NJW1124 Voice Switched Speakerphone circuit ! GENERAL DESCRIPTION ! PACKAGE OUTLINE The NJW1124 is a Voice Switched Speakerphone Circuit. NJW1124 includes all of functions processing a high quality hands–free speakerphone system, such as the necessary amplifiers ( Microphone , Receive ,Line), attenuators, level detectors functions. All external capacitors are sufficient small so that ceramic capacitors are applied. NJW1124V ! APPLICATION •Video Door Phone •Conference System •Wireless Application •Security System ! FEATURES • Operating voltage range • Force to Receive, Transmit, or Idle modes • Mode –watching monitor • Attenuator gain range between Transmit and Receive • Microphone amplifier with mute function • Background noise monitor for each path • Volume control range • 4-point signal sensing • Microphone and Receive Amplifiers pinned out for flexibility • Package Outline 2.9 to 4.5V 52dB 40dB SSOP32 ! BLOCK DIAGRAM C6 R2 100n 5.1k R3 51k C8 100n C7 100n C9 R6 100n 5.1k R7 51k Microphone R4 51k MCO MCI R5 10k TLI2 TLI1 Line Out C10 TXO LII LiO- LiO+ V+ V + R1 300k C1 1µ µ C3 470n C4 470n C2 1u -1 Tx Attenuator Mic Amplifier VREF Line Amplifier Monitor MUT TLO2 C5 1µ µ CT Level Detector + V RLO2 RTSW Background NoiseMonitor CPT Attenuator Control Background NoiseMonitor CPR Level Detector TLO1 RLO1 C23 1µ µ C11 1µ µ V+ VREF VREF BIAS Rx Attenuator RXO RLI2 R10 15k 5.0V + C16 10µ µ C15 1µ µ C21 470n GND VREF 1.2µ µA V+ C20 470n Receive Amplifier IC1 NJW1124 VREF2 C22 1µ µ C17 100n C13 R11 10k VLC R12 51k RVLC RLI1 FO C18 100n R13 5.1k FI R14 5.1k C19 100n Recive In 1µ Speaker IC2 NJU7084 Power Amplifier C14 1 µ R9 22k R8 11k C12 100n –1– NJW1124 !PIN CONFIGURATION 32 2 31 3 30 NJW1124 1 4 5 6 7 8 9 10 11 12 13 –2– 29 28 27 26 25 24 23 22 21 20 14 19 15 18 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 VREF2 15 16 LIO+ MUT NC CPT TLO2 RLO2 CT MCI MCO TLI2 TLI1 TXO LII LIOGND 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 MON RTSW VREF CPR RLO1 TLO1 VLC FI FO RLI1 RLI2 RXO NC NC NC V+ NJW1124 ! ABSOLUTE MAXIMUM RATING (Ta=25°C) PARAMETER SYMBOL RATING UNIT Power Supply Voltage V+ 5.5 V Power Dissipation PD 800 (Note1) mW Operating Temperature Range Topr -40 ~ +85 °C Storage Temperature Range Tstg -40 ~ +125 °C Maximum Input Voltage + VIMAX 0~V V (Note1) EIA/JEDEC STANDARD Test board (76.2x114.3x1.6mm, 2layer, FR-4) mounting (Note2) Don’t apply the input voltage that exceeds supply voltage. ! OPERATING VOLTAGE PARAMETER Operating Voltage SYMBOL V + TEST CONDITION - MIN. TYP. MAX. UNIT 2.9 4.0 4.5 V ! ELECTRICAL CHARACTERISTICS (Ta=25°C,V+=4V,MUT=ACTIVE,RTSW=OPEN,RVLC=0Ω,GVM=0dB,ReceiveAmplifierGV=0dB) PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Operating Current 1 ICC1 RX-mode (Receive) 0.7 2.0 4.0 mA Operating Current 2 ICC2 TX-mode (Transmit) 0.7 2.0 4.0 mA Operating Current 3 ICC3 Idle-mode 0.7 2.0 4.0 mA Reference Voltage VREF Idle-mode 1.7 2.0 2.3 V MIN. TYP. MAX. UNIT 3.0 6.0 9.0 dB -43 -46 -50 dB ●Receive Attenuator (RxIN=100Vrms,Receive Amplifier Gv=0dB) PARAMETER SYMBOL TEST CONDITION Receive Attenuator Gain 1 GR1 RX-mode (Receive) Receive Attenuator Gain 2 GR2 TX-mode (Transmit) Receive Attenuator Gain 3 GR3 Idle-mode (Standby),CPT=CPR=V -17 -20 -23 dB Range R to T mode ∆GR RX-mode – TX-mode 47 52 57 dB Dynamic DC offset GRDC RX-mode – TX-mode (DC) -50 - 50 mV Volume control range GRVR RX-mode,RVLC=0Ω-100kΩ 30 40 50 dB - - 200 µA MIN. TYP. MAX. UNIT 3.0 6.0 9.0 dB -43 -46 -50 dB Maximum DetecterSink Current IRSINKMAX + RLI1,TLI1,Maximum Sink Current ●Transmit Attenuator (TxIN=100Vrms,Mic.amplifier Gv=0dB) PARAMETER SYMBOL TEST CONDITION Transmit Attenuator Gain 1 GT1 TX-mode (Transmit) Transmit Attenuator Gain 2 GT2 RX-mode (Receive) + Transmit Attenuator Gain 3 GT3 Idle-mode CPT=CPR=V -17 -20 -23 dB Range R to T mode ∆GT TX-mode – RX-mode 47 52 57 dB Dynamic DC offset GTDC TX-mode – RX-mode (DC) -50 - 50 mV Volume control range GTVR RX-mode,RVLC=0Ω-100kΩ 31 40 46 dB - - 200 µA Maximum DetecterSink Current IRSINKMAX RLI1,TLI1,Maximum Sink Current –3– NJW1124 ●MIC Amplifier (TxIN=1mVrms,Gv=40dB,RL=5.1kΩ) PARAMETER SYMBOL TEST CONDITION R5=300kΩ,VMOS=VMCI -VMCO MIN. TYP. MAX. UNIT -30 0.0 30 mV - 0.0 - nA Output Offset Voltage VMOS Input Bias Current IMBIAS Voltage Gain 1 GVM1 f=1kHz - 40 - dB Voltage Gain 2 GVM2 f=20kHz - 38 - dB Maximum Output Voltage VMMAX THD=1% 0.9 - - Vrms Maximum Output Current IMOMAX - 1.5 - mA Maximum Attenuation GMMUTE 70 73 - dB MIN. TYP. MAX. UNIT -30 0.0 30 mV - 30 - nA - R5=300kΩ ●Receive