057.5
O/Z
–
XA[4]
101
116
3518.7
5057.5
O/Z
–
XA[3]
83
96
5361.5
4471.5
O/Z
–
XA[2]
78
91
5361.5
3927.2
O/Z
–
XA[1]
42
49
5024.5
42.6
O/Z
–
XA[0]
18
24
2403.5
42.6
O/Z
XD[15]
144
162
42.6
3306.9
I/O/Z
PU
XD[14]
136
152
42.6
4277.3
I/O/Z
PU
XD[13]
95
110
4194.1
5057.5
I/O/Z
PU
XD[12]
94
109
4318.1
5057.5
I/O/Z
PU
XD[11]
72
85
5361.5
3382.2
I/O/Z
PU
XD[10]
71
84
5361.5
3258.3
I/O/Z
PU
XD[9]
67
77
5361.5
2608.4
I/O/Z
PU
XD[8]
64
74
5361.5
2312.1
I/O/Z
PU
XD[7]
53
60
5361.5
1045.9
I/O/Z
PU
XD[6]
38
45
4586.0
42.6
I/O/Z
PU
XD[5]
35
42
4281.2
42.6
I/O/Z
PU
XD[4]
32
39
3966.6
42.6
I/O/Z
PU
XD[3]
29
36
3652.0
42.6
I/O/Z
PU
XD[2]
26
33
3337.5
42.6
I/O/Z
PU
XD[1]
23
30
3022.9
42.6
I/O/Z
PU
XD[0]
20
27
2708.3
42.6
I/O/Z
PU
(1)
(2)
(3)
19-bit XINTF Address Bus
16-bit XINTF Data Bus
Typical drive strength of the output buffer for all pins is 4 mA except for TDO, XCLKOUT, XF, XINTF, EMU0, and EMU1 pins, which are
8 mA.
I = Input, O = Output, Z = High impedance
PU = pin has internal pullup; PD = pin has internal pulldown
Introduction
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
17
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Table 2-3. Signal Descriptions
PIN NO.
NAME
172-PIN
HFG
XMP/MC
XHOLD
17
155
DIE PAD
NO.
23
174
DIE PAD
X-CENTER
(mm)
2308.2
42.6
DIE PAD
Y-CENTER
(mm)
42.6
2157.6
(1)
I/O/Z (2)
I
I
(continued)
PU/PD (3)
DESCRIPTION
PD
Microprocessor/Microcomputer Mode
Select. Switches between microprocessor
and microcomputer mode. When high,
Zone 7 is enabled on the external interface.
When low, Zone 7 is disabled from the
external interface and on-chip boot ROM
may be accessed instead. This signal is
latched into the XINTCNF2 register on a
reset and the user can modify this bit in
software. The state of the XMP/MC pin is
ignored after reset.
PU
External Hold Request. XHOLD, when
active (low), requests the XINTF to release
the external bus and place all buses and
strobes into a high-impedance state. The
XINTF releases the bus when any current
access is complete and there are no
pending accesses on the XINTF.
XHOLDA
80
93
5361.5
4137.4
O/Z
–
External Hold Acknowledge. XHOLDA is
driven active (low) when the XINTF has
granted a XHOLD request. All XINTF buses
and strobe signals are in a high-impedance
state. XHOLDA is released when the
XHOLD signal is released. External devices
should only drive the external bus when
XHOLDA is active (low).
XZCS0AND1
43
50
5148.5
42.6
O/Z
–
XINTF Zone 0 and Zone 1 Chip Select.
XZCS0AND1 is active (low) when an
access to the XINTF Zone 0 or Zone 1 is
performed.
XZCS2
86
100
5361.5
4844.2
O/Z
–
XINTF Zone 2 Chip Select. XZCS2 is active
(low) when an access to the XINTF Zone 2
is performed.
XZCS6AND7
130
146
42.6
4888.6
O/Z
–
XINTF Zone 6 and Zone 7 Chip Select.
XZCS6AND7 is active (low) when an
access to the XINTF Zone 6 or Zone 7 is
performed.
XWE
82
95
5361.5
4347.5
O/Z
–
Write Enable. Active-low write strobe. The
write strobe waveform is specified, per zone
basis, by the Lead, Active, and Trail periods
in the XTIMINGx registers.
–
Read Enable. Active-low read strobe. The
read strobe waveform is specified, per zone
basis, by the Lead, Active, and Trail periods
in the XTIMINGx registers.
NOTE: The XRD and XWE signals are
mutually exclusive.
–
Read Not Write Strobe. Normally held high.
When low, XR/W indicates write cycle is
active; when high, XR/W indicates read
cycle is active.
PU
Ready Signal. Indicates peripheral is ready
to complete the access when asserted to 1.
XREADY can be configured to be a
synchronous or an asynchronous input.
See the timing diagrams for more details.
XRD
41
XR/W
50
XREADY
18
157
48
57
176
4900.6
5361.5
42.6
42.6
755.0
1972.4
O/Z
O/Z
I
Introduction
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 2-3. Signal Descriptions
PIN NO.
NAME
172-PIN
HFG
DIE PAD
NO.
DIE PAD
X-CENTER
(mm)
DIE PAD
Y-CENTER
(mm)
(1)
I/O/Z (2)
(continued)
PU/PD (3)
DESCRIPTION
JTAG AND MISCELLANEOUS SIGNALS
X1/XCLKIN
75
88
5361.5
3668.7
I
Oscillator Input – input to the internal
oscillator. This pin is also used to feed an
external clock. The 28× can be operated
with an external clock source, provided that
the proper voltage levels be driven on the
X1/XCLKIN pin. It should be noted that the
X1/XCLKIN pin is referenced to the 1.8-V
(or 1.9-V) core digital power supply (VDD),
rather than the 3.3-V I/O supply (VDDIO). A
clamping diode may be used to clamp a
buffered clock signal to ensure that the
logic-high level does not exceed VDD
(1.8 V or 1.9 V) or a 1.8-V oscillator may be
used.
X2
74
87
5361.5
3582.6
O
Oscillator Output
Output clock derived from SYSCLKOUT to
be used for external wait-state generation
and as a general-purpose clock source.
XCLKOUT is either the same frequency,
1/2 the frequency, or 1/4 the frequency of
SYSCLKOUT. At reset, XCLKOUT =
SYSCLKOUT/4. The XCLKOUT signal can
be turned off by setting bit 3 (CLKOFF) of
the XINTCNF2 register to 1.
XCLKOUT
117
132
1701.2
5057.5
O
–
TESTSEL
131
147
42.6
4764.6
I
PD
Test Pin. Reserved for TI. Must be
connected to ground.
Device Reset (in) and Watchdog Reset
(out).
XRS
156
175
42.6
2077.8
I/O
PU
Device reset. XRS causes the device to
terminate execution. The PC points to the
address contained at the location
0x3FFFC0. When XRS is brought to a high
level, execution begins at the location
pointed to by the PC. This pin is driven low
by the DSP when a watchdog reset occurs.
During watchdog reset, the XRS pin is
driven low for the watchdog reset duration
of 512 XCLKIN cycles.
The output buffer of this pin is an
open-drain with an internal pullup (100 mA,
typical). It is recommended that this pin be
driven by an open-drain device.
TEST1
66
76
5361.5
2522.3
I/O
–
Test Pin. Reserved for TI. On F281x
devices, TEST1 must be left unconnected.
TEST2
65
75
5361.5
2436.1
I/O
–
Test Pin. Reserved for TI. On F281x
devices, TEST2 must be left unconnected.
Introduction
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
19
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Table 2-3. Signal Descriptions
PIN NO.
NAME
172-PIN
HFG
DIE PAD
NO.
DIE PAD
X-CENTER
(mm)
DIE PAD
Y-CENTER
(mm)
(1)
I/O/Z (2)
(continued)
PU/PD (3)
DESCRIPTION
JTAG test reset with internal pulldown.
TRST, when driven high, gives the scan
system control of the operations of the
device. If this signal is not connected or
driven low, the device operates in its
functional mode, and the test reset signals
are ignored.
NOTE: Do not use pullup resistors on
TRST; it has an internal pulldown device. In
a low-noise environment, TRST can be left
floating. In a high-noise environment, an
additional pulldown resistor may be
needed. The value of this resistor should be
based on drive strength of the debugger
pods applicable to the design. A 2.2-kΩ
resistor generally offers adequate
protection. Since this is application specific,
it is recommended that each target board is
validated for proper operation of the
debugger and the application.
TRST
132
148
42.6
4684.8
I
PD
TCK
133
149
42.6
4605.1
I
PU
JTAG test clock with internal pullup
TMS
123
139
872.5
5057.5
I
PU
JTAG test-mode select (TMS) with internal
pullup. This serial control input is clocked
into the TAP controller on the rising edge of
TCK.
TDI
128
144
350.4
5057.5
I
PU
JTAG test data input (TDI) with internal
pullup. TDI is clocked into the selected
register (instruction or data) on a rising
edge of TCK.
TDO
124
140
777.9
5057.5
O/Z
–
JTAG scan out, test data output (TDO). The
contents of the selected register (instruction
or data) is shifted out of TDO on the falling
edge of TCK.
EMU0
133
150
42.6
4525.3
I/O/Z
PU
Emulator pin 0. When TRST is driven high,
this pin is used as an interrupt to or from
the emulator system and is defined as
input/output through the JTAG scan.
EMU1
143
161
42.6
3430.9
I/O/Z
PU
Emulator pin 1. When TRST is driven high,
this pin is used as an interrupt to or from
the emulator system and is defined as
input/output through the JTAG scan.
20
Introduction
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 2-3. Signal Descriptions
PIN NO.
NAME
172-PIN
HFG
DIE PAD
NO.
DIE PAD
X-CENTER
(mm)
DIE PAD
Y-CENTER
(mm)
(1)
I/O/Z (2)
(continued)
PU/PD (3)
DESCRIPTION
ADC ANALOG INPUT SIGNALS
ADCINA7
163
186
42.6
1253.9
I
ADCINA6
164
188
42.6
1094.3
I
ADCINA5
165
190
42.6
954.0
I
ADCINA4
166
192
42.6
794.4
I
ADCINA3
167
194
42.6
654.1
I
ADCINA2
168
196
42.6
513.9
I
ADCINA1
169
197
42.6
434.1
I
ADCINA0
170
198
42.6
354.3
I
ADCINB7
9
13
1355.2
42.6
I
ADCINB6
8
11
1164.6
42.6
I
ADCINB5
7
10
1069.2
42.6
I
ADCINB4
6
8
878.6
42.6
I
ADCINB3
5
6
688.0
42.6
I
ADCINB2
4
4
497.4
42.6
I
ADCINB1
3
3
402.1
42.6
I
ADCINB0
2
2
306.8
42.6
I
ADCREFP
11
15
1545.8
42.6
Eight-channel analog inputs for
Sample-and-Hold A. The ADC pins should
not be driven before VDDA1, VDDA2, and
VDDAIO pins have been fully powered up.
Eight-channel analog inputs for
Sample-and-Hold B. The ADC pins should
not be driven before the VDDA1, VDDA2, and
VDDAIO pins have been fully powered up.
O
ADC Voltage Reference Output (2 V).
Requires a low ESR (50 mΩ – 1.5 Ω)
ceramic bypass capacitor of 10 mF to
analog ground. (Can accept external
reference input
(2 V) if the software bit is enabled for this
mode. 1-mF to 10-mF low ESR capacitor
can be used in the external reference
mode.)
ADCREFM
10
14
1450.5
42.6
O
ADC Voltage Reference Output (1 V).
Requires a low ESR (50 mΩ – 1.5 Ω)
ceramic bypass capacitor of 10 mF to
analog ground. (Can accept external
reference input
(1 V) if the software bit is enabled for this
mode. 1-mF to 10-mF low ESR capacitor
can be used in the external reference
mode.)
ADCRESEXT
16
22
2212.9
42.63
O
ADC External Current Bias Resistor
(24.9 kΩ ±5%)
ADCBGREFIN
160
180
42.6
1680.9
I
Test Pin. Reserved for TI. Must be left
unconnected.
AVSSREFBG
12
17
1831.7
42.6
I
ADC Analog GND
AVDDREFBG
13
18
1736.4
42.6
I
ADC Analog Power (3.3 V)
ADCLO
171
199
42.6
274.5
I
Common Low Side Analog Input. Connect
to analog ground.
VSSA1
15
21
2117.6
42.6
I
ADC Analog GND
VSSA2
161
182
42.6
1550.7
I
ADC Analog GND
VDDA1
14
19
1927.0
42.6
I
ADC Analog 3.3-V Supply
VDDA2
162
184
42.6
1394.2
I
ADC Analog 3.3-V Supply
VSS1
159
178
42.6
1830.8
I
ADC Digital GND
VDD1
I
ADC Digital 1.8-V (or 1.9-V) Supply
158
177
42.6
1901.0
VDDAIO
1
1
211.5
42.6
3.3-V Analog I/O Power Pin
VSSAIO
172
200
42.6
204.3
Analog I/O Ground Pin
Introduction
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
21
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Table 2-3. Signal Descriptions
PIN NO.
NAME
172-PIN
HFG
DIE PAD
NO.
DIE PAD
X-CENTER
(mm)
DIE PAD
Y-CENTER
(mm)
(1)
I/O/Z (2)
(continued)
PU/PD (3)
DESCRIPTION
POWER SIGNALS
VDD
22
29
2927.6
VDD
36
43
4395.4
42.6
VDD
55
62
5361.5
1256.0
VDD
73
86
5361.5
3496.4
VDD
-
98
5361.5
4671.835
VDD
98
113
3861.3
5057.5
VDD
110
125
2451.9
5057.5
VDD
125
141
663.7
5057.5
VDD
140
156
42.6
3845.1
VDD
150
169
42.6
2635.3
VSS
-
25
2517.7
42.6
VSS
31
38
3871.3
42.6
VSS
37
44
4490.7
42.6
VSS
51
58
5361.5
869.2
VSS
57
65
5361.5
1514.6
VSS
-
79
5361.5
2818.6
VSS
76
89
5361.5
3754.9
VSS
84
97
5361.5
4585.7
VSS
97
112
3956.0
5057.5
VSS
103
118
3280.5
5057.5
VSS
111
126
2357.2
5057.5
VSS
-
133
1587.1
5057.5
VSS
126
142
569.0
5057.5
VSS
139
155
42.6
3915.2
VSS
-
159
42.6
3580.8
VSS
-
168
42.6
2705.4
VDDIO
30
37
3776.0
42.6
VDDIO
63
73
5361.5
2226.0
VDDIO
79
92
5361.5
4051.2
VDDIO
-
105
4784.7
5057.5
VDDIO
112
127
2262.5
5057.5
VDDIO
142
160
42.6
3510.7
VDD3VFL
22
68
78
5361.5
42.6
2732.4
Introduction
1.8-V or 1.9-V Core Digital Power Pins. See
Section 6.2, Recommended Operating
Conditions, for voltage requirements.
Core and Digital I/O Ground Pins
3.3–V I/O Digital Power Pins
3.3–V Flash Core Power Pin. This pin
should be connected to 3.3 V at all times
after power-up sequence requirements
have been met. This pin is used as VDDIO
in ROM parts and must be connected to
3.3 V in ROM parts as well.
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Signal Descriptions (Continued) (1)
GPIO
PERIPHERAL
SIGNAL
PIN NO.
172-PIN
HFG
DIE PAD NO.
DIE PAD
X-CENTER
DIE PAD
Y-CENTER
I/O/Z (2)
PU/PD (3)
DESCRIPTION
GPIO OR PERIPHERAL SIGNALS
GPIOA OR EVA SIGNALS
GPIOA0
PWM1 (O)
90
104
4908.6
5057.5
I/O/Z
PU
GPIO or PWM
Output Pin #1
GPIOA1
PWM2 (O)
91
106
4690.0
5057.5
I/O/Z
PU
GPIO or PWM
Output Pin #2
GPIOA2
PWM3 (O)
92
107
4566.0
5057.5
I/O/Z
PU
GPIO or PWM
Output Pin #3
GPIOA3
PWM4 (O)
93
108
4442.1
5057.5
I/O/Z
PU
GPIO or PWM
Output Pin #4
GPIOA4
PWM5 (O)
96
111
4070.1
5057.5
I/O/Z
PU
GPIO or PWM
Output Pin #5
GPIOA5
PWM6 (O)
99
114
3766.6
5057.5
I/O/Z
PU
GPIO or PWM
Output Pin #6
GPIOA6
T1PWM_T1CMP (I)
100
115
3642.7
5057.5
I/O/Z
PU
GPIO or Timer 1
Output
GPIOA7
T2PWM_T2CMP (I)
102
117
3394.7
5057.5
I/O/Z
PU
GPIO or Timer 2
Output
GPIOA8
CAP1_QEP1 (I)
104
119
3185.9
5057.5
I/O/Z
PU
GPIO or Capture
Input #1
GPIOA9
CAP2_QEP2 (I)
105
120
3061.9
5057.5
I/O/Z
PU
GPIO or Capture
Input #2
GPIOA10
CAP3_QEPI1 (I)
107
122
2814.0
5057.5
I/O/Z
PU
GPIO or Capture
Input #3
GPIOA11
TDIRA (I)
114
129
2073.2
5057.5
I/O/Z
PU
GPIO or Timer
Direction
GPIOA12
TCLKINA (I)
115
130
1949.2
5057.5
I/O/Z
PU
GPIO or Timer Clock
Input
GPIOA13
C1TRIP (I)
119
135
1368.4
5057.5
I/O/Z
PU
GPIO or Compare 1
Output Trip
GPIOA14
C2TRIP (I)
120
136
1244.5
5057.5
I/O/Z
PU
GPIO or Compare 2
Output Trip
GPIOA15
C3TRIP (I)
121
137
1120.5
5057.5
I/O/Z
PU
GPIO or Compare 3
Output Trip
GPIOB OR EVB SIGNALS
GPIOB0
PWM7 (O)
44
51
5361.5
211.5
I/O/Z
PU
GPIO or PWM
Output Pin #7
GPIOB1
PWM8 (O)
45
52
5361.5
302.1
I/O/Z
PU
GPIO or PWM
Output Pin #8
GPIOB2
PWM9 (O)
46
53
5361.5
392.7
I/O/Z
PU
GPIO or PWM
Output Pin #9
GPIOB3
PWM10 (O)
47
54
5361.5
483.2
I/O/Z
PU
GPIO or PWM
Output Pin #10
GPIOB4
PWM11 (O)
48
55
5361.5
573.8
I/O/Z
PU
GPIO or PWM
Output Pin #11
GPIOB5
PWM12 (O)
49
56
5361.5
664.4
I/O/Z
PU
GPIO or PWM
Output Pin #12
GPIOB6
T3PWM_T3CMP (I)
52
59
5361.5
955.3
I/O/Z
PU
GPIO or Timer 3
Output
GPIOB7
T4PWM_T4CMP (I)
54
61
5361.5
1169.9
I/O/Z
PU
GPIO or Timer 4
Output
(1)
(2)
(3)
Typical drive strength of the output buffer for all pins [except TDO, XCLKOUT, XF, XINTF, EMU0, and EMU1 pins] is 4 mA typical.
I = Input, O = Output, Z = High impedance
PU = pin has internal pullup; PD = pin has internal pulldown
Introduction
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
23
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Signal Descriptions (Continued)
GPIO
PERIPHERAL
SIGNAL
PIN NO.
(1)
(continued)
172-PIN
HFG
DIE PAD NO.
DIE PAD
X-CENTER
DIE PAD
Y-CENTER
I/O/Z (2)
PU/PD (3)
DESCRIPTION
GPIOB8
CAP4_QEP3 (I)
56
64
5361.5
1428.4
I/O/Z
PU
GPIO or Capture
Input #4
GPIOB9
CAP5_QEP4 (I)
58
66
5361.5
1600.7
I/O/Z
PU
GPIO or Capture
Input #5
GPIOB10
CAP6_QEPI2 (I)
59
67
5361.5
1691.3
I/O/Z
PU
GPIO or Capture
Input #6
GPIOB11
TDIRB (I)
69
81
5361.5
2990.9
I/O/Z
PU
GPIO or Timer
Direction
GPIOB12
TCLKINB (I)
70
82
5361.5
3081.5
I/O/Z
PU
GPIO or Timer Clock
Input
GPIOB13
C4TRIP (I)
60
69
5361.5
1868.1
I/O/Z
PU
GPIO or Compare 4
Output Trip
GPIOB14
C5TRIP (I)
61
71
5361.5
2044.8
I/O/Z
PU
GPIO or Compare 5
Output Trip
GPIOB15
C6TRIP (I)
62
72
5361.5
2135.4
I/O/Z
PU
GPIO or Compare 6
Output Trip
5057.5
I/O/Z
PU
Timer 1 Compare
Output Trip
GPIOD OR EVA SIGNALS
GPIOD0
GPIOD1
T1CTRIP_PDPINTA (I)
T2CTRIP/EVASOC (I)
108
113
123
128
2690.0
2167.8
5057.5
I/O/Z
PU
Timer 2 Compare
Output Trip or
External ADC
Start-of-Conversion
EV-A
3841.1
I/O/Z
PU
Timer 3 Compare
Output Trip
I/O/Z
PU
Timer 4 Compare
Output Trip or
External ADC
Start-of-Conversion
EV-B
GPIOD OR EVB SIGNALS
GPIOD5
GPIOD6
T3CTRIP_PDPINTB (I)
T4CTRIP/EVBSOC (I)
77
81
90
94
5361.5
5361.5
4261.4
GPIOE OR INTERRUPT SIGNALS
GPIOE0
XINT1_XBIO (I)
146
164
42.6
3059.0
I/O/Z
–
GPIO or XINT1 or
XBIO input
GPIOE1
XINT2_ADCSOC (I)
148
166
42.6
2899.4
I/O/Z
–
GPIO or XINT2 or
ADC start of
conversion
GPIOE2
XNMI_XINT13 (I)
147
165
42.6
2979.2
I/O/Z
PU
GPIO or XNMI or
XINT13
GPIOF OR SPI SIGNALS
GPIOF0
SPISIMOA (O)
39
46
4709.9
42.6
I/O/Z
–
GPIO or SPI slave
in, master out
GPIOF1
SPISOMIA (I)
40
47
4805.3
42.6
I/O/Z
–-
GPIO or SPI slave
out, master in
GPIOF2
SPICLKA (I/O)
33
40
4090.6
42.6
I/O/Z
–
GPIO or SPI clock
GPIOF3
SPISTEA (I/O)
34
41
4185.9
42.6
I/O/Z
–
GPIO or SPI slave
transmit enable
GPIOF OR SCI-A SIGNALS
GPIOF4
SCITXDA (O)
151
170
42.6
2565.1
I/O/Z
PU
GPIO or SCI
asynchronous serial
port TX data
GPIOF5
SCIRXDA (I)
153
172
42.6
2361.3
I/O/Z
PU
GPIO or SCI
asynchronous serial
port RX data
24
Introduction
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Signal Descriptions (Continued)
GPIO
PERIPHERAL
SIGNAL
PIN NO.
172-PIN
HFG
DIE PAD NO.
DIE PAD
X-CENTER
(1)
(continued)
DIE PAD
Y-CENTER
I/O/Z (2)
PU/PD (3)
DESCRIPTION
GPIOF OR CAN SIGNALS
GPIOF6
CANTXA (O)
85
99
5361.5
4758.0
I/O/Z
PU
GPIO or eCAN
transmit data
GPIOF7
CANRXA (I)
87
101
5192.7
5057.5
I/O/Z
PU
GPIO or eCAN
receive data
GPIOF OR McBSP SIGNALS
GPIOF8
MCLKXA (I/O)
27
34
3461.4
42.6
I/O/Z
PU
GPIO or transmit
clock
GPIOF9
MCLKRA (I/O)
24
31
3146.8
42.6
I/O/Z
PU
GPIO or receive
clock
GPIOF10
MFSXA (I/O)
25
32
3242.2
42.6
I/O/Z
PU
GPIO or transmit
frame synch
GPIOF11
MFSRA (I/O)
28
35
3556.7
42.6
I/O/Z
PU
GPIO or receive
frame synch
GPIOF12
MDXA (O)
21
28
2832.3
42.6
I/O/Z
–
GPIOF13
MDRA (I)
19
26
2613.0
42.6
I/O/Z
PU
GPIO or transmitted
serial data
GPIO or received
serial data
GPIOF OR XF CPU OUTPUT SIGNAL
This pin has three
functions:
1. XF –
General-purpose
output pin.
GPIOF14
XF_XPLLDIS (O)
137
153
42.6
4153.3
I/O/Z
PU
2. XPLLDIS – This
pin is sampled
during reset to check
if the PLL needs to
be disabled. The
PLL will be disabled
if this pin is sensed
low. HALT and
STANDBY modes
cannot be used
when the PLL is
disabled.
3. GPIO – GPIO
function
Introduction
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
25
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Signal Descriptions (Continued)
GPIO
PERIPHERAL
SIGNAL
PIN NO.
172-PIN
HFG
DIE PAD NO.
DIE PAD
X-CENTER
(1)
(continued)
DIE PAD
Y-CENTER
I/O/Z (2)
PU/PD (3)
DESCRIPTION
GPIOG OR SCI-B SIGNALS
GPIOG4
SCITXDB (O)
88
102
5098.0
5057.5
I/O/Z
–
GPIO or SCI
asynchronous serial
port transmit data
GPIOG5
SCIRXDB (I)
89
103
5003.3
5057.5
I/O/Z
–
GPIO or SCI
asynchronous serial
port receive data
NOTE
Other than the power supply pins, no pin should be driven before the 3.3-V rail has reached
recommended operating conditions.
26
Introduction
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
3
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Functional Overview
Memory Bus
TINT0
CPU-Timer 0
CPU-Timer 1
Real-Time JTAG
CPU-Timer 2
TINT2
INT14
PIE
(96 interrupts)†
TINT1
XINT13
XNMI
External Interrupt
Control
(XINT1/2/13, XNMI)
INT[12:1]
INT13
NMI
Control
External
Interface
(XINTF)
Address(19)
Data(16)
M0 SARAM
1K x 16
M1 SARAM
1K x 16
G
P
I
GPIO Pins
SCIA/SCIB
FIFO
SPI
FIFO
McBSP
FIFO
O
L0 SARAM ‡
4K x 16
C28x CPU
M
L1 SARAM ‡
4K x 16
eCAN
U
X
Flash ‡
128K x 16
EVA/EVB
12-Bit ADC
16 Channels
XRS
X1/XCLKIN
X2
XF_XPLLDIS
System Control
(Oscillator and PLL
+
Peripheral Clocking
+
Low-Power
Modes
+
WatchDog)
RS
OTP ‡
1K x 16
CLKIN
H0 SARAM
8K ⋅ 16
Memory Bus
Boot ROM
4K ⋅ 16
Peripheral Bus
†
45 of the possible 96 interrupts are used on the device.
‡
Protected by the code-security module.
Figure 3-1. Functional Block Diagram
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
27
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
3.1
www.ti.com
Memory Map
Block
Start Address
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍ
On-Chip Memory
Data Space
0x00 0000
M0 Vector − RAM (32 × 32)
(Enabled if VMAP = 0)
0x00 0040
M0 SARAM (1K × 16)
0x00 0400
0x00 0800
Low 64K
(24x/240x Equivalent Data Space)
Prog Space
0x00 0D00
0x00 0E00
External Memory XINTF
Data Space
Prog Space
M1 SARAM (1K × 16)
Peripheral Frame 0
(2K × 16)
PIE Vector - RAM
(256 × 16)
(Enabled if VMAP
= 1, ENPIE = 1)
Reserved
Reserved
Reserved
0x00 2000
Reserved
0x00 6000
Peripheral Frame 1
(4K × 16, Protected)
0x00 7000
Peripheral Frame 2
(4K × 16, Protected)
XINTF Zone 0 (8K × 16, XZCS0AND1)
0x00 2000
XINTF Zone 1 (8K × 16, XZCS0AND1) (Protected)
0x00 4000
Reserved
0x00 8000
L0 SARAM (4K × 16, Secure Block)
0x00 9000
L1 SARAM (4K × 16, Secure Block)
Reserved
0x00 A000
Reserved
XINTF Zone 2 (0.5M × 16, XZCS2)
0x08 0000
XINTF Zone 6 (0.5M × 16, XZCS6AND7)
0x10 0000
0x18 0000
0x3D 7800
0x3D 7C00
High 64K
(24x/240x Equivalent
Program Space)
0x3D 8000
0x3F 7FF8
0x3F 8000
OTP (or ROM) (1K × 16, Secure Block)
Reserved (1K)
Reserved
Flash (or ROM) (128K × 16, Secure Block)
128-Bit Password
H0 SARAM (8K × 16)
0x3F A000
Reserved
0x3F F000
0x3F FFC0
LEGEND:
Boot ROM (4K × 16)
(Enabled if MP/MC = 0)
BROM Vector - ROM (32 × 32)
(Enabled if VMAP = 1, MP/MC = 0, ENPIE = 0)
0x3F C000
XINTF Zone 7 (16K × 16, XZCS6AND7)
(Enabled if MP/MC = 1)
XINTF Vector - RAM (32 × 32)
(Enabled if VMAP = 1, MP/MC = 1, ENPIE = 0)
Only one of these vector maps—M0 vector, PIE vector, BROM vector, XINTF vector—should be enabled at a time.
A.
B.
C.
D.
E.
F.
G.
Memory blocks are not to scale.
Reserved locations are reserved for future expansion. Application should not access these areas.
Boot ROM and Zone 7 memory maps are active either in on-chip or XINTF zone depending on MP/MC, not in both.
Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only.
User program cannot access these memory maps in program space.
Protected means the order of Write followed by Read operations is preserved rather than the pipeline order.
Certain memory ranges are EALLOW protected against spurious writes after configuration.
Zones 0 and 1 and Zones 6 and 7 share the same chip select; hence, these memory blocks have mirrored locations.
Figure 3-2. F2812 Memory Map (See Notes A. Through G.)
28
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 3-1. Addresses of Flash Sectors in F2812
ADDRESS RANGE
PROGRAM AND DATA SPACE
0x3D 8000
0x3D 9FFF
Sector J, 8K × 16
0x3D A000
0x3D BFFF
Sector I, 8K × 16
0x3D C000
0x3D FFFF
Sector H, 16K × 16
0x3E 0000
0x3E 3FFF
Sector G, 16K × 16
0x3E 4000
0x3E 7FFF
Sector F, 16K × 16
0x3E 8000
0x3E BFFF
Sector E, 16K × 16
0x3E C000
0x3E FFFF
Sector D, 16K × 16
0x3F 0000
0x3F 3FFF
Sector C, 16K × 16
0x3F 4000
0x3F 5FFF
Sector B, 8K × 16
0x3F 6000
Sector A, 8K × 16
0x3F 7F80
0x3F 7FF5
Program to 0x0000 when using the
Code Security Module
0x3F 7FF6
0x3F 7FF7
Boot-to-Flash (or ROM) Entry Point
(program branch instruction here)
0x3F 7FF8
0x3F 7FFF
Security Password (128-Bit)
(Do not program to all zeros)
The Low 64K of the memory address range maps into the data space of the 240x. The High 64K of the
memory address range maps into the program space of the 24x/240x. 24x/240x-compatible code only
executes from the High 64K memory area. Hence, the top 32K of Flash/ROM and H0 SARAM block can
be used to run 24x/240x-compatible code (if MP/MC mode is low) or, on the F2812, code can be executed
from XINTF Zone 7 (if MP/MC mode is high).
The XINTF consists of five independent zones. One zone has its own chip select and the remaining four
zones share two chip selects. Each zone can be programmed with its own timing (wait states) and to
either sample or ignore external ready signal. This makes interfacing to external peripherals easy and
glueless.
NOTE
The chip selects of XINTF Zone 0 and Zone 1 are merged together into a single chip select
(XZCS0AND1); and the chip selects of XINTF Zone 6 and Zone 7 are merged together into a
single chip select (XZCS6AND7). See Section 3.5, External Interface, XINTF (2812 only), for
details.
Peripheral Frame 1, Peripheral Frame 2, and XINTF Zone 1 are grouped together so as to enable these
blocks to be write/read peripheral block protected. The protected mode ensures that all accesses to these
blocks happen as written. Because of the C28x pipeline, a write immediately followed by a read, to
different memory locations, appears in reverse order on the memory bus of the CPU. This can cause
problems in certain peripheral applications where the user expected the write to occur first (as written).
The C28x CPU supports a block protection mode where a region of memory can be protected so as to
make sure that operations occur as written (the penalty is extra cycles are added to align the operations).
This mode is programmable and by default, it protects the selected zones.
On the F2812, at reset, XINTF Zone 7 is accessed if the XMP/MC pin is pulled high. This signal selects
microprocessor or microcomputer mode of operation. In microprocessor mode, Zone 7 is mapped to high
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
29
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
memory such that the vector table is fetched externally. The Boot ROM is disabled in this mode. In
microcomputer mode, Zone 7 is disabled such that the vectors are fetched from Boot ROM. This allows
the user to either boot from on-chip memory or from off-chip memory. The state of the XMP/MC signal on
reset is stored in an MP/MC mode bit in the XINTCNF2 register. The user can change this mode in
software and hence control the mapping of Boot ROM and XINTF Zone 7. No other memory blocks are
affected by XMP/MC.
