VISHAY SIHFB9N30A-E3

IRFB9N30A, SiHFB9N30A
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Dynamic dv/dt Rating
300
RDS(on) (Ω)
Available
VGS = 10 V
Qg (Max.) (nC)
33
Qgs (nC)
6.9
Qgd (nC)
12
Configuration
• Repetitive Avalanche Rated
0.45
RoHS*
COMPLIANT
• Fast Switching
• Ease of Paralleling
• Simple Drive Requirements
Single
• Lead (Pb)-free Available
D
TO-220
DESCRIPTION
Third Generation Power MOSFETs from Vishay provides the
designer with the best combination of fast switching,
ruggedized device design, low on-resistance and cost
effectiveness.
The TO-220 package is universally preferred for all
commercial-industrial applications at lower dissipation levels
to approximately 50 watts. The low thermal resistance and
low package cost of the TO-220 contribute to its wide
acceptance throughout the industry.
G
S
G
D
S
N-Channel MOSFET
ORDERING INFORMATION
Package
TO-220
IRFB9N30APbF
SiHFB9N30A-E3
IRFB9N30A
SiHFB9N30A
Lead (Pb)-free
SnPb
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
LIMIT
UNIT
VGS
± 30
V
Gate-Source Voltage
VGS at 10 V
Continuous Drain Current
TC = 25 °C
ID
TC = 100 °C
Pulsed Drain Currenta
IDM
Linear Derating Factor
9.3
5.9
A
37
0.77
W/°C
Single Pulse Avalanche Energyb
EAS
160
mJ
Repetitive Avalanche Currenta
IAR
9.3
A
Repetitive Avalanche Energya
EAR
9.6
mJ
Maximum Power Dissipation
TC = 25 °C
PD
96
W
dV/dt
4.6
V/ns
TJ, Tstg
- 55 to + 150
Peak Diode Recovery dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
Mounting Torque
for 10 s
6-32 or M3 screw
300d
°C
10
lbf · in
1.1
N·m
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Starting TJ = 25 °C, L = 3.7 mH, RG = 25 Ω, IAS = 9.3 A (see fig. 12).
c. ISD ≤ 9.3 A, dI/dt ≤ 270 A/μs, VDD ≤ VDS, TJ ≤ 150 °C.
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91102
S-Pending-Rev. A, 03-Jun-08
WORK-IN-PROGRESS
www.vishay.com
1
IRFB9N30A, SiHFB9N30A
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
62
Case-to-Sink, Flat, Greased Surface
RthCS
0.50
-
Maximum Junction-to-Case (Drain)
RthJC
-
1.3
UNIT
°C/W
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
VDS
VGS = 0 V, ID = 250 µA
300
-
-
V
ΔVDS/TJ
Reference to 25 °C, ID = 1 mA
-
0.38
-
V/°C
VGS(th)
VDS = VGS, ID = 250 µA
2.0
-
4.0
V
Gate-Source Leakage
IGSS
VGS = ± 30
-
-
± 100
nA
Zero Gate Voltage Drain Current
IDSS
VDS = 300 V, VGS = 0 V
-
-
25
VDS = 240 V, VGS = 0 V, TJ = 150 °C
-
-
-
-
250
0.45
Ω
6.6
-
-
S
Gate-Source Threshold Voltage
Drain-Source On-State Resistance
Forward Transconductance
RDS(on)
gfs
ID = 5.5 Ab
VGS = 10 V
Ab
VDS = 50 V, ID = 5.6
µA
Dynamic
Ciss
Input Capacitance
VGS = 0 V
-
920
-
VDS = 1.0 V
-
1200
-
VDS = 240 V
-
52
-
VDS = 0 V to 240 Vc
-
102
-
Coss
Coss eff.
Output Capacitance
Coss
VDS = 25 V
-
160
-
Reverse Transfer Capacitance
Crss
f = 1.0 MHz, see fig. 5
-
8.7
-
Total Gate Charge
Qg
-
-
33
-
-
6.9
VGS = 10 V
ID = 9.3 A, VDS = 240 V,
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
-
-
12
Turn-On Delay Time
td(on)
-
10
-
Rise Time
Turn-Off Delay Time
Fall Time
tr
td(off)
see fig. 6 and 13b
VDD = 150 V, ID = 9.3 A
RG = 12 Ω, RD = 16 Ω, see fig.