Amplifier(RxIN=1mVrms,Gv=40dB,RL=5.1kΩ) PARAMETER SYMBOL TEST CONDITION Output Offset Voltage VROS RF=300kΩ,VFOS=VFI -VFO Input Bias Current IRBIAS Voltage Gain 1 GVR1 f=1kHz - 40 - dB Voltage Gain 2 GVR2 f=20kHz - 38 - dB Maximum Output Voltage VRMAX THD=1% 0.9 - - mVrms Maximum Output Current IROMAX - - 1.5 - mA TEST CONDITION MIN. TYP. MAX. UNIT 20 0.0 20 mV - 0.0 - nA - ●Line Amplifier (LINEIN=50mVrms, GV=26dB,RL=1.2kΩ) PARAMETER SYMBOL Output Offset Voltage VLOS R9=51kΩ Input Bias Current ILBIAS Voltage Gain 1 GVL1 f=1kHz - 26 - dB Voltage Gain 2 GVL2 f=20kHz - 25 - dB Closed Loop Gain GLC LIO- to LIO+ -0.5 0 0.5 dB 1.5 - - Vrms - - 0.5 % - - 4.0 - mA TEST CONDITION MIN. TYP. MAX. UNIT - - V - Maximum Output Voltage VLMAX THD=1% Total Harmonic Distortion THDLN f=1kHz Maximum Output Current ILOMAX ●Monitor Terminal (32Pin) Output Voltage PARAMETER SYMBOL + RX-mode Rx - V -0.3 TX-mode Tx - - - 0.3 V + Idle-mode Idle No Signal - V /2 - V Maximum Output Current IMON Rx-mode / Tx-mode - 1.0 - mA –4– NJW1124 ! CONTROL CHARACTERISTICS (MUT) PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Low Level Input Voltage VIL1 - - - 0.3 V High Level Input Voltage VIH1 - 1.5 - - V SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT VIL2 - - - 0.3 V V -0.3 - - V ! CONTROL CHARACTERISTICS (RTSW) PARAMETER Low Level Input Voltage High Level Input Voltage VIH2 - + ! FUNCTION ●MUT (2pin) INPUT VOLTAGE STATUS VIH MUTE VIL ACTIVE OPERATION The microphone input is made a mute. The microphone input is active. ●RTSW (31pin) INPUT VOLTAGE VIH OPEN STATUS OPERATION Receive Transmit Force to Receive mode. Receive mode and Transmit mode are automatically switched. Force to Transmit mode. STATUS OPERATION AUTO VIL ●RVLC (26pin) IMPEDANCE 0 VolMAM The Receive attenuator Volume is maximum. 100kΩ VolMIN The Receive attenuator Volume is minimum. –5– NJW1124 ! MEASUREMENT CIRCUIT S12 R LMH 1 MON VREF2 S13 V+ OPEN OPEN 4.7k R LML 4.7k MONOUT 32 S6 S2 100 VIH 2 VIL RTSW MUT VIH 100 31 OPEN VIL 1u S4 4 1k V+ CPT OPEN 100n 100n 1u 300k TxIN 5 TLO2 6 RLO2 7 CT S5 0dB 1u 8 3k 40dB 9 100n MCI 300k MCOUT MCO 5.1k 10 TLI2 11 TLI1 5.1k 100n TxOUT 1u 51k LINEOUT 30 Vref CPR S7 1k V+ OPEN RLO1 28 TLO1 27 VLC 26 100n 100n S8 0ohm 100k 100k 300k 1u 0dB FI 25 3k FO RxIN 40dB 300k S9 24 FilterOUT 5.1k RLI1 23 RLI2 22 100n 5.1k 100n RXO 21 NC 20 TXO 13 LII 14 LIO- NC 19 15 LIO+ NC 18 16 GND V+ 17 47p 1u 29 12 5.1k LINEIN VREF NC NJW1124 3 1u RxOUT 1.2k(R LL) Icc V+ 1u –6– NJW1124 ! APPLICATION CIRCUIT TR1 2.2k Rx-Mode :V+ Tx-Mode :GND Idle :HI-Z V+ LED1 56k 0.47µ µ 1 VREF2 2 MUT 3 NC MON 32 RTSW 31 VREF 30 CPR 29 RLO1 28 TLO1 27 VLC 26 FI 25 1µ µ Monitor Out 1µ µ 4 470n 470n 1u 100n 5.1k 5 TLO2 6 RLO2 7 CT 8 Mic In CPT MCI 51k 9 100n MCO 51k 10 TLI2 10k TX OUT 11 100n 100n 12 TLI1 TXO 5.1k 51k + 13 LII 14 V+ :Recive GND :Trensmit Open :Auto 1µ µ 1µ µ 470n 470n 100k 5.1k 100n FO 1µ µ 15k V+ 24 51k RLI1 100n 1µ µ 23 10k RLI2 1µ µ 22 100n RXO V+ :ACTIVE GND :Shut Down Receive In 5.1k 0.1u 21 1 SD 2 SDTC 3 + IN OUTB 8 GND 7 V+ 6 V+ (2) 10u 20 LIO- NC 19 4 -IN OUTA 5 - 15 LIO+ NC 18 16 GND V+ 17 22k LINE OUT - + Speaker Out 11k Receive Out NC 47p V+ NJU7084 300k V+ NJW1124 V+ :MUTE GND :ACTIVE V+ (1) 1µ µ –7– NJW1124 ! TYPICAL CHARACTERISTICS Volume control range vs ambient temperature ( VLC=0Ω/100kΩ) Detector Max Sink Current vs ambient temperature (TLI1,TLI2,RLI1,RLI2 Max Sink Current) 50.0 700 600 V+=4.0V 500 40.0 Max Sink Current [ ∪A] Volume Control range [dB] 45.0 V+=4.0V V+=3.3V 35.0 V+=3.3V 400 300 200 30.0 100 25.0 0 -50 -30 -10 10 30 50 70 90 110 -50 -30 -10 Ambient temperature [℃] 50 70 90 110 70 90 110 10.0 10.0 Tx-Mode 0.0 Tx-Mode 0.0 -10.0 Tx ATT Gain [dB] -10.0 Tx ATT Gain [dB] 30 Tx ATT Gain vs ambient temperature (V+=4.0V , Receive Amp Gain = 0dB , VLC=0Ω) Tx ATT Gain vs ambient temperature (V+=3.3V , Receive Amp Gain = 0dB , VLC=0Ω) -20.0 Idle-Mode -20.0 Idle-Mode -30.0 -30.0 -40.0 -40.0 Rx-Mode Rx-Mode -50.0 -50.0 -50 -30 -10 10 30 50 70 90 -50 110 -30 -10 10 30 50 Ambient temperature [℃] Ambient temperature [℃] Monitor Out vs ambient temperature (V+=4.0V , RLMH=RLML=4.7kΩ) note : The MONITOR OUT(@Idole-mode) is Hi-Z when there are neither RLMH and RLML. Monitor Out vs ambient temperature (V+=3.3V , RLMH=RLML=4.7kΩ) note : The MONITOR OUT(@Idole-mode) is Hi-Z when there are neither RLMH and RLML. 4.0 4.0 3.5 Rx-Mode 3.5 Rx-Mode 3.0 Monitor output Voltage [V] 3.0 Monitor output Voltage [V] 10 Ambient temperature [℃] 2.5 2.0 Idle-Mode 1.5 2.5 Idle-Mode 2.0 1.5 1.0 1.0 0.5 0.5 Tx-Mode Tx-Mode 0.0 0.0 -50 -30 -10 