SN74LVC126A-Q1 www.ti.com .................................................................................................................................................. SCAS763B – FEBRUARY 2004 – REVISED APRIL 2008 QUADRUPLE BUS BUFFER GATE WITH 3-STATE OUTPUTS FEATURES 1 • • • • • • • • Qualified for Automotive Applications Operates From 1.65 V to 3.6 V Inputs Accept Voltages to 5.5 V Max tpd of 4.7 ns at 3.3 V Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C Typical VOHV (Output VOH Undershoot) >2 V at VCC = 3.3 V, TA = 25°C Latch-Up Performance Exceeds 250 mA Per JESD 17 ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (A114-A) – 200-V Machine Model (A115-A) D OR PW PACKAGE (TOP VIEW) 1OE 1A 1Y 2OE 2A 2Y GND 1 14 2 13 3 12 4 11 5 10 6 9 7 8 VCC 4OE 4A 4Y 3OE 3A 3Y DESCRIPTION/ORDERING INFORMATION This quadruple bus buffer gate is designed for 1.65-V to 3.6-V VCC operation. The SN74LVC126A features independent line drivers with 3-state outputs. Each output is disabled when the associated output-enable (OE) input is low. To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment. ORDERING INFORMATION (1) PACKAGE (2) TA –40°C to 125°C (1) (2) ORDERABLE PART NUMBER TOP-SIDE MARKING SOIC – D Reel of 2500 SN74LVC126AQDRQ1 LC126AQ TSSOP – PW Reel of 2000 SN74LVC126AQPWRQ1 LC126AQ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. FUNCTION TABLE (EACH BUFFER) INPUTS OE A OUTPUT Y H H H H L L L X Z 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2004–2008, Texas Instruments Incorporated SN74LVC126A-Q1 SCAS763B – FEBRUARY 2004 – REVISED APRIL 2008 .................................................................................................................................................. www.ti.com LOGIC DIAGRAM (POSITIVE LOGIC) 1OE 1A 2OE 2A 1 3OE 2 3 1Y 3A 4 4OE 5 6 2Y 4A 10 9 8 3Y 13 12 11 4Y Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) VCC MIN MAX Supply voltage range –0.5 6.5 UNIT V (2) –0.5 6.5 V –0.5 VCC + 0.5 VI Input voltage range VO Output voltage range (2) (3) IIK Input clamp current VI < 0 –50 mA IOK Output clamp current VO < 0 –50 mA IO Continuous output current ±50 mA ±100 mA Continuous current through VCC or GND θJA Package thermal impedance (4) Tstg Storage temperature range (1) (2) (3) (4) 2 D package 86 PW package 113 –65 150 V °C/W °C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. The value of VCC is provided in the recommended operating conditions table. The package thermal impedance is calculated in accordance with JESD 51-7. Submit Documentation Feedback Copyright © 2004–2008, Texas Instruments Incorporated Product Folder Link(s): SN74LVC126A-Q1 SN74LVC126A-Q1 www.ti.com .................................................................................................................................................. SCAS763B – FEBRUARY 2004 – REVISED APRIL 2008 Recommended Operating Conditions (1) VCC Operating Supply voltage Data retention only High-level input voltage MAX 1.65 3.6 1.5 VCC = 1.65 V to 1.95 V VIH MIN Low-level input voltage V 0.65 × VCC VCC = 2.3 V to 2.7 V 1.7 VCC = 2.7 V to 3.6 V 2 V 0.35 × VCC VCC = 1.65 V to 1.95 V VIL UNIT VCC = 2.3 V to 2.7 V 0.7 VCC = 2.7 V to 3.6 V 0.8 V VI Input voltage 0 5.5 V VO Output voltage 0 VCC V VCC = 1.65 V IOH High-level output current IOL Low-level output current Δt/Δv Input transition rise or fall rate TA Operating free-air temperature (1) –4 VCC = 2.3 V –8 VCC = 2.7 V –12 VCC = 3 V –24 VCC = 1.65 V 4 VCC = 2.3 V 8 VCC = 2.7 V 12 VCC = 3 V 24 –40 mA mA 10 ns/V 125 °C All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS IOH = –100 µA VOH 1.65 V to 3.6 V 1.65 V 1.1 IOH = –8 mA 2.3 V 1.5 2.7 V 2.1 3V 2.35 IOH = –24 mA 3V 2.1 IOL = 100 µA 1.65 V to 3.6 V 0.2 IOL = 4 mA 1.65 V 0.45 IOL = 8 mA 2.3 V 0.7 IOL = 12 mA 2.7 V 0.5 IOL = 24 mA II VI = 5.5 V or GND IOZ VO = VCC or GND ICC VI = VCC or GND, IO = 0 One input at VCC – 0.6 V, Other inputs at VCC or GND ΔICC (1) UNIT VCC – 0.2 IOH = –4 mA IOH = –12 mA VOL MIN TYP (1) MAX VCC V V 3V 0.7 3.6 V ±10 µA 3.6 V ±10 µA 3.6 V 20 µA 2.7 V to 3.6 V 500 µA Ci VI = VCC or GND 3.3 V 4.5 pF Co VO = VCC or GND 3.3 V 7 pF All typical values are at VCC = 3.3 V, TA = 25°C. Copyright © 2004–2008, Texas Instruments Incorporated Product Folder Link(s): SN74LVC126A-Q1 Submit Documentation Feedback 3 SN74LVC126A-Q1 SCAS763B – FEBRUARY 2004 – REVISED APRIL 2008 .................................................................................................................................................. www.ti.com Switching Characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) FROM (INPUT) TO (OUTPUT) tpd A ten OE tdis OE PARAMETER VCC = 2.7 V VCC = 3.3 V ± 0.3 V UNIT MIN MAX MIN MAX Y 1 6.2 1 5.7 ns Y 1 6.3 1 5.7 ns Y 1 6.7 1 6 ns 1 ns tsk(o) Operating Characteristics TA = 25°C TEST CONDITIONS PARAMETER Cpd 4 Power dissipation capacitance per gate Outputs enabled Outputs disabled Submit Documentation Feedback f = 10 MHz VCC = 3.3 V TYP 22 4 UNIT pF Copyright © 2004–2008, Texas Instruments Incorporated Product Folder Link(s): SN74LVC126A-Q1 SN74LVC126A-Q1 www.ti.com .................................................................................................................................................. SCAS763B – FEBRUARY 2004 – REVISED APRIL 2008 PARAMETER MEASUREMENT INFORMATION VLOAD S1 RL From Output Under Test CL (see Note A) Open GND RL TEST S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open VLOAD GND LOAD CIRCUIT INPUT VCC 2.7 V 3.3 V ± 0.3 V VM tr/tf VI ≤ 2.5 ns ≤ 2.5 ns 2.7 V 2.7 V 1.5 V 1.5 V VLOAD 6V 6V CL RL V∆ 50 pF 50 pF 500 Ω 500 Ω 0.3 V 0.3 V VI Timing Input VM 0V tw tsu VI Input VM VM th VI Data Input VM VM 0V 0V VOLTAGE WAVEFORMS PULSE DURATION VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VI VM Input VM 0V tPLH VM VM VOL tPHL VM VM 0V tPLZ Output Waveform 1 S1 at VLOAD (see Note B) tPLH VLOAD/2 VM tPZH VOH Output VM tPZL tPHL VOH Output VI Output Control VM VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS VOL + V∆ VOL tPHZ Output Waveform 2 S1 at GND (see Note B) VM VOH - V∆ VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms Copyright © 2004–2008, Texas Instruments Incorporated Product Folder Link(s): SN74LVC126A-Q1 Submit Documentation Feedback 5 PACKAGE OPTION ADDENDUM www.ti.com 29-Dec-2009 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty CLVC126AQPWRG4Q1 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC126AQDRG4Q1 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC126AQDRQ1 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC126AQPWRQ1 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF SN74LVC126A-Q1 : • Catalog: SN74LVC126A NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps RF/IF and ZigBee® Solutions www.ti.com/lprf TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated