IRFB9N30A, SiHFB9N30A Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Dynamic dv/dt Rating 300 RDS(on) (Ω) Available VGS = 10 V Qg (Max.) (nC) 33 Qgs (nC) 6.9 Qgd (nC) 12 Configuration • Repetitive Avalanche Rated 0.45 RoHS* COMPLIANT • Fast Switching • Ease of Paralleling • Simple Drive Requirements Single • Lead (Pb)-free Available D TO-220 DESCRIPTION Third Generation Power MOSFETs from Vishay provides the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost effectiveness. The TO-220 package is universally preferred for all commercial-industrial applications at lower dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. G S G D S N-Channel MOSFET ORDERING INFORMATION Package TO-220 IRFB9N30APbF SiHFB9N30A-E3 IRFB9N30A SiHFB9N30A Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT UNIT VGS ± 30 V Gate-Source Voltage VGS at 10 V Continuous Drain Current TC = 25 °C ID TC = 100 °C Pulsed Drain Currenta IDM Linear Derating Factor 9.3 5.9 A 37 0.77 W/°C Single Pulse Avalanche Energyb EAS 160 mJ Repetitive Avalanche Currenta IAR 9.3 A Repetitive Avalanche Energya EAR 9.6 mJ Maximum Power Dissipation TC = 25 °C PD 96 W dV/dt 4.6 V/ns TJ, Tstg - 55 to + 150 Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 3.7 mH, RG = 25 Ω, IAS = 9.3 A (see fig. 12). c. ISD ≤ 9.3 A, dI/dt ≤ 270 A/μs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91102 S-Pending-Rev. A, 03-Jun-08 WORK-IN-PROGRESS www.vishay.com 1 IRFB9N30A, SiHFB9N30A Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 1.3 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient VDS VGS = 0 V, ID = 250 µA 300 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.38 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.0 V Gate-Source Leakage IGSS VGS = ± 30 - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 300 V, VGS = 0 V - - 25 VDS = 240 V, VGS = 0 V, TJ = 150 °C - - - - 250 0.45 Ω 6.6 - - S Gate-Source Threshold Voltage Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs ID = 5.5 Ab VGS = 10 V Ab VDS = 50 V, ID = 5.6 µA Dynamic Ciss Input Capacitance VGS = 0 V - 920 - VDS = 1.0 V - 1200 - VDS = 240 V - 52 - VDS = 0 V to 240 Vc - 102 - Coss Coss eff. Output Capacitance Coss VDS = 25 V - 160 - Reverse Transfer Capacitance Crss f = 1.0 MHz, see fig. 5 - 8.7 - Total Gate Charge Qg - - 33 - - 6.9 VGS = 10 V ID = 9.3 A, VDS = 240 V, Gate-Source Charge Qgs Gate-Drain Charge Qgd - - 12 Turn-On Delay Time td(on) - 10 - Rise Time Turn-Off Delay Time Fall Time tr td(off) see fig. 6 and 13b VDD = 150 V, ID = 9.3 A RG = 12 Ω, RD = 16 Ω, see fig. 10b tf Internal Drain Inductance LD Internal Source Inductance LS Between lead, 6 mm (0.25") from package and center of die contact D - 25 - - 35 - - 29 - - 4.5 - - 7.5 - - - 9.3 - - 37 pF nC ns nH G S Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 9.3 A, VGS = 0 Vb TJ = 25 °C, IF = 9.3 A, di/dt = 100 A/µsb - - 1.5 V - 280 420 ns - 1.5 2.3 µC Forward Turn-On Time ton Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. ia a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS www.vishay.com 2 Document Number: 91102 S-Pending-Rev. A, 03-Jun-08 IRFB9N30A, SiHFB9N30A Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 10 4.5V 20µs PULSE WIDTH TJ = 25 °C 1 0.1 1 10 TJ = 25 ° C TJ = 150 ° C 10 1 4.0 100 VDS , Drain-to-Source Voltage (V) I D , Drain-to-Source Current (A) 10 4.5V 20µs PULSE WIDTH TJ = 150 ° C 10 VDS , Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91102 S-Pending-Rev. A, 03-Jun-08 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 3.0 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 1 6.0 7.0 8.0 Fig. 3 - Typical Transfer Characteristics TOP 1 5.0 VGS , Gate-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics 100 V DS = 50V 20µs PULSE WIDTH ID = 9.3A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFB9N30A, SiHFB9N30A Vishay Siliconix 100000 ISD , Reverse Drain Current (A) 10000 C, Capacitance (pF) 100 V GS = 0V, f = 1MHz C iss = Cgs + C gd , Cds SHORTED C rss = C gd C oss = Cds + C gd Ciss Coss 1000 100 Crss 10 1 10 TJ = 150° C TJ = 25 ° C 1 0.1 0.0 A 1 10 100 1000 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 1.2 1.6 Fig. 7 - Typical Source-Drain Diode Forward Voltage 100 ID = 9.3A OPERATION IN THIS AREA LIMITED BY RDS(on) VDS = 240V VDS = 150V VDS = 60V 16 10us ID , D r a in C u r r e n t ( A ) VGS , Gate-to-Source Voltage (V) 0.8 VSD ,Source-to-Drain Voltage (V) VDS , Drain-to-Source Voltage (V) 20 V GS = 0 V 0.4 12 8 10 100us 1ms 1 10ms 4 FOR TEST CIRCUIT SEE FIGURE 13 0 0 10 20 30 40 QG , Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 TC = 25 ° C TJ = 150 ° C Single Pulse 0.1 1 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91102 S-Pending-Rev. A, 03-Jun-08 IRFB9N30A, SiHFB9N30A Vishay Siliconix rD 10.0 VDS VGS ID , Drain Current (A) D.U.T. rG 8.0 + - VDD 10 V 6.0 Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 4.0 Fig. 10a - Switching Time Test Circuit 2.0 90 % VDS 0.0 25 50 75 100 125 150 TC , Case Temperature ( °C) 10 % VGS td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 PDM 0.05 t1 0.02 0.01 t2 SINGLE PULSE (THERMAL RESPONSE) 0.01 0.00001 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS tp 15 V L VDS D.U.T. RG IAS 20 V tp Driver + A - VDD 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91102 S-Pending-Rev. A, 03-Jun-08 IAS Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRFB9N30A, SiHFB9N30A 400 TOP BOTTOM ID 4.2A 5.9A 9.3A 300 200 100 0 400 V DSav , Avalanche Voltage (V) EAS , Single Pulse Avalanche Energy (mJ) Vishay Siliconix 380 360 340 25 50 75 100 125 150 Starting TJ , Junction Temperature( °C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current A 0 2 4 6 8 10 I av , Avalanche Current (A) Fig. 12d - Typical Drain-to-Source Voltage vs. Avalanche Current Current regulator Same type as D.U.T. 50 kΩ QG VGS 12 V 0.2 µF 0.3 µF QGS + QGD D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91102 S-Pending-Rev. A, 03-Jun-08 IRFB9N30A, SiHFB9N30A Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - • • • • RG dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Body diode VDD forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91102. Document Number: 91102 S-Pending-Rev. A, 03-Jun-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1