I/O space is not supported on the F2812 XINTF.
The wait states for the various spaces in the memory map area are listed in Table 3-2.
Table 3-2. Wait States
30
AREA
WAIT-STATES
M0 and M1 SARAMs
0-wait
Fixed
COMMENTS
Peripheral Frame 0
0-wait
Fixed
Peripheral Frame 1
0-wait (writes)
2-wait (reads)
Fixed
Peripheral Frame 2
0-wait (writes)
2-wait (reads)
Fixed
L0 and L1 SARAMs
0-wait
OTP (or ROM)
Programmable,
1-wait minimum
Programmed via the Flash registers. 1-wait-state operation is possible at a reduced
CPU frequency. See Section 3.2.6, Flash (F281x Only), for more information.
Flash (or ROM)
Programmable,
0-wait minimum
Programmed via the Flash registers. 0-wait-state operation is possible at reduced
CPU frequency. The CSM password locations are hardwired for 16 wait-states.
See Section 3.2.6, Flash (F281x Only), for more information.
H0 SARAM
0-wait
Fixed
Boot-ROM
1-wait
Fixed
XINTF
Programmable,
1-wait minimum
Programmed via the XINTF registers.
Cycles can be extended by external memory or peripheral.
0-wait operation is not possible.
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
3.2
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Brief Descriptions
3.2.1
C28x CPU
The C28x™ DSP generation is the newest member of the TMS320C2000™ DSP platform. The C28x is
source code compatible to the 24x/240x DSP devices, hence existing 240x users can leverage their
significant software investment. Additionally, the C28x is a very efficient C/C++ engine, hence enabling
users to develop not only their system control software in a high-level language, but also enables math
algorithms to be developed using C/C++. The C28x is as efficient in DSP math tasks as it is in system
control tasks that typically are handled by microcontroller devices. This efficiency removes the need for a
second processor in many systems. The 32 × 32-bit MAC capabilities of the C28x and its 64-bit
processing capabilities, enable the C28x to efficiently handle higher numerical resolution problems that
would otherwise demand a more expensive floating-point processor solution. Add to this the fast interrupt
response with automatic context save of critical registers, resulting in a device that is capable of servicing
many asynchronous events with minimal latency. The C28x has an 8-level-deep protected pipeline with
pipelined memory accesses. This pipelining enables the C28x to execute at high speeds without resorting
to expensive high-speed memories. Special branch-look-ahead hardware minimizes the latency for
conditional discontinuities. Special store conditional operations further improve performance.
3.2.2
Memory Bus (Harvard Bus Architecture)
As with many DSP type devices, multiple busses are used to move data between the memories and
peripherals and the CPU. The C28x memory bus architecture contains a program read bus, data read bus
and data write bus. The program read bus consists of 22 address lines and 32 data lines. The data read
and write busses consist of 32 address lines and 32 data lines each. The 32-bit-wide data busses enable
single cycle 32-bit operations. The multiple bus architecture, commonly termed Harvard Bus, enables the
C28x to fetch an instruction, read a data value and write a data value in a single cycle. All peripherals and
memories attached to the memory bus prioritizes memory accesses. Generally, the priority of Memory Bus
accesses can be summarized as follows:
Highest:
Data Writes (1)
Program Writes
Data Reads
Program Reads (2)
Lowest:
3.2.3
Fetches
Peripheral Bus
To enable migration of peripherals between various Texas Instruments (TI) DSP families, the F2812
adopts a peripheral bus standard for peripheral interconnect. The peripheral bus bridge multiplexes the
various busses that make up the processor Memory Bus into a single bus consisting of 16 address lines
and 16 or 32 data lines and associated control signals. Two versions of the peripheral bus are supported
on the F2812. One version only supports 16-bit accesses (called peripheral frame 2) and this retains
compatibility with C240x-compatible peripherals. The other version supports both 16- and 32-bit accesses
(called peripheral frame 1).
3.2.4
Real-Time JTAG and Analysis
The F2812 implement the standard IEEE 1149.1 JTAG interface. Additionally, the F2812 supports
real-time mode of operation whereby the contents of memory, peripheral and register locations can be
modified while the processor is running and executing code and servicing interrupts. The user can also
(1)
(2)
Simultaneous Data and Program writes cannot occur on the Memory Bus.
Simultaneous Program Reads and Fetches cannot occur on the Memory Bus.
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
31
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
single step through non-time critical code while enabling time-critical interrupts to be serviced without
interference. The F2812 implements the real-time mode in hardware within the CPU. This is a unique
feature to the F2812, no software monitor is required. Additionally, special analysis hardware is provided
which allows the user to set hardware breakpoint or data/address watch-points and generate various user
selectable break events when a match occurs.
3.2.5
External Interface (XINTF)
This asynchronous interface consists of 19 address lines, 16 data lines, and three chip-select lines. The
chip-select lines are mapped to five external zones, Zones 0, 1, 2, 6, and 7. Zones 0 and 1 share a single
chip-select; Zones 6 and 7 also share a single chip-select. Each of the five zones can be programmed
with a different number of wait states, strobe signal setup and hold timing and each zone can be
programmed for extending wait states externally or not. The programmable wait-state, chip-select, and
programmable strobe timing enables glueless interface to external memories and peripherals.
3.2.6
Flash
The F2812 contains 128K × 16 of embedded flash memory, segregated into four 8K × 16 sectors, and six
16K × 16 sectors. The F2810 has 64K × 16 of embedded flash, segregated into two 8K × 16 sectors, and
three 16K × 16 sectors. The device also contains a single 1K × 16 of OTP memory at address range 0x3D
7800 - 0x3D 7BFF. The user can individually erase, program, and validate a flash sector while leaving
other sectors untouched. However, it is not possible to use one sector of the flash or the OTP to execute
flash algorithms that erase/program other sectors. Special memory pipelining is provided to enable the
flash module to achieve higher performance. The flash/OTP is mapped to both program and data space;
therefore, it can be used to execute code or store data information.
NOTE
The F2812 Flash and OTP wait states can be configured by the application. This allows
applications running at slower frequencies to configure the flash to use fewer wait states.
Flash effective performance can be improved by enabling the flash pipeline mode in the
Flash options register. With this mode enabled, effective performance of linear code
execution is much faster than the raw performance indicated by the wait state configuration
alone. The exact performance gain when using the Flash pipeline mode is
application-dependent. The pipeline mode is not available for the OTP block.
For more information on the Flash options, Flash wait-state, and OTP wait-state registers,
see the TMS320x281x System Control and Interrupts Reference Guide (SPRU078).
3.2.7
L0, L1, H0 SARAMs
The F2812 contains an additional 16K × 16 of single-access RAM, divided into three blocks (4K + 4K +
8K). Each block can be independently accessed hence minimizing pipeline stalls. Each block is mapped to
both program and data space.
3.2.8
Boot ROM
The Boot ROM is factory-programmed with boot-loading software. The Boot ROM program executes after
device reset and checks several GPIO pins to determine which boot mode to enter. For example, the user
can select to execute code already present in the internal Flash or download new software to internal
RAM through one of several serial ports. Other boot modes exist as well. The Boot ROM also contains
standard tables, such as SIN/COS waveforms, for use in math-related algorithms. Table 3-3 shows the
details of how various boot modes may be invoked. See the TMS320x281x DSP Boot ROM Reference
Guide (SPRS095), for more information.
32
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 3-3. Boot Mode Selection
BOOT MODE SELECTED (1)
GPIO PU status (3)
GPIOF4
(SCITXDA)
GPIOF12
(MDXA)
GPIOF3
(SPISTEA)
GPIOF2
(SPICLK) (2)
PU
No PU
No PU
No PU
Jump to Flash/ROM address 0x3F 7FF6
A branch instruction must have been programmed here prior to
reset to redirect code execution as desired.
1
x
x
x
Call SPI_Boot to load from an external serial SPI EEPROM
0
1
x
x
Call SCI_Boot to load from SCI-A
0
0
1
1
Jump to H0 SARAM address 0x3F 8000
0
0
1
0
Jump to OTP address 0x3D 7800
0
0
0
1
Call Parallel_Boot to load from GPIO Port B
0
0
0
0
(1)
(2)
(3)
If the boot mode selected is Flash, H0, or OTP, then no external code is loaded by the bootloader.
Extra care must be taken due to any effect toggling SPICLK to select a boot mode may have on external logic.
PU = pin has an internal pullup. No PU = pin does not have an internal pullup
3.2.9
Security
The F2812 supports high levels of security to protect the user firmware from being reversed engineered.
The security features a 128–bit password (hardcoded for 16 wait states), which the user programs into the
flash. One code security module (CSM) is used to protect the flash/ROM/OTP and the L0/L1 SARAM
blocks. The security feature prevents unauthorized users from examining the memory contents via the
JTAG port, executing code from external memory or trying to boot–load some undesirable software that
would export the secure memory contents. To enable access to the secure blocks, the user must write the
correct 128–bit KEY value, which matches the value stored in the password locations within the
Flash/ROM.
NOTE
For code security operation, all addresses between 0x3F7F80 and 0x3F7FF5 cannot be
used as program code or data, but must be programmed to 0x0000 when the Code Security
Passwords are programmed. If security is not a concern, then these addresses may be used
for code or data.
The 128-bit password (at 0x3F 7FF8 – 0x3F 7FFF) must not be programmed to zeros. Doing
so would permanently lock the device.
Code Security Module Disclaimer
The Code Security Module (CSM) included on this device was designed to password
protect the data stored in the associated memory (either ROM or Flash) and is warranted
by Texas Instruments (TI), in accordance with its standard terms and conditions, to
conform to TI’s published specifications for the warranty period applicable for this device.
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT
BE COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE
ASSOCIATED MEMORY CANNOT BE ACCESSED THROUGH OTHER MEANS.
MOREOVER, EXCEPT AS SET FORTH ABOVE, TI MAKES NO WARRANTIES OR
REPRESENTATIONS CONCERNING THE CSM OR OPERATION OF THIS DEVICE,
INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
33
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL,
INDIRECT, INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING
IN ANY WAY OUT OF YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR
NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO LOSS OF DATA, LOSS
OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR OTHER
ECONOMIC LOSS.
3.2.10 Peripheral Interrupt Expansion (PIE) Block
The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The
PIE block can support up to 96 peripheral interrupts. On the F2812, 45 of the possible 96 interrupts are
used by peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of 12
CPU interrupt lines (INT1 to INT12). Each of the 96 interrupts is, supported by its own vector stored in a
dedicated RAM block that can be overwritten by the user. The vector is, automatically fetched by the CPU
on servicing the interrupt. It takes 8 CPU clock cycles to fetch the vector and save critical CPU registers.
Hence the CPU can quickly respond to interrupt events. Prioritization of interrupts is controlled in
hardware and software. Each individual interrupt can be enabled/disabled within the PIE block.
3.2.11 External Interrupts (XINT1, XINT2, XINT13, XNMI)
The F2812 supports three masked external interrupts (XINT1, 2, 13). XINT13 is combined with one
non-masked external interrupt (XNMI). The combined signal name is XNMI_XINT13. Each of the interrupts
can be selected for negative or positive edge triggering and can also be enabled/disabled (including the
XNMI). The masked interrupts also contain a 16-bit free running up counter, which is reset to zero when a
valid interrupt edge is detected. This counter can be used to accurately time stamp the interrupt.
3.2.12 Oscillator and PLL
The F2812 can be clocked by an external oscillator or by a crystal attached to the on-chip oscillator circuit.
A PLL is provided supporting up to 10-input clock-scaling ratios. The PLL ratios can be changed on-the-fly
in software, enabling the user to scale back on operating frequency if lower power operation is desired.
Refer to the Electrical Specification section for timing details. The PLL block can be set in bypass mode.
3.2.13 Watchdog
The F2812 supports a watchdog timer. The user software must regularly reset the watchdog counter
within a certain time frame; otherwise, the watchdog generates a reset to the processor. The watchdog
can be disabled if necessary.
3.2.14 Peripheral Clocking
The clocks to each individual peripheral can be enabled/disabled so as to reduce power consumption
when a peripheral is not in use. Additionally, the system clock to the serial ports (except eCAN) and the
event managers, CAP and QEP blocks can be scaled relative to the CPU clock. This enables the timing of
peripherals to be decoupled from increasing CPU clock speeds.
3.2.15 Low-Power Modes
The F2812 device is a full-static CMOS device. Three low-power modes are provided:
34
IDLE:
Place CPU into low-power mode. Peripheral clocks may be turned off selectively
and only those peripherals that need to function during IDLE are left operating. An
enabled interrupt from an active peripheral wakes the processor from IDLE mode.
STANDBY:
Turn off clock to CPU and peripherals. This mode leaves the oscillator and PLL
functional. An external interrupt event wakes the processor and the peripherals.
Execution begins on the next valid cycle after detection of the interrupt event.
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
HALT:
Turn off oscillator. This mode basically shuts down the device and places it in the
lowest possible power consumption mode. Only a reset or XNMI wakes the
device from this mode.
3.2.16 Peripheral Frames 0, 1, 2 (PFn)
The F2812 segregates peripherals into three sections. The mapping of peripherals is as follows:
PF0:
XINTF:
External Interface Configuration Registers (2812 only)
PIE:
PIE Interrupt Enable and Control Registers Plus PIE Vector Table
Flash:
Flash Control, Programming, Erase, Verify Registers
Timers:
CPU-Timers 0, 1, 2 Registers
CSM:
Code Security Module KEY Registers
PF1:
eCAN:
eCAN Mailbox and Control Registers
PF2:
SYS:
System Control Registers
GPIO:
GPIO Mux Configuration and Control Registers
EV:
Event Manager (EVA/EVB) Control Registers
McBSP:
McBSP Control and TX/RX Registers
SCI:
Serial Communications Interface (SCI) Control and RX/TX Registers
SPI:
Serial Peripheral Interface (SPI) Control and RX/TX Registers
ADC:
12-Bit ADC Registers
3.2.17 General-Purpose Input/Output (GPIO) Multiplexer
Most of the peripheral signals are multiplexed with general-purpose I/O (GPIO) signals. This enables the
user to use a pin as GPIO if the peripheral signal or function is not used. On reset, all GPIO pins are
configured as inputs. The user can then individually program each pin for GPIO mode or Peripheral Signal
mode. For specific inputs, the user can also select the number of input qualification cycles. This is to filter
unwanted noise glitches.
3.2.18 32-Bit CPU Timers (0, 1, 2)
CPU Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock
prescaling. The timers have a 32-bit count down register, which generates an interrupt when the counter
reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting.
When the counter reaches zero, it is automatically reloaded with a 32-bit period value. CPU Timer 2 is
reserved for Real-Time OS (RTOS)/BIOS applications. CPU Timer 1 is also reserved for TI system
functions. CPU Timer 2 is connected to INT14 of the CPU. CPU Timer 1 can be connected to INT13 of the
CPU. CPU Timer 0 is for general use and is connected to the PIE block.
3.2.19 Control Peripherals
The F2812 supports the following peripherals which are used for embedded control and communication:
EV:
The event manager module includes general-purpose timers, full-compare/PWM units,
capture inputs (CAP) and quadrature-encoder pulse (QEP) circuits. Two such event
managers are provided which enable two three-phase motors to be driven or four
two-phase motors. The event managers on the F2812 is compatible to the event
managers on the 240x devices (with some minor enhancements).
ADC:
The ADC block is a 12-bit converter, single ended, 16-channels. It contains two
sample-and-hold units for simultaneous sampling.
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
35
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
3.2.20 Serial Port Peripherals
The F2812 supports the following serial communication peripherals:
eCAN:
This is the enhanced version of the CAN peripheral. It supports 32 mailboxes, time
stamping of messages, and is CAN 2.0B-compliant.
McBSP This is the multichannel buffered serial port that is used to connect to E1/T1 lines,
:
phone-quality codecs for modem applications or high-quality stereo-quality Audio DAC
devices. The McBSP receive and transmit registers are supported by a 16-level FIFO.
This significantly reduces the overhead for servicing this peripheral.
3.3
SPI:
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of
programmed length (one to sixteen bits) to be shifted into and out of the device at a
programmable bit-transfer rate. Normally, the SPI is used for communications between
the DSP controller and external peripherals or another processor. Typical applications
include external I/O or peripheral expansion through devices such as shift registers,
display drivers, and ADCs. Multi-device communications are supported by the
master/slave operation of the SPI. On the F2812, the port supports a 16-level receive
and transmit FIFO for reducing servicing overhead.
SCI:
The serial communications interface is a two-wire asynchronous serial port, commonly
known as UART. On the F2812, the port supports a 16-level receive and transmit FIFO
for reducing servicing overhead.
Register Map
The F2812 device contains three peripheral register spaces. The spaces are categorized as follows:
• Peripheral Frame 0: These are peripherals that are mapped directly to the CPU memory bus. See
Table 3-4.
• Peripheral Frame 1: These are peripherals that are mapped to the 32-bit peripheral bus. See
Table 3-5.
• Peripheral Frame 2: These are peripherals that are mapped to the 16-bit peripheral bus. See
Table 3-6.
36
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 3-4. Peripheral Frame 0 Registers (1)
NAME
ACCESS TYPE (2)
ADDRESS RANGE
SIZE (×16)
Device Emulation Registers
0x00 0880
0x00 09FF
384
reserved
0x00 0A00
0x00 0A7F
128
FLASH Registers (3)
0x00 0A80
0x00 0ADF
96
EALLOW protected
CSM Protected
Code Security Module Registers
0x00 0AE0
0x00 0AEF
16
EALLOW protected
reserved
0x00 0AF0
0x00 0B1F
48
XINTF Registers
0x00 0B20
0x00 0B3F
32
reserved
0x00 0B40
0x00 0BFF
192
CPU-TIMER0/1/2 Registers
0x00 0C00
0x00 0C3F
64
reserved
0x00 0C40
0x00 0CDF
160
PIE Registers
0x00 0CE0
0x00 0CFF
32
Not EALLOW protected
PIE Vector Table
0x00 0D00
0x00 0DFF
256
EALLOW protected
Reserved
0x00 0E00
0x00 0FFF
512
(1)
(2)
(3)
EALLOW protected
Not EALLOW protected
Not EALLOW protected
Registers in Frame 0 support 16-bit and 32-bit accesses.
If registers are EALLOW protected, then writes cannot be performed until the user executes the EALLOW instruction. The EDIS
instruction disables writes. This prevents stray code or pointers from corrupting register contents.
The Flash Registers are also protected by the Code Security Module (CSM).
Table 3-5. Peripheral Frame 1 Registers (1)
NAME
ADDRESS RANGE
SIZE (×16)
ACCESS TYPE
eCAN Registers
0x00 6000
0x00 60FF
256
(128 × 32)
Some eCAN control registers (and selected bits in
other eCAN control registers) are EALLOW-protected.
eCAN Mailbox RAM
0x00 6100
0x00 61FF
256
(128 × 32)
Not EALLOW-protected
reserved
0x00 6200
0x00 6FFF
3584
(1)
The eCAN control registers only support 32-bit read/write operations. All 32-bit accesses are aligned to even address boundaries.
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
37
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Table 3-6. Peripheral Frame 2 Registers (1)
NAME
ADDRESS RANGE
SIZE (×16)
reserved
0x00 7000
0x00 700F
16
System Control Registers
0x00 7010
0x00 702F
32
reserved
0x00 7030
0x00 703F
16
SPI-A Registers
0x00 7040
0x00 704F
16
Not EALLOW Protected
SCI-A Registers
0x00 7050
0x00 705F
16
Not EALLOW Protected
reserved
0x00 7060
0x00 706F
16
External Interrupt Registers
0x00 7070
0x00 707F
16
reserved
0x00 7080
0x00 70BF
64
GPIO Mux Registers
0x00 70C0
0x00 70DF
32
EALLOW Protected
GPIO Data Registers
0x00 70E0
0x00 70FF
32
Not EALLOW Protected
ADC Registers
0x00 7100
0x00 711F
32
Not EALLOW Protected
reserved
0x00 7120
0x00 73FF
736
EV-A Registers
0x00 7400
0x00 743F
64
reserved
0x00 7440
0x00 74FF
192
EV-B Registers
0x00 7500
0x00 753F
64
reserved
0x00 7540
0x00 774F
528
SCI-B Registers
0x00 7750
0x00 775F
16
reserved
0x00 7760
0x00 77FF
160
McBSP Registers
0x00 7800
0x00 783F
64
reserved
0x00 7840
0x00 7FFF
1984
(1)
38
ACCESS TYPE
EALLOW Protected
Not EALLOW Protected
Not EALLOW Protected
Not EALLOW Protected
Not EALLOW Protected
Not EALLOW Protected
Peripheral Frame 2 only allows 16-bit accesses. All 32-bit accesses are ignored (invalid data may be returned or written).
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
3.4
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Device Emulation Registers
These registers are used to control the protection mode of the C28x CPU and to monitor some critical
device signals. The registers are defined in Table 3-7.
Table 3-7. Device Emulation Registers
NAME
ADDRESS RANGE
SIZE (×16)
DEVICECNF
0x00 0880
0x00 0881
2
Device Configuration Register
reserved
0x00 0882
1
Not supported on Revision C and later silicon
DEVICEID
0x00 0883
1
Device ID Register (0x0003 – Silicon – Rev. C and D)
Device ID Register (0x0004 – Reserved)
Device ID Register (0x0005 – Silicon – Rev. E)
PROTSTART
0x00 0884
1
Block Protection Start Address Register
PROTRANGE
0x00 0885
1
Block Protection Range Address Register
reserved
0x00 0886
0x00 09FF
378
3.5
DESCRIPTION
External Interface, XINTF
This section gives a top-level view of the external interface (XINTF) that is implemented on the F2812
device.
The external interface is a non-multiplexed asynchronous bus, similar to the C240x external interface. The
external interface on the F2812 is mapped into five fixed zones shown in Figure 3-3.
Figure 3-3 shows the F2812 XINTF signals.
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
39
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Data Space
Prog Space
0x00 0000
XD(15:0)
XA(18:0)
0x00 2000
0x00 4000
XINTF Zone 0
(8K × 16)
XINTF Zone 1
(8K × 16)
XZCS0
XZCS1
XZCS0AND1
0x00 6000
0x08 0000
XINTF Zone 2
(512K × 16)
XZCS2
0x10 0000
XINTF Zone 6
(512K × 16)
XZCS6
XINTF Zone 7
(16K × 16)
(mapped here if MP/MC = 1)
XZCS7
XZCS6AND7
0x18 0000
0x3F C000
0x40 0000
A.
B.
C.
D.
XWE
XRD
XR/W
XREADY
XMP/MC
XHOLD
XHOLDA
XCLKOUT
The mapping of XINTF Zone 7 is dependent on the XMP/MC device input signal and the MP/MC mode bit (bit 8 of
XINTCNF2 register). Zones 0, 1, 2, and 6 are always enabled.
Each zone can be programmed with different wait states, setup and hold timing, and is supported by zone chip
selects (XZCS0AND1, XZCS2, XZCS6AND7), which toggle when an access to a particular zone is performed. These
features enable glueless connection to many external memories and peripherals.
The chip selects for Zone 0 and 1 are ANDed internally together to form one chip select (XZCS0AND1). Any external
memory that is connected to XZCS0AND1 is dually mapped to both Zones 0 and Zone 1.
The chip selects for Zone 6 and 7 are ANDed internally together to form one chip select (XZCS6AND7). Any external
memory that is connected to XZCS6AND7 is dually mapped to both Zones 6 and Zone 7. This means that if Zone 7 is
disabled (via the MP/MC mode) then any external memory is still accessible via Zone 6 address space.
Figure 3-3. External Interface Block Diagram
40
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
The operation and timing of the external interface, can be controlled by the registers listed in Table 3-8.
Table 3-8. XINTF Configuration and Control Register Mappings
NAME
ADDRESS
SIZE (×16)
DESCRIPTION
XTIMING0
0x00 0B20
2
XINTF Timing Register, Zone 0 can access as two 16-bit registers or one 32-bit
register
XTIMING1
0x00 0B22
2
XINTF Timing Register, Zone 1 can access as two 16-bit registers or one 32-bit
register
XTIMING2
0x00 0B24
2
XINTF Timing Register, Zone 2 can access as two 16-bit registers or one 32-bit
register
XTIMING6
0x00 0B2C
2
XINTF Timing Register, Zone 6 can access as two 16-bit registers or one 32-bit
register
XTIMING7
0x00 0B2E
2
XINTF Timing Register, Zone 7 can access as two 16-bit registers or one 32-bit
register
XINTCNF2
0x00 0B34
2
XINTF Configuration Register can access as two 16-bit registers or one 32-bit
register
XBANK
0x00 0B38
1
XINTF Bank Control Register
XREVISION
0x00 0B3A
1
XINTF Revision Register
3.5.1
Timing Registers
XINTF signal timing can be tuned to match specific external device requirements such as setup and hold
times to strobe signals for contention avoidance and maximizing bus efficiency. The timing parameters
can be configured individually for each zone. This allows the programmer to maximize the efficiency of the
bus, based on the type of memory or peripheral that the user needs to access. All XINTF timing values
are with respect to XTIMCLK, which is equal to or one-half of the SYSCLKOUT rate, as shown in Figure
6-27.
For detailed information on the XINTF timing and configuration register bit fields, see the TMS320x281x
DSP External Interface (XINTF) Reference Guide (SPRU067).
3.5.2
XREVISION Register
The XREVISION register contains a unique number to identify the particular version of XINTF used in the
product. For the F2812, this register is configured as described in Table 3-9.
Table 3-9. XREVISION Register Bit Definitions
BIT(S)
15-0
NAME
REVISION
TYPE
R
RESET
DESCRIPTION
0x0004
Current XINTF Revision. For internal use/reference. Test purposes only.
Subject to change.
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
41
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
3.6
www.ti.com
Interrupts
Figure 3-4 shows how the various interrupt sources are multiplexed within the F2812 device.
Peripherals (SPI, SCI, McBSP, CAN, EV, ADC)
(41 Interrupts)
WDINT
WAKEINT
INT1 to INT12
96 Interrupts†
LPMINT
PIE
Interrupt Control
Watchdog
Low-Power Modes
XINT1
XINT1CR(15:0)
XINT1CTR(15:0)
Interrupt Control
XINT2
XINT2CR(15:0)
C28x CPU
XINT2CTR(15:0)
TINT0
TINT2
INT14
TIMER 2 (for RTOS)
TINT1
TIMER 1 (for RTOS)
MUX
INT13
GPIO
MUX
TIMER 0
select
enable
NMI
Interrupt Control
XNMI_XINT13
XNMICR(15:0)
XNMICTR(15:0)
†
Out of a possible 96 interrupts, 45 are currently used by peripherals.
Figure 3-4. Interrupt Sources
Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8
interrupts per group equals 96 possible interrupts. On the F2812, 45 of these are used by peripherals as
shown in Table 3-10.
42
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
IFR(12:1)
INTM
IER(12:1)
INT1
INT2
1
MUX
INT11
INT12
(Flag)
INTx
Global
Enable
(Enable)
INTx.1
INTx.2
INTx.3
INTx.4
INTx.5
INTx.6
INTx.7
INTx.8
MUX
PIEACKx
(Enable/Flag)
CPU
0
(Enable)
(Flag)
PIEIERx(8:1)
PIEIFRx(8:1)
From
Peripherals or
External
Interrupts
Figure 3-5. Multiplexing of Interrupts Using the PIE Block
Table 3-10. PIE Peripheral Interrupts (1)
CPU
INTERRUPTS
(1)
PIE INTERRUPTS
INTx.8
INTx.7
INTx.6
INT1
WAKEINT
(LPM/WD)
TINT0
(TIMER 0)
ADCINT
(ADC)
INTx.5
XINT2
INT2
reserved
T1OFINT
(EV-A)
T1UFINT
(EV-A)
INT3
reserved
CAPINT3
(EV-A)
INT4
reserved
INT5
INTx.4
INTx.3
INTx.2
INTx.1
XINT1
reserved
PDPINTB
(EV-B)
PDPINTA
(EV-A)
T1CINT
(EV-A)
T1PINT
(EV-A)
CMP3INT
(EV-A)
CMP2INT
(EV-A)
CMP1INT
(EV-A)
CAPINT2
(EV-A)
CAPINT1
(EV-A)
T2OFINT
(EV-A)
T2UFINT
(EV-A)
T2CINT
(EV-A)
T2PINT
(EV-A)
T3OFINT
(EV-B)
T3UFINT
(EV-B)
T3CINT
(EV-B)
T3PINT
(EV-B)
CMP6INT
(EV-B)
CMP5INT
(EV-B)
CMP4INT
(EV-B)
reserved
CAPINT6
(EV-B)
CAPINT5
(EV-B)
CAPINT4
(EV-B)
T4OFINT
(EV-B)
T4UFINT
(EV-B)
T4CINT
(EV-B)
T4PINT
(EV-B)
INT6
reserved
reserved
MXINT
(McBSP)
MRINT
(McBSP)
reserved
reserved
SPITXINTA
(SPI)
SPIRXINTA
(SPI)
INT7
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
INT8
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
ECAN0INT
(CAN)
SCITXINTB
(SCI-B)
SCIRXINTB
(SCI-B)
SCITXINTA
(SCI-A)
SCIRXINTA
(SCI-A)
INT9
reserved
reserved
ECAN1INT
(CAN)
INT10
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
INT11
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
INT12
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
Out of the 96 possible interrupts, 45 interrupts are currently used. the remaining interrupts are reserved for future devices. However,
these interrupts can be used as software interrupts if they are enabled at the PIEIFRx level.
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
43
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Table 3-11. PIE Configuration and Control Registers (1)
ADDRESS
SIZE (×16)
PIECTRL
NAME
0x0000-0CE0
1
PIE, Control Register
PIEACK
0x0000-0CE1
1
PIE, Acknowledge Register
PIEIER1
0x0000-0CE2
1
PIE, INT1 Group Enable Register
PIEIFR1
0x0000-0CE3
1
PIE, INT1 Group Flag Register
PIEIER2
0x0000-0CE4
1
PIE, INT2 Group Enable Register
PIEIFR2
0x0000-0CE5
1
PIE, INT2 Group Flag Register
PIEIER3
0x0000-0CE6
1
PIE, INT3 Group Enable Register
PIEIFR3
0x0000-0CE7
1
PIE, INT3 Group Flag Register
PIEIER4
0x0000-0CE8
1
PIE, INT4 Group Enable Register
PIEIFR4
0x0000-0CE9
1
PIE, INT4 Group Flag Register
PIEIER5
0x0000-0CEA
1
PIE, INT5 Group Enable Register
PIEIFR5
0x0000-0CEB
1
PIE, INT5 Group Flag Register
PIEIER6
0x0000-0CEC
1
PIE, INT6 Group Enable Register
PIEIFR6
0x0000-0CED
1
PIE, INT6 Group Flag Register
PIEIER7
0x0000-0CEE
1
PIE, INT7 Group Enable Register
PIEIFR7
0x0000-0CEF
1
PIE, INT7 Group Flag Register
PIEIER8
0x0000-0CF0
1
PIE, INT8 Group Enable Register
PIEIFR8
0x0000-0CF1
1
PIE, INT8 Group Flag Register
PIEIER9
0x0000-0CF2
1
PIE, INT9 Group Enable Register
PIEIFR9
0x0000-0CF3
1
PIE, INT9 Group Flag Register
PIEIER10
0x0000-0CF4
1
PIE, INT10 Group Enable Register
PIEIFR10
0x0000-0CF5
1
PIE, INT10 Group Flag Register
PIEIER11
0x0000-0CF6
1
PIE, INT11 Group Enable Register
PIEIFR11
0x0000-0CF7
1
PIE, INT11 Group Flag Register
PIEIER12
0x0000-0CF8
1
PIE, INT12 Group Enable Register
PIEIFR12
0x0000-0CF9
1
PIE, INT12 Group Flag Register
Reserved
0x0000-0CFA
0x0000-0CFF
6
Reserved
(1)
44
DESCRIPTION
The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector table is protected.
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
3.6.1
SGUS062A – JUNE 2009 – REVISED APRIL 2010
External Interrupts
Table 3-12. External Interrupts Registers
NAME
ADDRESS
SIZE (×16)
DESCRIPTION
XINT1CR
0x00 7070
1
XINT1 control register
XINT2CR
0x00 7071
1
XINT2 control register
reserved
0x00 7072
0x00 7076
5
XNMICR
0x00 7077
1
XNMI control register
XINT1CTR
0x00 7078
1
XINT1 counter register
XINT2CTR
0x00 7079
1
XINT2 counter register
reserved
0x00 707A
0x00 707E
5
XNMICTR
0x00 707F
1
XNMI counter register
Each external interrupt can be enabled/disabled or qualified using positive or negative going edge. For
more information, see the TMS320x281x System Control and Interrupts Reference Guide (SPRU078).
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
45
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
3.7
www.ti.com
System Control
This section describes the F2812 oscillator, PLL and clocking mechanisms, the watchdog function and the
low power modes. Figure 3-6 shows the various clock and reset domains in the F2812 device that are
discussed.
See Note A
A.
CLKIN is the clock input to the CPU. SYSCLKOUT is the output clock of the CPU. They are of the same frequency.
Figure 3-6. Clock and Reset Domains
46
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
The PLL, clocking, watchdog, and low-power modes are controlled by the registers listed in Table 3-13.