10 30 50 Ambient temperature [℃] –8– 70 90 110 -50 -30 -10 10 30 50 Ambient temperature [℃] 70 90 110 NJW1124 ! TYPICAL CHARACTERISTICS MUTE Pin Voltage vs MUTE ATT Ratio (V+=4.0V , MICAMP GAIN=40dB, Rf=300kΩ, Ri=3kΩ, A-weighted) MUTE Pin Voltage vs MUTE ATT Ratio (V+=3.3V , MICAMP GAIN=40dB, Rf=300kΩ, Ri=3kΩ, A-weighted) 10 10 0 0 -40℃ 25℃ -30 85℃ -40 -50 -60 -30 85℃ -40 -50 -60 -70 -70 -80 -80 -90 -90 -100 -100 0 0.5 1 25℃ -20 MUTE ATT Ratio [dB] -20 MUTE ATT Ratio [dB] -40℃ -10 -10 1.5 2 0 2.5 0.5 1 MUTE Pin Voltage vs MUTE ATT Ratio (V+=3.3V , MICAMP GAIN=0dB, Rf=3kΩ, Ri=3kΩ, A-weighted) 2.5 10 -40℃ 0 -40℃ 0 25℃ 85℃ -20 -30 -20 -30 -40 -40 -50 -50 -60 25℃ 85℃ -10 MUTE ATT Ratio [dB] -10 MUTE ATT Ratio [dB] 2 MUTE Pin Voltage vs MUTE ATT Ratio (V+=4.0V , MICAMP GAIN=0dB, Rf=3kΩ, Ri=3kΩ, A-weighted) 10 -60 0 0.5 1 1.5 2 2.5 0 0.5 1 MUT PIN Voltage [V] 1.5 2 2.5 MUT PIN Voltage [V] MICAMP Gain vs Frequency (V+=3.3V , RL=5.1kΩ, Cin=1µF, Rin=3kΩ) MICAMP Gain vs Frequency (V+=4.0V , RL=5.1kΩ, Cin=1µF, Rin=3kΩ) 50 50 Gv=40dB, Rf=300kΩ, Vin=1mV Gv=40dB, Rf=300kΩ, Vin=1mV 40 40 -40℃ 25℃ 85℃ -40℃ 25℃ 85℃ 30 Gain [dB] 30 Gain [dB] 1.5 MUT PIN Voltage [V] MUT PIN Voltage [V] 20 10 20 10 Gv=0dB, Rf=3kΩ, Vin=100mV Gv=0dB, Rf=3kΩ, Vin=100mV 0 0 -40℃ 25℃ 85℃ -10 -40℃ 25℃ 85℃ -10 10 100 1000 Frequency [Hz] 10000 100000 10 100 1000 10000 100000 Frequency [Hz] –9– NJW1124 ! TYPICAL CHARACTERISTICS Receive AMP. Gain vs Frequency (V+=4.0V , RL=5.1kΩ, Cin=1µF, Rin=3kΩ Receive AMP Gain vs Frequency (V+=3.3V , RL=5.1kΩ, Cin=1µF, Rin=3kΩ) 50 50 Gv=40dB, Rf=300kΩ,Vin=1mV 40 30 30 Gain [dB] Gain [dB] Gv=40dB, Rf=300kΩ, Vin=1mV 40 20 20 10 10 Gv=0dB, Rf=3kΩ, Vin=100mV 0 Gv=0dB, Rf=3kΩ, Vin=100mV 0 -10 -10 10 100 1000 10000 10 100000 100 30 100000 30 28 28 Gv=26dB, Vin=50mV Gv=26dB, Vin=50mV 26 24 24 22 22 Gain [dB] 26 20 20 18 18 16 16 14 14 12 12 10 10 10 100 1000 10000 10 100000 100 1000 10000 100000 Frequency [Hz] Frequency [Hz] Receive AMP THD+N vs Input Voltage (V+=4.0V, RL=5.1kΩ , Gain=40dB , Rf=300kΩ , Ri=3kΩ , BW:400Hz-30kHz) Receive AMP THD+N vs Input Voltage (V+=3.3V, RL=5.1kΩ , Gain=40dB , Rf=300kΩ , Ri=3kΩ , BW:400Hz-30kHz) 10 THD+N [%] 10 THD+N [%] 10000 LINE AMP Gain vs Frequency (V+=4.0V , RL=1.2kΩ, Cin=1µF, Rf=51kΩ, Rin=5.1kΩ, Cf=47pF) LINEAMP Gain vs Frequency (V+=3.3V , RL=1.2kΩ, Cin=1µF, Rf=51kΩ, Rin=5.1kΩ, Cf=47pF) Gain [dB] 1000 Frequency [Hz] Frequency [Hz] 1 1 85℃ 85℃ 25℃ 25℃ -40℃ -40℃ 0.1 0.0001 0.001 0.01 Input Voltage [Vrms] – 10 – 0.1 0.1 0.0001 0.001 0.01 Input Voltage [Vrms] 0.1 NJW1124 ! TYPICAL CHARACTERISTICS Receive AMP THD+N vs Input Voltage (V+=4.0V, RL=5.1kΩ , Gain=0dB , Rf=3kΩ, Ri=3kΩ, BW:400Hz-30kHz) Receive AMP THD+N vs Input Voltage (V+=3.3V, RL=5.1kΩ , Gain=0dB , Rf=3kΩ , Ri=3kΩ , BW:400Hz-30kHz) 10 10 1 THD+N [%] THD+N [%] 1 0.1 -40℃ 0.1 85℃ 0.01 25℃ 85℃ -40℃ 0.01 0.01 25℃ 0.1 1 0.001 0.01 10 0.1 Mic AMP THD+N vs Input Voltage (V+=3.3V,MUT=0.3V, RL=5.1kΩ , Gain=40dB , Rf=300kΩ, Ri=3kΩ, BW:400Hz-30kHz) 10 85℃ (MUT=0.3V) THD+N [%] THD+N [%] 10 Mic AMP THD+N vs Input Voltage (V+=4.0V,MUT=0.3V, RL=5.1kΩ , Gain=40dB , Rf=300kΩ, Ri=3kΩ, BW:400Hz-30kHz) 10 1 1 Input Voltage [Vrms] Input Voltage [Vrms] 1 85℃ (MUT=0.3V) 85℃ (MUT=0V) 85℃ (MUT=0V) 25℃ 25℃ -40℃ 0.1 0.0001 0.001 -40℃ 0.01 0.1 0.0001 0.1 0.001 Input Voltage [Vrms] 0.01 0.1 Input Voltage [Vrms] Mic AMP THD+N vs Input Voltage (V+=3.3V,MUT=0.3V, RL=5.1kΩ , Gain=40dB , Rf=300kΩ, Ri=3kΩ, BW:400Hz-30kHz) Mic AMP THD+N vs Input Voltage (V+=4.0V,MUT=0.3V, RL=5.1kΩ , Gain=40dB , Rf=300kΩ, Ri=3kΩ, BW:400Hz-30kHz) 10 10 1 THD+N [%] THD+N [%] 1 0.1 85℃ (MUT=0.3V) 85℃ (MUT=0V) -40℃ 0.1 25℃ 85℃ (MUT=0V) 0.01 85℃ (MUT=0.3V) 25℃ 0.01 0.01 -40℃ 0.1 1 Input Voltage [Vrms] 10 0.001 0.01 0.1 1 10 Input Voltage [Vrms] – 11 – NJW1124 ! TYPICAL CHARACTERISTICS LINE AMP THD+N vs Input Voltage (V+=3.3V, RL=1.2kΩ , Gain=26dB , Rf=51kΩ, Ri=5.1kΩ, BW:400Hz-30kHz) LINE AMP THD+N vs Input Voltage (V+=4.0V, RL=1.2kΩ , Gain=26dB , Rf=51kΩ, Ri=5.1kΩ, BW:400Hz-30kHz) 10 THD+N [%] THD+N [%] 10 1 1 85℃ 85℃ 25℃ -40℃ -40℃ 25℃ 0.1 0.001 0.01 0.1 0.1 0.001 1 0.01 0.1 Input Voltage [Vrms] RTSW PIN Voltage vs Rx&Tx ATT. Gain (V+=3.3V) RTSW PIN Voltage vs Rx&Tx ATT. Gain (V+=4.0V) 10 10 0 0 Tx 25℃ -10 Tx -40℃ -10 Rx -40℃ Tx 85℃ Rx 85℃ Rx 25℃ Rx -40℃ Rx 25℃ Tx 25℃ Rx 25℃ -20 -30 Rx 85℃ Tx 85℃ Rx 85℃ Rx & Tx ATT. Gain Tx 85℃ Rx & Tx ATT. Gain 1 Input Voltage [Vrms] -20 Tx 85℃ Rx 85℃ -30 Tx 25℃ Rx -40℃ Tx -40℃ Tx 25℃ Rx 25℃ Tx -40℃ Tx -40℃ Rx -40℃ -40 -40 -50 -50 0 0.5 1 1.5 2 RTSW PIN Voltage [V] – 12 – 2.5 3 3.5 0 0.5 1 1.5 2 2.5 RTSW PIN Voltage [V] 3 3.5 4 NJW1124 ■APPLICATION NOTES ■GENERAL DESCRIPTION The NJW1124 is a Voice Switched Speakerphone Circuit. The NJW1124 includes all of functions processing a high quality hands–free speakerphone system, such as the necessary amplifiers ( Microphone amplifier , Receive amplifier, Line amplifier), attenuators, level detectors . All external capacitors are sufficient small so that ceramic capacitors are applied. The NJW1124 detects a signal to judges which path is talking. After that, the one side path is active, another path is attenuated. This is half-duplex system. Appropriate operating keeps closed loop gain less than 0dB, and that prevents acoustic coupling. The resister and capacitor values in Fig.1 below are references. For correct operating, check in actual condition as possible as you can. And adjust the levels input each detectors. On this application notes, Base unit is defined as the unit included the NJW1124. C6 R2 100n 5.1k R3 51k C8 100n C7 100n C9 R6 100n 5.1k R7 51k Microphone MCI MUT V+ GND R4 51k MCO R5 10k TLI2 TLI1 Line Out C10 TXO LII LiO- LiO+ V+ :MUTE :ACTIVE V+ R1 300k C1 1µ µ C3 470n C4 470n C2 1u -1 Tx Attenuator Mic Amplifier VREF Line Amplifier Monitor MUT + V RLO2 CPT Attenuator Control VREF BIAS Background NoiseMonitor CPR TLO1 Rx Attenuator RXO RLI2 R10 15k 5.0V + C16 10µ µ C15 1µ µ C20 470n C21 470n GND VREF 1.2µ µA V+ C22 1µ µ Receive Amplifier IC1 NJW1124 VREF2 : Active : Disable V+ :Recive GND :Trensmit Open :idle RTSW Background NoiseMonitor RLO1 MUT V+ GND C5 1µ µ CT Level Detector TLO2 Level Detector C23 1µ µ C11 1µ µ V+ VREF C17 100n C13 R11 10k VLC R12 51k RVLC RLI1 FO C18 100n R13 5.1k FI R14 5.1k C19 100n Recive In 1µ Speaker IC2 NJU7084 Power Amplifier C14 1 µ R9 22k R8 11k C12 100n Fig.1 NJW1124 Block Diagram The resistance and capacitor value above is just one example. Certain Half-duplex operation are not guaranteed. Best value depends on your microphone, speaker, and chassis. Especially, select capacitor value connected to V+(17pin) to be power supply ripple enough small (less than 5mVp-p). when 1µF is not enough, select larger value capacitor. – 13 – NJW1124 1.Receive Attenuator Receive Attenuator has 3 modes depending on base and satellite unit condition. PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Receive Attenuator Gain 1 GR1 RX-mode (Receive) 3.0 6.0 9.0 dB Receive Attenuator Gain 2 GR2 -43 -46 -50 dB Receive Attenuator Gain 3 GR3 TX-mode (Transmit) Idle-mode (Standby),CPT=CPR=V+ -17 -20 -23 dB 1.Receive Attenuator Gain 1 , (Receive mode :Gain=+6dB) Condition: Receive signal from satellite unit, and no transmit signal to base unit. 2. Receive Attenuator Gain 2 , (Transmit mode :Gain=-46dB) Condition: Transmit signal to base unit, and no receive signal from satellite unit. 3. Receive Attenuator Gain 3 , (Idle mode :Gain=-20dB) Condition: Transmit signal to base unit, and no receive signal from satellite unit. 0 Volume Control -10 Volume [dB] Receive Attenuator includes Volume Control. Volume is controlled by resister value connected to VCL pin. Fig.2 shows Volume attenuate vs. Resister value. Volume max.(0dB) : 0Ω, Volume min. (-40dB): 100kΩ . -20 -30 Transmit Attenuator doesn’t equip Volume Control. -40 0 20 40 60 VLC Resistor [kΩ] 80 Fig.2 Volume vs. VCR Resister – 14 – 100 NJW1124 2.Transmit Attenuator Transmit Attenuator has 3 modes depending on base and satellite unit condition. PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Transmit Attenuator Gain 1 GT1 RX-mode (Receive) 3.0 6.0 9.0 dB Transmit Attenuator Gain 2 GT2 -43 -46 -50 dB Transmit Attenuator Gain 3 GT3 TX-mode (Transmit) Idle-mode (Standby),CPT=CPR=V+ -17 -20 -23 dB 1.Transmit Attenuator Gain 1 , (Transmit mode :Gain=+6dB) Condition: Receive signal from satellite unit, and no transmit signal to base unit. 2. Transmit Attenuator Gain 2 , (Transmit mode :Gain=-46dB) Condition: Transmit signal to base unit, and no receive signal from satellite unit. 3. Transmit Attenuator Gain 3 , (Idle mode :Gain=-20dB) Condition: Transmit signal to base unit, and no receive signal from satellite unit. 3.Microphone Amplifier Microphone Amplifier is an operational Amplifier amplifying the signal from microphone to line level. Fig.3 shows Block Diagram of Mic.Amp.. Non-inverting input keeps reference voltage inside. Mic.Amp is used as inverting amplifier. The Gain should be 40dB or less. Mic.amp equips Mute function. C6 R2 100n 5.1k R3 51k Microphone MCI MUT V+ GND :MUTE :ACTIVE V+ MCO R1 300k Tx Attenuator VREF C1 1µ µ Mic Amplifier Fig.3 Mic.Amp Block.(20dB Application) Outside parts C6 R2 R3 R1 C1 Function DC decoupling recommend value 100nF~10µF Gain Setting 3kΩ~300kΩ Pop noise reduction 100Ω~300kΩ 100n~10µF MUT(2pin) Input Voltage VIH >1.5V VIL <0.3V Detail Gv=R3/R2 Input impedance=R2 The control voltage is made gradual with RC filter. Memo Shape HPF : fc=1/(2π×C6×R2) Recommend gain less than :40dB Large resistance value may cause oscillating. - Operation MICAMP MUTE MICAMP ACTIVE – 15 – NJW1124 4.Receive Amplifier Receive Amplifier is an operational Amplifier receiving the signal from satellite unit. Fig.4 shows Block Diagram of Mic.Amp Block Non-inverting input keeps reference voltage inside. Receive Amp is used as inverting amplifier. The Gain should be 40dB or less. Receive Amplifier doesn’t equip Mute function. Receive Amplifier Rx Attenuator VREF FO R13 5.1k FI R14 5.1k C19 100n Recive In Fig.4 Receive.Amp Block.(0dB Application) Outside parts C19 R14 R13 – 16 – Function DC decoupling recommend value 100nF~10µF Gain Setting 3kΩ~300kΩ Detail Gv=R13/R14 Input impedance=R14 Memo Shape HPF : fc=1/(2π×C19×R14) Recommend gain less than :40dB Large resistance value may cause oscillating. NJW1124 5.Line Amplifier Line Amplifier transmits the signal from Tx attenuator to satellite unit. Line Amplifier consists of two operational Amplifiers. First Amplifier non-inverting input keeps reference voltage inside. First Amplifier is used as inverting amplifier. Second Amplifier includes –1 fixed Gain. These two amplifiers enable to differential output from single-ended signal. C9 R6 100n 5.1k R7 51k Line Out C10 TXO LII LiO- LiO+ -1 VREF Line Amplifier Fig.5 Line Amplifier Block(26dB Application) Outside parts Function DC decoupling C9 R6 Gain Setting R7 C10 oscillation prevention recommend value 100nF~10µF Detail Gv=R7/R6 Input impedance=R6 3kΩ~300kΩ 10p~100pF Memo Shape HPF : fc=1/(2π×C9×R6) Recommend gain less than :26dB Large resistance value may cause oscillating. Shape LPF : fc=1/(2π×C10×R7) Line Amplifier may oscillates, long transmission path becoming large capacitive load. In this case, add ceramic capacitor (47p to 100p) between LII and LIO-. Add it as close as possible to the terminal. The frequency should be cut more than you need. LIO+,LIO- should not be short to GND. LIO+,LIO- terminal are biased to V+/2). C11 R8 100n 5.1k R9 51k LINE Cable CfL TXO LII LiO- LiO+ -1 VREF Line Amplifier Fig.6 Forbidden Circuit. – 17 – NJW1124 6.Monitor Terminal Monitor Terminal switches Voltage mode depending NJW1124 condition. NJW1124 condition : Monitor Terminal Voltage Receive mode V+ Transmit mode GND Idle mode Hi-Z or (V+/2) 7.Level Detector Block The NJW1124 includes Level Detector Block and Background Noise Monitor on transmit block and receive block. Level Detector Block consists of two same detectors. Fig.7 shows Level Detector block. The signal(S1 to S4) output each detector transmits to attenuator controller to change the mode. Next 7.1 and 7.2 explain about each detector and Background Noise Monitor operation details. About S1 to S4 signals, refer to 8 part., Tx : TLO2 Rx : RLO1 Tx : TLI2 Rx : RLI1 Level Detector Circuit Tx : RLI2 Rx : TLI1 Level Detector Circuit Background Noise Monitor Tx : S1 Rx : S2 Tx:RLO2 Rx:TLO1 Fig.7 Level Detector Block – 18 – Tx : S3 Rx : S4 NJW1124 7.1 Level Detector Circuit Fig.8 shows level detector circuit. Level detector circuit includes logarithmic amplifier using diodes (D1,D2) to keep dynamic range. The signals input to each level detector through external coupling capacitor Ci , are converted to current by input resistance Rin and input logarithmic amplifier through TLI2,1 and RLI1,2. The current input changes diode(D1) current . When the current more than 0.54µA(Current Source circuit ) inputs ,diode D1 is off, and A point voltage drops. In case of sinking current, the current increase D1 current, that increase A point voltage rises. The point voltage is defined as follows. . -6 -6 ∆VA=0.026 x Ln [ { Iin + (0.54x10 ) } / (0.54x10 ) ] Iin=Vin/Rin.