10b
tf
Internal Drain Inductance
LD
Internal Source Inductance
LS
Between lead,
6 mm (0.25") from
package and center of
die contact
D
-
25
-
-
35
-
-
29
-
-
4.5
-
-
7.5
-
-
-
9.3
-
-
37
pF
nC
ns
nH
G
S
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
S
TJ = 25 °C, IS = 9.3 A, VGS = 0 Vb
TJ = 25 °C, IF = 9.3 A, di/dt = 100 A/µsb
-
-
1.5
V
-
280
420
ns
-
1.5
2.3
µC
Forward Turn-On Time
ton
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. Coss eff. ia a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS
www.vishay.com
2
Document Number: 91102
S-Pending-Rev. A, 03-Jun-08
IRFB9N30A, SiHFB9N30A
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
100
100
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
10
4.5V
20µs PULSE WIDTH
TJ = 25 °C
1
0.1
1
10
TJ = 25 ° C
TJ = 150 ° C
10
1
4.0
100
VDS , Drain-to-Source Voltage (V)
I D , Drain-to-Source Current (A)
10
4.5V
20µs PULSE WIDTH
TJ = 150 ° C
10
VDS , Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
Document Number: 91102
S-Pending-Rev. A, 03-Jun-08
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
3.0
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
1
6.0
7.0
8.0
Fig. 3 - Typical Transfer Characteristics
TOP
1
5.0
VGS , Gate-to-Source Voltage (V)
Fig. 1 - Typical Output Characteristics
100
V DS = 50V
20µs PULSE WIDTH
ID = 9.3A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.vishay.com
3
IRFB9N30A, SiHFB9N30A
Vishay Siliconix
100000
ISD , Reverse Drain Current (A)
10000
C, Capacitance (pF)
100
V GS = 0V,
f = 1MHz
C iss = Cgs + C gd , Cds SHORTED
C rss = C gd
C oss = Cds + C gd
Ciss
Coss
1000
100
Crss
10
1
10
TJ = 150° C
TJ = 25 ° C
1
0.1
0.0
A
1
10
100
1000
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
1.2
1.6
Fig. 7 - Typical Source-Drain Diode Forward Voltage
100
ID = 9.3A
OPERATION IN THIS AREA LIMITED
BY RDS(on)
VDS = 240V
VDS = 150V
VDS = 60V
16
10us
ID , D r a in C u r r e n t ( A )
VGS , Gate-to-Source Voltage (V)
0.8
VSD ,Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
20
V GS = 0 V
0.4
12
8
10
100us
1ms
1
10ms
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
0
10
20
30
40
QG , Total Gate Charge (nC)
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.vishay.com
4
TC = 25 ° C
TJ = 150 ° C
Single Pulse
0.1
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig. 8 - Maximum Safe Operating Area
Document Number: 91102
S-Pending-Rev. A, 03-Jun-08
IRFB9N30A, SiHFB9N30A
Vishay Siliconix
rD
10.0
VDS
VGS
ID , Drain Current (A)
D.U.T.
rG
8.0
+
- VDD
10 V
6.0
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
4.0
Fig. 10a - Switching Time Test Circuit
2.0
90 %
VDS
0.0
25
50
75
100
125
150
TC , Case Temperature ( °C)
10 %
VGS
td(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
PDM
0.05
t1
0.02
0.01
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.01
0.00001
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
VDS
tp
15 V
L
VDS
D.U.T.
RG
IAS
20 V
tp
Driver
+
A
- VDD
0.01 Ω
Fig. 12a - Unclamped Inductive Test Circuit
Document Number: 91102
S-Pending-Rev. A, 03-Jun-08
IAS
Fig. 12b - Unclamped Inductive Waveforms
www.vishay.com
5
IRFB9N30A, SiHFB9N30A
400
TOP
BOTTOM
ID
4.2A
5.9A
9.3A
300
200
100
0
400
V DSav , Avalanche Voltage (V)
EAS , Single Pulse Avalanche Energy (mJ)
Vishay Siliconix
380
360
340
25
50
75
100
125
150
Starting TJ , Junction Temperature( °C)
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
A
0
2
4
6
8
10
I av , Avalanche Current (A)
Fig. 12d - Typical Drain-to-Source Voltage vs. Avalanche Current
Current regulator
Same type as D.U.T.
50 kΩ
QG
VGS
12 V
0.2 µF
0.3 µF
QGS
+
QGD
D.U.T.
VG
-
VDS
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.vishay.com
6
Fig. 13b - Gate Charge Test Circuit
Document Number: 91102
S-Pending-Rev. A, 03-Jun-08
IRFB9N30A, SiHFB9N30A
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
•
•
•
•
RG
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by duty factor "D"
D.U.T. - device under test
Driver gate drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS = 10 V*
D.U.T. ISD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
Body diode
VDD
forward drop
Inductor current
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?91102.
Document Number: 91102
S-Pending-Rev. A, 03-Jun-08
www.vishay.com
7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1