Table 3-13. PLL, Clocking, Watchdog, and Low-Power Mode Registers (1)
NAME
ADDRESS
SIZE (×16)
reserved
0x00 7010
0x00 7017
8
reserved
0x00 7018
1
reserved
0x00 7019
1
HISPCP
0x00 701A
1
High-Speed Peripheral Clock Prescaler Register for HSPCLK clock
LOSPCP
0x00 701B
1
Low-Speed Peripheral Clock Prescaler Register for LSPCLK clock
PCLKCR
0x00 701C
1
Peripheral Clock Control Register
reserved
0x00 701D
1
LPMCR0
0x00 701E
1
Low Power Mode Control Register 0
LPMCR1
0x00 701F
1
Low Power Mode Control Register 1
reserved
0x00 7020
1
PLLCR
0x00 7021
1
PLL Control Register (2)
SCSR
0x00 7022
1
System Control & Status Register
WDCNTR
0x00 7023
1
Watchdog Counter Register
reserved
0x00 7024
1
WDKEY
0x00 7025
1
reserved
0x00 7026
0x00 7028
3
WDCR
0x00 7029
1
reserved
0x00 702A
0x00 702F
6
(1)
(2)
DESCRIPTION
Watchdog Reset Key Register
Watchdog Control Register
All of the above registers can only be accessed by executing the EALLOW instruction.
The PLL control register (PLLCR) is reset to a known state by the XRS signal only. Emulation reset (through Code Composer Studio)
does not reset PLLCR.
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
47
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
3.8
www.ti.com
OSC and PLL Block
Figure 3-7 shows the OSC and PLL block on the F2812.
XPLLDIS
Latch
XF_XPLLDIS
XRS
OSCCLK (PLL Disabled)
X1/XCLKIN
XCLKIN
0
CLKIN
CPU
On-Chip
Oscillator
(OSC)
PLL
Bypass
/2
SYSCLKOUT
1
4-Bit PLL Select
X2
PLL
4-Bit PLL Select
PLL Block
Figure 3-7. OSC and PLL Block
The on-chip oscillator circuit enables a crystal to be attached to the F2812 device using the X1/XCLKIN
and X2 pins. If a crystal is not used, then an external oscillator can be directly connected to the
X1/XCLKIN pin and the X2 pin is left unconnected. The logic-high level in this case should not exceed
VDD. The PLLCR bits [3:0] set the clocking ratio.
Table 3-14. PLLCR Register Bit Definitions
BIT(S)
NAME
TYPE
XRS RESET (1)
15:04
reserved
R=0
0:00
DESCRIPTION
SYSCLKOUT = (XCLKIN x n)/2, where n is the PLL multiplication factor.
3:00
(1)
48
DIV
R/W
0,0,0,0
Bit Value
n
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
PLL Bypassed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
SYSCLKOUT
XCLKIN/2
XCLKIN/2
XCLKIN
XCLKIN ×
XCLKIN ×
XCLKIN ×
XCLKIN ×
XCLKIN ×
XCLKIN ×
XCLKIN ×
XCLKIN ×
Reserved
Reserved
Reserved
Reserved
Reserved
1.5
2
2.5
3
3.5
4
4.5
5
The PLLCR register is reset to a known state by the XRS reset line. If a reset is issued by the debugger, the PLL clocking ratio is not
changed.
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
3.8.1
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Loss of Input Clock
In PLL enabled mode, if the input clock XCLKIN or the oscillator clock is removed or absent, the PLL still
issues a limp-mode clock. The limp-mode clock continues to clock the CPU and peripherals at a typical
frequency of 1 MHz to 4 MHz. The PLLCR register should have been written to with a non-zero value for
this feature to work.
Normally, when the input clocks are present, the watchdog counter decrements to initiate a watchdog
reset or WDINT interrupt. However, when the external input clock fails, the watchdog counter stops
decrementing (i.e., the watchdog counter does not change with the limp-mode clock). This condition could
be used by the application firmware to detect the input clock failure and initiate necessary shut-down
procedure for the system.
3.9
PLL-Based Clock Module
The F2812 has an on-chip, PLL-based clock module. This module provides all the necessary clocking
signals for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio control to
select different CPU clock rates. The watchdog module should be disabled before writing to the PLLCR
register. It can be re-enabled (if need be) after the PLL module has stabilized, which takes 131 072
XCLKIN cycles.
The PLL-based clock module provides two modes of operation:
• Crystal operation
This mode allows the use of an external crystal/resonator to provide the time base to the device.
• External clock source operation
This mode allows the internal oscillator to be bypassed. The device clocks are generated from an
external clock source input on the X1/XCLKIN pin.
X1/XCLKIN
Cb1
(see Note A)
X2
Crystal
X1/XCLKIN
Cb2
(see Note A)
External Clock Signal
(Toggling 0 −VDD)
(a)
A.
X2
NC
(b)
TI recommends that customers have the resonator/crystal vendor characterize the operation of their device with the
DSP chip. The resonator/crystal vendor has the equipment and expertise to tune the tank circuit. The vendor can also
advise the customer regarding the proper tank component values that ensures start-up and stability over the entire
operating range.
Figure 3-8. Recommended Crystal/Clock Connection
Table 3-15. Possible PLL Configuration Modes
PLL MODE
REMARKS
SYSCLKOUT
PLL Disabled
Invoked by tying XPLLDIS pin low upon reset. PLL block is completely disabled. Clock input
to the CPU (CLKIN) is directly derived from the clock signal present at the X1/XCLKIN pin.
XCLKIN
PLL Bypassed
Default PLL configuration upon power-up, if PLL is not disabled. The PLL itself is bypassed.
However, the /2 module in the PLL block divides the clock input at the X1/XCLKIN pin by
two before feeding it to the CPU.
XCLKIN/2
PLL Enabled
Achieved by writing a non-zero value n into PLLCR register. The /2 module in the PLL block
now divides the output of the PLL by two before feeding it to the CPU.
(XCLKIN × n) / 2
3.10 External Reference Oscillator Clock Option
The typical specifications for the external quartz crystal for a frequency of 30 MHz are listed below:
• Fundamental mode, parallel resonant
• CL (load capacitance) = 12 pF
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
49
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
•
•
•
www.ti.com
CL1 = CL2 = 24 pF
Cshunt = 6 pF
ESR range = 25 to 40 Ω
3.11 Watchdog Block
The watchdog block on the F2812 is identical to the one used on the 240x devices. The watchdog module
generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit watchdog up counter
has reached its maximum value. To prevent this, the user disables the counter or the software must
periodically write a 0x55 + 0xAA sequence into the watchdog key register which resets the watchdog
counter. Figure 3-9 shows the various functional blocks within the watchdog module.
WDCR (WDPS(2:0))
WDCR (WDDIS)
WDCNTR(7:0)
OSCCLK
Watchdog
Prescaler
/512
WDCLK
8-Bit
Watchdog
Counter
CLR
Clear Counter
Internal
Pullup
WDKEY(7:0)
Generate
Output Pulse
(512 OSCCLKs)
Bad Key
Watchdog
55 + AA
Key Detector
Good Key
WDRST
WDINT
XRS
Core-reset
WDCR (WDCHK(2:0))
WDRST
(See Note A)
A.
1
0
Bad
WDCHK
Key
SCSR (WDENINT)
1
The WDRST signal is driven low for 512 OSCCLK cycles.
Figure 3-9. Watchdog Module
The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode timer.
In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains
functional is the watchdog. The WATCHDOG module runs off the PLL clock or the oscillator clock. The
WDINT signal is fed to the LPM block so that it can wake the device from STANDBY (if enabled). See
Section 3.12, Low-Power Modes Block, for more details.
In IDLE mode, the WDINT signal can generate an interrupt to the CPU, via the PIE, to take the CPU out of
IDLE mode.
In HALT mode, this feature cannot be used because the oscillator (and PLL) are turned off and hence so
is the WATCHDOG.
50
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
3.12 Low-Power Modes Block
The low-power modes on the F2812 are similar to the 240x devices. Table 3-16 summarizes the various
modes.
Table 3-16. F2812 Low-Power Modes
LPM(1:0)
OSCCLK
CLKIN
SYSCLKOUT
Normal
X,X
on
on
on
–
on (2)
XRS,
WDINT,
Any Enabled Interrupt,
XNMI
Debugger (3)
IDLE
(1)
(2)
(3)
(4)
EXIT (1)
MODE
0,0
on
on
STANDBY
0,1
on
(watchdog still running)
off
off
XRS,
WDINT,
XINT1,
XNMI,
T1/2/3/4CTRIP,
C1/2/3/4/5/6TRIP,
SCIRXDA,
SCIRXDB,
CANRX,
Debugger (3)
HALT
1,X
off
(oscillator and PLL turned off,
watchdog not functional)
off
off
XRS,
XNMI,
Debugger (4)
The Exit column lists which signals or under what conditions the low power mode is exited. A low signal, on any of the signals, exits the
low power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise, the IDLE
mode is not exited and the device goes back into the indicated low power mode.
The IDLE mode on the C28x behaves differently than on the 24x/240x. On the C28x, the clock output from the core (SYSCLKOUT) is
still functional while on the 24x/240x the clock is turned off.
On the C28x, the JTAG port can still function even if the core clock (CLKIN) is turned off.
On the C28x, the JTAG port can still function even if the core clock (CLKIN) is turned off.
The various low-power modes operate as follows:
IDLE Mode:
This mode is exited by any enabled interrupt or an XNMI that is recognized
by the processor. The LPM block performs no tasks during this mode as long
as the LPMCR0(LPM) bits are set to 0,0.
STANDBY Mode:
All other signals (including XNMI) wake the device from STANDBY mode if
selected by the LPMCR1 register. The user needs to select which signal(s)
wakes the device. The selected signal(s) are also qualified by the OSCCLK
before waking the device. The number of OSCCLKs is specified in the
LPMCR0 register.
HALT Mode:
Only the XRS and XNMI external signals can wake the device from HALT
mode. The XNMI input to the core has an enable/disable bit. Hence, it is safe
to use the XNMI signal for this function.
NOTE
The low-power modes do not affect the state of the output pins (PWM pins included). They
are in whatever state the code left them in when the IDLE instruction was executed.
Functional Overview
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
51
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
4
www.ti.com
Peripherals
The integrated peripherals of the F2812 are described in the following subsections:
• Three 32-bit CPU-Timers
• Two event-manager modules (EVA, EVB)
• Enhanced analog-to-digital converter (ADC) module
• Enhanced controller area network (eCAN) module
• Multichannel buffered serial port (McBSP) module
• Serial communications interface modules (SCI-A, SCI-B)
• Serial peripheral interface (SPI) module
• Digital I/O and shared pin functions
4.1
32-Bit CPU-Timers 0/1/2
There are three 32-bit CPU-timers on the F2812 devices (CPU-TIMER0/1/2).
CPU-Timers 1 and 2 are reserved for the real-time OS (such as DSP/BIOS). CPU-Timer 0 can be used in
user applications. These timers are different from the general-purpose (GP) timers that are present in the
Event Manager modules (EVA, EVB).
NOTE
If the application is not using DSP/BIOS, then CPU-Timers 1 and 2 can be used in the
application.
Reset
Timer Reload
16-Bit Timer Divide-Down
TDDRH:TDDR
SYSCLKOUT
TCR.4
(Timer Start Status)
32-Bit Timer Period
PRDH:PRD
16-Bit Prescale Counter
PSCH:PSC
Borrow
32-Bit Counter
TIMH:TIM
Borrow
TINT
Figure 4-1. CPU-Timers
52
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
In the F2812 device, the timer interrupt signals (TINT0, TINT1, TINT2) are connected as shown in
Figure 4-2.
INT1
to
INT12
PIE
TINT0
CPU-TIMER 0
C28x
INT13
CPU-TIMER 1
(Reserved for TI
system functions)
TINT1
XINT13
INT14
A.
B.
TINT2
CPU-TIMER 2
(Reserved for TI
system functions)
The timer registers are connected to the Memory Bus of the C28x processor.
The timing of the timers is synchronized to SYSCLKOUT of the processor clock.
Figure 4-2. CPU-Timer Interrupts Signals and Output Signal (See Notes A. and B.)
The general operation of the timer is as follows: The 32-bit counter register TIMH:TIM is loaded with the
value in the period register PRDH:PRD. The counter register, decrements at the SYSCLKOUT rate of the
C28x. When the counter reaches 0, a timer interrupt output signal generates an interrupt pulse. The
registers listed in Table 4-1 are used to configure the timers. For more information, see the TMS320x281x
System Control and Interrupts Reference Guide (literature number SPRU078).
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
53
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Table 4-1. CPU-Timers 0, 1, 2 Configuration and Control Registers
ADDRESS
SIZE (×16)
TIMER0TIM
NAME
0x00 0C00
1
CPU-Timer 0, Counter Register
TIMER0TIMH
0x00 0C01
1
CPU-Timer 0, Counter Register High
TIMER0PRD
0x00 0C02
1
CPU-Timer 0, Period Register
TIMER0PRDH
0x00 0C03
1
CPU-Timer 0, Period Register High
TIMER0TCR
0x00 0C04
1
CPU-Timer 0, Control Register
reserved
0x00 0C05
1
TIMER0TPR
0x00 0C06
1
CPU-Timer 0, Prescale Register
TIMER0TPRH
0x00 0C07
1
CPU-Timer 0, Prescale Register High
TIMER1TIM
0x00 0C08
1
CPU-Timer 1, Counter Register
TIMER1TIMH
0x00 0C09
1
CPU-Timer 1, Counter Register High
TIMER1PRD
0x00 0C0A
1
CPU-Timer 1, Period Register
TIMER1PRDH
0x00 0C0B
1
CPU-Timer 1, Period Register High
TIMER1TCR
0x00 0C0C
1
CPU-Timer 1, Control Register
reserved
0x00 0C0D
1
TIMER1TPR
0x00 0C0E
1
CPU-Timer 1, Prescale Register
TIMER1TPRH
0x00 0C0F
1
CPU-Timer 1, Prescale Register High
TIMER2TIM
0x00 0C10
1
CPU-Timer 2, Counter Register
TIMER2TIMH
0x00 0C11
1
CPU-Timer 2, Counter Register High
TIMER2PRD
0x00 0C12
1
CPU-Timer 2, Period Register
TIMER2PRDH
0x00 0C13
1
CPU-Timer 2, Period Register High
TIMER2TCR
0x00 0C14
1
CPU-Timer 2, Control Register
reserved
0x00 0C15
1
TIMER2TPR
0x00 0C16
1
CPU-Timer 2, Prescale Register
TIMER2TPRH
0x00 0C17
1
CPU-Timer 2, Prescale Register High
reserved
0x00 0C18
0x00 0C3F
40
54
Peripherals
DESCRIPTION
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
4.2
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Event Manager Modules (EVA, EVB)
The event-manager modules include general-purpose (GP) timers, full-compare/PWM units, capture units,
and quadrature-encoder pulse (QEP) circuits. EVA and EVB timers, compare units, and capture units
function identically. However, timer/unit names differ for EVA and EVB. Table 4-2 shows the module and
signal names used. Table 4-2 shows the features and functionality available for the event-manager
modules and highlights EVA nomenclature.
Event managers A and B have identical peripheral register sets with EVA starting at 7400h and EVB
starting at 7500h. The paragraphs in this section describe the function of GP timers, compare units,
capture units, and QEPs using EVA nomenclature. These paragraphs are applicable to EVB with regard to
function—however, module/signal names would differ. Table 4-3 lists the EVA registers. For more
information, see the TMS320x281x DSP Event Manager (EV) Reference Guide (literature number
SPRU065).
Table 4-2. Module and Signal Names for EVA and EVB
EVA
EVENT MANAGER MODULES
EVB
MODULE
SIGNAL
MODULE
SIGNAL
GP Timers
GP Timer 1
GP Timer 2
T1PWM/T1CMP
T2PWM/T2CMP
GP Timer 3
GP Timer 4
T3PWM/T3CMP
T4PWM/T4CMP
Compare Units
Compare 1
Compare 2
Compare 3
PWM1/2
PWM3/4
PWM5/6
Compare 4
Compare 5
Compare 6
PWM7/8
PWM9/10
PWM11/12
Capture Units
Capture 1
Capture 2
Capture 3
CAP1
CAP2
CAP3
Capture 4
Capture 5
Capture 6
CAP4
CAP5
CAP6
QEP Channels
QEP1
QEP2
QEPI1
QEP1
QEP2
QEP3
QEP4
QEPI2
QEP3
QEP4
Direction
External Clock
TDIRA
TCLKINA
Direction
External Clock
TDIRB
TCLKINB
Compare
C1TRIP
C2TRIP
C3TRIP
Compare
C4TRIP
C5TRIP
C6TRIP
External Clock Inputs
External Trip Inputs
T1CTRIP_PDPINTA
External Trip Inputs
(1)
T2CTRIP/EVASOC
(1)
T3CTRIP_PDPINTB (1)
T4CTRIP/EVBSOC
In the 24x/240x-compatible mode, the T1CTRIP_PDPINTA pin functions as PDPINTA and the T3CTRIP_PDPINTB pin functions as
PDPINTB.
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
55
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Table 4-3. EVA Registers (1)
NAME
ADDRESS
SIZE (×16)
GPTCONA
0x00 7400
1
GP Timer Control Register A
T1CNT
0x00 7401
1
GP Timer 1 Counter Register
T1CMPR
0x00 7402
1
GP Timer 1 Compare Register
T1PR
0x00 7403
1
GP Timer 1 Period Register
T1CON
0x00 7404
1
GP Timer 1 Control Register
T2CNT
0x00 7405
1
GP Timer 2 Counter Register
T2CMPR
0x00 7406
1
GP Timer 2 Compare Register
T2PR
0x00 7407
1
GP Timer 2 Period Register
T2CON
0x00 7408
1
GP Timer 2 Control Register
EXTCONA
(1)
(2)
56
DESCRIPTION
(2)
0x00 7409
1
GP Extension Control Register A
COMCONA
0x00 7411
1
Compare Control Register A
ACTRA
0x00 7413
1
Compare Action Control Register A
DBTCONA
0x00 7415
1
Dead–Band Timer Control Register A
CMPR1
0x00 7417
1
Compare Register 1
CMPR2
0x00 7418
1
Compare Register 2
CMPR3
0x00 7419
1
Compare Register 3
CAPCONA
0x00 7420
1
Capture Control Register A
CAPFIFOA
0x00 7422
1
Capture FIFO Status Register A
CAP1FIFO
0x00 7423
1
Two-Level Deep Capture FIFO Stack 1
CAP2FIFO
0x00 7424
1
Two-Level Deep Capture FIFO Stack 2
CAP3FIFO
0x00 7425
1
Two–Level Deep Capture FIFO Stack 3
CAP1FBOT
0x00 7427
1
Bottom Register Of Capture FIFO Stack 1
CAP2FBOT
0x00 7428
1
Bottom Register Of Capture FIFO Stack 2
CAP3FBOT
0x00 7429
1
Bottom Register Of Capture FIFO Stack 3
EVAIMRA
0x00 742C
1
Interrupt Mask Register A
EVAIMRB
0x00 742D
1
Interrupt Mask Register B
EVAIMRC
0x00 742E
1
Interrupt Mask Register C
EVAIFRA
0x00 742F
1
Interrupt Flag Register A
EVAIFRB
0x00 7430
1
Interrupt Flag Register B
EVAIFRC
0x00 7431
1
Interrupt Flag Register C
The EV-B register set is identical except the address range is from 0x00–7500 to 0x00–753F. The above registers are mapped to Zone
2. This space allows only 16-bit accesses. 32-bit accesses produce undefined results.
New register compared to 24x/240x
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
GPTCONA(12:4), CAPCONA(8), EXTCONA[0]
EVAENCLK
EVATO ADC (Internal)
T1CTRIP/PDPINTA, T2CTRIP, C1TRIP, C2TRIP, C3TRIP
Control Logic
EVASOC ADC (External)
Output
T1PWM_T1CMP
Logic
Timer 1 Compare
16
T1CON(5,4)
GPTCONA(1,0)
TCLKINA
T1CON(1)
clock
GP Timer 1
HSPCLK
Prescaler
dir
T1CON(10:8)
16
TDIRA
T1CON(15:11,6,3,2)
Full Compare 1
SVPWM
State
Peripheral Bus
Full Compare 2
Machine
Full Compare 3
COMCONA(15:5,2:0)
PWM1
PWM2
PWM3
Output
Logic
Dead
Band
Logic
PWM4
PWM5
PWM6
DBTCONA(15:0)
ACTRA(15:12),
COMCONA(12),
T1CON(13:11)
ACTRA(11:0)
Output
Timer 2 Compare
T2PWM_T2CMP
Logic
16
T2CON(5,4)
T2CON(1)
GPTCONA(3,2)
TCLKINA
clock
dir
reset
GP Timer 2
Prescaler
HSPCLK
QEPCLK
16
T2CON(10:8)
T2CON(15:11,7,6,3,2,0)
QEP
CAPCONA(10,9)
QEPDIR
Logic
16
TDIRA
CAP1_QEP1
CAP2_QEP2
Capture Units
CAP3_QEPI1
Index Qual
CAPCONA(15:12,7:0)
EXTCONA(1:2)
A.
The EVB module is similar to the EVA module.
Figure 4-3. Event Manager A Functional Block Diagram (See Note A.)
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
57
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
4.2.1
www.ti.com
General-Purpose (GP) Timers
There are two GP timers. The GP timer x (x = 1 or 2 for EVA; x = 3 or 4 for EVB) includes:
• A 16-bit timer, up-/down-counter, TxCNT, for reads or writes
• A 16-bit timer-compare register, TxCMPR (double-buffered with shadow register), for reads or writes
• A 16-bit timer-period register, TxPR (double-buffered with shadow register), for reads or writes
• A 16-bit timer-control register, TxCON, for reads or writes
• Selectable internal or external input clocks
• A programmable prescaler for internal or external clock inputs
• Control and interrupt logic, for four maskable interrupts: underflow, overflow, timer compare, and period
interrupts
• A selectable direction input pin (TDIRx) (to count up or down when directional up- / down-count mode
is selected)
The GP timers can be operated independently or synchronized with each other. The compare register
associated with each GP timer can be used for compare function and PWM-waveform generation. There
are three continuous modes of operations for each GP timer in up- or up / down-counting operations.
Internal or external input clocks with programmable prescaler are used for each GP timer. GP timers also
provide the time base for the other event-manager submodules: GP timer 1 for all the compares and PWM
circuits, GP timer 2/1 for the capture units and the quadrature-pulse counting operations. Double-buffering
of the period and compare registers allows programmable change of the timer (PWM) period and the
compare/PWM pulse width as needed.
4.2.2
Full-Compare Units
There are three full-compare units on each event manager. These compare units use GP timer1 as the
time base and generate six outputs for compare and PWM-waveform generation using programmable
deadband circuit. The state of each of the six outputs is configured independently. The compare registers
of the compare units are double-buffered, allowing programmable change of the compare/PWM pulse
widths as needed.
4.2.3
Programmable Deadband Generator
Deadband generation can be enabled/disabled for each compare unit output individually. The
deadband-generator circuit produces two outputs (with or without deadband zone) for each compare unit
output signal. The output states of the deadband generator are configurable and changeable as needed
by way of the double-buffered ACTRx register.
4.2.4
PWM Waveform Generation
Up to eight PWM waveforms (outputs) can be generated simultaneously by each event manager: three
independent pairs (six outputs) by the three full-compare units with programmable deadbands, and two
independent PWMs by the GP-timer compares.
4.2.5
Double Update PWM Mode
The F2812 Event Manager supports Double Update PWM Mode. This mode refers to a PWM operation
mode in which the position of the leading edge and the position of the trailing edge of a PWM pulse are
independently modifiable in each PWM period. To support this mode, the compare register that
determines the position of the edges of a PWM pulse must allow (buffered) compare value update once at
the beginning of a PWM period and another time in the middle of a PWM period. The compare registers in
F2812 Event Managers are all buffered and support three compare value reload/update (value in buffer
becoming active) modes. These modes have earlier been documented as compare value reload
conditions. The reload condition that supports double update PWM mode is reloaded on Underflow
(beginning of PWM period) OR Period (middle of PWM period). Double update PWM mode can be
achieved by using this condition for compare value reload.
58
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
4.2.6
SGUS062A – JUNE 2009 – REVISED APRIL 2010
PWM Characteristics
Characteristics of the PWMs are as follows:
• 16-bit registers
• Wide range of programmable deadband for the PWM output pairs
• Change of the PWM carrier frequency for PWM frequency wobbling as needed
• Change of the PWM pulse widths within and after each PWM period as needed
• External-maskable power and drive-protection interrupts
• Pulse-pattern-generator circuit, for programmable generation of asymmetric, symmetric, and
four-space vector PWM waveforms
• Minimized CPU overhead using auto-reload of the compare and period registers
• The PWM pins are driven to a high-impedance state when the PDPINTx pin is driven low and after
PDPINTx signal qualification. The PDPINTx pin (after qualification) is reflected in bit 8 of the
COMCONx register.
– PDPINTA pin status is reflected in bit 8 of COMCONA register.
– PDPINTB pin status is reflected in bit 8 of COMCONB register.
• EXTCON register bits provide options to individually trip control for each PWM pair of signals
4.2.7
Capture Unit
The capture unit provides a logging function for different events or transitions. The values of the selected
GP timer counter are captured and stored in the two-level-deep FIFO stacks when selected transitions are
detected on capture input pins, CAPx (x = 1, 2, or 3 for EVA; and x = 4, 5, or 6 for EVB). The capture unit
consists of three capture circuits.
• Capture units include the following features:
– One 16-bit capture control register, CAPCONx (R/W)
– One 16-bit capture FIFO status register, CAPFIFOx
– Selection of GP timer 1/2 (for EVA) or 3/4 (for EVB) as the time base
– Three 16-bit 2-level-deep FIFO stacks, one for each capture unit
– Three capture input pins (CAP1/2/3 for EVA, CAP4/5/6 for EVB)—one input pin per capture unit.
[All inputs are synchronized with the device (CPU) clock. In order for a transition to be captured, the
input must hold at its current level to meet the input qualification circuitry requirements. The input
pins CAP1/2 and CAP4/5 can also be used as QEP inputs to the QEP circuit.]
– User-specified transition (rising edge, falling edge, or both edges) detection
– Three maskable interrupt flags, one for each capture unit
– The capture pins can also be used as general-purpose interrupt pins, if they are not used for the
capture function.
4.2.8
Quadrature-Encoder Pulse (QEP) Circuit
Two capture inputs (CAP1 and CAP2 for EVA; CAP4 and CAP5 for EVB) can be used to interface the
on-chip QEP circuit with a quadrature encoder pulse. Full synchronization of these inputs is performed
on-chip. Direction or leading-quadrature pulse sequence is detected, and GP timer 2/4 is incremented or
decremented by the rising and falling edges of the two input signals (four times the frequency of either
input pulse).
With EXTCONA register bits, the EVA QEP circuit can use CAP3 as a capture index pin as well. Similarly,
with EXTCONB register bits, the EVB QEP circuit can use CAP6 as a capture index pin.
4.2.9
External ADC Start-of-Conversion
EVA/EVB start-of-conversion (SOC) can be sent to an external pin (EVASOC/EVBSOC) for external ADC
interface. EVASOC and EVBSOC are MUXed with T2CTRIP and T4CTRIP, respectively.
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
59
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
4.3
www.ti.com
Enhanced Analog-to-Digital Converter (ADC) Module
A simplified functional block diagram of the ADC module is shown in Figure 4-4. The ADC module
consists of a 12-bit ADC with a built-in sample-and-hold (S / H) circuit. Functions of the ADC module
include:
• 12-bit ADC core with built-in S/H
• Analog input: 0.0 V to 3.0 V (Voltages above 3.0 V produce full-scale conversion results.)
• Fast conversion rate: 80 ns at 25-MHz ADC clock, 12.5 MSPS
• 16-channel, MUXed inputs
• Autosequencing capability provides up to 16 autoconversions in a single session. Each conversion can
be programmed to select any 1 of 16 input channels
• Sequencer can be operated as two independent 8-state sequencers or as one large 16-state
sequencer (i.e., two cascaded 8-state sequencers)
• Sixteen result registers (individually addressable) to store conversion values
– The digital value of the input analog voltage is derived by:
when input ≤ 0 V
Digital Value = 0,
Digital Value =
4096 ´
Digital Value = 4095,
•
•
•
•
•
Input Analog Voltage - ADCLO
,
3
when 0 v < input < 3 V
when input ≥ 3 V
Multiple triggers as sources for the start-of-conversion (SOC) sequence
– S/W - software immediate start
– EVA - Event manager A (multiple event sources within EVA)
– EVB - Event manager B (multiple event sources within EVB)
Flexible interrupt control allows interrupt request on every end-of-sequence (EOS) or every other EOS
Sequencer can operate in start/stop mode, allowing multiple time-sequenced triggers to synchronize
conversions
EVA and EVB triggers can operate independently in dual-sequencer mode
Sample-and-hold (S/H) acquisition time window has separate prescale control
The ADC module in the F2812 has been enhanced to provide flexible interface to event managers A and
B. The ADC interface is built around a fast, 12-bit ADC module with a fast conversion rate of 80 ns at
25-MHz ADC clock. The ADC module has 16 channels, configurable as two independent 8-channel
modules to service event managers A and B. The two independent 8-channel modules can be cascaded
to form a 16-channel module. Although there are multiple input channels and two sequencers, there is
only one converter in the ADC module. Figure 4-4 shows the block diagram of the F2812 ADC module.
The two 8-channel modules have the capability to autosequence a series of conversions, each module
has the choice of selecting any one of the respective eight channels available through an analog MUX. In
the cascaded mode, the autosequencer functions as a single 16-channel sequencer. On each sequencer,
once the conversion is complete, the selected channel value is stored in its respective RESULT register.
Autosequencing allows the system to convert the same channel multiple times, allowing the user to
perform oversampling algorithms. This gives increased resolution over traditional single-sampled
conversion results.
60
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
System
Control Block
SYSCLKOUT
High-Speed
Prescaler
ADCENCLK
C28x
HSPCLK
Analog
MUX
Result Registers
Result Reg 0
ADCINA0
70A8h
Result Reg 1
S/H
ADCINA7
12-Bit
ADC
Module
Result Reg 7
70AFh
Result Reg 8
70B0h
Result Reg 15
70B7h
ADCINB0
S/H
ADCINB7
ADC Control Registers
S/W
EVA
SOC
Sequencer 2
Sequencer 1
S/W
SOC
EVB
ADCSOC
Figure 4-4. Block Diagram of the F2812 ADC Module
To obtain the specified accuracy of the ADC, proper board layout is very critical. To the best extent
possible, traces leading to the ADCIN pins should not run in close proximity to the digital signal paths.
This is to minimize switching noise on the digital lines from getting coupled to the ADC inputs.
Furthermore, proper isolation techniques must be used to isolate the ADC module power pins
( VDDA1/VDDA2 , AVDDREFBG) from the digital supply. Figure 4-5 shows the ADC pin connections for the
F2812 device.
NOTE
1. The ADC registers are accessed at the SYSCLKOUT rate. The internal timing of the
ADC module is controlled by the high-speed peripheral clock (HSPCLK).
2. The behavior of the ADC module based on the state of the ADCENCLK and HALT
signals is as follows:
ADCENCLK: On reset, this signal is low. While reset is active-low (XRS), the clock to the
register still functions. This is necessary to make sure all registers and modes go into
their default reset state. The analog module is in a low-power inactive state. As soon as
reset goes high, then the clock to the registers is disabled. When the user sets the
ADCENCLK signal high, then the clocks to the registers is enabled and the analog
module is enabled. There is a certain time delay (ms range) before the ADC is stable and
can be used.
HALT: This signal only affects the analog module. It does not affect the registers. If low,
the ADC module is powered. If high, the ADC module goes into low-power mode. The
HALT mode stops the clock to the CPU, which stops the HSPCLK. Therefore the ADC
register logic is turned off indirectly.
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
61
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Figure 4-5 shows the ADC pin-biasing for internal reference and Figure 4-6 shows the ADC pin-biasing for
external reference.
ADCINA[7:0]
ADCINB[7:0]
ADCLO
Test Pin ADCBGREFIN†
ADC 16-Channel Analog Inputs
Analog input 0−3 V with respect to ADCLO
Connect to Analog Ground
24.9 k/20 k (See Note C)
ADC External Current Bias Resistor
ADCRESEXT
ADC Reference Positive Output
ADCREFP
ADC Reference Medium Output
ADCREFM
ADC Analog Power
VDDA1
VDDA2
VSSA1
VSSA2
Analog 3.3 V
Analog 3.3 V
ADC Reference Power
AVDDREFBG
AVSSREFBG
Analog 3.3 V
ADC Analog I/O Power
VDDAIO
VSSAIO
ADC Digital Power
VDD1
VSS1
10 F‡
10 F‡
ADCREFP and ADCREFM should not
be loaded by external circuitry
Analog 3.3 V
Analog Ground
1.8 V can use the same 1.8 V (or 1.9 V) supply as the
Digital Ground
digital core but separate the two with a ferrite
bead or a filter
†
Provide access to this pin in PCB layouts. Intended for test purposes only.