( Actually, Ci effects) The voltage A point goes through buffer Amplifier AMP2, charge the capacitor connected to TLO1.2,RLO1.2. The charging completes immediately. Response Example1 shows TLO2(Co=C5=0.1µF) signal waveform outputting 200mVrms/1kHz from MICOUT(MCO pin). without input signal from TL1,TL2,RL1,and RL2,Co releases current. The Voltage Gradient is defined as follows: δVc=-0.3µA/Co Response Example 2 shows the signal response finishing input the signal. Actual application being influenced on leak current and equivalent resistance in series, δVc does not accords with the formula completely. Check on the operation using actual capacitor (Use high input impedance probe like FET Measuring instrument) Small capacitor shortens the time to detect, and deteriorate the low frequency rectification characteristics. That influences on Noise Detector on next page. Large capacitor improves rectification characteristics, and noise detector function. However, extends the time to detect, it may judges the signal on noise. Appropriate capacitor value depends on a application. The input current TLI1,TLI2,RLI1,and RLI2 should be less than 100µΑ µΑ for normal operating . Especially, gain mode has 9dB gain max, care of excessive input. Voice switch circuit may malfunctions with Excessive input current Fig.9 shows Rin(input impedance) vs. minimum input sensitivity of noise detector and maximum permissible voltage. Ci (C7,C8 C18,C17) Rin (R4,R5 TLI2,1 R12,R11) RLI1,2 D1 Vin D2 Iin TLO2,1 RLO1,2 AMP2 AMP1 A IO Ref I2 0.54uA I1 0.54uA I3 0.3uA Co (C3,C20 C21,C4) Fig.8 Level Detector Circuit Diagram Outside parts Cin Rin Function DC decoupling V/I Convert recommend value 100nF~1µF 5kΩ~100kΩ Detail Iin=Vin/Rin Co Detection level keeping 0.05µF~1.0mF δVC = -0.3uA / CO Memo Shape HPF : fc=1/(2π×Cin×Rin) Use " Iin " by 100mA or less. Use the capacitor leaking a little. Small capacitor deteriorate the low frequency rectification characteristics . – 19 – NJW1124 1040 400 1040 MCO TLO2 MCO TLO2 200 1000 200 1000 100 980 100 980 0 960 -100 -200 MCO [mV] 300 TLO2 [mV] 1020 MCO [mV] 300 1020 0 960 δVc 940 -100 940 920 -200 920 900 -300 900 880 -400 TLO2 [mV] 400 ⊿VA -300 -400 0 1 2 3 4 5 880 0 6 5 10 15 20 25 30 35 40 time [m sec] time [m sec] Response example.2 MCO vs. TLO2signal (finishing input) MCO = 200mVrms/1kHz C5 = 0.1µF Response example.1 MCO vs. TLO2signal (starting input) MCO = 200mVrms/1kHz C5 = 0.1µF 10000 Minumum Sensitivity Voltage Maximum Input Voltage(Vin(Fig.8)),which equal to MCO or FO Maximum Output Voltage MCO or FO Pin AC Voltage[mVrms] Maximum Input Voltage 1000 Minimum Input Voltage(sensitivity),which is the Voltage shifting mode(idle to receive, idle to transmit). 100 Note: Maximum Voltage is defined by the smaller resister, 35% value of R5, R11 or R4, R11 value. 10 1 10 Input Resistance[kΩ] 100 Fig.9 Minimum Input Voltage vs. Input Resistance (R4 or R12 Theoretical Value resistance R4=R5,R12=R11 condition) – 20 – NJW1124 7.2 Background Noise Monitor Background Noise Monitor judges whether the input signal is noise or sound or voice by TLO2 and RLO2 voltage, and change the mode. The NJW1124 includes the Background noise monitor on transmit side and receive side. Fig.10 shows Block diagram of Background noise monitor. The voltage difference between TLO2 or RLO1 and Ref is amplified 8.6dB on AMP1. nd The signal from AMP1 inputs 2 stage AMP2 and comparator (COMP). The COMP non-inverting input voltage becoming 36mV higher than inverting, COMP output 1,which shows the NJW1124 is transmit or receive mode. At the same time, external capacitor charged from 0.8µA internal current source, until the CCP voltage becomes 46mV higher than AMP2 input voltage. The equivalent below shows CCP voltage charging. ∆VCCP= 0.8µA/CCP For example, CCP=1µF, δVCP=0.8V/sec. Without the input signal, C CP discharged and finally reset the Background noise monitor. Response example is ex.3. The signal like continued sign wave inputting, COMP output ‘0’ which is noise-monitoring mode (idle-mode). The signal like conversation sound inputting, CCP continues to charge and discharge. COMP output continued to ‘1’, which is transmit or receive mode. Small Ccp shortens the time shifting to ‘0’ condition. Too small CCP attenuates even the conversation signal. Large CCP keeps ‘1’ condition long, which lengthen attenuating time. Capacitor should be adjusted appropriately on actual application. (Use high input impedance like FET probe measuring voltage of CPT, CPR pin.) CCP (C2,C22) Tx : TLO2 Rx : RLO1 Tx : CPT Rx : CPR 19kΩ 32kΩ AMP2 AMP1 Level Detector 0.8µ µA 46mV COMP Ref Tx : S3 Rx : S4 36mV Fig.8 Background Noise Monitor Block Diagram Function Noise Detection recommendation value 100nF~1µF Detail - 1300 1300 TLO2 CPT 1250 TLO2 CPT 1250 1200 1200 1150 1150 TLO2 , CPT [mV] TLO2 , CPT [mV] Memo The time for noise detection depends on this. 1100 1050 1000 1100 1050 1000 950 950 900 900 850 850 800 800 0 100 200 300 400 time [m sec] Response example.3 TLO2 vs. CPT signal (input start) MCO = 200mVrms/1kHz C5 = 0.1µF, C4=1µF 500 0 10 20 30 40 50 time [m sec] Response example.4 TLO2 vs. CPT signal (input finish) MCO = 200mVrms/1kHz C5 = 0.1µF, C4=1µF – 21 – NJW1124 8.Attenuator Controller Attenuator Controller controls each mode(Transmit or Receive or idle) by the signal(S1 to S4) from level detector according as table.1 below Table.1 shows truth table (On RTSW=Open). Internal 12µA current source circuit charges and discharges C7, connected with CT pin On the mode changing condition, δVC5 shows voltage change according as the formula below. . δVC7 = ±12uA/C5 (11.1) (C7 is C5 capacitance connected to CT pin.) on initial state, CT pin voltage equals to Vref voltage. Shifting to transmit mode, C7 discharges and become lower voltage than Vref voltage. Example 5 and 6 shows behaviors. VCT voltage is CT voltage minus Vref voltage. On receive mode, internal current source charging C5 raises CT voltage. CT pin voltage shows operating condition(Transmit or Receive or idle). ( more than 100MΩ impedance probe should be monitoring the voltage. ‘FAST idle mode’ enables to shift promptly charging C7 rapidly. On ‘SLOW idle mode’, mode shifts gently. Both time constants τ are below: τ=RAXC5 (RAX is RA1 RA2 resistance. After τ sec, The voltage is attenuated to 1/e default value) For example, C7=1µF, τ =600m sec. attenuator gain GAT estimate as below: GAT(TX) = 0.1 x exp { -VCT / 0.026 } on transmit mode GAT(RX) =0.1 x exp { VCT / 0.026 } on receive mode (11.3) (11.4) C5 = 1µF, attenuator time constant on SLOW idle mode is about 225m sec. Table.6 as below shows response of transmit signal wave: Fig.11 shows VCT vs. GAT. Adjust this order for appropriate operating: 1.Resistance connecting to TLI1.2 and RLI1.2 2.Capacitor connecting to TLO1.2 and RLO1.2 3.Capacitor connecting CPT, CPR. When adjusting above doesn’t enable to appropriate operating(attenuating too fast or shifting too slow etc.), adjust C5 value connecting to CT pin . Typical value is 1µF. Table.1 Truth Table S1 Tx Tx Rx Rx Tx Tx Rx RX – 22 – S2 Tx Rx Tx Rx Tx Rx Tx Rx S3 1 y y X 0 0 0 X S4 X y y 1 X 0 0 0 Mode Tx Mode FAST Idle Mode FAST Idle Mode Rx Mode SLOW Idle Mode SLOW Idle Mode SLOW Idle Mode SLOW Idle Mode S1 :Result comparing RLO2 and TLO2 (RLI2 and TLI2 •••Detecting Base Unit side) RLO2>TLO2 [Rx] TLO2>RLO2 [Tx] S2 :Result comparing RLO1and TLO1 (RLI1 and TLI1•••Detecting Satellite Unit side) RLO1>TLO1 [Rx] TLO1>RLO1 [Tx] S3&S4 :Output Background Noise Monitor [1]:Detecting signal [0]:Judging noise [x]:Don’t Care [y]:Both C3 and C4 is not 0. NJW1124 10 VCT MCO 0 400 800 300 600 200 400 100 200 TXO MCO -10 -50 -100 MCO , TCO [mV] 0 -40 0 -200 -60 -200 -400 -300 -600 -400 -800 -70 -80 -90 0 2 4 6 8 10 12 14 0 2 4 6 time [m sec] 10 8 10 12 14 time [m sec] Response example.5 MCO vs. CT-VREF signal (input start) MCO = 200mVrms/1kHz C7=1µF Response example.6 MCO vs. TXO(AC) signal (input start) MCO = 200mVrms/1kHz C7=1µF 2.5 800 0 TXO GATTx 600 2.0 1.5 -10 400 1.0 -20 200 -40 -50 0.5 0.0 0 -0.5 -200 -60 GAT(Tx) TXO [mV] VCT [mV] -30 -1.0 360m sec -400 -70 -1.5 -600 -80 -2.0 -800 -90 0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 -2.5 2000 time [m sec] time [m sec] Response example.7 CT-VREF signal (input continue) MCO = 200mVrms/1kHz C7=1µF SLOW idle mode Response example.8 GAT vs. TCO signal (input start) MCO = 200mVrms/1kHz C7=1µF SLOW idle mode 10 GAT(TX) GAT(RX) 0 -10 GAT [dB] VCT [mV] -30 MCO[mV] -20 -20 -30 -40 -50 -100 -75 -50 -25 0 25 50 75 100 VCT [mV] Fig.11 GAT vs. VCT Calculated Spectrum – 23 – NJW1124 RTSW shifts the mode forcibly. RTSW changes the CTpin voltage forcibly to shift the mode. Ex.9 shows the response to RTSW. 100 80 Rx Mode Level 60 40 VCT [mV] 20 0 RTSW State : Rx -> Tx -20 -40 -60 -80 Tx Mode Level -100 0 2 4 6 8 10 12 14 16 18 20 time [m sec] Response example.9 RTSW shifting (Receive mode to Transmit mode) C7=1µF – 24 – NJW1124 10.Acoustic Coupling Reduction To reduce Acoustic Coupling, isolating speaker and microphone is effective. Adjusting resistance value connected to TLI1, TLI2, (R4, R5, R11) and RLI1 is also effective, For example, configure R12,R4 value is 2 to 6 times than R5,R11. Reducing sensitivity to echo enables to operate normally. C6 R2 100n 5.1k R3 51k C9 R6 100n 5.1k C8 100n C7 100n R7 51k Microphone R4 51k MCO MCI TLI1 Line Out C10 R5 10k TLI2 TXO LII LiO- LiO+ V+ V + R1 300k Sensitivity:Low VREF C1 1µ µ Receive Voice Acoustic coupling C3 470n C4 470n C2 1u -1 Tx Attenuator Mic Amplifier C11 1µ µ V+ VREF Line Amplifier Monitor MUT Level Detector TLO2 V Setting TLI2 resistance (R4) twice to RTSW 6times than RLI2 resistance (R11), Background C22 NoiseMonitor reduces the level detector sensitivity 1µ µ CPR to reduce acoustic coupling. C20 + RLO2 Background NoiseMonitor CPT C5 1µ µ CT Attenuator Control Sensitivity:High Level Detector TLO1 RLO1 C23 1µ µ VREF BIAS C21 470n Receive Amplifier IC1 NJW1124 VREF2 470n Rx Attenuator GND VREF 1.2µ µA RXO RLI2 V+ R10 15k + C16 10µ µ C15 1µ µ VLC C17 100n C13 R11 10k RLI1 FO R12 51k 5.0V RVLC C18 R13 FI R14 100n 5.1k Receive Sound5.1k C19 100n Recive In 1µ Speaker IC2 NJU7084 Power Amplifier C14 1 µ R9 22k R8 11k C12 100n Fig.12 Acoustic Coupling Reduction Reducing the sensitivity of R4,R12 reduces the time shifting to noise mode. In case of too fast shifting, enlarge capacitor connected to CPT,CPR. – 25 – NJW1124 Notes:1 To reduce Pop-Noise of power-on and off. Appropriate power supply sequence reduces pop-noise. Initial condition: No power supply. CD switch of Speaker Amplifier should be standby condition. The circuit connected to Line out and Receive In is off. Power-on sequence 1.Power-on NJW1124. Concurrently The circuit connected to Receive In power on. 2.After 1 sec later, the circuit connected to Line OUT and Speaker Amplifier IC power on. 3.After 1 sec later, Speaker Amplifier IC shifts active mode. Power-off sequence 1.Speaker Amplifier shift standby mode. 2.After 1 sec later, the circuit connected to Line OUT and Speaker Amplifier power off. 3.After 1 sec later, NJW1124 power off. Concurrently, the circuit connected to Receive In power off. – 26 – NJW1124 Notes:2: Filter circuit using Receive amplifier, Mic. Amplifier, Line amplifier. st Receive amplifier, Mic. Amplifier, Line amplifier enable to form active filter circuit which is 1 order or 2 HPF or LPF or BPF. nd order, st 1.1 order HPF,LPF circuit example st Fig.13 shows 1 order (-6dB/oct) HPF, LPF circuit. Combining HPF formed by Co and R1, and LPF formed by C1 and R2, forms BPF. (Co should be also used typical application as DC decoupling.) R2 C0 f C ( LPF ) R1 FI Receive In 1 2πC0 R1 1 = 2πC1 R2 f C ( HPF ) = C1 Response FO +6dB/oc -6dB/oct Ref st Fig.13 1 order HPF,LPF circuit example Frequency fc(HPF) fc(LPF) nd 2.2 order LPF circuit example st Fig.14 shows 1 order (-12dB/oct) LPF circuit. Same as 1st order filter, Co should be used as DC decoupling. C2 selecting arbitrarily, Butterworth filter forming coefficient is as below. R2 C0 FI Receive In FO C1 Ref Fig.14 2 nd 1 2 2Gπf C ( LPF )C2 R2 = 1 C2 R3 R1 R1 = order LPF circuit example Response R3 = 2 2πf C ( LPF )C2 1 2 2 (G + 1)πfC ( LPF )C2 C3 = 2(G + 1)C2 G = Gain +6dB/oc -12dB/oct Frequency fc(HPF) fc(LPF) st fC(HPF) is same as 1 order type above. – 27 – NJW1124 Fig.15 shows 2 nd order LPF(Gain=20dB, fc(LPF) = 4kHz) circuit example. C0 nd 510p FI Receive In Fig.15 2 5.6k 56k 5.1k FO 12n Ref order LPF(Gain=20dB, fc(LPF) = 4kHz, Butterworth filter) circuit example. nd 3.2 order HPF circuit example st Fig.16 shows 2 order (-12dB/oct) HPF circuit. Co=C2, Butterworth filter forming coefficient is as below. C1 C0 R2 R1 = C2 FI Receive In R2 = FO R1 nd 2G + 1 2πf C ( HPF )C0 C0 G * C0 = C 2 C1 = Ref Fig.16 2 2 2πf C ( HPF )C0 (2 + 1 / G ) order HPF circuit example. Fig.17 shows HPF(Gain=20dB,Fc(HPF)=200Hz) circuit example. 100n 10n 100n 160k FI Receive In FO 5.6k Ref nd Fig.17 2 order HPF circuit example. Gain=20dB,Fc(HPF)=200Hz, Butterworth filter – 28 – NJW1124 Notes:3 list of Parts of Attenuator controller Terminal Cin Parts Recommend Value C7,C8,C17,C1 100nF~1µF Rin R4,R5,R11,R125.1k~51kΩ Co C4,C5,C20,C2 0.05µF~1µF Ccp C2,C22 100nF~1µF Cct C5 1µF Notes The input capacitor forms HPF with Rin. V-I converter,which depends on sensitivity of each level detectors and noise detector. Smaller value lower detection level. Larger value raise detection level. Input voltage should be less than 100mA(200µΑ @25oC). The capacitor keeps voltage level.Larger value extends swicthing time.Smaller value shortens swicthing time, and deteriorate rectification property that adverse affects back ground noise monitor on low frequency signal. The capacitor judges whether the signal is noise.Larger value extends the judging time.Smaller value shortens the judging time. The capacitor generates the voltage controlling attenuater. Larger value extends attenuating time on switching and idle mode.Smaller value shortens the attenuating time.Please be careful of conduction caused by condensation due to this terminal is high impedance.Attenuater gain may be fluctuant . [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. – 29 –