IRFP460N, SiHFP460N Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Available Requirement • Improved Gate, Avalanche and Dynamic dV/dt RoHS* COMPLIANT Ruggedness • Fully Characterized Capacitance and Avalanche Voltage and Current • Effective Coss Specified • Lead (Pb)-free Available 500 RDS(on) (Ω) VGS = 10 V 0.24 Qg (Max.) (nC) 124 Qgs (nC) 40 Qgd (nC) 57 Configuration Single D TO-247 APPLICATIONS • Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply • High Speed Power Switching G TYPICAL SMPS TOPOLOGIES S D G • Full Bridge • Power Factor Correction Boost S N-Channel MOSFET ORDERING INFORMATION Package TO-247 IRFP460NPbF SiHFP460N-E3 IRFP460N SiHFP460N Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 500 Gate-Source Voltage VGS ± 30 VGS at 10 V Continuous Drain Current Pulsed Drain TC = 25 °C ID TC = 100 °C Currenta IDM Linear Derating Factor Energyb UNIT V 20 13 A 80 2.2 W/°C mJ EAS 340 Currenta IAR 20 A Repetitive Avalanche Energya EAR 28 mJ Single Pulse Avalanche Repetitive Avalanche Maximum Power Dissipation TC = 25 °C PD 280 W dV/dt 5.0 V/ns TJ, Tstg - 55 to + 150 Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 1.8 mH, RG = 25 Ω, IAS = 20 A (see fig. 12). c. ISD ≤ 20 A, dI/dt ≤ 140 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91236 S-Pending-Rev. B, 23-Jul-08 WORK-IN-PROGRESS www.vishay.com 1 IRFP460N, SiHFP460N Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 40 Case-to-Sink, Flat, Greased Surface RthCS 0.24 - Maximum Junction-to-Case (Drain) RthJC - 0.45 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 µA 500 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 580 - mV/°C VGS(th) VDS = VGS, ID = 250 µA 3.0 - 5.0 V Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 500 V, VGS = 0 V - - 25 VDS = 400 V, VGS = 0 V, TJ = 125 °C - - 250 Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs ID = 12 Ab VGS = 10 V VDS = 50 V, ID = 12 A µA - - 0.24 Ω 10 - - S - 3540 - - 350 - Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Effective Output Capacitance Total Gate Charge Coss Gate-Drain Charge Qgd Turn-On Delay Time td(on) Fall Time - 30 - VDS = 1.0 V, f = 1.0 MHz - 3930 - VDS = 400 V, f = 1.0 MHz - 95 - VDS = 0 V to 400 Vc - 200 - - - 124 - - 40 - - 57 - 23 - - 87 - - 34 - - 33 - - - 20 - - 80 - - 1.8 - 550 825 ns - 7.2 10.8 µC Qg Qgs Rise Time VGS = 0 V Coss eff. Gate-Source Charge Turn-Off Delay Time VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 tr td(off) VGS = 10 V ID = 20 A, VDS = 400 V see fig. 6 and 13b VDD = 250 V, ID = 20 A RG = 4.3 Ω, RD= 13 Ω, see fig. 10b tf pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 20 A, VGS = 0 Vb TJ = 25 °C, IF = 20 A, dI/dt = 100 A/µsb V Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. www.vishay.com 2 Document Number: 91236 S-Pending-Rev. B, 23-Jul-08 IRFP460N, SiHFP460N Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 100 100 VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V 10 I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 1 0.1 5.0V 0.01 20µs PULSE WIDTH TJ = 25 °C 0.001 0.1 1 10 TJ = 150 ° C 10 TJ = 25 ° C 1 0.1 100 5 VDS , Drain-to-Source Voltage (V) I D , Drain-to-Source Current (A) 10 5.0V 20µs PULSE WIDTH TJ = 150 °C 1 10 VDS , Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91236 S-Pending-Rev. B, 23-Jul-08 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 3.5 VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V 0.1 0.1 7 8 9 10 11 Fig. 3 - Typical Transfer Characteristics TOP 1 6 VGS , Gate-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics 100 V DS = 50V 20µs PULSE WIDTH ID = 20A 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFP460N, SiHFP460N Vishay Siliconix VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd C, Capacitance(pF) 10000 Ciss Coss 1000 Crss 100 100 ISD , Reverse Drain Current (A) 100000 10 1 10 100 1000 16 V GS = 0 V 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Fig. 7 - Typical Source-Drain Diode Forward Voltage 8 4 FOR TEST CIRCUIT SEE FIGURE 13 0 40 60 80 100 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 12 120 140 QG , Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 1 VSD,Source-to-Drain Voltage (V) ID, Drain-to-Source Current (A) VGS , Gate-to-Source Voltage (V) VDS = 400V VDS = 250V VDS = 100V 20 TJ = 25 ° C 1000 ID = 20A 0 10 0.1 0.2 VDS, Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 20 TJ = 150 ° C 10 100µsec 1msec 1 T A = 25°C T J = 150°C 0.1 10msec Single Pulse 10 100 1000 10000 VDS , Drain-toSource Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91236 S-Pending-Rev. B, 23-Jul-08 IRFP460N, SiHFP460N Vishay Siliconix RD VDS 20 VGS D.U.T. ID , Drain Current (A) RG + - VDD 15 10V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 10 Fig. 10a - Switching Time Test Circuit VDS 5 90 % 0 25 50 75 100 125 150 10 % VGS TC , Case Temperature ( °C) t d(on) Fig. 9 - Maximum Drain Current vs. Case Temperature tr t d(off) t f Fig. 10b - Switching Time Waveforms Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) P DM 0.01 t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.00001 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (s) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case V DS tp 15 V L VDS D.U.T. RG IAS 20 V tp Driver + A - VDD A 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91236 S-Pending-Rev. B, 23-Jul-08 I AS Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRFP460N, SiHFP460N EAS , Single Pulse Avalanche Energy (mJ) Vishay Siliconix 750 ID 8.9A 12.6A BOTTOM 20A TOP 600 450 300 150 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG 12 V 0.2 µF 0.3 µF 10 V QGS Q GD D.U.T. VG + V - DS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91236 S-Pending-Rev. B, 23-Jul-08 IRFP460N, SiHFP460N Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - • • • • RG dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Body diode VDD forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91236 Document Number: 91236 S-Pending-Rev. B, 23-Jul-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1