TAIYO YUDEN EMK325F106ZH, EMK325BJ106MD, or equivalent
NOTES: A. External decoupling capacitors are recommended on all power pins.
B. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.
C. Use 24.9 kΩ for ADC clock range 1 − 18.75 MHz; use 20 kΩ for ADC clock range 18.75 − 25 MHz.
‡
Figure 4-5. ADC Pin Connections With Internal Reference (See Notes A and B)
NOTE
The temperature rating of any recommended component must match the rating of the end
product.
62
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Test Pin
ADCINA[7:0]
ADCINB[7:0]
ADCLO
ADCBGREFIN
ADC External Current Bias Resistor
ADCRESEXT
ADC Reference Positive Input
ADCREFP
2V
ADC Reference Medium Input
ADCREFM
1V
ADC 16-Channel Analog Inputs
Analog Input 0−3 V With Respect to ADCLO
Connect to Analog Ground
24.9 k20 k (See Note C)
1 F − 10 F
NOTES: A.
B.
C.
D.
ADC Analog Power
VDDA1
VDDA2
VSSA1
VSSA2
Analog 3.3 V
Analog 3.3 V
ADC Reference Power
AVDDREFBG
AVSSREFBG
Analog 3.3 V
ADC Analog I/O Power
VDDAIO
VSSAIO
ADC Digital Power
VDD1
VSS1
(See
Note D)
1 F −10 F
Analog 3.3 V
Analog Ground
1.8 V Can use the same 1.8-V (or 1.9-V)
Digital Ground
supply as the digital core but separate the
two with a ferrite bead or a filter
External decoupling capacitors are recommended on all power pins.
Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.
Use 24.9 kΩ for ADC clock range 1 − 18.75 MHz; use 20 kΩ for ADC clock range 18.75 − 25 MHz.
It is recommended that buffered external references be provided with a voltage difference of (ADCREFP−ADCREFM)
= 1 V $ 0.1% or better.
External reference is enabled using bit 8 in the ADCTRL3 Register at ADC power up. In this mode, the accuracy of
external reference is critical for overall gain. The voltage ADCREFP−ADCREFM determines the overall accuracy. Do
not enable internal references when external references are connected to ADCREFP and ADCREFM. See the
TMS320x281x DSP Analog-to-Digital Converter (ADC) Reference Guide (literature number SPRU060) for more
information.
Figure 4-6. ADC Pin Connections With External Reference
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
63
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
The ADC operation is configured, controlled, and monitored by the registers listed in Table 4-4.
Table 4-4. ADC Registers (1)
(1)
64
NAME
ADDRESS
SIZE (×16)
ADCTRL1
0x00 7100
1
ADC Control Register 1
DESCRIPTION
ADCTRL2
0x00 7101
1
ADC Control Register 2
ADCMAXCONV
0x00 7102
1
ADC Maximum Conversion Channels Register
ADCCHSELSEQ1
0x00 7103
1
ADC Channel Select Sequencing Control Register 1
ADCCHSELSEQ2
0x00 7104
1
ADC Channel Select Sequencing Control Register 2
ADCCHSELSEQ3
0x00 7105
1
ADC Channel Select Sequencing Control Register 3
ADCCHSELSEQ4
0x00 7106
1
ADC Channel Select Sequencing Control Register 4
ADCASEQSR
0x00 7107
1
ADC Auto–Sequence Status Register
ADCRESULT0
0x00 7108
1
ADC Conversion Result Buffer Register 0
ADCRESULT1
0x00 7109
1
ADC Conversion Result Buffer Register 1
ADCRESULT2
0x00 710A
1
ADC Conversion Result Buffer Register 2
ADCRESULT3
0x00 710B
1
ADC Conversion Result Buffer Register 3
ADCRESULT4
0x00 710C
1
ADC Conversion Result Buffer Register 4
ADCRESULT5
0x00 710D
1
ADC Conversion Result Buffer Register 5
ADCRESULT6
0x00 710E
1
ADC Conversion Result Buffer Register 6
ADCRESULT7
0x00 710F
1
ADC Conversion Result Buffer Register 7
ADCRESULT8
0x00 7110
1
ADC Conversion Result Buffer Register 8
ADCRESULT9
0x00 7111
1
ADC Conversion Result Buffer Register 9
ADCRESULT10
0x00 7112
1
ADC Conversion Result Buffer Register 10
ADCRESULT11
0x00 7113
1
ADC Conversion Result Buffer Register 11
ADCRESULT12
0x00 7114
1
ADC Conversion Result Buffer Register 12
ADCRESULT13
0x00 7115
1
ADC Conversion Result Buffer Register 13
ADCRESULT14
0x00 7116
1
ADC Conversion Result Buffer Register 14
ADCRESULT15
0x00 7117
1
ADC Conversion Result Buffer Register 15
ADCTRL3
0x00 7118
1
ADC Control Register 3
ADCST
0x00 7119
1
ADC Status Register
reserved
0x00 711C
0x00 711F
4
The above registers are Peripheral Frame 2 Registers.
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
4.4
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Enhanced Controller Area Network (eCAN) Module
The CAN module has the following features:
• Fully compliant with CAN protocol, version 2.0B
• Supports data rates up to 1 Mbps
• Thirty-two mailboxes, each with the following properties:
– Configurable as receive or transmit
– Configurable with standard or extended identifier
– Has a programmable receive mask
– Supports data and remote frame
– Composed of 0 to 8 bytes of data
– Uses a 32-bit time stamp on receive and transmit message
– Protects against reception of new message
– Holds the dynamically programmable priority of transmit message
– Employs a programmable interrupt scheme with two interrupt levels
– Employs a programmable alarm on transmission or reception time-out
• Low-power mode
• Programmable wake-up on bus activity
• Automatic reply to a remote request message
• Automatic retransmission of a frame in case of loss of arbitration or error
• 32-bit local network time counter synchronized by a specific message (communication in conjunction
with mailbox 16)
• Self-test mode
– Operates in a loopback mode receiving its own message. A dummy acknowledge is provided,
thereby eliminating the need for another node to provide the acknowledge bit.
NOTE
For a SYSCLKOUT of 150 MHz, the smallest bit rate possible is 23.4 kbps.
The 28x CAN has passed the conformance test per ISO/DIS 16845. Contact TI for further details.
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
65
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
eCAN0INT
www.ti.com
Controls Address
eCAN1INT
Data
32
Enhanced CAN Controller
Message Controller
Memory Management
Unit
Mailbox RAM
(512 Bytes)
32-Message Mailbox
of 4 × 32-Bit Words
32
CPU Interface,
Receive Control Unit,
Timer Management Unit
32
eCAN Memory
(512 Bytes)
Registers and Message
Objects Control
32
eCAN Protocol Kernel
Receive Buffer
Transmit Buffer
Control Buffer
Status Buffer
SN65HVD23x
3.3-V CAN Transceiver
CAN Bus
Figure 4-7. eCAN Block Diagram and Interface Circuit
Table 4-5. 3.3-V eCAN Transceivers for the SM320F2812 DSP
SUPPLY
VOLTAGE
LOW-POWER
MODE
SLOPE
CONTROL
VREF
OTHER
SN65HVD230
3.3 V
Standby
Adjustable
Yes
–
–40°C to 85°C
SN65HVD230Q
3.3 V
Standby
Adjustable
Yes
–
–40°C to 125°C
SN65HVD231
3.3 V
Sleep
Adjustable
Yes
–
–40°C to 85°C
SN65HVD231Q
3.3 V
Sleep
Adjustable
Yes
–
–40°C to 125°C
SN65HVD232
3.3 V
None
None
None
–
–40°C to 85°C
SN65HVD232Q
3.3 V
None
None
None
–
–40°C to 125°C
SN65HVD233
3.3 V
Standby
Adjustable
None
Diagnostic Loopback
–40°C to 125°C
SN65HVD234
3.3 V
Standby & Sleep
Adjustable
None
–
–40°C to 125°C
SN65HVD235
3.3 V
Standby
Adjustable
None
Autobaud Loopback
–40°C to 125°C
PART NUMBER
66
Peripherals
TA
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
eCAN Control and Status Registers
Mailbox Enable − CANME
Mailbox Direction − CANMD
Transmission Request Set − CANTRS
Transmission Request Reset − CANTRR
Transmission Acknowledge − CANTA
Abort Acknowledge − CANAA
eCAN Memory (512 Bytes)
6000h
Received Message Pending − CANRMP
Control and Status Registers
Received Message Lost − CANRML
603Fh
6040h
607Fh
6080h
60BFh
60C0h
60FFh
Remote Frame Pending − CANRFP
Local Acceptance Masks (LAM)
(32 × 32-Bit RAM)
Global Acceptance Mask − CANGAM
Master Control − CANMC
Message Object Time Stamps (MOTS)
(32 × 32-Bit RAM)
Bit-Timing Configuration − CANBTC
Message Object Time-Out (MOTO)
(32 × 32-Bit RAM)
Transmit Error Counter − CANTEC
Error and Status − CANES
Receive Error Counter − CANREC
Global Interrupt Flag 0 − CANGIF0
Global Interrupt Mask − CANGIM
Global Interrupt Flag 1 − CANGIF1
eCAN Memory RAM (512 Bytes)
6100h−6107h
Mailbox 0
6108h−610Fh
Mailbox 1
6110h−6117h
Mailbox 2
6118h−611Fh
Mailbox 3
6120h−6127h
Mailbox 4
Mailbox Interrupt Mask − CANMIM
Mailbox Interrupt Level − CANMIL
Overwrite Protection Control − CANOPC
TX I/O Control − CANTIOC
RX I/O Control − CANRIOC
Time Stamp Counter − CANTSC
Time-Out Control − CANTOC
Time-Out Status − CANTOS
61E0h−61E7h
Mailbox 28
61E8h−61EFh
Mailbox 29
61F0h−61F7h
Mailbox 30
61F8h−61FFh
Mailbox 31
Reserved
Message Mailbox (16 Bytes)
61E8h−61E9h
Message Identifier − MSGID
61EAh−61EBh
Message Control − MSGCTRL
61ECh−61EDh
Message Data Low − MDL
61EEh−61EFh
Message Data High − MDH
Figure 4-8. eCAN Memory Map
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
67
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
The CAN registers listed in Table 4-6 are used by the CPU to configure and control the CAN controller
and the message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM
can be accessed as 16 bits or 32 bits. 32-bit accesses are aligned to an even boundary.
Table 4-6. CAN Registers Map (1)
(1)
68
REGISTER NAME
ADDRESS
SIZE (×32)
CANME
0x00 6000
1
Mailbox enable
DESCRIPTION
CANMD
0x00 6002
1
Mailbox direction
CANTRS
0x00 6004
1
Transmit request set
CANTRR
0x00 6006
1
Transmit request reset
CANTA
0x00 6008
1
Transmission acknowledge
CANAA
0x00 600A
1
Abort acknowledge
CANRMP
0x00 600C
1
Receive message pending
CANRML
0x00 600E
1
Receive message lost
CANRFP
0x00 6010
1
Remote frame pending
CANGAM
0x00 6012
1
Global acceptance mask
CANMC
0x00 6014
1
Master control
CANBTC
0x00 6016
1
Bit-timing configuration
CANES
0x00 6018
1
Error and status
CANTEC
0x00 601A
1
Transmit error counter
CANREC
0x00 601C
1
Receive error counter
CANGIF0
0x00 601E
1
Global interrupt flag 0
CANGIM
0x00 6020
1
Global interrupt mask
CANGIF1
0x00 6022
1
Global interrupt flag 1
CANMIM
0x00 6024
1
Mailbox interrupt mask
CANMIL
0x00 6026
1
Mailbox interrupt level
CANOPC
0x00 6028
1
Overwrite protection control
CANTIOC
0x00 602A
1
TX I/O control
CANRIOC
0x00 602C
1
RX I/O control
CANTSC
0x00 602E
1
Time stamp counter (Reserved in SCC mode)
CANTOC
0x00 6030
1
Time-out control (Reserved in SCC mode)
CANTOS
0x00 6032
1
Time-out status (Reserved in SCC mode)
These registers are mapped to Peripheral Frame 1.
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
4.5
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Multichannel Buffered Serial Port (McBSP) Module
The McBSP module has the following features:
• Compatible to McBSP in TMS320C54x™/ TMS320C55x™ DSP devices, except the DMA features
• Full-duplex communication
• Double-buffered data registers which allow a continuous data stream
• Independent framing and clocking for receive and transmit
• External shift clock generation or an internal programmable frequency shift clock
• A wide selection of data sizes including 8/12/16/20/24 or 32-bits
• 8-bit data transfers with LSB or MSB first
• Programmable polarity for both frame synchronization and data clocks
• Highly programmable internal clock and frame generation
• Support A-bis mode
• Direct interface to industry-standard CODECs, Analog Interface Chips (AICs), and other serially
connected A/D and D/A devices
• Works with SPI-compatible devices
• Two 16 x 16-level FIFO for Transmit channel
• Two 16 x 16-level FIFO for Receive channel
The following application interfaces can be supported on the McBSP:
• T1/E1 framers
• MVIP switching-compatible and ST-BUS-compliant devices including:
– MVIP framers
– H.100 framers
– SCSA framers
– IOM-2 compliant devices
– AC97-compliant devices (the necessary multiphase frame synchronization capability is provided.)
– IIS-compliant devices
McBSP clock rate = CLKG =
•
CLKSRG
,
1 + CLKGDIV
where CLKSRG source could be LSPCLK, CLKX, or CLKR. (2)
(2)
Serial port performance is limited by I/O buffer switching speed. Internal prescalers must be adjusted such that the peripheral speed is
less than the I/O buffer speed limit—20-MHz maximum.
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
69
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Figure 4-9 shows the block diagram of the McBSP module with FIFO, interfaced to the F2812 version of
Peripheral Frame 2.
Peripheral Write Bus
TX FIFO
Interrupt
MXINT
To CPU
TX Interrupt Logic
McBSP Transmit
Interrupt Select Logic
TX FIFO _15
TX FIFO _15
—
—
TX FIFO _1
TX FIFO _1
TX FIFO _0
TX FIFO _0
TX FIFO Registers
16
16
DXR2 Transmit Buffer
LSPCLK
McBSP Registers
and Control Logic
DXR1 Transmit Buffer
16
16
FSX
Compand Logic
CLKX
XSR2
XSR1
DX
RSR2
RSR1
16
DR
16
CLKR
Expand Logic
FSR
McBSP
RBR2 Register
RBR1 Register
16
16
DRR2 Receive Buffer
DRR1 Receive Buffer
16
McBSP Receive
Interrupt Select Logic
MRINT
To CPU
RX Interrupt Logic
RX FIFO
Interrupt
16
RX FIFO _15
RX FIFO _15
—
—
RX FIFO _1
RX FIFO _1
RX FIFO _0
RX FIFO _0
RX FIFO Registers
Peripheral Read Bus
Figure 4-9. McBSP Module With FIFO
70
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 4-7 provides a summary of the McBSP registers.
Table 4-7. McBSP Register Summary
NAME
ADDRESS
0x00 78xxh
TYPE
(R/W)
RESET VALUE
(HEX)
DESCRIPTION
DATA REGISTERS, RECEIVE, TRANSMIT (1)
–
–
–
0x0000
McBSP Receive Buffer Register
–
–
–
0x0000
McBSP Receive Shift Register
–
–
–
0x0000
McBSP Transmit Shift Register
DRR2
0
R
0x0000
McBSP Data Receive Register 2
–Read First if the word size is greater than 16 bits, else ignore DRR2
DRR1
01
R
0x0000
McBSP Data Receive Register 1
–Read Second if the word size is greater than 16 bits, else read DRR1
only
DXR2
02
W
0x0000
McBSP Data Transmit Register 2
–Write First if the word size is greater than 16 bits, else ignore DXR2
DXR1
03
W
0x0000
McBSP Data Transmit Register 1
–Write Second if the word size is greater than 16 bits, else write to DXR1
only
SPCR2
04
R/W
0x0000
McBSP Serial Port Control Register 2
SPCR1
05
R/W
0x0000
McBSP Serial Port Control Register 1
RCR2
06
R/W
0x0000
McBSP Receive Control Register 2
RCR1
07
R/W
0x0000
McBSP Receive Control Register 1
XCR2
08
R/W
0x0000
McBSP Transmit Control Register 2
XCR1
09
R/W
0x0000
McBSP Transmit Control Register 1
SRGR2
0A
R/W
0x0000
McBSP Sample Rate Generator Register 2
SRGR1
0B
R/W
0x0000
McBSP Sample Rate Generator Register 1
MCR2
0C
R/W
0x0000
McBSP Multichannel Register 2
MCR1
0D
R/W
0x0000
McBSP Multichannel Register 1
RCERA
0E
R/W
0x0000
McBSP Receive Channel Enable Register Partition A
RCERB
0F
R/W
0x0000
McBSP Receive Channel Enable Register Partition B
XCERA
10
R/W
0x0000
McBSP Transmit Channel Enable Register Partition A
XCERB
11
R/W
0x0000
McBSP Transmit Channel Enable Register Partition B
PCR
12
R/W
0x0000
McBSP Pin Control Register
RCERC
13
R/W
0x0000
McBSP Receive Channel Enable Register Partition C
RCERD
14
R/W
0x0000
McBSP Receive Channel Enable Register Partition D
XCERC
15
R/W
0x0000
McBSP Transmit Channel Enable Register Partition C
XCERD
16
R/W
0x0000
McBSP Transmit Channel Enable Register Partition D
RCERE
17
R/W
0x0000
McBSP Receive Channel Enable Register Partition E
RCERF
18
R/W
0x0000
McBSP Receive Channel Enable Register Partition F
XCERE
19
R/W
0x0000
McBSP Transmit Channel Enable Register Partition E
XCERF
1A
R/W
0x0000
McBSP Transmit Channel Enable Register Partition F
RCERG
1B
R/W
0x0000
McBSP Receive Channel Enable Register Partition G
RCERH
1C
R/W
0x0000
McBSP Receive Channel Enable Register Partition H
XCERG
1D
R/W
0x0000
McBSP Transmit Channel Enable Register Partition G
XCERH
1E
R/W
0x0000
McBSP Transmit Channel Enable Register Partition H
McBSP CONTROL REGISTERS
MULTICHANNEL CONTROL REGISTERS
(1)
DRR2/DRR1 and DXR2/DXR1 share the same addresses of receive and transmit FIFO registers in FIFO mode.
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
71
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Table 4-7. McBSP Register Summary (continued)
ADDRESS
0x00 78xxh
NAME
TYPE
(R/W)
RESET VALUE
(HEX)
DESCRIPTION
FIFO MODE REGISTERS (applicable only in FIFO mode)
FIFO Data Registers (1)
DRR2
00
R
0x0000
McBSP Data Receive Register 2 – Top of receive FIFO
–Read First FIFO pointers does not advance
DRR1
01
R
0x0000
McBSP Data Receive Register 1 – Top of receive FIFO
–Read Second for FIFO pointers to advance
DXR2
02
W
0x0000
McBSP Data Transmit Register 2 – Top of transmit FIFO
–Write First FIFO pointers does not advance
DXR1
03
W
0x0000
McBSP Data Transmit Register 1 – Top of transmit FIFO
–Write Second for FIFO pointers to advance
MFFTX
20
R/W
0xA000
McBSP Transmit FIFO Register
MFFRX
21
R/W
0x201F
McBSP Receive FIFO Register
FIFO Control Registers
(1)
72
MFFCT
22
R/W
0x0000
McBSP FIFO Control Register
MFFINT
23
R/W
0x0000
McBSP FIFO Interrupt Register
MFFST
24
R/W
0x0000
McBSP FIFO Status Register
FIFO pointers advancing is based on order of access to DRR2/DRR1 and DXR2/DXR1 registers.
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
4.6
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Serial Communications Interface (SCI) Module
The F2812 device include two serial communications interface (SCI) modules. The SCI modules support
digital communications between the CPU and other asynchronous peripherals that use the standard
non-return-to-zero (NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its
own separate enable and interrupt bits. Both can be operated independently or simultaneously in the
full-duplex mode. To ensure data integrity, the SCI checks received data for break detection, parity,
overrun, and framing errors. The bit rate is programmable to over 65 000 different speeds through a 16-bit
baud-select register.
Features of each SCI module include:
• Two external pins:
– SCITXD: SCI transmit-output pin
– SCIRXD: SCI receive-input pin
NOTE
Both pins can be used as GPIO if not used for SCI.
•
Baud rate programmable to 64K different rates
– Baud rate
=
=
•
•
•
•
•
•
•
when BRR ≠ 0
LSPCLK
,
16
when BRR = 0
Data-word format
– One start bit
– Data-word length programmable from one to eight bits
– Optional even/odd/no parity bit
– One or two stop bits
Four error-detection flags: parity, overrun, framing, and break detection
Two wake-up multiprocessor modes: idle-line and address bit
Half- or full-duplex operation
Double-buffered receive and transmit functions
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms
with status flags.
– Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) andTX
EMPTY flag (transmitter-shift register is empty)
– Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag
(break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)
Separate enable bits for transmitter and receiver interrupts (except BRKDT)
Max bit rate =
•
•
•
LSPCLK
,
(BRR + 1) · 8
150 MHz
= 9.375 ´ 106 b / s
2´8
NRZ (non-return-to-zero) format
Ten SCI module control registers located in the control register frame beginning at address 7050h
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
73
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
NOTE
All registers in this module are 8-bit registers that are connected to Peripheral Frame 2.
When a register is accessed, the register data is in the lower byte (7–0), and the upper byte
(15–8) is read as zeros. Writing to the upper byte has no effect.
Enhanced features:
• Auto baud-detect hardware logic
• 16-level transmit/receive FIFO
The SCI port operation is configured and controlled by the registers listed in Table 4-8 and Table 4-9.
Table 4-8. SCI-A Registers (1)
(1)
NAME
ADDRESS
SIZE (×16)
SCICCRA
0x00 7050
1
SCI-A Communications Control Register
SCICTL1A
0x00 7051
1
SCI-A Control Register 1
SCIHBAUDA
0x00 7052
1
SCI-A Baud Register, High Bits
SCILBAUDA
0x00 7053
1
SCI-A Baud Register, Low Bits
SCICTL2A
0x00 7054
1
SCI-A Control Register 2
SCIRXSTA
0x00 7055
1
SCI-A Receive Status Register
SCIRXEMUA
0x00 7056
1
SCI-A Receive Emulation Data Buffer Register
SCIRXBUFA
0x00 7057
1
SCI-A Receive Data Buffer Register
SCITXBUFA
0x00 7059
1
SCI-A Transmit Data Buffer Register
SCIFFTXA
0x00 705A
1
SCI-A FIFO Transmit Register
SCIFFRXA
0x00 705B
1
SCI-A FIFO Receive Register
SCIFFCTA
0x00 705C
1
SCI-A FIFO Control Register
SCIPRIA
0x00 705F
1
SCI-A Priority Control Register
Shaded registers are new registers for the FIFO mode.
Table 4-9. SCI-B Registers (1)
(1)
(2)
74
DESCRIPTION
(2)
NAME
ADDRESS
SIZE (×16)
SCICCRB
0x00 7750
1
SCI-B Communications Control Register
DESCRIPTION
SCICTL1B
0x00 7751
1
SCI-B Control Register 1
SCIHBAUDB
0x00 7752
1
SCI-B Baud Register, High Bits
SCILBAUDB
0x00 7753
1
SCI-B Baud Register, Low Bits
SCICTL2B
0x00 7754
1
SCI-B Control Register 2
SCIRXSTB
0x00 7755
1
SCI-B Receive Status Register
SCIRXEMUB
0x00 7756
1
SCI-B Receive Emulation Data Buffer Register
SCIRXBUFB
0x00 7757
1
SCI-B Receive Data Buffer Register
SCITXBUFB
0x00 7759
1
SCI-B Transmit Data Buffer Register
SCIFFTXB
0x00 775A
1
SCI-B FIFO Transmit Register
SCIFFRXB
0x00 775B
1
SCI-B FIFO Receive Register
SCIFFCTB
0x00 775C
1
SCI-B FIFO Control Register
SCIPRIB
0x00 775F
1
SCI-B Priority Control Register
Shaded registers are new registers for the FIFO mode.
Registers in this table are mapped to peripheral bus 16 space. This space only allows 16-bit accesses. 32-bit accesses produce
undefined results.
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Figure 4-10 shows the SCI module block diagram.
SCICTL1.1
SCITXD
Frame Format and Mode
TXSHF
Register
Parity
Even/Odd Enable
TXENA
8
SCICCR.6 SCICCR.5
TXRDY
TXWAKE
SCICTL1.3
Transmitter−Data
Buffer Register
8
1
TX INT ENA
SCICTL2.7
SCICTL2.0
TX FIFO
Interrupts
TX FIFO _0
TX FIFO _1
SCITXD
TX EMPTY
SCICTL2.6
TXINT
TX Interrupt
Logic
−−−−−
To CPU
TX FIFO _15
WUT
SCI TX Interrupt select logic
SCITXBUF.7−0
TX FIFO registers
SCIFFENA
AutoBaud Detect logic
SCIFFTX.14
SCIHBAUD. 15 − 8
SCIRXD
RXSHF
Register
Baud Rate
MSbyte
Register
SCIRXD
RXWAKE
LSPCLK
SCIRXST.1
SCILBAUD. 7 − 0
Baud Rate
LSbyte
Register
RXENA
8
SCICTL1.0
SCICTL2.1
Receive Data
Buffer register
SCIRXBUF.7−0
RXRDY
SCIRXST.6
8
RX FIFO _15
BRKDT
−−−−−
SCIRXST.5
RX FIFO_1
RX FIFO _0
SCIRXBUF.7−0
RX/BK INT ENA
RX FIFO
Interrupts
RX Interrupt
Logic
To CPU
RX FIFO registers
SCIRXST.7
SCIRXST.4 − 2
RX Error
FE OE PE
RXINT
RXFFOVF
SCIFFRX.15
RX Error
RX ERR INT ENA
SCICTL1.6
SCI RX Interrupt select logic
Figure 4-10. Serial Communications Interface (SCI) Module Block Diagram
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
75
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
4.7
www.ti.com
Serial Peripheral Interface (SPI) Module
The F2812 device includes the four-pin serial peripheral interface (SPI) module. The SPI is a high-speed,
synchronous serial I/O port that allows a serial bit stream of programmed length (one to sixteen bits) to be
shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for
communications between the DSP controller and external peripherals or another processor. Typical
applications include external I/O or peripheral expansion through devices such as shift registers, display
drivers, and ADCs. Multidevice communications are supported by the master/slave operation of the SPI.
The SPI module features include:
• Four external pins:
– SPISOMI: SPI slave-output/master-input pin
– SPISIMO: SPI slave-input/master-output pin
– SPISTE: SPI slave transmit-enable pin
– SPICLK: SPI serial-clock pin
NOTE
All four pins can be used as GPIO, if the SPI module is not used.
•
•
Two operational modes: master and slave
Baud rate: 125 different programmable rates
– Baud rate
=
=
LSPCLK
,
(SPIBRR + 1)
LSPCLK
,
4
when BRR ≠ 0
when BRR = 0, 1, 2, 3
Serial port performance is limited by I/O buffer switching speed. Internal prescalers must be adjusted
such that the peripheral speed is less than the I/O buffer speed limit—20 MHz maximum.
•
•
•
•
•
Data word length: one to sixteen data bits
Four clocking schemes (controlled by clock polarity and clock phase bits) include:
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the
SPICLK signal and receives data on the rising edge of the SPICLK signal.
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the
falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the
SPICLK signal and receives data on the falling edge of the SPICLK signal.
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the
falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.
Simultaneous receive and transmit operation (transmit function can be disabled in software)
Transmitter and receiver operations are accomplished through either interrupt-driven or polled
algorithms.
Nine SPI module control registers: Located in control register frame beginning at address 7040h.
NOTE
All registers in this module are 16-bit registers that are connected to Peripheral Frame 2.
When a register is accessed, the register data is in the lower byte (7–0), and the upper byte
(15–8) is read as zeros. Writing to the upper byte has no effect.
76
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Enhanced feature:
• 16-level transmit/receive FIFO
• Delayed transmit control
The SPI port operation is configured and controlled by the registers listed in Table 4-10.
Table 4-10. SPI Registers (1)
(1)
NAME
ADDRESS
SIZE (×16)
DESCRIPTION
SPICCR
0x00 7040
1
SPI Configuration Control Register
SPICTL
0x00 7041
1
SPI Operation Control Register
SPISTS
0x00 7042
1
SPI Status Register
SPIBRR
0x00 7044
1
SPI Baud Rate Register
SPIRXEMU
0x00 7046
1
SPI Receive Emulation Buffer Register
SPIRXBUF
0x00 7047
1
SPI Serial Input Buffer Register
SPITXBUF
0x00 7048
1
SPI Serial Output Buffer Register
SPIDAT
0x00 7049
1
SPI Serial Data Register
SPIFFTX
0x00 704A
1
SPI FIFO Transmit Register
SPIFFRX
0x00 704B
1
SPI FIFO Receive Register
SPIFFCT
0x00 704C
1
SPI FIFO Control Register
SPIPRI
0x00 704F
1
SPI Priority Control Register
The above registers are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined
results.
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
77
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Figure 4-11 is a block diagram of the SPI in slave mode.
SPIFFENA
Overrun
INT ENA
Receiver
Overrun Flag
SPIFFTX.14
RX FIFO registers
SPISTS.7
SPICTL.4
SPIRXBUF
RX FIFO _0
RX FIFO _1
−−−−−
SPIINT/SPIRXINT
RX FIFO Interrupt
RX Interrupt
Logic
RX FIFO _15
16
SPIRXBUF
Buffer Register
SPIFFOVF FLAG
SPIFFRX.15
To CPU
TX FIFO registers
SPITXBUF
TX FIFO _15
−−−−−
TX Interrupt
Logic
TX FIFO Interrupt
TX FIFO _1
TX FIFO _0
SPITXINT
16
SPI INT FLAG
SPITXBUF
Buffer Register
16
SPI INT
ENA
SPISTS.6
SPICTL.0
16
M
M
SPIDAT
Data Register
S
S
SW1
SPISIMO
M
M
SPIDAT.15 − 0
S
S
SW2
SPISOMI
Talk
SPICTL.1
SPISTE†
State Control
Master/Slave
SPI Char
SPICCR.3 − 0
3
2
1
0
SW3
M
SPI Bit Rate
LSPCLK
S
SPIBRR.6 − 0
6
†
SPICTL.2
S
5
4
3
2
1
Clock
Polarity
Clock
Phase
SPICCR.6
SPICTL.3
SPICLK
M
0
SPISTE is driven low by the master for a slave device.
Figure 4-11. Serial Peripheral Interface Module Block Diagram (Slave Mode)
78
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
4.8
SGUS062A – JUNE 2009 – REVISED APRIL 2010
GPIO MUX
The GPIO Mux registers are used to select the operation of shared pins on the F2812 device. The pins
can be individually selected to operate as Digital I/O or connected to Peripheral I/O signals (via the
GPxMUX registers). If selected for Digital I/O mode, registers are provided to configure the pin direction
(via the GPxDIR registers) and to qualify the input signal to remove unwanted noise (via the GPxQUAL)
registers). Table 4-11 lists the GPIO Mux Registers.
Table 4-11. GPIO Mux Registers (1)
(1)
(2)
(3)
(2) (3)
NAME
ADDRESS
SIZE (×16)
GPAMUX
0x00 70C0
1
GPIO A Mux Control Register
REGISTER DESCRIPTION
GPADIR
0x00 70C1
1
GPIO A Direction Control Register
GPAQUAL
0x00 70C2
1
GPIO A Input Qualification Control Register
reserved
0x00 70C3
1
GPBMUX
0x00 70C4
1
GPIO B Mux Control Register
GPBDIR
0x00 70C5
1
GPIO B Direction Control Register
GPBQUAL
0x00 70C6
1
GPIO B Input Qualification Control Register
reserved
0x00 70C7
1
reserved
0x00 70C8
1
reserved
0x00 70C9
1
reserved
0x00 70CA
1
reserved
0x00 70CB
1
GPDMUX
0x00 70CC
1
GPIO D Mux Control Register
GPDDIR
0x00 70CD
1
GPIO D Direction Control Register
GPDQUAL
0x00 70CE
1
GPIO D Input Qualification Control Register
reserved
0x00 70CF
1
GPEMUX
0x00 70D0
1
GPIO E Mux Control Register
GPEDIR
0x00 70D1
1
GPIO E Direction Control Register
GPEQUAL
0x00 70D2
1
GPIO E Input Qualification Control Register
reserved
0x00 70D3
1
GPFMUX
0x00 70D4
1
GPIO F Mux Control Register
GPFDIR
0x00 70D5
1
GPIO F Direction Control Register
reserved
0x00 70D6
1
reserved
0x00 70D7
1
GPGMUX
0x00 70D8
1
GPIO G Mux Control Register
GPGDIR
0x00 70D9
1
GPIO G Direction Control Register
reserved
0x00 70DA
1
reserved
0x00 70DB
1
reserved
0x00 70DC
0x00 70DF
4
Reserved locations returns undefined values and writes is ignored.
Not all inputs support input signal qualification.
These registers are EALLOW protected. This prevents spurious writes from overwriting the contents and corrupting the system.
If configured for Digital I/O mode, additional registers are provided for setting individual I/O signals (via the
GPxSET registers), for clearing individual I/O signals (via the GPxCLEAR registers), for toggling individual
I/O signals (via the GPxTOGGLE registers), or for reading/writing to the individual I/O signals (via the
GPxDAT registers). Table 4-12 lists the GPIO Data Registers. For more information, see the
TMS320x281x System Control and Interrupts Reference Guide (literature number SPRU078).
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
79
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Table 4-12. GPIO Data Registers (1)
(1)
(2)
80
(2)
NAME
ADDRESS
SIZE (×16)
GPADAT
0x00 70E0
1
GPIO A Data Register
REGISTER DESCRIPTION
GPASET
0x00 70E1
1
GPIO A Set Register
GPACLEAR
0x00 70E2
1
GPIO A Clear Register
GPATOGGLE
0x00 70E3
1
GPIO A Toggle Register
GPBDAT
0x00 70E4
1
GPIO B Data Register
GPBSET
0x00 70E5
1
GPIO B Set Register
GPBCLEAR
0x00 70E6
1
GPIO B Clear Register
GPBTOGGLE
0x00 70E7
1
GPIO B Toggle Register
reserved
0x00 70E8
1
reserved
0x00 70E9
1
reserved
0x00 70EA
1
reserved
0x00 70EB
1
GPDDAT
0x00 70EC
1
GPIO D Data Register
GPDSET
0x00 70ED
1
GPIO D Set Register
GPDCLEAR
0x00 70EE
1
GPIO D Clear Register
GPDTOGGLE
0x00 70EF
1
GPIO D Toggle Register
GPEDAT
0x00 70F0
1
GPIO E Data Register
GPESET
0x00 70F1
1
GPIO E Set Register
GPECLEAR
0x00 70F2
1
GPIO E Clear Register
GPETOGGLE
0x00 70F3
1
GPIO E Toggle Register
GPFDAT
0x00 70F4
1
GPIO F Data Register
GPFSET
0x00 70F5
1
GPIO F Set Register
GPFCLEAR
0x00 70F6
1
GPIO F Clear Register
GPFTOGGLE
0x00 70F7
1
GPIO F Toggle Register
GPGDAT
0x00 70F8
1
GPIO G Data Register
GPGSET
0x00 70F9
1
GPIO G Set Register
GPGCLEAR
0x00 70FA
1
GPIO G Clear Register
GPGTOGGLE
0x00 70FB
1
GPIO G Toggle Register
reserved
0x00 70FC
0x00 70FF
4
Reserved location returns undefined values and writes are ignored.
These registers are NOT EALLOW protected. The above registers are typically accessed regularly by the user.
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Figure 4-12 shows how the various register bits select the various modes of operation for GPIO function.
GPxDAT/SET/CLEAR/TOGGLE
Register Bit(s)
GPxQUAL
Register
Digital I/O
GPxMUX
Register Bit
0
Peripheral I/O
HighImpedance
Control
GPxDIR
Register Bit
0
1
MUX
1
MUX
SYSCLKOUT
Input Qualification
High-Impedance
Enable (1)
XRS
Internal (Pullup or Pulldown)
PIN
A.
B.
In the GPIO mode, when the GPIO pin is configured for output operation, reading the GPxDAT data register only
gives the value written, not the value at the pin. In the peripheral mode, the state of the pin can be read through the
GPxDAT register, provided the corresponding direction bit is zero (input mode).
Some selected input signals are qualified by the SYSCLKOUT. The GPxQUAL register specifies the qualification
sampling period. The sampling window is 6 samples wide and the output is only changed when all samples are the
same (all 0's or all 1's). This feature removes unwanted spikes from the input signal.
Figure 4-12. GPIO/Peripheral Pin Multiplexing
NOTE
The input function of the GPIO pin and the input path to the peripheral are always enabled. It
is the output function of the GPIO pin that is multiplexed with the output path of the primary
(peripheral) function. Since the output buffer of a pin connects back to the input buffer, any
GPIO signal present at the pin is propagated to the peripheral module as well. Therefore,
when a pin is configured for GPIO operation, the corresponding peripheral functionality (and
interrupt-generating capability) must be disabled. Otherwise, interrupts may be inadvertently
triggered. This is especially critical when the PDPINTA and PDPINTB pins are used as GPIO
pins, since a value of zero for GPDDAT.0 or GPDDAT.5 (PDPINTx) puts PWM pins in a
high-impedance state. The CxTRIP and TxCTRIP pins also put the corresponding PWM pins
in high impedance, if they are driven low (as GPIO pins) and bit EXTCONx.0 = 1.
Peripherals
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
81
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
5
www.ti.com
Development Support
Texas Instruments (TI) offers an extensive line of development tools for the C28x™ generation of DSPs,
including tools to evaluate the performance of the processors, generate code, develop algorithm
implementations, and fully integrate and debug software and hardware modules.
The following products support development of F2812-based applications:
Software Development Tools
• Code Composer Studio™ Integrated Development Environment (IDE)
– C/C++ Compiler
– Code generation tools
– Assembler/Linker
– Cycle Accurate Simulator
• Application algorithms
• Sample applications code
Hardware Development Tools
• F2812 eZdsp
• JTAG-based emulators - SPI515, XDS510PP, XDS510PP Plus, XDS510 USB
• Universal 5-V dc power supply
• Documentation and cables
5.1
Device and Development Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
[TMS320] DSP devices and support tools. Each [TMS320] DSP commercial family member has one of
three prefixes: TMX, TMP, or TMS (e.g., TMS320F2812GHH). Texas Instruments recommends two of
three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent
evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully
qualified production devices/tools (TMS/TMDS).
TMX—Experimental device that is not necessarily representative of the final device's electrical
specifications
TMP—Final silicon die that conforms to the device's electrical specifications but has not completed
quality and reliability verification
TMS/SM—Fully qualified production device
SMJ—Fully qualified production device
Support tool development evolutionary flow:
TMDX—Development-support product that has not yet completed Texas Instruments internal
qualification testing.
TMDS—Fully qualified development-support product
TMX and TMP devices and TMDX development-support tools are shipped against the following
disclaimer:
Developmental product is intended for internal evaluation purposes.
TMS devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard
production devices. Texas Instruments recommends that these devices not be used in any production
system because their expected end-use failure rate still is undefined. Only qualified production devices are
to be used. Figure 5-1 provides a legend for reading the complete device name for any TMS320x28x
family member.
82
Development Support
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
SM
PREFIX
TMX =
TMP =
TMS =
SM =
SMJ =
320
F
2812
HFG
M
TEMPERATURE RANGE
experimental device
prototype device
qualified device
commercial processing
MIL-PRF-38535 (QML)
S = -55°C to 220°C
PACKAGE TYPE
DEVICE FAMILY
320 = TMS320 DSP Family
TECHNOLOGY
F = Flash EEPROM (1.8-V/1.9-V Core/3.3-V I/O)
C = ROM (1.8-V/1.9-V Core/3.3-V I/O)
†
†
HFG = 172-pin CQFP
KGD = Die
DEVICE
2810
2811
2812
Not all combinations of processing options, temperature ranges and packages are available.
CQFP = Ceramic Quad Flatpack
Figure 5-1. 28x Device Nomenclature
5.2
Documentation Support
Extensive documentation supports all of the TMS320E DSP family generations of devices from product
announcement through applications development. The types of documentation available include: data
sheets and data manuals, with design specifications; and hardware and software applications. Useful
reference documentation includes:
TMS320C28x DSP CPU and Instruction Set Reference Guide (literature number SPRU430) describes
the central processing unit (CPU) and the assembly language instructions of the TMS320C28x™
fixed-point digital signal processors (DSPs). It also describes emulation features available on these DSPs.
TMS320x281x Analog-to-Digital Converter (ADC) Reference Guide (literature number SPRU060)
describes the ADC module. The module is a 12-bit pipelined ADC. The analog circuits of this converter,
referred to as the core in this document, include the front-end analog multiplexers (MUXs),
sample-and-hold (S/H) circuits, the conversion core, voltage regulators, and other analog supporting
circuits. Digital circuits, referred to as the wrapper in this document, include programmable conversion
sequencer, result registers, interface to analog circuits, interface to device peripheral bus, and interface to
other on-chip modules.
TMS320x281x Boot ROM Reference Guide (literature number SPRU095) describes the purpose and
features of the bootloader (factory-programmed boot-loading software). It also describes other contents of
the device on-chip boot ROM and identifies where all of the information is located within that memory.
TMS320x281x Event Manager (EV) Reference Guide (literature number SPRU065) describes the EV
modules that provide a broad range of functions and features that are particularly useful in motion control
and motor control applications. The EV modules include general-purpose (GP) timers, full-compare/PWM
units, capture units, and quadrature-encoder pulse (QEP) circuits.
TMS320x281x External Interface (XINTF) Reference Guide (literature number SPRU067) describes the
external interface (XINTF) of the 281x digital signal processors (DSPs).
TMS320x281x Multi-channel Buffered Serial Ports (McBSPs) Reference Guide (literature number
SPRU061) describes the McBSP) available on the 281x devices. The McBSPs allow direct interface
between a DSP and other devices in a system.
TMS320x281x System Control and Interrupts Reference Guide (literature number SPRU078)
describes the various interrupts and system control features of the 281x digital signal processors (DSPs).
Development Support
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
83
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
TMS320x281x, 280x Enhanced Controller Area Network (eCAN) Reference Guide (literature number
SPRU074) describes the eCAN that uses established protocol to communicate serially with other
controllers in electrically noisy environments. With 32 fully configurable mailboxes and time-stamping
feature, the eCAN module provides a versatile and robust serial communication interface. The eCAN
module implemented in the C28x DSP is compatible with the CAN 2.0B standard (active).
TMS320x281x, 280x Peripheral Reference Guide (literature number SPRU566) describes the peripheral
reference guides of the 28x digital signal processors (DSPs).
TMS320x281x, 280x Serial Communication Interface (SCI) Reference Guide (literature number
SPRU051) describes the SCI that is a two-wire asynchronous serial port, commonly known as a UART.
The SCI modules support digital communications between the CPU and other asynchronous peripherals
that use the standard non-return-to-zero (NRZ) format.
TMS320x281x, 280x Serial Peripheral Interface (SPI) Reference Guide (literature number SPRU059)
describes the SPI – a high-speed synchronous serial input/output (I/O) port that allows a serial bit stream
of programmed length (one to sixteen bits) to be shifted into and out of the device at a programmed
bit-transfer rate. The SPI is used for communications between the DSP controller and external peripherals
or another controller.
3.3 V DSP for Digital Motor Control Application Report (literature number SPRA550). New generations
of motor control digital signal processors (DSPs) lower their supply voltages from 5 V to 3.3 V to offer
higher performance at lower cost. Replacing traditional 5-V digital control circuitry by 3.3-V designs
introduce no additional system cost and no significant complication in interfacing with TTL and CMOS
compatible components, as well as with mixed voltage ICs such as power transistor gate drivers. Just like
5-V based designs, good engineering practice should be exercised to minimize noise and EMI effects by
proper component layout and PCB design when 3.3-V DSP, ADC, and digital circuitry are used in a mixed
signal environment, with high and low voltage analog and switching signals, such as a motor control
system. In addition, software techniques such as Random PWM method can be used by special features
of the Texas Instruments (TI) TMS320x24xx DSP controllers to significantly reduce noise effects caused
by EMI radiation.
This application report reviews designs of 3.3-V DSP versus 5-V DSP for low HP motor control
applications. The application report first describes a scenario of a 3.3-V-only motor controller indicating
that for most applications, no significant issue of interfacing between 3.3 V and 5 V exists. Cost-effective
3.3-V – 5-V interfacing techniques are then discussed for the situations where such interfacing is needed.
On-chip 3.3-V ADC versus 5-V ADC is also discussed. Sensitivity and noise effects in 3.3-V and 5-V ADC
conversions are addressed. Guidelines for component layout and printed circuit board (PCB) design that
can reduce system's noise and EMI effects are summarized in the last section.
The TMS320C28x Instruction Set Simulator Technical Overview (literature number SPRU608)
describes the simulator, available within the Code Composer Studio for TMS320C2000 IDE, that simulates
the instruction set of the C28x core.
TMS320C28x DSP/BIOS Application Programming Interface (API) Reference Guide (literature number
SPRU625) describes development using DSP/BIOS.
TMS320C28x Assembly Language Tools User's Guide (literature number SPRU513) describes the
assembly language tools (assembler and other tools used to develop assembly language code),
assembler directives, macros, common object file format, and symbolic debugging directives for the
TMS320C28x™ device.
TMS320C28x Optimizing C Compiler User's Guide (literature number SPRU514) describes the
TMS320C28x™ C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and produces
TMS320™ DSP assembly language source code for the TMS320C28x device.
A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal
processing research and education. The TMS320™ DSP newsletter, Details on Signal Processing, is
published quarterly and distributed to update TMS320™ DSP customers on product information.
84
Development Support
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Updated information on the TMS320™ DSP controllers can be found on the worldwide web at:
http://www.ti.com .
To send comments regarding this TMS320F281x/TMS320C281x data manual (literature number
SPRS174), use the commentsatbooks.sc.ti.com email address, which is a repository for feedback. For
questions
and
support,
contact
the
Product
Information
Center
listed
at
the
http://www.ti.com/sc/docs/pic/home.htm site.
6
Electrical Specifications
This section provides the absolute maximum ratings and the recommended operating conditions for the
SM/SMJ320F2812 DSP.
6.1
Absolute Maximum Ratings
Unless otherwise noted, the list of absolute maximum ratings are specified over operating temperature
ranges. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to
the device. These are stress ratings only, and functional operation of the device at these or any other
conditions beyond those indicated under Section 6.2 is not implied. Exposure to absolute-maximum-rated
conditions for extended periods may affect device reliability. All voltage values are with respect to VSS.
VALUE
UNIT
Supply voltage range, VDDIO, VDDA1, VDDA2, VDDAIO, and
AVDDREFBG
–0.3 to 4.6
V
Supply voltage range, VDD, VDD1
–0.5 to 2.5
V
VDD3VFL range
–0.3 to 4.6
V
Input voltage range, VIN
–0.3 to 4.6
V
Output voltage range, VO
–0.3 to 4.6
V
±20
mA
±20
mA
–55 to 220
°C
Input clamp current, IIK (VIN < 0 or VIN > VDDIO) (1)
Output clamp current, IOK (VO < 0 or VO > VDDIO)
Operating ambient temperature range, TA
(1)
(2)
(2)
S Temp
Continuous clamp current per pin is ±2 mA
Long-term high-temperature storage and/or extended use at maximum temperature conditions may result in a reduction of overall device
life.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
85
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
6.2
See
www.ti.com
Recommended Operating Conditions
(1)
MIN
VDDIO
Device supply voltage, I/O
VDD, VDD1
Device supply voltage, CPU
VSS
Supply ground
NOM
MAX
UNIT
3.14
3.3
3.47
1.8 V (135 MHz)
1.71
1.8
1.89
1.9 V (150 MHz)
1.81
1.9
2
0
VDDA1, VDDA2,
ADC supply voltage
AVDDREFBG, VDDAIO
VDD3VFL
Flash programming supply
voltage
fSYSCLKOUT
Device clock frequency
(system clock)
VIH
High-level input voltage
VIL
Low-level input voltage
IOH
3.14
3.3
3.47
V
3.14
3.3
3.47
V
2
150
VDD = 1.8 V ± 5%
2
135
2
VDDIO
0.7VDD
VDD
All inputs except XCLKIN
All inputs except XCLKIN
0.8
XCLKIN (at 50 mA max)
0.3VDD
High-level output source
current,
VOH = 2.4 V
All I/Os except Group 2
–4
IOL
Low-level output sink current,
VOL = VOL MAX
All I/Os except Group 2
4
Group 2 (2)
8
TA
Ambient temperature
(1)
(2)
6.3
Group 2
V
V
VDD = 1.9 V ± 5%
XCLKIN (at 50 mA max)
V
(2)
–8
–55
25
220
MHz
V
V
mA
mA
°C
See Section 6.7 for power sequencing of VDDIO, VDDAIO, VDD, VDDA1/VDDA2/AVDDREFBG, and VDD3VFL.
Group 2 pins are as follows: XINTF pins, PDPINTA, TDO, XCLKOUT, XF, EMU0, and EMU1.
In Revision C, EVA (GPIOA0–GPIOA15) and GPIOD0 are 4 mA drive.
Electrical Characteristics
Over recommended operating conditions (unless otherwise noted)
PARAMETER
(1)
TEST CONDITIONS
IOH = IOHMAX
VOH
High-level output voltage
VOL
Low-level output voltage
MIN
TYP
MAX
2.4
V
VDDIO
– 0.2
IOH = 50 mA
IOL = IOLMAX
VDDIO = 3.3 V,
VIN = 0 V
UNIT
0.4
All I/Os (2) (including XRS)
except EVB
–80
–140
–190
GPIOB/EVB
–13
–25
–35
V
IIL
Input
current
(low level)
IIH
Input
current
(high
level)
IOZ
Output current,
high-impedance state (off-state)
CI
Input capacitance
7
pF
Co
Output capacitance
7
pF
(1)
(2)
(3)
86
With pullup
With pulldown
VDDIO = 3.3 V, VIN = 0 V
±2
With pullup
VDDIO = 3.3 V, VIN = VDD
±2
With pulldown (3)
VDDIO = 3.3 V,
VIN = VDD
28
50
VO = VDDIO or 0 V
80
±2
mA
mA
mA
Minimum and maximum parameters are characterized for operation at TA = 220°C unless otherwise noted, but may not be production
tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance.
The following pins have no internal PU/PD: GPIOE0, GPIOE1, GPIOF0, GPIOF1, GPIOF2, GPIOF3, GPIOF12, GPIOG4, and GPIOG5.
The following pins have an internal pulldown: XMP/MC, TESTSEL, and TRST.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
1.00E+06
Hours
1.00E+05
1.00E+04
1.00E+03
1.00E+02
70
150
200
220
Die Junction Temperature (°C)
Figure 6-1. SM320F2812-HT Life Expectancy Curve
Notes:
1. See data sheet for absolute maximum and minimum recommended operating conditions.
2. Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package
interconnect life).
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
87
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
6.4
www.ti.com
Current Consumption by Power-Supply Pins Over Recommended Operating
Conditions During Low-Power Modes at 150-MHz SYSCLKOUT
TA = –55°C to 125°C
MODE
TEST CONDITIONS
IDD
IDDIO
IDDA
(1)
TYP
MAX (2)
TYP
Operational
All peripheral clocks
are enabled. All
PWM pins are
toggled at 100 kHz.
Data is continuously
transmitted out of the
SCIA, SCIB, and
195 mA 230 mA 15 mA
CAN ports. The
hardware multiplier is
exercised.
Code is running out
of flash with 5
wait-states.
30 mA
40 mA
45 mA
40 mA
IDLE
–Flash is powered
down
–XCLKOUT is turned
125 mA 150 mA
off
–All peripheral clocks
are on, except ADC
5 mA
10 mA
2 mA
4 mA
1 mA
35 mA
200 mA
STANDBY
–Flash is powered
down
–Peripheral clocks
are turned off
–Pins without an
internal PU/PD are
tied high/low
5 mA
5 mA
20 mA
2 mA
4 mA
1 mA
35 mA
27 mA
HALT
–Flash is powered
down
–Peripheral clocks
are turned off
–Pins without an
internal PU/PD are
tied high/low
– Input clock is
disabled
70 mA
5 mA
20 mA
2 mA
4 mA
1mA
35 mA
9.8 mA
(1)
(2)
10 mA
TYP
MAX (2)
IDD
MAX (2)
TYP
MAX (2)
TA = 220°C
IDD3VFL
TYP
IDDIO
MAX
TYP
IDDA
(1)
TYP
MAX
TYP
MAX
30 mA
45 mA
50 mA
40 mA
52 mA
10 mA
56 mA
100 mA 320 mA 450 mA
160 mA 200 mA
56 mA
100 mA 320 mA 450 mA
160 mA 200 mA
56 mA
100 mA 320 mA 450 mA
50 mA 275 mA 330 mA 17 mA
40 mA
IDD3VFL
MAX
IDDA includes current into VDDA1, VDDA2, VDD1, AVDDREFBG , and VDDAIO pins.
MAX numbers are at 125°C, and max voltage (VDD = 2.0 V; VDDIO, VDD3VFL, VDDA = 3.6 V).
NOTE
HALT and STANDBY modes cannot be used when the PLL is disabled.
88
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
6.5
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Current Consumption Graphs
250
Current (mA)
200
150
100
50
0
0
20
40
60
80
100
120
140
160
SYSCLKOUT (MHz)
IDD
A.
B.
C.
D.
IDDIO
IDD3VFL
IDDA
Total 3.3−V current
Test conditions are as defined in Table 6-5 for operational currents under nominal process voltage and temperature
conditions.
IDD represents the total current drawn from the 1.8-V rail (VDD). It includes a trivial amount of current (<1 mA) drawn
by VDD1.
IDDA represents the current drawn by VDDA1 and VDDA2 rails.
Total 3.3-V current is the sum of IDDIO, IDD3VFL, and IDDA. It includes a trivial amount of current (<1 mA) drawn by
VDDAIO.
Figure 6-2. Typical Current Consumption Over Frequency
700
Power (mW)
600
500
400
300
200
100
0
0
20
40
60
80
100
120
140
160
SYSCLKOUT (MHz)
TOTAL POWER
Figure 6-3. Typical Power Consumption Over Frequency
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
89
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
6.6
www.ti.com
Reducing Current Consumption
28x DSPs incorporate a unique method to reduce the device current consumption. A reduction in current
consumption can be achieved by turning off the clock to any peripheral module which is not used in a
given application. Table 6-1 indicates the typical reduction in current consumption achieved by turning off
the clocks to various peripherals.
Table 6-1. Typical Current Consumption by Various Peripherals (at 150 MHz) (1)
(2)
(1)
(2)
(3)
6.7
PERIPHERAL MODULE
IDD CURRENT REDUCTION (mA)
eCAN
12
EVA
6
EVB
6
ADC
8 (3)
SCI
4
SPI
5
McBSP
13
All peripheral clocks are disabled upon reset. Writing to/reading from peripheral registers is
possible only after the peripheral clocks are turned on.
Not production tested.
This number represents the current drawn by the digital portion of the ADC module. Turning off the
clock to the ADC module results in the elimination of the current drawn by the analog portion of the
ADC (ICCA) as well.
Power Sequencing Requirements
SM320F2812 silicon requires dual voltages (1.8-V or 1.9-V and 3.3-V) to power up the CPU, Flash, ROM,
ADC, and the I/Os. To ensure the correct reset state for all modules during power up, there are some
requirements to be met while powering up/powering down the device. The current F2812 silicon reference
schematics (Spectrum Digital Incorporated eZdsp. board) suggests two options for the power sequencing
circuit.
• Option 1:
In this approach, an external power sequencing circuit enables VDDIO first, then VDD and VDD1 (1.8 V or
1.9 V). After 1.8 V (or 1.9 V) ramps, the 3.3 V for Flash (VDD3VFL) and ADC (VDDA1/VDDA2/AVDDREFBG)
modules are ramped up. While option 1 is still valid, TI has simplified the requirement. Option 2 is the
recommended approach.
• Option 2:
Enable power to all 3.3-V supply pins (VDDIO, VDD3VFL, VDDA1/VDDA2/VDDAIO/AVDDREFBG) and thenramp
1.8 V (or 1.9 V) (VDD/VDD1) supply pins.
1.8 V or 1.9 V (VDD/VDD1) should not reach 0.3 V until VDDIO has reached 2.5 V. This ensures the reset
signal from the I/O pin has propagated through the I/O buffer to provide power-on reset to all the
modules inside the device. See Figure 6-8 for power-on reset timing.
• Power-Down Sequencing:
During power-down, the device reset should be asserted low (8 ms, minimum) before the VDD supply
reaches 1.5 V. This helps to keep on-chip flash logic in reset prior to the VDDIO/VDD power supplies
ramping down. It is recommended that the device reset control from Low-Dropout (LDO) regulators or
voltage supervisors be used to meet this constraint. LDO regulators that facilitate power-sequencing
(with the aid of additional external components) may be used to meet the power sequencing
requirement. See www.spectrumdigital.com for F2812 eZdsp™ schematics and updates.
90
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 6-2. Recommended Low-Dropout Regulators
SUPPLIER
PART NUMBER
Texas Instruments
TPS767D301
NOTE
The GPIO pins are undefined until VDD = 1 V and VDDIO = 2.5 V.
See Figure 6-8,
Figure 6-4. F2812 Typical Power-Up and Power-Down Sequence – Option 2
6.8
Signal Transition Levels
Note that some of the signals use different reference voltages, see the recommended operating conditions
table. Output levels are driven to a minimum logic-high level of 2.4 V and to a maximum logic-low level of
0.4 V.
Figure 6-5 shows output levels.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
91
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
2.4 V (VOH)
80%
20%
0.4 V (VOL)
Figure 6-5. Output Levels
Output transition times are specified as follows:
• For a high-to-low transition, the level at which the output is said to be no longer high is below 80% of
the total voltage range and lower and the level at which the output is said to be low is 20% of the total
voltage range and lower.
• For a low-to-high transition, the level at which the output is said to be no longer low is 20% of the total
voltage range and higher and the level at which the output is said to be high is 80% of the total voltage
range and higher.
Figure 6-6 shows the input levels.
2.0 V (VIH)
90%
10%
0.8 V (VIL)
Figure 6-6. Input Levels
Input transition times are specified as follows:
• For a high-to-low transition on an input signal, the level at which the input is said to be no longer high
is 90% of the total voltage range and lower and the level at which the input is said to be low is 10% of
the total voltage range and lower.
• For a low-to-high transition on an input signal, the level at which the input is said to be no longer low is
10% of the total voltage range and higher and the level at which the input is said to be high is 90% of
the total voltage range and higher.
NOTE
See the individual timing diagrams for levels used for testing timing parameters.
6.9
Timing Parameter Symbology
Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the
symbols, some of the pin names and other related terminology have been abbreviated as follows:
92
Lowercase subscripts and their meanings:
Letters and symbols and their meanings:
a
access time
H
High
c
cycle time (period)
L
Low
d
delay time
V
Valid
f
fall time
X
Unknown, changing, or don’t care level
h
hold time
Z
High impedance
r
rise time
su
setup time
t
transition time
v
valid time
w
pulse duration (width)
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
6.10 General Notes on Timing Parameters
All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that
all output transitions for a given half-cycle occur with a minimum of skewing relative to each other.
The signal combinations shown in the following timing diagrams may not necessarily represent actual
cycles. For actual cycle examples, see the appropriate cycle description section of this document.
6.11 Test Load Circuit
This test load circuit is used to measure all switching characteristics provided in this document.
Tester Pin Electronics
42 Ω
3.5 nH
Transmission Line
Z0 = 50 Ω
(see note)
4.0 pF
1.85 pF
Data Sheet Timing Reference Point
Output
Under
Test
Device Pin
(see note)
NOTE: The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must
be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The
transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data
sheet timing.
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.
Figure 6-7. 3.3-V Test Load Circuit
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
93
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
6.12 Device Clock Table
This section provides the timing requirements and switching characteristics for the various clock options
available on the F2812 DSP. Table 6-3 lists the cycle times of various clocks.
Table 6-3. Clock Table and Nomenclature
MIN
On-chip oscillator clock
Frequency
tc(CI), Cycle time
XCLKIN
Frequency
SYSCLKOUT
XCLKOUT
tc(SCO), Cycle time
Frequency
tc(XCO), Cycle time
Frequency
tc(HCO), Cycle time
HSPCLK
NOM
ns
20
35
MHz
6.67
250
ns
4
150
MHz
6.67
500
ns
MHz
2
150
6.67
2000
ns
0.5
150
MHz
150
MHz
75
MHz
25
MHz
13.3 (1)
75 (1)
37.5 (1)
tc(ADCCLK), Cycle time (2)
ns
50
ns
Frequency
tc(CKG), Cycle time
McBSP
20
MHz
20
MHz
150
MHz
50
ns
Frequency
tc(XTIM), Cycle time
XTIMCLK
ns
40
Frequency
tc(SPC), Cycle time
SPI clock
ns
26.6 (1)
13.3
Frequency
ADC clock
UNIT
50
6.67
tc(LCO), Cycle time
MAX
28.6
Frequency
LSPCLK
(1)
(2)
tc(OSC), Cycle time
6.67
ns
Frequency
This is the default reset value if SYSCLKOUT = 150 MHz.
The maximum value for ADCCLK frequency is 25 MHz. For SYSCLKOUT values of 25 MHz or lower, ADCCLK has to be
SYSCLKOUT/2 or lower. ADCCLK = SYSCLKOUT is not a valid mode for any value of SYSCLKOUT.
6.13 Clock Requirements and Characteristics
6.13.1 Input Clock Requirements
The clock provided at the XCLKIN pin generates the internal CPU clock cycle.
Table 6-4. Input Clock Frequency (1)
PARAMETER
fx
Input clock frequency
fl
Limp mode clock frequency
(1)
(2)
Not production tested.
Not guaranteed for TA > 125°C.
94
Electrical Specifications
MIN
TYP
MAX
Resonator (2)
20
35
Crystal (2)
20
35
XCLKIN
4
150
2
UNIT
MHz
MHz
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 6-5. XCLKIN Timing Requirements – PLL Bypassed or Enabled (1)
NO.
C8
tc(CI)
Cycle time, XCLKIN
MIN
MAX
UNIT
6.67
250
ns
Up to 30 MHz
6
30 MHz to 150 MHz
2
Up to 30 MHz
6
30 MHz to 150 MHz
2
C9
tf(CI)
Fall time, XCLKIN
C10
tr(CI)
Rise time, XCLKIN
C11
tw(CIL)
Pulse duration, X1/XCLKIN low as a percentage of tc(CI)
40
60
%
tw(CIH)
Pulse duration, X1/XCLKIN high as a percentage of tc(CI)
40
60
%
MIN
MAX
UNIT
6.67
250
ns
C12
(1)
ns
ns
Not production tested.
Table 6-6. XCLKIN Timing Requirements – PLL Disabled (1)
NO.
C8
tc(CI)
Cycle time, XCLKIN
C9
tf(CI)
Fall time, XCLKIN
C10
tr(CI)
Rise time, XCLKIN
C11
tw(CIL)
Pulse duration, X1/XCLKIN low as a percentage of tc(CI)
C12
tw(CIH)
Pulse duration, X1/XCLKIN high as a percentage of
tc(CI)
(1)
Up to 30 MHz
6
30 MHz to 150 MHz
2
Up to 30 MHz
6
30 MHz to 150 MHz
2
XCLKIN ≤ 120 MHz
40
60
120 < XCLKIN ≤ 150 MHz
45
55
XCLKIN ≤ 120 MHz
40
60
120 < XCLKIN ≤ 150 MHz
45
55
ns
ns
%
%
Not production tested.
Table 6-7. Possible PLL Configuration Modes (1)
PLL MODE
PLL Disabled
REMARKS
SYSCLKOUT
Invoked by tying XPLLDIS pin low upon reset. PLL block is completely disabled. Clock input to the
CPU (CLKIN) is directly derived from the clock signal present at the X1/XCLKIN pin.
XCLKIN
Default PLL configuration upon power-up, if PLL is not disabled. The PLL itself is bypassed.
PLL Bypassed However, the /2 module in the PLL block divides the clock input at the X1/XCLKIN pin by two before
feeding it to the CPU.
PLL Enabled
(1)
Achieved by writing a non-zero value n into PLLCR register. The /2 module in the PLL block now
divides the output of the PLL by two before feeding it to the CPU.
XCLKIN/2
(XCLKIN × n)/2
Not production tested.
6.13.2 Output Clock Characteristics
Table 6-8. XCLKOUT Switching Characteristics (PLL Bypassed or Enabled) (1)
NO.
MIN
C1
tc(XCO)
Cycle time, XCLKOUT
tf(XCO)
Fall time, XCLKOUT
2
C4 (4)
tr(XCO)
Rise time, XCLKOUT
2
C5 (4)
tw(XCOL)
Pulse duration, XCLKOUT low
H–2
(4)
tw(XCOH)
Pulse duration, XCLKOUT high
H–2
tp
PLL lock time (5)
C7 (4)
6.67
TYP
MAX
(3)
C3 (4)
C6
(1)
(2)
(3)
(4)
(5)
PARAMETER
(2)
UNIT
ns
ns
ns
H+2
ns
H+2
ns
131 072tc(CI)
ns
A load of 40 pF is assumed for these parameters.
H = 0.5tc(XCO)
The PLL must be used for maximum frequency operation.
Not production tested..
This parameter has changed from 4096 XCLKIN cycles in the earlier revisions of the silicon.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
95
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
See Note A
See Note B
A.
B.
The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown in
Figure 6-8 is intended to illustrate the timing parameters only and may differ based on configuration.
XCLKOUT configured to reflect SYSCLKOUT.
Figure 6-8. Clock Timing
6.14 Reset Timing
Table 6-9. Reset (XRS) Timing Requirements (1)
(2)
MIN
tw(RSL1)
Pulse duration, stable XCLKIN to XRS high
tw(RSL2)
Pulse duration, XRS low
Warm reset
Pulse duration, reset pulse generated by
watchdog
td(EX)
Delay time, address/data valid after XRS high
tOSCST
(3)
MAX
UNIT
cycles
8tc(CI)
WD-initiated reset
tw(WDRS)
NOM
8tc(CI)
cycles
512tc(CI)
Oscillator start-up time
1
512tc(CI)
cycles
32tc(CI)
cycles
10
ms
tsu(XPLLDIS)
Setup time for XPLLDIS pin
16tc(CI)
cycles
th(XPLLDIS)
Hold time for XPLLDIS pin
16tc(CI)
cycles
th(XMP/MC)
Hold time for XMP/MC pin
16tc(CI)
cycles
th(boot-mode)
Hold time for boot-mode pins
(4)
cycles
(1)
(2)
(3)
(4)
96
2520tc(CI)
If external oscillator/clock source isused, reset time has to be low at least for 1 ms after VDD reaches 1.5 V.
Not production tested.
Dependent on crystal/resonator and board design.
The boot ROM reads the password locations. Therefore, this timing requirement includes the wakeup time for flash. See the
TMS320x281x Boot ROM Reference Guide (literature number SPRU095) and TMS320x281x System Control and Interrupts Reference
Guide (literature number SPRU078) for further information.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
VDDIO, VDD3VFL
VDDAn, VDDAIO
(3.3 V)
(See Note B)
2.5 V
VDD, VDD1
(1.8 V (or 1.9 V))
0.3 V
XCLKIN
X1
XCLKIN/8 (See Note C)
XCLKOUT
User-Code Dependent
tOSCST
tw(RSL1)
XRS
Address/Data Valid. Internal Boot-ROM Code Execution Phase
Address/Data/
Control
td(EX)
tsu(XPLLDIS)
XPLLDIS Sampling
XF/XPLLDIS
User-Code Execution Phase
User-Code Dependent
th(XPLLDIS)
(Don’t Care)
GPIOF14
th(XMP/MC)
XMP/MC
th(boot-mode)
(See Note D)
Boot-Mode Pins
(Don’t Care)
User-Code Dependent
GPIO Pins as Input
See Note A
Boot-ROM Execution Starts
I/O Pins
Peripheral/GPIO Function
Based on Boot Code
GPIO Pins as Input (State Depends on Internal PU/PD)
User-Code Dependent
NOTES: A. The state of the GPIO pins is undefined (i.e., they could be input or output) until the 1.8-V (or 1.9-V) supply reaches at least 1 V
and 3.3-V supply reaches 2.5 V.
B. VDDAn − VDDA1/VDDA2 and AVDDREFBG
C. Upon power up, SYSCLKOUT is XCLKIN/2 if the PLL is enabled. Since both the XTIMCLK and CLKMODE bits in the XINTCNF2
register come up with a reset state of 1, SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. This explains why
XCLKOUT = XCLKIN/8 during this phase.
D. After reset, the Boot ROM code executes instructions for 1260 SYSCLKOUT cycles (SYSCLKOUT = XCLKIN/2) and then
samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot
code function in ROM. The BOOT Mode pins should be held high/low for at least 2520 XCLKIN cycles from boot ROM execution
time for proper selection of Boot modes.
If Boot ROM code executes after power-on conditions (in debugger environment), the Boot code execution time is based on
the current SYSCLKOUT speed. The SYSCLKOUT is based on user environment and could be with or without PLL enabled.
Figure 6-9. Power-on Reset in Microcomputer Mode (XMP/MC = 0) (See Note A)
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
97
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
VDDIO, VDD3VFL
VDDAn, VDDAIO
(3.3 V)
VDD, VDD1 (1.8 V (or
1.9 V))
www.ti.com
2.5 V
0.3 V
XCLKIN
X1
tOSCST
XCLKOUT
User-Code Dependent
XCLKIN/8 (See Note A)
tw(RSL)
XRS
td(EX)
Address/Data/
Control
(Don’t Care)
XF/XPLLDIS
(Don’t Care)
XPLLDIS Sampling
Address/Data/Control Valid Execution
Begins From External Boot Address 0x3FFFC0
th(XPLLDIS)
GPIOF14/XF (User-Code Dependent)
tsu(XPLLDIS)
XMP/MC
th(XMP/MC)
I/O Pins
(Don’t Care)
User-Code Dependent
See Note B
Input Configuration (State Depends on Internal PU/PD)
NOTES: A. Upon power up, SYSCLKOUT is XCLKIN/2 if the PLL is enabled. Since both the XTIMCLK and CLKMODE bits in the XINTCNF2
register come up with a reset state of 1, SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. This explains why
XCLKOUT = XCLKIN/8 during this phase.
B. The state of the GPIO pins is undefined (i.e., they could be input or output) until the 1.8-V (or 1.9-V) supply reaches at least 1 V
and 3.3-V supply reaches 2.5 V..
Figure 6-10. Power-on Reset in Microprocessor Mode (XMP/MC = 1)
98
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
XCLKIN
X1
XCLKIN/8
XCLKOUT
(XCLKIN * 5)
User-Code Dependent
tw(RSL2)
XRS
td(EX)
Address/Data/
Control
(Don’t Care)
User-Code Execution
tsu(XPLLDIS)
XF/XPLLDIS
XMP/MC
Boot-Mode Pins
User-Code Execution Phase
th(XPLLDIS)
(Don’t Care)
GPIOF14/XF
(Don’t Care)
GPIOF14
XPLLDIS Sampling
th(XMP/MC)
User-Code Dependent
Boot-ROM Execution Starts
th(boot-mode) (see Note A)
GPIO Pins as Input
Peripheral/GPIO Function
Peripheral/GPIO Function
(Don’t Care)
User-Code Execution Starts
I/O Pins
User-Code Dependent
GPIO Pins as Input (State Depends on Internal PU/PD)
User-Code Dependent
A.
After reset, the Boot ROM code executes instructions for 1260 SYSCLKOUT cycles (SYSCLKOUT = XCLKIN/2) and
then samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination
memory or boot code function in ROM. The BOOT Mode pins should be held high/low for at least 2520 XCLKIN
cycles from boot ROM execution time for proper selection of Boot modes. If Boot ROM code executes after power-on
conditions (in debugger environment), the Boot code execution time is based on the current SYSCLKOUT speed. The
SYSCLKOUT is based on user environment and could be with or without PLL enabled.
Figure 6-11. Warm Reset in Microcomputer Mode
X1/XCLKIN
Write to PLLCR
SYSCLKOUT
XCLKIN x 2
XCLKIN/2
XCLKIN x 4
(Current CPU
Frequency)
(CPU Frequency While PLL is Stabilizing
With the Desired Frequency. This Period
(PLL Lock-up Time, tp) is
131072 XCLKIN Cycles Long.)
(Changed CPU Frequency)
Figure 6-12. Effect of Writing Into PLLCR Register
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
99
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
6.15 Low-Power Mode Wakeup Timing
Table 6-10 is also the IDLE Mode Wake-Up Timing Requirements table.
Table 6-10. IDLE Mode Switching Characteristics (1)
PARAMETER
tw(WAKE-INT)
TEST CONDITIONS
Pulse duration, external wake-up
signal
MIN
Without input qualifier
With input qualifier
TYP
MAX
UNIT
2 x tc(SCO)
Cycles
1 × tc(SCO) + IQT (2)
Cycles
8 × tc(SCO)
Cycles
8 × tc(SCO) + IQT (2)
Cycles
1050 × tc(SCO)
Cycles
1050 × tc(SCO) + IQT (2)
Cycles
8 × tc(SCO)
Cycles
(2)
Cycles
Delay time, external wake signal
to program execution resume (3)
td(WAKE-IDLE)
–Wake-up from Flash
–Flash module in active state
Without input qualifier
– Wake-up from Flash
–Flash module in active state
With input qualifier
–Wake-up from Flash
–Flash module in sleep state
Without input qualifier
–Wake-up from Flash
–Flash module in sleep state
With input qualifier
–Wake-up from SARAM
Without input qualifier
–Wake-up from SARAM
(1)
(2)
(3)
With input qualifier
8 × tc(SCO) + IQT
Not production tested.
Input Qualification Time (IQT) = [5 × QUALPRD × 2] × tc(SCO)
This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered
by the wake-up) signal involves additional latency.
td(WAKE−IDLE)
A0−A15
XCLKOUT
(see Note A)
tw(WAKE−INT)
WAKE INT
(see Note B)
A.
B.
XCLKOUT = SYSCLKOUT
WAKE INT can be any enabled interrupt, WDINT, XNMI, or XRS.
Figure 6-13. IDLE Entry and Exit Timing
100
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 6-11 is also the STANDBY Mode Wake-Up Timing Requirements table.
Table 6-11. STANDBY Mode Switching Characteristics (1)
PARAMETER
TEST CONDITIONS
td(IDLE-XCOH)
Delay time, IDLE instruction
executed to XCLKOUT high
tw(WAKE-INT)
Pulse duration, external
wake-up signal
MIN
TYP
32 × tc(SCO)
12 × tc(CI)
MAX
UNIT
Cycles
Without input
qualifier
12 × tc(CI)
Cycles
With input qualifier
(2)
× tc(CI)
Cycles
12 × tc(CI)
Cycles
12 × tc(CI) + tw(WAKE-INT)
Cycles
1125 × tc(SCO)
Cycles
1125 × tc(SCO) + tw(WAKE-INT)
Cycles
12 x tc(CI)
Cycles
12 × tc(CI) + tw(WAKE-INT)
Cycles
(2 + QUALSTDBY)
Delay time, external wake
signal to program execution
resume (3)
td(WAKE-STBY)
(1)
(2)
(3)
–Wake-up from Flash
–Flash module in active
state
Without input
qualifier
–Wake-up from Flash
–Flash module in active
state
With input qualifier
–Wake-up from Flash
–Flash module in sleep
state
Without input
qualifier
–Wake-up from Flash
–Flash module in sleep
state
With input qualifier
–Wake-up from SARAM
Without input
qualifier
–Wake-up from SARAM
With input qualifier
Not production tested.
QUALSTDBY is a 6-bit field in the LPMCR0 register.
This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered
by the wake-up) signal involves additional latency.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
101
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
A
C
E
B
Device
Status
STANDBY
D
F
STANDBY
Normal Execution
Flushing Pipeline
Wake−up
Signal
tw(WAKE-INT)
td(WAKE-STBY)
X1/XCLKIN
td(IDLE−XCOH)
XCLKOUT†
32 SYSCLKOUT Cycles
NOTES: A. IDLE instruction is executed to put the device into STANDBY mode.
B. The PLL block responds to the STANDBY signal. SYSCLKOUT is held for approximately 32 cycles before being turned
off. This 32-cycle delay enables the CPU pipe and any other pending operations to flush properly.
C. The device is now in STANDBY mode.
D. The external wake-up signal is driven active (negative edge triggered shown as an example).
E. After a latency period, the STANDBY mode is exited.
F. Normal operation resumes. The device responds to the interrupt (if enabled).
Figure 6-14. STANDBY Entry and Exit Timing
102
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 6-12. HALT Mode Switching Characteristics (1)
PARAMETER
MIN
TYP
32 × tc(SCO)
45 × tc(SCO)
td(IDLE-XCOH)
Delay time, IDLE instruction executed to XCLKOUT
high
tw(WAKE-XNMI)
Pulse duration, XNMI wakeup signal
2 × tc(CI)
tw(WAKE-XRS)
Pulse duration, XRS wakeup signal
8 × tc(CI)
tp
PLL lock-up time
MAX
UNIT
Cycles
Cycles
Cycles
131 072 × tc(CI)
Cycles
Delay time, PLL lock to program execution resume
td(wake)
–Wake-up from flash
–Flash module in sleep state
–Wake-up from SARAM
(1)
1125 × tc(SCO)
Cycles
35 × tc(SCO)
Cycles
Not production tested.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
103
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
A.
B.
C.
D.
E.
F.
G.
H.
www.ti.com
IDLE instruction is executed to put the device into HALT mode.
The PLL block responds to the HALT signal. SYSCLKOUT is held for another 32 cycles before the oscillator is turned
off and the CLKIN to the core is stopped. This 32-cycle delay enables the CPU pipe and any other pending
operations to flush perperly.
Clocks to the device are turned off and the internal oscillator and PLL are shut down. The device is now in HALT
mode and consumes absolute minimum power.
When XNMI is friven active (negative edge triggered shown, as an example), the oscillator is turned on; but the PLL is
not activiated.
When XNMI is deactiveted, it initiates the PLL lock sequence, which takes 131, 072 X1/XCLKIN cycles.
When CLKIN to the core is enabled, the device responds to the interrupt (if enabled), after a latency. The HALT mode
is now exited.
Normal operation resumes.
XCLKOUT = SYSCLKOUT
Figure 6-15. HALT Wakeup Using XNMI
6.16 Event Manager Interface
6.16.1 PWM Timing
PWM refers to all PWM outputs on EVA and EVB.
104
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 6-13. PWM Switching Characteristics (1)
PARAMETER
tw(PWM)
(3) (4)
TEST CONDITIONS
MIN
Pulse duration, PWMx output high/low
td(PWM)XCO
(1)
(2)
(3)
(4)
(2)
MAX
Delay time, XCLKOUT high to PWMx output switching
XCLKOUT = SYSCLKOUT/4
ns
10
(2) (3)
MIN
Without input qualifier
MAX
2 × tc(SCO)
tw(TDIR)
Pulse duration, TDIRx low/high
tw(CAP)
Pulse duration, CAPx input low/high
tw(TCLKINL)
Pulse duration, TCLKINx low as a percentage of TCLKINx cycle time
40
60
tw(TCLKINH)
Pulse duration, TCLKINx high as a percentage of TCLKINx cycle time
40
60
tc(TCLKIN)
Cycle time, TCLKINx
(2)
(3)
(4)
ns
See the GPIO output timing for fall/rise times for PWM pins.
PWM pin toggling frequency is limited by the GPIO output buffer switching frequency (20 MHz).
PWM outputs may be 100%, 0%, or increments of tc(HCO) with respect to the PWM period.
Not production tested.
Table 6-14. Timer and Capture Unit Timing Requirements (1)
(1)
UNIT
25
With input qualifier
Without input qualifier
With input qualifier
UNIT
cycles
1 × tc(SCO) + IQT (4)
2 × tc(SCO)
cycles
1 x tc(SCO) + IQT (4)
4 × tc(HCO)
%
%
ns
The QUALPRD bit field value can range from 0 (no qualification) through 0xFF (510 SYSCLKOUT cycles). The qualification sampling
period is 2n SYSCLKOUT cycles, where n is the value stored in the QUALPRD bit field. As an example, when QUALPRD = 1, the
qualification sampling period is 1 × 2 = 2 SYSCLKOUT cycles (i.e., the input is sampled every 2 SYSCLKOUT cycles). Six such samples
are taken over five sampling windows, each window being 2n SYSCLKOUT cycles. For QUALPRD = 1, the minimum width that is
needed is 5 × 2 = 10 SYSCLKOUT cycles. However, since the external signal is driven asynchronously, a 11-SYSCLKOUT-wide pulse
ensures reliable recognition.
Maximum input frequency to the QEP = min[HSPCLK/2, 20 MHz]
Not production tested.
Input Qualification Time (IQT) = [5 × QUALPRD × 2] × tc(SCO)
XCLKOUT
(see Note A)
td(PWM)XCO
tw(PWM)
PWMx
A.
XCLKOUT = SYSCLKOUT
Figure 6-16. PWM Output Timing
XCLKOUT
(see Note A)
tw(TDIR)
TDIRx
A.
XCLKOUT = SYSCLKOUT
Figure 6-17. TDIRx Timing
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
105
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Table 6-15. External ADC Start-of-Conversion – EVA – Switching Characteristics (1)
PARAMETER
MIN
td(XCOH-EVASOCL)
Delay time, XCLKOUT high to EVASOC low
tw(EVASOCL)
Pulse duration, EVASOC low
(1)
(2)
(2)
MAX
UNIT
1 × tc(SCO)
cycle
32 × tc(HCO)
ns
XCLKOUT = SYSCLKOUT
Not production tested.
XCLKOUT
td(XCOH-EVASOCL)
tw(EVASOCL)
EVASOC
Figure 6-18. EVASOC Timing
Table 6-16. External ADC Start-of-Conversion – EVB – Switching Characteristics (1)
PARAMETER
MIN
td(XCOH-EVBSOCL)
Delay time, XCLKOUT high to EVBSOC low
tw(EVBSOCL)
Pulse duration, EVBSOC low
(1)
(2)
(2)
MAX
UNIT
1 × tc(SCO)
cycle
32 × tc(HCO)
ns
XCLKOUT = SYSCLKOUT
Not production tested.
XCLKOUT
td(XCOH-EVBSOCL)
tw(EVBSOCL)
EVBSOC
Figure 6-19. EVBSOC Timing
6.16.2 Interrupt Timing
Table 6-17. Interrupt Switching Characteristics
PARAMETER
Delay time, PDPINTx low to PWM
high-impedance state
td(PDP-PWM)HZ
td(TRIP-PWM)HZ
td(INT)
(1)
(2)
106
(2)
MIN
(2)
Delay time, CxTRIP/TxCTRIP signals low
to PWM high-impedance state
Without input
qualifier
UNIT
12
1 × tc(SCO) + IQT +
12 (1)
With input qualifier
Without input
qualifier
3 × tc(SCO)
ns
ns
[2 × tc(SCO)] + IQT (1)
With input qualifier
Delay time, INT low/high to
interrupt-vector fetch
MAX
tqual + 12tc(XCO)
ns
Input Qualification Time (IQT) = [5 × QUALPRD × 2] × tc(SCO)
Not production tested.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 6-18. Interrupt Timing Requirements
MIN
(1)
tw(INT)
Pulse duration, INT input low/high
tw(PDP)
(1)
with no qualifier
tw(TxCTRIP)
with no qualifier
(1)
with no qualifier
Pulse duration, TxCTRIP input low
2 × tc(SCO)
cycles
2 × tc(SCO)
cycles
1 × tc(SCO) + IQT (2)
with qualifier
2 × tc(SCO)
cycles
1 × tc(SCO) + IQT (2)
with qualifier
UNIT
cycles
1 × tc(SCO) + IQT (2)
with qualifier
Pulse duration, CxTRIP input low
MAX
2 × tc(SCO)
1 × tc(SCO) + IQT (2)
with qualifier
Pulse duration, PDPINTx input low
tw(CxTRIP)
(1)
(2)
with no qualifier
Not production tested.
Input Qualification Time (IQT) = [5 × QUALPRD × 2] × tc(SCO)
XCLKOUT
(see Note A)
tw(PDP), tw(CxTRIP), tw(TxCTRIP)
TxCTRIP, CxTRIP,
PDPINTx
(see Note B)
td(PDP-PWM)HZ , td(TRIP-PWM)HZ
PWM
(see Note C)
tw(INT)
XNMI, XINT1, XINT2
td(INT)
Interrupt Vector
A0−A15
A.
B.
C.
XCLKOUT = SYSCLKOUT
TxCTRIP – T1CTRIP, T2CTRIP, T3CTRIP, T4CTRIP . CxTRIP – C1TRIP, C2TRIP, C3TRIP, C4TRIP, C5TRIP, or
C6TRIP. PDPINTx – PDPINTA or PDPINTB
PWM refers to all the PWM pins in the device (i.e., PWMn and TnPWM pins or PWM pin pair relevant to each
CxTRIP pin). The state of the PWM pins after PDPINTx is taken high depends on the state of the FCOMPOE bit.
Figure 6-20. External Interrupt Timing
6.17 General-Purpose Input/Output (GPIO) – Output Timing
Table 6-19. General-Purpose Output Switching Characteristics
PARAMETER
td(XCOH-GPO)
MIN
MAX
UNIT
cycle
Delay time, XCLKOUT high to GPIO low/high
All GPIOs
1 × tc(SCO)
tr(GPO)
(1)
Rise time, GPIO switching low to high
All GPIOs
10
tf(GPO)
(1)
Fall time, GPIO switching high to low
All GPIOs
10
ns
20
MHz
fGPO
(1)
(1)
Toggling frequency, GPO pins
ns
Not production tested.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
107
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
XCLKOUT
td(XCOH-GPO)
GPIO
tr(GPO)
tf(GPO)
Figure 6-21. General-Purpose Output Timing
6.18 General-Purpose Input/Output (GPIO) – Input Timing
See Note A
GPIO
Signal
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
QUALPRD
Sampling Window
SYSCLKOUT
QUALPRD = 1
(2 x SYSCLKOUT cycles) x 5
Output From
Qualifier
NOTES: A. This glitch is ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00
to 0xFF. Input qualification is not applicable when QUALPRD = 00. For any other value n, the qualification sampling period in 2n
SYSCLKOUT cycles (i.e., at every 2n SYSCLKOUT cycle, the GPIO pin is sampled). Six consecutive samples must be of the
same value for a given input to be recognized.
B. For the qualifier to detect the change, the input should be stable for 10 SYSCLKOUT cycles or greater. In other words, the inputs
should be stable for (5 x QUALPRD x 2) SYSCLKOUT cycles. This would ensure six sampling windows for detection to occur.
Since external signals are driven asynchronously, an 11-SYSCLKOUT-wide pulse ensures reliable recognition.
Figure 6-22. GPIO Input Qualifier – Example Diagram for QUALPRD = 1
Table 6-20. General-Purpose Input Timing Requirements (1)
MIN
tw(GPI)
(1)
(2)
108
Pulse duration, GPIO low/high
All GPIOs
With no qualifier
With qualifier
2 × tc(SCO)
1 × tc(SCO) + IQT (2)
MAX
UNIT
cycles
Not production tested.
Input Qualification Time (IQT) = [5 × QUALPRD × 2] × tc(SCO)
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
XCLKOUT
GPIOxn
tw(GPI)
Figure 6-23. General-Purpose Input Timing
NOTE
The pulse width requirement for general-purpose input is applicable for the XBIO and
ADCSOC pins as well.
6.19 SPI Master Mode Timing
Table 6-21. SPI Master Mode External Timing (Clock Phase = 0) (1)
SPI WHEN (SPIBRR + 1)
IS EVEN OR
SPIBRR = 0 OR 2
NO.
1
MAX
MIN
MAX
128tc(LCO)
5tc(LCO)
127tc(LCO)
0.5tc(SPC)M – 10
0.5tc(SPC)M 0.5tc(SPC)M – 0.5tc(LCO) – 10
0.5tc(SPC)M – 0.5tc(LCO)
Pulse duration, SPICLK low
(clock polarity = 1)
0.5tc(SPC)M – 10
0.5tc(SPC)M 0.5tc(SPC)M – 0.5tc(LCO) – 10
0.5tc(SPC)M – 0.5tc(LCO)
tw(SPCL)M
Pulse duration, SPICLK low
(clock polarity = 0)
0.5tc(SPC)M – 10
0.5tc(SPC)M 0.5tc(SPC)M + 0.5tc(LCO) – 10
0.5tc(SPC)M + 0.5tc(LCO)
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 1)
0.5tc(SPC)M – 10
0.5tc(SPC)M 0.5tc(SPC)M + 0.5tc(LCO) – 10
0.5tc(SPC)M + 0.5tc(LCO)
td(SPCH-SIMO)M
Delay time, SPICLK high to SPISIMO
valid (clock polarity = 0)
–10
10
–10
10
td(SPCL-SIMO)M
Delay time, SPICLK low to SPISIMO
valid (clock polarity = 1)
–10
10
–10
10
tv(SPCL-SIMO)M
Valid time, SPISIMO data valid after
SPICLK low (clock polarity = 0)
0.5tc(SPC)M – 10
0.5tc(SPC)M + 0.5tc(LCO) – 10
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid after
SPICLK high (clock polarity = 1)
0.5tc(SPC)M – 10
0.5tc(SPC)M + 0.5tc(LCO) – 10
tsu(SOMI-SPCL)M
Setup time, SPISOMI before SPICLK
low (clock polarity = 0)
0
0
tsu(SOMI-SPCH)M
Setup time, SPISOMI before SPICLK
high (clock polarity = 1)
0
0
tv(SPCL-SOMI)M
Valid time, SPISOMI data valid after
SPICLK low (clock polarity = 0)
0.25tc(SPC)M – 10
0.5tc(SPC)M – 0.5tc(LCO) – 10
tv(SPCH-SOMI)M
Valid time, SPISOMI data valid after
SPICLK high (clock polarity = 1)
0.25tc(SPC)M – 10
0.5tc(SPC)M – 0.5tc(LCO) – 10
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 0)
tw(SPCL)M
ns
ns
ns
4 (4)
ns
(4)
ns
8 (4)
ns
9 (4)
(2)
(3)
(4)
UNIT
MIN
Cycle time, SPICLK
3 (4)
(1)
SPI WHEN (SPIBRR + 1)
IS ODD AND
SPIBRR > 3
4tc(LCO)
tc(SPC)M
2 (4)
5
(2) (3)
ns
The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared.
LSPCLK
tc(SPC) + SPI clock cycle time + LSPCLK or
+ t c(LCO) + LSPCLK cycle time
4
(SPIBRR ) 1)
Not production tested.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
109
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
NOTE
Internal clock prescalers must be adjusted such that the SPI clock speed is not greater than
the I/O buffer speed limit (20 MHz).
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
4
5
SPISIMO
Master Out Data Is Valid
8
9
SPISOMI
Master In Data
Must Be Valid
SPISTE
(see Note A)
A.
In the master mode, SPISTE goes active 0.5tc(SPC) before valid SPI clock edge. On the trailing end of the word, the
SPISTE will go inactive 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit.
Figure 6-24. SPI Master Mode External Timing (Clock Phase = 0)
110
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 6-22. SPI Master Mode External Timing (Clock Phase = 1) (1)
SPI WHEN (SPIBRR + 1)
IS EVEN OR
SPIBRR = 0 OR 2
NO.
1
MAX
MIN
MAX
4tc(LCO)
128tc(LCO)
5tc(LCO)
127tc(LCO)
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 0)
0.5tc(SPC)M – 10
0.5tc(SPC)M
0.5tc(SPC)M – 0.5tc (LCO) – 10
0.5tc(SPC)M – 0.5tc(LCO)
tw(SPCL)M
Pulse duration, SPICLK low
(clock polarity = 1)
0.5tc(SPC)M – 10
0.5tc(SPC)M
0.5tc(SPC)M – 0.5tc (LCO) – 10
0.5tc(SPC)M – 0.5tc(LCO)
tw(SPCL)M
Pulse duration, SPICLK low
(clock polarity = 0)
0.5tc(SPC)M – 10
0.5tc(SPC)M
0.5tc(SPC)M + 0.5tc(LCO) – 10
0.5tc(SPC)M – 0.5tc(LCO)
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 1)
0.5tc(SPC)M – 10
0.5tc(SPC)M
0.5tc(SPC)M + 0.5tc(LCO) – 10
0.5tc(SPC)M – 0.5tc(LCO)
tsu(SIMO-SPCH)M
Setup time, SPISIMO data valid
before SPICLK high (clock
polarity = 0)
0.5tc(SPC)M – 10
0.5tc(SPC)M – 10
tsu(SIMO-SPCL)M
Setup time, SPISIMO data valid
before SPICLK low (clock
polarity = 1)
0.5tc(SPC)M – 10
0.5tc(SPC)M – 10
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid
after SPICLK high (clock polarity
= 0)
0.5tc(SPC)M – 10
0.5tc(SPC)M – 10
tv(SPCL-SIMO)M
Valid time, SPISIMO data valid
after SPICLK low (clock polarity
= 1)
0.5tc(SPC)M – 10
0.5tc(SPC)M – 10
tsu(SOMI-SPCH)M
Setup time, SPISOMI before
SPICLK high
(clock polarity = 0)
0
0
tsu(SOMI-SPCL)M
Setup time, SPISOMI before
SPICLK low
(clock polarity = 1)
0
0
tv(SPCH-SOMI)M
Valid time, SPISOMI data valid
after SPICLK high (clock polarity
= 0)
0.25tc(SPC)M – 10
0.5tc(SPC)M – 10
tv(SPCL-SOMI)M
Valid time, SPISOMI data valid
after SPICLK low (clock polarity
= 1)
0.25tc(SPC)M – 10
0.5tc(SPC)M – 10
ns
ns
ns
6 (4)
ns
(4)
ns
10 (4)
ns
11 (4)
(2)
(3)
(4)
UNIT
MIN
Cycle time, SPICLK
3 (4)
(1)
SPI WHEN (SPIBRR + 1)
IS ODD AND
SPIBRR > 3
tc(SPC)M
2 (4)
7
(2) (3)
ns
The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.
LSPCLK
tc(SPC) + SPI clock cycle time + LSPCLK or
+ t c(LCO) + LSPCLK cycle time
4
(SPIBRR ) 1)
Not production tested..
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
111
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
6
7
Master Out Data Is Valid
SPISIMO
Data Valid
10
11
Master In Data
Must Be Valid
SPISOMI
SPISTE
(see Note A)
A.
In the master mode, SPISTE goes active 0.5tc(SPC) before valid SPI clock edge. On the trailing end of the word, the
SPISTE will go inactive 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit.
Figure 6-25. SPI Master External Timing (Clock Phase = 1)
112
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
6.20 SPI Slave Mode Timing
Table 6-23. SPI Slave Mode External Timing (Clock Phase = 0) (1)
NO.
12
13 (4)
14 (4)
15 (4)
16
20
(1)
(2)
(3)
(4)
MIN
Cycle time, SPICLK
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 0)
0.5tc(SPC)S – 10
0.5tc(SPC)S
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 1)
0.5tc(SPC)S – 10
0.5tc(SPC)S
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 0)
0.5tc(SPC)S – 10
0.5tc(SPC)S
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 1)
0.5tc(SPC) – 10
0.5tc(SPC)S
td(SPCH-SOMI)S
Delay time, SPICLK high to SPISOMI valid
(clock polarity = 0)
0.375tc(SPC)S – 10
td(SPCL-SOMI)S
Delay time, SPICLK low to SPISOMI valid (clock polarity = 1)
0.375tc(SPC)S – 10
tv(SPCL-SOMI)S
Valid time, SPISOMI data valid after SPICLK low
(clock polarity = 0)
0.75tc(SPC)S
tv(SPCH-SOMI)S
Valid time, SPISOMI data valid after SPICLK high
(clock polarity = 1)
0.75tc(SPC)S
tsu(SIMO-SPCL)S
Setup time, SPISIMO before SPICLK low (clock polarity = 0)
0
tsu(SIMO-SPCH)S
Setup time, SPISIMO before SPICLK high (clock polarity = 1)
0
tv(SPCL-SIMO)S
Valid time, SPISIMO data valid after SPICLK low
(clock polarity = 0)
0.5tc(SPC)S
tv(SPCH-SIMO)S
Valid time, SPISIMO data valid after SPICLK high
(clock polarity = 1)
0.5tc(SPC)S
(4)
4tc(LCO)
MAX
(2)
tc(SPC)S
(4)
19 (4)
(2) (3)
UNIT
ns
ns
ns
ns
ns
ns
ns
The MASTER/SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.
LSPCLK
tc(SPC) + SPI clock cycle time + LSPCLK or
+ t c(LCO) + LSPCLK cycle time
4
(SPIBRR ) 1)
Not production tested.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).
12
SPICLK
(clock polarity = 0)
13
14
SPICLK
(clock polarity = 1)
15
16
SPISOMI
SPISOMI Data Is Valid
19
20
SPISIMO
SPISIMO Data
Must Be Valid
SPISTE
(see Note A)
A.
In the slave mode, the SPISTE signal should be asserted low at least 0.5tc(SPC) before the valid SPI clock edge and
remain low for at least 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit.
Figure 6-26. SPI Slave Mode External Timing (Clock Phase = 0)
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
113
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
114
www.ti.com
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 6-24. SPI Slave Mode External Timing (Clock Phase = 1) (1)
NO.
12
13 (4)
14 (4)
17
MIN
Cycle time, SPICLK
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 0)
0.5tc(SPC)S – 10
0.5tc(SPC)S
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 1)
0.5tc(SPC)S – 10
0.5tc(SPC)S
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 0)
0.5tc(SPC)S – 10
0.5tc(SPC)S
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 1)
0.5tc(SPC)S – 10
0.5tc(SPC)S
tsu(SOMI-SPCH)S
Setup time, SPISOMI before SPICLK high (clock polarity =
0)
0.125tc(SPC)S
tsu(SOMI-SPCL)S
Setup time, SPISOMI before SPICLK low (clock polarity =
1)
0.125tc(SPC)S
tv(SPCH-SOMI)S
Valid time, SPIS OMI data valid after SPICLK high
(clock polarity = 0)
0.75tc(SPC)S
tv(SPCL-SOMI)S
Valid time, SPISOMI data valid after SPICLK low
(clock polarity = 1)
0.75tc(SPC)S
tsu(SIMO-SPCH)S
Setup time, SPISIMO before SPICLK high (clock polarity =
0)
0
tsu(SIMO-SPCL)S
Setup time, SPISIMO before SPICLK low (clock polarity =
1)
0
tv(SPCH-SIMO)S
Valid time, SPISIMO data valid after SPICLK high
(clock polarity = 0)
0.5tc(SPC)S
tv(SPCL-SIMO)S
Valid time, SPISIMO data valid after SPICLK low
(clock polarity = 1)
0.5tc(SPC)S
(4)
21 (4)
(1)
(2)
(3)
(4)
MAX
tc(SPC)S
18 (4)
22
(2) (3)
(4)
8tc(LCO)
UNIT
ns
ns
ns
ns
ns
ns
ns
The MASTER/SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is set.
LSPCLK
tc(SPC) + SPI clock cycle time + LSPCLK or
+ t c(LCO) + LSPCLK cycle time
4
(SPIBRR ) 1)
Not production tested.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).
12
SPICLK
(clock polarity = 0)
13
14
SPICLK
(clock polarity = 1)
17
18
SPISOMI
Data Valid
SPISOMI Data Is Valid
21
22
SPISIMO
SPISIMO Data
Must Be Valid
SPISTE
(see Note A)
A.
In the slave mode, the SPISTE signal should be asserted low at least 0.5tc(SPC) before the valid SPI clock edge and
remain low for at least 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit.
Figure 6-27. SPI Slave Mode External Timing (Clock Phase = 1)
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
115
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
116
www.ti.com
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
6.21 External Interface (XINTF) Timing
Each XINTF access consists of three parts: Lead, Active, and Trail. The user configures the
Lead/Active/Trail wait states in the XTIMING registers. There is one XTIMING register for each XINTF
zone. Table 6-25 shows the relationship between the parameters configured in the XTIMING register and
the duration of the pulse in terms of XTIMCLK cycles.
Table 6-25. Relationship Between Parameters Configured in XTIMING and Duration of Pulse (1)
(2) (3)
DURATION (ns)
DESCRIPTION
X2TIMING = 0
X2TIMING = 1
LR
Lead period, read access
XRDLEAD × tc(XTIM)
(XRDLEAD × 2) × tc(XTIM)
AR
Active period, read access
(XRDACTIVE + WS + 1) × tc(XTIM)
(XRDACTIVE × 2 + WS + 1) × tc(XTIM)
TR
Trail period, read access
XRDTRAIL × tc(XTIM)
(XRDTRAIL × 2) × tc(XTIM)
LW
Lead period, write access
XWRLEAD × tc(XTIM)
(XWRLEAD × 2) × tc(XTIM)
AW
Active period, write access
(XWRACTIVE + WS + 1) x tc(XTIM)
(XWRACTIVE × 2 + WS + 1) × tc(XTIM)
TW
Trail period, write access
XWRTRAIL × tc(XTIM)
(XWRTRAIL × 2) × tc(XTIM)
(1)
(2)
(3)
Not production tested.
tc(XTIM) – Cycle time, XTIMCLK
WS refers to the number of wait states inserted by hardware when using XREADY. If the zone is configured to ignore XREADY
(USEREADY = 0), then WS = 0.
Minimum wait state requirements must be met when configuring each zone's XTIMING register. These
requirements are in addition to any timing requirements as specified by that device's data sheet. No
internal device hardware is included to detect illegal settings.
• If the XREADY signal is ignored (USEREADY = 0), then:
LR ≥ tc(XTIM)
1. Lead:
LW ≥ tc(XTIM)
These requirements result in the following XTIMING register configuration restrictions:
Table 6-26. XTIMING Register Configuration Restrictions (1)
(1)
(2)
(2)
XRDLEAD
XRDACTIVE
XRDTRAIL
XWRLEAD
XWRACTIVE
XWRTRAIL
X2TIMING
≥1
≥0
≥0
≥1
≥0
≥0
0, 1
Not production tested.
No hardware to detect illegal XTIMING configurations
Examples
of
valid
and
invalid
timing
when
Table 6-27. Valid and Invalid Timing (1)
not
sampling
XREADY:
(2)
XRDLEAD
XRDACTIVE
XRDTRAIL
XWRLEAD
XWRACTIVE
XWRTRAIL
X2TIMING
Invalid
0
0
0
0
0
0
0, 1
Valid
1
0
0
1
0
0
0, 1
(1)
(2)
Not production tested.
No hardware to detect illegal XTIMING configurations
• If the XREADY signal is sampled in the Synchronous mode (USEREADY = 1, READYMODE = 0),
then:
1. Lead:
LR ≥ tc(XTIM)
LW ≥ tc(XTIM)
2. Active:
AR ≥ 2 × tc(XTIM)
AW ≥ 2 × tc(XTIM)
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
117
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
NOTE
Restriction does not include external hardware wait states
These requirements result in the following XTIMING register configuration restrictions:
Table 6-28. XTIMING Register Configuration Restrictions (1)
(1)
(2)
(2)
XRDLEAD
XRDACTIVE
XRDTRAIL
XWRLEAD
XWRACTIVE
XWRTRAIL
X2TIMING
≥1
≥1
≥0
≥1
≥1
≥0
0, 1
Not production tested.
No hardware to detect illegal XTIMING configurations
Examples of valid and invalid timing when using Synchronous XREADY:
Table 6-29. Valid and Invalid Timing when using Synchronous XREADY (1)
(2)
XRDLEAD
XRDACTIVE
XRDTRAIL
XWRLEAD
XWRACTIVE
XWRTRAIL
X2TIMING
Invalid
0
0
0
0
0
0
0, 1
Invalid
1
0
0
1
0
0
0, 1
Valid
1
1
0
1
1
0
0, 1
(1)
(2)
Not production tested.
No hardware to detect illegal XTIMING configurations
• If the XREADY signal is sampled in the Asynchronous mode (USEREADY = 1, READYMODE = 1),
then:
LR ≥ tc(XTIM)
1. Lead:
LW ≥ tc(XTIM)
AR ≥ 2 × tc(XTIM)
2. Active:
AW ≥ 2 × tc(XTIM)
NOTE
Restriction does not include external hardware wait states
3. Lead + Active:
LR + AR ≥ 4 × tc(XTIM)
LW + AW ≥ 4 × tc(XTIM)
NOTE
Restriction does not include external hardware wait states
These requirements result in the following XTIMING register configuration restrictions:
Table 6-30. XTIMING Register Configuration Restrictions (1)
(1)
(2)
118
(2)
XRDLEAD
XRDACTIVE
XRDTRAIL
XWRLEAD
XWRACTIVE
XWRTRAIL
X2TIMING
≥1
≥2
0
≥1
≥2
0
0, 1
Not production tested.
No hardware to detect illegal XTIMING configurations
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
or
Table 6-31. XTIMING Register Configuration Restrictions (1)
(1)
(2)
(2)
XRDLEAD
XRDACTIVE
XRDTRAIL
XWRLEAD
XWRACTIVE
XWRTRAIL
X2TIMING
≥2
≥1
0
≥2
≥1
0
0, 1
Not production tested.
No hardware to detect illegal XTIMING configurations
Examples of valid and invalid timing when using Asynchronous XREADY:
Table 6-32. Asynchronous XREADY (1)
(2)
XRDLEAD
XRDACTIVE
XRDTRAIL
XWRLEAD
XWRACTIVE
XWRTRAIL
X2TIMING
Invalid
0
0
0
0
0
0
0, 1
Invalid
1
0
0
1
0
0
0, 1
Invalid
1
1
0
1
1
0
0
Valid
1
1
0
1
1
0
1
Valid
1
2
0
1
2
0
0, 1
Valid
2
1
0
2
1
0
0, 1
(1)
(2)
Not production tested.
No hardware to detect illegal XTIMING configurations
Unless otherwise specified, all XINTF timing is applicable for the clock configurations shown in Table 6-33.
Table 6-33. XINTF Clock Configurations
MODE
SYSCLKOUT
1
Example:
150 MHz
2
Example:
150 MHz
3
Example:
150 MHz
4
Example:
150 MHz
XTIMCLK
XCLKOUT
SYSCLKOUT
SYSCLKOUT
150 MHz
150 MHz
SYSCLKOUT
1/2 SYSCLKOUT
150 MHz
75 MHz
1/2 SYSCLKOUT
1/2 SYSCLKOUT
75 MHz
75 MHz
1/2 SYSCLKOUT
1/4 SYSCLKOUT
75 MHz
37.5 MHz
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
119
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
The relationship between SYSCLKOUT and XTIMCLK is shown in Figure 6-28.
XTIMING0
XTIMING1
XTIMING2
LEAD/ACTIVE/TRAIL
XTIMING6
XTIMING7
XBANK
SYSCLKOUT
C28x
CPU
/2
1†
XTIMCLK
0
1
XCLKOUT
1†
/2
0
0
0
XINTCNF2
(XTIMCLK)
†
XINTCNF2
(CLKMODE)
XINTCNF2
(CLKOFF)
Default Value after reset
Figure 6-28. Relationship Between XTIMCLK and SYSCLKOUT
120
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
6.22 XINTF Signal Alignment to XCLKOUT
For each XINTF access, the number of lead, active, and trail cycles is based on the internal clock
XTIMCLK. Strobes such as XRD, XWE, and zone chip-select (XZCS) change state in relationship to the
rising edge of XTIMCLK. The external clock, XCLKOUT, can be configured to be either equal to or
one-half the frequency of XTIMCLK.
For the case where XCLKOUT = XTIMCLK, all of the XINTF strobes changes state with respect to the
rising edge of XCLKOUT. For the case where XCLKOUT = one-half XTIMCLK, some strobes change state
either on the rising edge of XCLKOUT or the falling edge of XCLKOUT. In the XINTF timing tables, the
notation XCOHL is used to indicate that the parameter is with respect to either case; XCLKOUT rising
edge (high) or XCLKOUT falling edge (low). If the parameter is always with respect to the rising edge of
XCLKOUT, the notation XCOH is used.
For the case where XCLKOUT = one-half XTIMCLK, the XCLKOUT edge with which the change is aligned
can be determined based on the number of XTIMCLK cycles from the start of the access to the point at
which the signal changes. If this number of XTIMCLK cycles is even, the alignment is with respect to the
rising edge of XCLKOUT. If this number is odd, then the signal changes with respect to the falling edge of
XCLKOUT. Examples include the following:
• Strobes that change at the beginning of an access always align to the rising edge of XCLKOUT. This is
because all XINTF accesses begin with respect to the rising edge of XCLKOUT.
Examples:
•
XRNWL
XR/W active low
XRDL
XRD active low
XWEL
XWE active low
Strobes that change at the beginning of the trail period aligns to the rising edge of XCLKOUT if the
total number of lead + active XTIMCLK cycles (including hardware waitstates) for the access is even. If
the number of lead + active XTIMCLK cycles (including hardware waitstates) is odd, then the alignment
is with respect to the falling edge of XCLKOUT.
Examples:
•
Zone chip-select active low
Strobes that change at the beginning of the active period aligns to the rising edge of XCLKOUT if the
total number of lead XTIMCLK cycles for the access is even. If the number of lead XTIMCLK cycles is
odd, then the alignment is with respect to the falling edge of XCLKOUT.
Examples:
•
XZCSL
XRDH
XRD inactive high
XWEH
XWE inactive high
Strobes that change at the end of the access aligns to the rising edge of XCLKOUT if the total number
of lead + active + trail XTIMCLK cycles (including hardware waitstates) is even. If the number of lead +
active + trail XTIMCLK cycles (including hardware waitstates) is odd, then the alignment is with respect
to the falling edge of XCLKOUT.
Examples:
XZCSH
Zone chip-select inactive high
XRNWH
XR/W inactive high
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
121
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
6.23 External Interface Read Timing
Table 6-34. External Memory Interface Read Switching Characteristics (1)
PARAMETER
MIN
MAX
UNIT
td(XCOH-XZCSL)
Delay time, XCLKOUT high to zone chip-select active low
td(XCOHL-XZCSH)
Delay time, XCLKOUT high/low to zone chip-select inactive high
td(XCOH-XA)
Delay time, XCLKOUT high to address valid
td(XCOHL-XRDL)
Delay time, XCLKOUT high/low to XRD active low
td(XCOHL-XRDH
Delay time, XCLKOUT high/low to XRD inactive high
–2
th(XA)XZCSH
Hold time, address valid after zone chip-select inactive high
(2)
ns
th(XA)XRD
Hold time, address valid after XRD inactive high
(2)
ns
(1)
(2)
–2
1
ns
3
ns
2
ns
1
ns
1
ns
Not production tested.
During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment cycles.
Table 6-35. External Memory Interface Read Timing Requirements (1)
MIN
ta(A)
Access time, read data from address valid
ta(XRD)
Access time, read data valid from XRD active low
tsu(XD)XRD
Setup time, read data valid before XRD strobe inactive high
th(XD)XRD
Hold time, read data valid after XRD inactive high
(1)
(2)
MAX
UNIT
(LR + AR) – 14 (2)
ns
(2)
ns
AR – 12
12
ns
0
ns
Not production tested.
LR = Lead period, read access. AR = Active period, read access. See Table 6-25 .
Trail
Active
Lead
XCLKOUT=XTIMCLK
XCLKOUT= 1/2 XTIMCLK
XZCS0AND1, XZCS2,
XZCS6AND7
XA[0:18]
XRD
td(XCOH-XZCSL)
td(XCOHL-XZCSH)
td(XCOH-XA)
td(XCOHL-XRDH)
td(XCOHL-XRDL)
tsu(XD)XRD
XWE
XR/W
ta(A)
th(XD)XRD
ta(XRD)
DIN
XD[0:15]
XREADY
NOTES: A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an
alignment cycle before an access to meet this requirement.
B. During alignment cycles, all signals transitions to their inactive state.
C. For USEREADY = 0, the external XREADY input signal is ignored.
D. XA[0:18] holds the last address put on the bus during inactive cycles, including alignment cycles.
Figure 6-29. Example Read Access
122
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
XTIMING register parameters used for this example:
XRDLEAD
XRDACTIVE
XRDTRAIL
USEREADY
X2TIMING
XWRLEAD
XWRACTIVE
XWRTRAIL
READYMODE
≥1
≥0
≥0
0
0
N/A (1)
N/A (1)
N/A (1)
N/A (1)
(1)
N/A = "Don't care" for this example
6.24 External Interface Write Timing
Table 6-36. External Memory Interface Write Switching Characteristics (1)
PARAMETER
MIN
td(XCOH-XZCSL)
Delay time, XCLKOUT high to zone chip-select active low
td(XCOHL-XZCSH)
Delay time, XCLKOUT high or low to zone chip-select inactive high
MAX
UNIT
1
ns
3
ns
td(XCOH-XA)
Delay time, XCLKOUT high to address valid
2
ns
td(XCOHL-XWEL)
Delay time, XCLKOUT high/low to XWE low
2
ns
td(XCOHL-XWEH)
Delay time, XCLKOUT high/low to XWE high
2
ns
td(XCOH-XRNWL)
Delay time, XCLKOUT high to XR/W low
1
ns
td(XCOHL-XRNWH)
Delay time, XCLKOUT high/low to XR/W high
1
ns
ten(XD)XWEL
Enable time, data bus driven from XWE low
td(XWEL-XD)
Delay time, data valid after XWE active low
th(XA)XZCSH
Hold time, address valid after zone chip-select inactive high
–2
0
ns
4
th(XD)XWE
Hold time, write data valid after XWE inactive high
tdis(XD)XRNW
Data bus disabled after XR/W inactive high
(1)
(2)
(3)
–2
ns
(2)
ns
TW–2
(3)
ns
4
ns
Not production tested.
During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment cycles.
TW = Trail period, write access. See Table 6-25 .
Lead
Active
Trail
XCLKOUT=XTIMCLK
XCLKOUT= 1/2 XTIMCLK
XZCS0AND1, XZCS2,
XZCS6AND7
td(XCOHL-XZCSH)
td(XCOH-XZCSL)
td(XCOH-XA)
XA[0:18]
XRD
td(XCOHL-XWEH)
td(XCOHL-XWEL)
XWE
td(XCOHL-XRNWH)
td(XCOH-XRNWL)
XR/W
tdis(XD)XRNW
th(XD)XWEH
td(XWEL-XD)
ten(XD)XWEL
DOUT
XD[0:15]
XREADY
NOTES: A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment cycle
before an access to meet this requirement.
B. During alignment cycles, all signals transitions to their inactive state.
C. For USEREADY = 0, the external XREADY input signal is ignored.
D. XA[0:18] holds the last address put on the bus during inactive cycles, including alignment cycles.
Figure 6-30. Example Write Access
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
123
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
XTIMING register parameters used for this example:
XRDLEAD
N/A
(1)
124
(1)
XRDACTIVE
N/A
XRDTRAIL
(1)
N/A
(1)
USEREADY
X2TIMING
XWRLEAD
XWRACTIVE
XWRTRAIL
READYMODE
0
0
≥1
≥0
≥0
N/A (1)
N/A = "Don't care" for this example
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
6.25 External Interface Ready-on-Read Timing With One External Wait State
Table 6-37. External Memory Interface Read Switching Characteristics (Ready-on-Read, 1 Wait State) (1)
PARAMETER
MIN
MAX
UNIT
td(XCOH-XZCSL)
Delay time, XCLKOUT high to zone chip-select active low
td(XCOHL-XZCSH)
Delay time, XCLKOUT high/low to zone chip-select inactive high
td(XCOH-XA)
Delay time, XCLKOUT high to address valid
td(XCOHL-XRDL)
Delay time, XCLKOUT high/low to XRD active low
td(XCOHL-XRDH
Delay time, XCLKOUT high/low to XRD inactive high
–2
th(XA)XZCSH
Hold time, address valid after zone chip-select inactive high
(2)
ns
th(XA)XRD
Hold time, address valid after XRD inactive high
(2)
ns
(1)
(2)
–2
1
ns
3
ns
2
ns
1
ns
1
ns
Not production tested.
During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment cycles.
Table 6-38. External Memory Interface Read Timing Requirements (Ready-on-Read, 1 Wait State) (1)
MIN
ta(A)
Access time, read data from address valid
ta(XRD)
Access time, read data valid from XRD active low
tsu(XD)XRD
Setup time, read data valid before XRD strobe inactive high
th(XD)XRD
Hold time, read data valid after XRD inactive high
(1)
(2)
MAX
UNIT
(LR + AR) – 14 (2)
ns
(2)
ns
AR – 12
12
ns
0
ns
Not production tested.
LR = Lead period, read access. AR = Active period, read access. See Table 6-25 .
Table 6-39. Synchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State) (1)
MIN
tsu(XRDYsynchL)XCOHL
Setup time, XREADY (Synch) low before XCLKOUT high/low
15
th(XRDYsynchL)
Hold time, XREADY (Synch) low
12
te(XRDYsynchH)
Earliest time XREADY (Synch) can go high before the sampling XCLKOUT edge
tsu(XRDYsynchH)XCOHL
Setup time, XREADY (Synch) high before XCLKOUT high/low
th(XRDYsynchH)XZCSH
Hold time, XREADY (Synch) held high after zone chip select high
(1)
(2)
(2)
MAX
ns
ns
3
ns
15
ns
0
ns
Not production tested.
The first XREADY (Synch) sample occurs with respect to E in Figure 6-31 :
E = (XRDLEAD + XRDACTIVE) tc(XTIM)
When first sampled, if XREADY (Synch) is found to be high, then the access completes. If XREADY (Synch) is found to be low, it is
sampled again each tc(XTIM) until it is found to be high.
For each sample (n) the setup time (D) with respect to the beginning of the access can be calculated as:
D = (XRDLEAD + XRDACTIVE + n – 1) tc(XTIM) – tsu(XRDYsynchL)XCOHL
where n is the sample number: n = 1, 2, 3, and so forth.
Table 6-40. Asynchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State) (1)
MIN
tsu(XRDYAsynchL)XCOHL
Setup time, XREADY (Asynch) low before XCLKOUT high/low
th(XRDYAsynchL)
Hold time, XREADY (Asynch) low
te(XRDYAsynchH)
Earliest time XREADY (Asynch) can go high before the sampling XCLKOUT
edge
(1)
(2)
UNIT
(2)
MAX
UNIT
11
ns
8
ns
3
ns
Not production tested.
The first XREADY (Asynch) sample occurs with respect to E in Figure 6-32 :
E = (XRDLEAD + XRDACTIVE – 2) tc(XTIM)
When first sampled, if XREADY (Asynch) is found to be high, then the access completes. If XREADY (Asynch) is found to be low, it wis
sampled again each tc(XTIM) until it is found to be high.
For each sample, setup time from the beginning of the access can be calculated as:
D = (XRDLEAD + XRDACTIVE – 3 + n) tc(XTIM) – tsu(XRDYasynchL)XCOHL
where n is the sample number: n = 1, 2, 3, and so forth.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
125
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Table 6-40. Asynchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State)
(continued)
MIN
tsu(XRDYAsynchH)XCOHL
Setup time, XREADY (Asynch) high before XCLKOUT high/low
th(XRDYasynchH)XZCSH
Hold time, XREADY (Asynch) held high after zone chip select high
(1) (2)
MAX
UNIT
11
ns
0
ns
WS (Synch)
See Notes A and B
Active
Lead
Trail
See Note C
XCLKOUT=XTIMCLK
XCLKOUT= 1/2 XTIMCLK
td(XCOHL-XZCSH)
td(XCOH-XZCSL)
XZCS0AND1, XZCS2,
XZCS6AND7
td(XCOH-XA)
XA[0:18]
td(XCOHL-XRDH)
td(XCOHL-XRDL)
XRD
tsu(XD)XRD
XWE
ta(XRD)
XR/W
ta(A)
th(XD)XRD
XD[0:15]
DIN
tsu(XRDYsynchL)XCOHL
te(XRDYsynchH)
th(XRDYsynchL)
th(XRDYsynchH)XZCSH
tsu(XRDHsynchH)XCOHL
XREADY(Synch)
See Note D
See Note E
Legend:
= Don’t care. Signal can be high or low during this time.
NOTES: A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment
cycle before an access to meet this requirement.
B. During alignment cycles, all signals transitions to their inactive state.
C. During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment
cycles.
D. For each sample, setup time from the beginning of the access (D) can be calculated as:
D = (XRDLEAD + XRDACTIVE +n − 1) tc(XTIM) − tsu(XRDYsynchL)XCOHL
E. Reference for the first sample is with respect to this point
E = (XRDLEAD + XRDACTIVE) tc(XTIM)
where n is the sample number: n = 1, 2, 3, and so forth.
Figure 6-31. Example Read With Synchronous XREADY Access
XTIMING register parameters used for this example:
XRDLEAD
XRDACTIVE
XRDTRAIL
USEREADY
X2TIMING
XWRLEAD
XWRACTIVE
XWRTRAIL
READYMODE
≥1
3
≥1
1
0
N/A (1)
N/A (1)
N/A (1)
0 = XREADY
(Synch)
(1)
126
N/A = "Don't care" for this example
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
WS (Asynch)
Active
Lead
See Note C
Trail
XCLKOUT=XTIMCLK
XCLKOUT= 1/2 XTIMCLK
td(XCOH-XZCSL)
XZCS0AND1, XZCS2,
XZCS6AND7
td(XCOHL-XZCSH)
td(XCOH-XA)
XA[0:18]
td(XCOHL-XRDH)
td(XCOHL-XRDL)
XRD
tsu(XD)XRD
XWE
ta(XRD)
XR/W
ta(A)
th(XD)XRD
DIN
XD[0:15]
tsu(XRDYasynchL)XCOHL
te(XRDYasynchH)
th(XRDYasynchH)XZCSH
th(XRDYasynchL)
tsu(XRDYasynchH)XCOHL
XREADY(Asynch)
See Note D
See Note E
Legend:
= Don’t care. Signal can be high or low during this time.
NOTES: A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment cycle
before an access to meet this requirement.
B. During alignment cycles, all signals transitions to their inactive state.
C. During inactive cycles, the XINTF address bus always hold sthe last address put out on the bus. This includes alignment cycles.
D. For each sample, setup time from the beginning of the access can be calculated as:
D = (XRDLEAD + XRDACTIVE −3 +n) tc(XTIM) − tsu(XRDYasynchL)XCOHL
where n is the sample number: n = 1, 2, 3, and so forth.
E. Reference for the first sample is with respect to this point:
E = (XRDLEAD + XRDACTIVE −2) tc(XTIM)
Figure 6-32. Example Read With Asynchronous XREADY Access
XTIMING register parameters used for this example:
XRDLEAD
XRDACTIVE
XRDTRAIL
USEREADY
X2TIMING
XWRLEAD
XWRACTIVE
XWRTRAIL
READYMODE
≥1
3
≥1
1
0
N/A (1)
N/A (1)
N/A (1)
1 = XREADY
(Asynch)
(1)
N/A = "Don't care" for this example
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
127
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
6.26 External Interface Ready-on-Write Timing With One External Wait State
Table 6-41. External Memory Interface Write Switching Characteristics (Ready-on-Write, 1 Wait State) (1)
PARAMETER
MIN
td(XCOH-XZCSL)
Delay time, XCLKOUT high to zone chip-select active low
td(XCOHL-XZCSH)
Delay time, XCLKOUT high or low to zone chip-select inactive high
td(XCOH-XA)
MAX
UNIT
1
ns
3
ns
Delay time, XCLKOUT high to address valid
2
ns
td(XCOHL-XWEL)
Delay time, XCLKOUT high/low to XWE low
2
ns
td(XCOHL-XWEH)
Delay time, XCLKOUT high/low to XWE high
2
ns
td(XCOH-XRNWL)
Delay time, XCLKOUT high to XR/W low
1
ns
td(XCOHL-XRNWH)
Delay time, XCLKOUT high/low to XR/W high
1
ns
ten(XD)XWEL
Enable time, data bus driven from XWE low
td(XWEL-XD)
Delay time, data valid after XWE active low
th(XA)XZCSH
Hold time, address valid after zone chip-select inactive high
(2)
ns
th(XD)XWE
Hold time, write data valid after XWE inactive high
(3)
ns
tdis(XD)XRNW
Data bus disabled after XR/W inactive high
4
ns
(1)
(2)
(3)
–2
–2
0
ns
4
TW–2
ns
Not production tested.
During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment cycles.
TW = trail period, write access (see Table 6-25 )
Table 6-42. Synchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State) (1)
MIN
(2)
MAX
UNIT
tsu(XRDYsynchL)XCOHL
Setup time, XREADY (Synch) low before XCLKOUT high/low
15
ns
th(XRDYsynchL)
Hold time, XREADY (Synch) low
12
ns
te(XRDYsynchH)
Earliest time XREADY (Synch) can go high before the sampling XCLKOUT edge
tsu(XRDYsynchH)XCOHL
Setup time, XREADY (Synch) high before XCLKOUT high/low
th(XRDYsynchH)XZCSH
Hold time, XREADY (Synch) held high after zone chip select high
(1)
(2)
3
ns
15
ns
0
ns
Not production tested.
The first XREADY (Synch) sample occurs with respect to E in Figure 6-33 :
E =(XWRLEAD + XWRACTIVE) tc(XTIM)
When first sampled, if XREADY (Synch) is found to be high, then the access completes. If XREADY (Synch) is found to be low, it is
sampled again each tc(XTIM) until it is found to be high.
For each sample, setup time from the beginning of the access can be calculated as:
D =(XWRLEAD + XWRACTIVE + n – 1) tc(XTIM) – tsu(XRDYsynchL)XCOHL
where n is the sample number: n = 1, 2, 3, and so forth.
Table 6-43. Asynchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State) (1)
MIN
tsu(XRDYasynchL)XCOHL
Setup time, XREADY (Asynch) low before XCLKOUT high/low
th(XRDYasynchL)
Hold time, XREADY (Asynch) low
te(XRDYasynchH)
Earliest time XREADY (Asynch) can go high before the sampling XCLKOUT edge
tsu(XRDYasynchH)XCOHL
Setup time, XREADY (Asynch) high before XCLKOUT high/low
th(XRDYasynchH)XZCSH
Hold time, XREADY (Asynch) held high after zone chip select high
(1)
(2)
128
(2)
MAX
11
UNIT
ns
8
ns
3
ns
11
ns
0
ns
Not production tested.
The first XREADY (Synch) sample occurs with respect to E in Figure 6-33:
E = (XWRLEAD + XWRACTIVE – 2) tc(XTIM)
When first sampled, if XREADY (Asynch) is found to be high, then the access completes. If XREADY (Asynch) is found to be low, it is
sampled again each tc(XTIM) until it is found to be high.
For each sample, setup time from the beginning of the access can be calculated as:
D = (XWRLEAD + XWRACTIVE – 3 + n) tc(XTIM) – tsu(XRDYasynchL)XCOHL
where n is the sample number: n = 1, 2, 3, and so forth.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
WS (Synch)
See
Notes A
and B
See Note C
Trail
Active
Lead 1
XCLKOUT = XTIMCLK
XCLKOUT = 1/2 XTIMCLK
td(XCOHL-XZCSH)
td(XCOH-XZCSL)
XZCS0AND1, XZCS2,
XZCS6AND7
th(XRDYsynchH)XZCSH
td(XCOH-XA)
XA[0:18]
XRD
td(XCOHL-XWEH)
td(XCOHL-XWEL)
XWE
td(XCOHL-XRNWH)
td(XCOH-XRNWL)
XR/W
tdis(XD)XRNW
td(XWEL-XD
th(XD)XWEH
)
ten(XD)XWEL
XD[0:15]
DOUT
tsu(XRDYsynchL)XCOHL
te(XRDYsynchH)
th(XRDYsynchL)
tsu(XRDHsynchH)XCOHL
XREADY(Synch)
See Note D
See Note E
Legend:
= Don’t care. Signal can be high or low during this time.
NOTES:
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment cycle before an access
to meet this requirement.
B. During alignment cycles, all signals transitions to their inactive state.
C. During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment cycles.
D. For each sample, setup time from the beginning of the access can be calculated as
D = (XWRLEAD + XWRACTIVE + n − 1) tc(XTIM) − tsu(XRDYsynchL)XCOHL
where n is the sample number: n = 1, 2, 3 and so forth.
E. Reference for the first sample is with respect to this point
E = (XWRLEAD + XWRACTIVE) tc(XTIM)
Figure 6-33. Write With Synchronous XREADY Access
XTIMING register parameters used for this example:
XRDLEAD
N/A
(1)
(1)
XRDACTIVE
N/A
(1)
XRDTRAIL
N/A
USEREADY
X2TIMING
XWRLEAD
XWRACTIVE
XWRTRAIL
READYMODE
1
0
≥1
3
≥1
0 = XREADY
(Synch)
(1)
N/A = "Don't care" for this example
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
129
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
WS (Asynch)
Trail
Active
Lead 1
XCLKOUT = XTIMCLK
XCLKOUT = 1/2 XTIMCLK
td(XCOH-XZCSL)
td(XCOHL-XZCSH)
td(XCOH-XA)
th(XRDYasynchH)XZCSH
XZCS0AND1, XZCS2,
XZCS6AND7
XA[0:18]
XRD
td(XCOHL-XWEH)
td(XCOHL-XWEL)
XWE
td(XCOH-XRNWL)
td(XCOHL-XRNWH)
XR/W
tdis(XD)XRNW
td(XWEL-XD
th(XD)XWEH
)
ten(XD)XWEL
XD[0:15]
DOUT
tsu(XRDYasynchL)XCOHL
th(XRDYasynchL)
te(XRDYasynchH)
tsu(XRDYasynchH)XCOHL
XREADY(Asynch)
See Note D
See Note E
Legend:
= Don’t care. Signal can be high or low during this time.
NOTES: A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an
alignment cycle before an access to meet this requirement.
B. During alignment cycles, all signals transitions to their inactive state.
C. During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment
cycles.
D. For each sample, setup time from the beginning of the access can be calculated as:
D = (XWRLEAD + XWRACTIVE −3 + n) tc(XTIM) − tsu(XRDYasynchL)XCOHL
where n is the sample number: n = 1, 2, 3 and so forth.
E. Reference for the first sample is with respect to this point
E = (XWRLEAD + XWRACTIVE −2) tc(XTIM)
Figure 6-34. Write With Asynchronous XREADY Access
XTIMING register parameters used for this example:
XRDLEAD
N/A
(1)
130
(1)
XRDACTIVE
N/A
XRDTRAIL
(1)
N/A
(1)
USEREADY
X2TIMING
XWRLEAD
XWRACTIVE
XWRTRAIL
READYMODE
1
0
≥1
3
≥1
1 = XREADY
(Asynch)
N/A = "Don't care" for this example
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
6.27
SGUS062A – JUNE 2009 – REVISED APRIL 2010
XHOLD and XHOLDA
f the HOLD mode bit is set while XHOLD and XHOLDA are both low (external bus accesses granted), the
XHOLDA signal is forced high (at the end of the current cycle) and the external interface is taken out of
high-impedance mode.
On a reset (XRS), the HOLD mode bit is set to 0. If the XHOLD signal is active low on a system reset, the
bus and all signal strobes must be in high-impedance mode, and the XHOLDA signal is also driven active
low.
When HOLD mode is enabled and XHOLDA is active low (external bus grant active), the CPU can still
execute code from internal memory. If an access is made to the external interface, the CPU is stalled until
the XHOLD signal is removed.
An external DMA request, when granted, places the following signals in a high-impedance mode:
XA[18:0]
XZCS0AND1
XD[15:0]
XZCS2
XWE, XRD
XZCS6AND7
XR/W
All other signals not listed in this group remain in their default or functional operational modes during these
signal events. Detailed timing diagram is released in a future revision of this data sheet.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
131
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
6.28
www.ti.com
XHOLD/XHOLDA Timing
Table 6-44. XHOLD/XHOLDA Timing Requirements (XCLKOUT = XTIMCLK) (1)
(2) (3)
MIN
MAX
UNIT
td(HL–HiZ)
Delay time, XHOLD low to Hi–Z on all Address, Data, and Control
4tc(XTIM)
ns
td(HL–HAL)
Delay time, XHOLD low to XHOLDA low
5tc(XTIM)
ns
td(HH–HAH)
Delay time, XHOLD high to XHOLDA high
3tc(XTIM)
ns
td(HH–BV)
Delay time, XHOLD high to Bus valid
4tc(XTIM)
ns
(1)
When a low signal is detected on XHOLD, all pending XINTF accesses are completed before the bus is placed in a high-impedance
state.
The state of XHOLD is latched on the rising edge of XTIMCLK.
Not production tested.
(2)
(3)
XCLKOUT
(/1 Mode)
td(HL-Hiz)
XHOLD
td(HH-HAH)
XHOLDA
td(HL-HAL)
XR/W,
XZCS0AND1,
XZCS2,
XZCS6AND7
XA[18:0]
XD[15:0]
td(HH-BV)
High-Impedance
Valid
Valid
See Note A
A.
B.
Valid
High-Impedance
See Note B
All pending XINTF accesses are completed.
Normal XINTF operation resumes.
Figure 6-35. External Interface Hold Waveform
132
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 6-45. XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK) (1)
(2) (3) (4)
MIN
td(HL-HiZ)
Delay time, XHOLD low to Hi-Z on all Address, Data, and Control
td(HL-HAL)
Delay time, XHOLD low to XHOLDA low
td(HH-HAH)
td(HH-BV)
(1)
(2)
(3)
(4)
MAX
UNIT
4tc(XTIM) + tc(XCO)
ns
4tc(XTIM) + 2tc(XCO)
ns
Delay time, XHOLD high to XHOLDA high
4tc(XTIM)
ns
Delay time, XHOLD high to Bus valid
6tc(XTIM)
ns
When a low signal is detected on XHOLD, all pending XINTF accesses are completed before the bus is placed in a high-impedance
state.
The state of XHOLD is latched on the rising edge of XTIMCLK.
After the XHOLD is detected low or high, all bus transitions and XHOLDA transitions occur with respect to the rising edge of XCLKOUT.
Thus, for this mode where XCLKOUT = 1/2 XTIMCLK, the transitions can occur up to 1 XTIMCLK cycle earlier than the maximum value
specified.
Not production tested.
See Note B
See Note A
A.
B.
All pending XINTF accesses are completed.
Normal XINTF operation resumes.
Figure 6-36. XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK)
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
133
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
6.29 On-Chip Analog-to-Digital Converter
6.29.1 ADC Absolute Maximum Ratings
Supply voltage range
VALUE (1)
UNIT
VSSA1/VSSA2 to VDDA1/VDDA2/AVDDREFBG
–0.3 to 4.6
V
VSS1 to VDD1
–0.3 to 2.5
V
±20
mA
Analog Input (ADCIN) Clamp Current, total (max)
(1)
(2)
134
(2)
Unless otherwise noted, the absolute maximum ratings are specified over operating conditions. Stresses beyond those listed under
Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Exposure to
absolute-maximum-rated conditions for extended periods may affect device reliability.
The analog inputs have an internal clamping circuit that clamps the voltage to a diode drop above VDDA or below VSS. The continuous
clamp current per pin is ±2 mA.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
6.29.2 ADC Electrical Characteristics Over Recommended Operating Conditions
Table 6-46. DC Specifications (1)
(2)
TA = –55°C to 220°C
PARAMETER
MIN
Resolution
ADC clock (3)
TYP
UNIT
MAX
12
Bits
1
kHz
25
MHz
ACCURACY
INL (Integral nonlinearity) (4)
1–18.75 MHz ADC clock
±1.5
LSB
DNL (Differential nonlinearity) (4)
1–18.75 MHz ADC clock
±1
LSB
–80
80
LSB
–200
200
LSB
–50
50
LSB
Offset error
(5)
Overall gain error with internal
reference (6)
Overall gain error with external
reference (7)
If ADCREFP-ADCREFM = 1 V ±0.1%
Channel-to-channel offset variation
±8
LSB
Channel-to-channel Gain variation
±8
LSB
ANALOG INPUT
Analog input voltage (ADCINx to
ADCLO) (8)
0
ADCLO
–5
Input capacitance
0
3
V
5
mV
±5
mA
10
Input leakage current
3
pF
INTERNAL VOLTAGE REFERENCE (6)
Accuracy, ADCVREFP
1.9
2
2.1
V
Accuracy, ADCVREFM
0.95
1
1.05
V
Voltage difference, ADCREFP –
ADCREFM
Temperature coefficient
Reference noise
EXTERNAL VOLTAGE REFERENCE
1
V
50
PPM/°C
100
V
(7)
Accuracy, ADCVREFP
1.9
2
2.1
V
Accuracy, ADCVREFM
0.95
1
1.05
V
Input voltage difference, ADCREFP –
ADCREFM
0.99
1
1.01
V
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
Not production tested.
Tested at 12.5-MHz ADCCLK
If SYSCLKOUT ≤ 25 MHz, ADC clock ≤ SYSCLKOUT/2
The INL degrades for frequencies beyond 18.75 MHz –25 MHz. Applications that require these sampling rates should use a 20-kΩ
resistor as bias resistor on the ADCRESEXT pin. This improves overall linearity and typical current drawn by the ADC is a few mA more
than 24.9 kW bias.
1 LSB has the weighted value of 3.0/4096 = 0.732 mV.
A single internal band gap reference (±5% accuracy) sources both ADCREFP and ADCREFM signals, and hence, these voltages track
together. The ADC converter uses the difference between these two as its reference. The total gain error is the combination of the gain
error shown here and the voltage reference accuracy (ADCREFP – ADCREFM). A software-based calibration procedure is
recommended for better accuracy. See F2812 ADC Calibration Application Note (literature number SPRA989) and Section 5.2,
Documentation Support, for relevant documents.
In this mode, the accuracy of external reference is critical for overall gain. The voltage difference (ADCREFP–ADCREFM) determines
the overall accuracy.
Voltages above VDDA + 0.3 V or below VSS – 0.3 V applied to an analog input pin may temporarily affect the conversion of another pin.
To avoid this, the analog inputs should be kept within these limits.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
135
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Table 6-47. AC Specifications (1)
(2)
TA = –55°C to 125°C
PARAMETER
MIN
TYP
MAX
TA = 220°C
MIN
TYP
MAX
UNIT
SINAD
Signal-to-noise ratio + distortion
62
57
dB
SNR
Signal-to-noise ratio
62
57
dB
THD
Total harmonic distortion
-68
-68
dB
ENOB (SNR)
Effective number of bits
10.1
9.1
Bits
SFDR
Spurious free dynamic range
69
68
dB
(1)
(2)
Not production tested.
Validated at the following conditions: ADC Input Frequency = 10.71 KHz, XCLKIN = 30 MHz, PLLCR = 0xA (SYSCLK = 150 MHz),
HSPCP = 3 (ADCCLK= 25 MHz), ADCCLKPS = 1 (ADCCLK= 12.5 MHz), CPS = 0 (ADCCLK =12.5 MHZ), ACQ_PS (SH) = 3
6.29.3 Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK)
Table 6-48. Current Consumption (1)
IDDA (TYP) (2)
IDDAIO (TYP)
IDD1 (TYP)
ADC OPERATING MODE/CONDITIONS (3)
Mode A (Operational Mode):
40 mA
1 mA
0.5 mA
–BG and REF enabled
–PWD disabled
Mode B:
7 mA
0
5 mA
–ADC clock enabled
–BG and REF enabled
–PWD enabled
Mode C:
1 mA
0
5 mA
–ADC clock enabled
–BG and REF disabled
–PWD enabled
Mode D:
1 mA
0
0
–ADC clock disabled
–BG and REF disabled
–PWD enabled
(1)
(2)
(3)
136
Not production tested.
IDDA – includes current into VDDA1/ VDDA2 and AVDDREFBG
Test Conditions: SYSCLKOUT = 150 MHz
ADC module clock = 25 MHz
ADC performing a continuous conversion of all 16 channels in Mode A
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Rs
Source
Signal
Ron
1 kΩ
ADCIN0
Switch
Cp
10 pF
ac
Ch
1.25 pF
28x DSP
Typical Values of the Input Circuit Components:
Switch Resistance (Ron):
Sampling Capacitor (Ch):
Parasitic Capacitance (Cp):
Source Resistance (Rs):
1 kΩ
1.25 pF
10 pF
50 Ω
Figure 6-37. ADC Analog Input Impedance Model
6.29.4 ADC Power-Up Control Bit Timing
ADC Power Up Delay
ADC Ready for Conversions
PWDNBG
PWDNREF
td(BGR)
PWDNADC
td(PWD)
Request for
ADC
Conversion
Figure 6-38. ADC Power-Up Control Bit Timing
Table 6-49. ADC Power-Up Delays (1)
(2)
td(BGR)
Delay time for band gap reference to be stable. Bits 6 and 5 of the ADCTRL3 register
(PWDNBG and PWDNREF) are to be set to 1 before the ADCPWDN bit is enabled.
td(PWD)
Delay time for power-down control to be stable. Bit 7 of the ADCTRL3 register (ADCPWDN)
is to be set to 1 before any ADC conversions are initiated.
(1)
(2)
MIN
TYP
MAX
7
8
10
20
50
UNIT
ms
ms
1
ms
These delays are necessary and recommended to make the ADC analog reference circuit stable before conversions are initiated. If
conversions are started without these delays, the ADC results shows a higher gain. For power down, all three bits can be cleared at the
same time.
Not production tested.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
137
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
6.29.5 Detailed Description
6.29.5.1 Reference Voltage
The on-chip ADC has a built-in reference, which provides the reference voltages for the ADC. ADCVREFP
is set to 2 V and ADCVREFM is set to 1 V.
6.29.5.2 Analog Inputs
The on-chip ADC consists of 16 analog inputs, which are sampled either one at a time or two channels at
a time. These inputs are software-selectable.
6.29.5.3 Converter
The on-chip ADC uses a 12-bit four-stage pipeline architecture, which achieves a high sample rate with
low power consumption.
6.29.5.4 Conversion Modes
The conversion can be performed in two different conversion modes:
• Sequential sampling mode (SMODE = 0)
• Simultaneous sampling mode (SMODE = 1)
6.29.6 Sequential Sampling Mode (Single Channel) (SMODE = 0)
In sequential sampling mode, the ADC can continuously convert input signals on any of the channels (Ax
to Bx). The ADC can start conversions on event triggers from the Event Managers (EVA/EVB), software
trigger, or from an external ADCSOC signal. If the SMODE bit is 0, the ADC does conversions on the
selected channel on every Sample/Hold pulse. The conversion time and latency of the Result register
update are explained below. The ADC interrupt flags are set a few SYSCLKOUT cycles after the Result
register update. The selected channel is sampled at every falling edge of the Sample/Hold pulse. The
Sample/Hold pulse width can be programmed to be one ADC clock wide (minimum) or 16 ADC clocks
wide (maximum).
Sample n+2
Sample n+1
Analog Input on
Channel Ax or Bx
Sample n
ADC Clock
Sample and Hold
SH Pulse
SMODE Bit
td(SH)
tdschx_n+1
tdschx_n
ADC Event Trigger from
EV or Other Sources
tSH
Figure 6-39. Sequential Sampling Mode (Single-Channel) Timing
138
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 6-50. Sequential Sampling Mode Timing (1)
SAMPLE n
SAMPLE n + 1
AT 25–MHz ADC
CLOCK,
tc(ADCCLK) = 40 ns
REMARKS
Acqps value = 0-15
ADCTRL1[8:11]
td(SH)
Delay time from event trigger to
sampling
2.5tc(ADCCLK)
tSH
Sample/Hold width/Acquisition width
(1 + Acqps) ×
tc(ADCCLK)
40 ns with Acqps = 0
td(schx_n)
Delay time for first result to appear
in the Result register
4tc(ADCCLK)
160 ns
td(schx_n+1)
Delay time for successive results to
appear in the Result register
(1)
(2 + Acqps) ×
tc(ADCCLK)
80 ns
Not production tested.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
139
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
6.29.7 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1)
In simultaneous mode, the ADC can continuously convert input signals on any one pair of channels
(A0/B0 to A7/B7). The ADC can start conversions on event triggers from the Event Managers (EVA/EVB),
software trigger, or from an external ADCSOC signal. If the SMODE bit is 1, the ADC does conversions on
two selected channels on every Sample/Hold pulse. The conversion time and latency of the Result
register update are explained below. The ADC interrupt flags are set a few SYSCLKOUT cycles after the
Result register update. The selected channels are sampled simultaneously at the falling edge of the
Sample/Hold pulse. The Sample/Hold pulse width can be programmed to be 1 ADC clock wide (minimum)
or 16 ADC clocks wide (maximum).
NOTE
In Simultaneous mode, the ADCIN channel pair select has to be A0/B0, A1/B1, ..., A7/B7,
and not in other combinations (such as A1/B3, etc.).
Sample n
Sample n+1
Analog Input on
Channel Ax
Analog Input on
Channel Bv
Sample n+2
ADC Clock
Sample and Hold
SH Pulse
SMODE Bit
td(SH)
tdschA0_n+1
tSH
ADC Event Trigger from
EV or Other Sources
tdschA0_n
tdschB0_n+1
tdschB0_n
Figure 6-40. Simultaneous Sampling Mode Timing
Table 6-51. Simultaneous Sampling Mode Timing (1)
SAMPLE n
SAMPLE n + 1
AT 25-MHz ADC
CLOCK,
tc(ADCCLK) = 40 ns
td(SH)
Delay time from event
trigger to sampling
2.5tc(ADCCLK)
tSH
Sample/Hold
width/Acquisition Width
(1 + Acqps) ×
tc(ADCCLK)
40 ns with Acqps = 0
td(schA0_n)
Delay time for first result
to appear in Result
register
4tc(ADCCLK)
160 ns
td(schB0_n)
Delay time for first result
to appear in Result
register
5tc(ADCCLK)
200 ns
td(schA0_n+1)
Delay time for successive
results to appear in Result
register
(1)
140
(3 + Acqps) ×
tc(ADCCLK)
REMARKS
Acqps value = 0–15
ADCTRL1[8:11]
120 ns
Not production tested.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 6-51. Simultaneous Sampling Mode Timing
SAMPLE n
td(schB0_n+1)
Delay time for successive
results to appear in Result
register
(1)
(continued)
SAMPLE n + 1
AT 25-MHz ADC
CLOCK,
tc(ADCCLK) = 40 ns
(3 + Acqps) ×
tc(ADCCLK)
120 ns
REMARKS
6.29.8 Definitions of Specifications and Terminology
6.29.8.1 Integral Nonlinearity
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full
scale. The point used as zero occurs 1/2 LSB before the first code transition. The full-scale point is
defined as level 1/2 LSB beyond the last code transition. The deviation is measured from the center of
each particular code to the true straight line between these two points.
6.29.8.2 Differential Nonlinearity
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal
value. A differential nonlinearity error of less than ±1 LSB ensures no missing codes.
6.29.8.3 Zero Offset
The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the
deviation of the actual transition from that point.
6.29.8.4 Gain Error
The first code transition should occur at an analog value 1/2 LSB above negative full scale. The last
transition should occur at an analog value 1 1/2 LSB below the nominal full scale. Gain error is the
deviation of the actual difference between first and last code transitions and the ideal difference between
first and last code transitions.
6.29.8.5 Signal-to-Noise Ratio + Distortion (SINAD)
SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral
components below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is
expressed in decibels.
6.29.8.6 Effective Number of Bits (ENOB)
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,
N=
(SINAD - 1.76)
6.02
it is possible to get a measure of performance expressed as N, the effective number of bits. Thus,
effective number of bits for a device for sine wave inputs at a given input frequency can be calculated
directly from its measured SINAD.
6.29.8.7 Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of the first six harmonic components to the rms value of the measured
input signal and is expressed as a percentage or in decibels.
6.29.8.8 Spurious Free Dynamic Range (SFDR)
SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
141
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
6.30 Multichannel Buffered Serial Port (McBSP) Timing
6.30.1 McBSP Transmit and Receive Timing
Table 6-52. McBSP Timing Requirements (1)
(2) (3)
NO.
MIN
MAX
1
McBSP module clock (CLKG, CLKX, CLKR) range
kHz
20
(4)
MHz
1
ms
50
McBSP module cycle time (CLKG, CLKX, CLKR) range
UNIT
ns
M11
tc(CKRX)
Cycle time, CLKR/X
CLKR/X ext
2P
M12
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
CLKR/X ext
P–7
M13
tr(CKRX)
Rise time, CLKR/X
CLKR/X ext
7
ns
M14
tf(CKRX)
Fall time, CLKR/X
CLKR/X ext
7
ns
M15
tsu(FRH-CKRL)
Setup time, external FSR high before CLKR low
M16
th(CKRL-FRH)
Hold time, external FSR high after CLKR low
M17
tsu(DRV-CKRL)
Setup time, DR valid before CLKR low
M18
th(CKRL-DRV)
Hold time, DR valid after CLKR low
M19
tsu(FXH-CKXL)
Setup time, external FSX high before CLKX low
M20
th(CKXL-FXH)
Hold time, external FSX high after CLKX low
(1)
(2)
(3)
(4)
142
CLKR int
18
CLKR ext
2
CLKR int
0
CLKR ext
6
CLKR int
18
CLKR ext
2
CLKR int
0
CLKR ext
6
CLKX int
18
CLKX ext
2
CLKX int
0
CLKX ext
6
ns
ns
ns
ns
ns
ns
ns
ns
Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that
signal are also inverted.Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the
timing references of that signal are also inverted.
CLKSRG
CLKG +
(1 ) CLKGDV)
2P = 1/CLKG in ns. CLKG is the output of sample rate generator mux.
CLKSRG can be LSPCLK, CLKX, CLKR as source. CLKSRG ≤ (SYSCLKOUT/2). McBSP performance is limited by I/O buffer switching
speed.
Not production tested.
Internal clock prescalers must be adjusted such that the McBSP clock (CLKG, CLKX, CLKR) speeds are not greater than the I/O buffer
speed limit (20 MHz).
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 6-53. McBSP Switching Characteristics (1)
NO.
(2) (3)
PARAMETER
MIN
MAX
UNIT
M1
tc(CKRX)
Cycle time, CLKR/X
CLKR/X int
2P
M2
tw(CKRXH)
Pulse duration, CLKR/X high
CLKR/X int
D – 5 (4)
D + 5 (4)
ns
M3
tw(CKRXL)
Pulse duration, CLKR/X low
CLKR/X int
C – 5 (4)
C + 5 (4)
ns
M4
td(CKRH-FRV)
Delay time, CLKR high to internal FSR valid
M5
td(CKXH-FXV)
Delay time, CLKX high to internal FSX valid
M6
tdis(CKXH-DXHZ)
Disable time, CLKX high to DX high impedance following last
data bit
CLKX int
8
CLKX ext
14
Delay time, CLKX high to DX valid.
This applies to all bits except the first bit transmitted.
CLKX int
9
CLKX ext
28
M7
td(CKXH-DXV)
Delay time, CLKX high to DX valid
DXENA = 0
Only applies to first bit transmitted when in Data
DXENA = 1
Delay 1 or 2 (XDATDLY= 01b or 10b) modes
Enable time, CLKX high to DX driven
M8
DXENA = 0
ten(CKXH-DX)
Only applies to first bit transmitted when in Data
DXENA = 1
Delay 1 or 2 (XDATDLY= 01b or 10b) modes
Delay time, FSX high to DX valid
M9
DXENA = 0
td(FXH-DXV)
Only applies to first bit transmitted when in Data
DXENA = 1
Delay 0 (XDATDLY= 00b) mode.
Enable time, FSX high to DX driven
M10
DXENA = 0
ten(FXH-DX)
Only applies to first bit transmitted when in Data
DXENA = 1
Delay 0 (XDATDLY= 00b) mode
(1)
(2)
(3)
(4)
ns
CLKR int
0
4
CLKR ext
3
27
CLKX int
0
4
CLKX ext
3
27
CLKX int
8
CLKX ext
14
CLKX int
P+8
CLKX ext
P + 14
CLKX int
ns
ns
ns
0
CLKX ext
6
CLKX int
P
CLKX ext
P+6
ns
FSX int
8
FSX ext
14
FSX int
P+8
FSX ext
P + 14
FSX int
ns
ns
0
FSX ext
6
FSX int
P
FSX ext
P+6
ns
Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that
signal are also inverted.
2P = 1/CLKG in ns
Not production tested.
C = CLKRX low pulse width = P
D = CLKRX high pulse width = P
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
143
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
M1, M11
M2, M12
M13
M3, M12
CLKR
M4
M4
M14
FSR (int)
M15
M16
FSR (ext)
M18
M17
DR
(RDATDLY= 00b)
Bit (n−1)
(n−2)
(n−3)
M17
(n−4)
M18
DR
(RDATDLY= 01b)
Bit (n−1)
(n−2)
M17
(n−3)
M18
DR
(RDATDLY= 10b)
Bit (n−1)
(n−2)
Figure 6-41. McBSP Receive Timing
M1, M11
M2, M12
M13
M3, M12
M14
CLKX
M5
M5
FSX (int)
M19
M20
FSX (ext)
M9
M7
M10
DX
(XDATDLY= 00b)
Bit 0
Bit (n−1)
(n−2)
(n−3)
(n−4)
(n−2)
(n−3)
M7
M8
DX
(XDATDLY= 01b)
Bit 0
Bit (n−1)
M7
M6
DX
(XDATDLY= 10b)
M8
Bit 0
Bit (n−1)
(n−2)
Figure 6-42. McBSP Transmit Timing
144
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
6.30.2 McBSP as SPI Master or Slave Timing
Table 6-54. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0) (1)
NO.
MASTER
SLAVE
MIN
MIN
MAX
MAX
UNIT
M30
tsu(DRV0CKXL)
Setup time, DR valid before CLKX low
P – 10
8P – 10
ns
M31
th(CKXL0DRV)
Hold time, DR valid after CLKX low
P – 10
8P – 10
ns
M32
tsu(BFXL0CKXH)
Setup time, FSX low before CLKX high
8P + 10
ns
M33
tc(CKX)
Cycle time, CLKX
16P
ns
(1)
2P
Not production tested.
Table 6-55. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0) (1)
NO.
(1)
(2)
MASTER
PARAMETER
MIN
SLAVE
MAX
MIN
MAX
(2)
UNIT
M24
th(CKXL0FXL)
Hold time, FSX low after CLKX low
2P
ns
M25
td(FXL0CKXH)
Delay time, FSX low to CLKX high
P
ns
M28
tdis(FXH0DXHZ)
Disable time, DX high impedance following last data bit from
FSX high
6
6P + 6
ns
M29
td(FXL0DXV)
Delay time, FSX low to DX valid
6
4P + 6
ns
Not production tested.
2P = 1/CLKG
For all SPI slave modes, CLKX has to be minimum eight CLKG cycles. Also, CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV
= 1. With maximum LSPCLK speed of 75 MHz, CLKX maximum frequency is LSPCLK/16, that is 4.5 MHz and P = 13.3 ns.
M32
LSB
M33
MSB
CLKX
M25
M24
FSX
M28
DX
M29
Bit 0
Bit(n-1)
M30
DR
Bit 0
(n-2)
(n-3)
(n-4)
M31
Bit(n-1)
(n-2)
(n-3)
(n-4)
Figure 6-43. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
145
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Table 6-56. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0) (1)
MASTER
NO.
MIN
SLAVE
MAX
MIN
MAX
UNIT
M39
tsu(DRV-CKXH)
Setup time, DR valid before CLKX high
P – 10
8P – 10
ns
M40
th(CKXH-DRV)
Hold time, DR valid after CLKX high
P – 10
8P – 10
ns
M41
tsu(FXL-CKXH)
Setup time, FSX low before CLKX high
16P + 10
ns
M42
tc(CKX)
Cycle time, CLKX
16P
ns
(1)
2P
Not production tested.
Table 6-57. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0) (1)
NO.
PARAMETER
MASTER
SLAVE
MIN
MIN
MAX
MAX
(2)
UNIT
M34
th(CKXL-FXL)
Hold time, FSX low after CLKX low
P
ns
M35
td(FXL-CKXH)
Delay time, FSX low to CLKX high
2P
ns
M37
tdis(CKXL-DXHZ)
Disable time, DX high impedance following last data bit
from CLKX low
M38
td(FXL-DXV)
Delay time, FSX low to DX valid
(1)
(2)
P+6
7P + 6
ns
6
4P + 6
ns
Not production tested.
2P = 1/CLKG
For all SPI slave modes, CLKX has to be minimum eight CLKG cycles. Also, CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV
= 1. With maximum LSPCLK speed of 75 MHz, CLKX maximum frequency is LSPCLK/16 , that is 4.5 MHz and P = 13.3 ns.
LSB
M42
MSB
M41
CLKX
M34
M35
FSX
M37
DX
M38
Bit 0
Bit(n-1)
M39
DR
Bit 0
(n-2)
(n-3)
(n-4)
M40
Bit(n-1)
(n-2)
(n-3)
(n-4)
Figure 6-44. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0
146
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Table 6-58. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1) (1)
NO.
MASTER
SLAVE
MIN
MIN
MAX
MAX
UNIT
M49 tsu(DRV-CKXH)
Setup time, DR valid before CLKX high
P – 10
8P – 10
ns
M50 th(CKXH-DRV)
Hold time, DR valid after CLKX high
P – 10
8P – 10
ns
M51 tsu(FXL-CKXL)
Setup time, FSX low before CLKX low
8P + 10
ns
M52 tc(CKX)
Cycle time, CLKX
16P
ns
(1)
2P
Not production tested.
Table 6-59. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1) (1)
NO.
PARAMETER
MASTER
SLAVE
MIN
MIN
MAX
MAX
(2)
UNIT
M43 th(CKXH-FXL)
Hold time, FSX low after CLKX high
2P
ns
M44 td(FXL-CKXL)
Delay time, FSX low to CLKX low
P
ns
M47 tdis(FXH-DXHZ)
Disable time, DX high impedance following last data bit from FSX
high
6
6P + 6
ns
M48 td(FXL-DXV)
Delay time, FSX low to DX valid
6
4P + 6
ns
(1)
(2)
Not production tested.
2P = 1/CLKG
For all SPI slave modes, CLKX has to be minimum eight CLKG cycles. Also, CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV
= 1. With maximum LSPCLK speed of 75 MHz, CLKX maximum frequency is LSPCLK/16 , that is 4.5 MHz and P = 13.3 ns.
M51
LSB
M52
MSB
CLKX
M43
M44
FSX
M47
DX
M48
Bit 0
Bit(n-1)
M49
DR
Bit 0
(n-2)
(n-3)
(n-4)
M50
Bit(n-1)
(n-2)
(n-3)
(n-4)
Figure 6-45. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
147
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Table 6-60. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1) (1)
NO.
MASTER
SLAVE
MIN
MIN
MAX
MAX
UNIT
M58
tsu(DRV-CKXL)
Setup time, DR valid before CLKX low
P – 10
8P – 10
ns
M59
th(CKXL-DRV)
Hold time, DR valid after CLKX low
P – 10
8P – 10
ns
M60
tsu(FXL-CKXL)
Setup time, FSX low before CLKX low
16P + 10
ns
M61
tc(CKX)
Cycle time, CLKX
16P
ns
(1)
2P
Not production tested.
Table 6-61. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1) (1)
NO.
MASTER (3)
PARAMETER
MIN
M53
th(CKXH-FXL)
Hold time, FSX low after CLKX high
M54
td(FXL-CKXL)
Delay time, FSX low to CLKX low
M56
tdis(CKXH-DXHZ)
Disable time, DX high impedance following last data bit from CLKX
high
M57
td(FXL-DXV)
Delay time, FSX low to DX valid
(1)
(2)
(3)
MAX
SLAVE
MIN
MAX
(2)
UNIT
P
ns
2P
ns
P+6
7P + 6
ns
6
4P + 6
ns
Not production tested.
2P = 1/CLKG
For all SPI slave modes, CLKX has to be minimum eight CLKG cycles. Also, CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV
= 1. With maximum LSPCLK speed of 75 MHz, CLKX maximum frequency is LSPCLK/16, that is 4.5 MHz and P = 13.3 ns.
C = CLKX low pulse width = P
D = CLKX high pulse width = P
M60
LSB
M61
MSB
CLKX
M53
M54
FSX
M56
DX
M55
M57
Bit 0
Bit(n-1)
M58
DR
Bit 0
(n-2)
(n-3)
(n-4)
M59
Bit(n-1)
(n-2)
(n-3)
(n-4)
Figure 6-46. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1
148
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
SGUS062A – JUNE 2009 – REVISED APRIL 2010
6.31 Flash Timing
6.31.1 Recommended Operating Conditions (4)
Nf
Flash endurance for the array (Write/erase cycles)
0°C to 85°C
NOTP
Maximum One-Time Programmable (OTP) endurance for the array (Write
cycles)
0°C to 85°C
(4)
MIN
NOM
100
1000
UNIT
cycles
1
write
Flash Timing Endurance is the minimum number of write/erase or write cycles specified over a programming temperature range of 0°C
to 85°C. Flash may be read over the operating temperature range of the device.
Table 6-62. Flash Parameters at 150-MHz SYSCLKOUT (1)
PARAMETER
(2)
MIN
TYP
16-Bit Word
Program
Time
Erase Time
MAX
UNIT
35
ms
8K Sector
170
ms
16K Sector
320
ms
8K Sector
10
s
16K Sector
IDD3VFLP
VDD3VFL current consumption during the Erase/Program cycle
IDDP
VDD current consumption during Erase/Program cycle
IDDIOP
VDDIO current consumption during Erase/Program cycle
(1)
(2)
MAX
11
s
Erase
75
mA
Program
35
mA
140
mA
20
mA
Typical parameters as seen at room temperature using flash API V1 including function call overhead.
Not production tested.
Table 6-63. Flash/OTP Access Timing (1)
(2)
PARAMETER
MIN
TYP
MAX
UNIT
ta(fp)
Paged Flash access time
36
ns
ta(fr)
Random Flash access time
36
ns
ta(OTP)
OTP access time
60
ns
(1)
(2)
For 150 MHz, PAGE WS = 5 and RANDOM WS = 5
For 135 MHz, PAGE WS = 4 and RANDOM WS = 4
Not production tested.
Table 6-64. Minimum Required Wait-States at Different Frequencies (1)
SYSCLKOUT (MHz)
SYSCLKOUT (ns)
PAGE WAIT-STATE (2)
150
6.67
5
5
120
8.33
4
4
100
10
3
3
75
13.33
2
2
50
20
1
1
30
33.33
1
1
25
40
0
1
15
66.67
0
1
(1)
(2)
Not production tested.
Formulas to compute page wait state and random wait state:
(3)
Random wait state must be greater than or equal to 1
RANDOM WAIT STATE (2)
Electrical Specifications
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
(3)
149
SM320F2812-HT
SGUS062A – JUNE 2009 – REVISED APRIL 2010
www.ti.com
Table 6-64. Minimum Required Wait-States at Different Frequencies
150
SYSCLKOUT (MHz)
SYSCLKOUT (ns)
PAGE WAIT-STATE (2)
4
250
0
Electrical Specifications
(1)
(continued)
RANDOM WAIT STATE (2)
(3)
1
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
SM320F2812-HT
www.ti.com
7
SGUS062A – JUNE 2009 – REVISED APRIL 2010
Mechanical Data
The following mechanical package diagram(s) reflect the most current released mechanical data available
for the designated device(s).
Mechanical Data
Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F2812-HT
151
PACKAGE OPTION ADDENDUM
www.ti.com
13-Jun-2011
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
Samples
(Requires Login)
SM320F2812HFGS150
ACTIVE
CFP
HFG
172
1
TBD
AU
N / A for Pkg Type
Add to cart
SM320F2812KGDS150A
ACTIVE
XCEPT
KGD
0
36
TBD
Call TI
N / A for Pkg Type
Add to cart
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SM320F2812-HT :
• Catalog: SM320F2812
• Enhanced Product: SM320F2812-EP
NOTE: Qualified Version Definitions:
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
13-Jun-2011
• Catalog - TI's standard catalog product
• Enhanced Product - Supports Defense, Aerospace and Medical Applications
Addendum-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Audio
www.ti.com/audio
Communications and Telecom www.ti.com/communications
Amplifiers
amplifier.ti.com
Computers and Peripherals
www.ti.com/computers
Data Converters
dataconverter.ti.com
Consumer Electronics
www.ti.com/consumer-apps
DLP® Products
www.dlp.com
Energy and Lighting
www.ti.com/energy
DSP
dsp.ti.com
Industrial
www.ti.com/industrial
Clocks and Timers
www.ti.com/clocks
Medical
www.ti.com/medical
Interface
interface.ti.com
Security
www.ti.com/security
Logic
logic.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Power Mgmt
power.ti.com
Transportation and
Automotive
www.ti.com/automotive
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
Wireless
www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions
www.ti.com/lprf
TI E2E Community Home Page
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated