Sitronix ST7567 65 x 132 Dot Matrix LCD Controller/Driver 1. INTRODUCTION ST7567 is a single-chip dot matrix LCD driver which incorporates LCD controller and common/segment drivers. ST7567 can be connected directly to a microprocessor with 8-bit parallel interface or 4-line serial interface (SPI-4). Display data sent from MPU is stored in the internal Display Data RAM (DDRAM) of 65x132 bits. The display data bits which are stored in DDRAM are directly related to the pixels of LCD panel. ST7567 contains 132 segment-outputs, 64 common-outputs and 1 icon-common-output. With built-in oscillation circuit and low power consumption power circuit, ST7567 generates LCD driving signal without external clock or power, so that it is possible to make a display system with the fewest components and minimal power consumption. 2. FEATURES Single-chip LCD Controller & Driver Power Saving Mode, Select Common Driver Direction, On-chip Display Data RAM (DDRAM) Select Voltage Regulator Resistor Ratio (for V0). Capacity: 65x132=8580 bits External Hardware Reset Pin (RSTB) Directly display RAM pattern from DDRAM Built-in Oscillation Circuit Selectable Display Duty (by SEL2 & SEL1) 1/65 duty : 65 common x 132 segment Low Power Consumption Analog Circuit 1/55 duty : 55 common x 132 segment Voltage Booster (4X, 5X) 1/49 duty : 49 common x 132 segment High-accuracy Voltage Regulator for LCD Vop: 1/33 duty : 33 common x 132 segment No external component required (Thermal Gradient: -0.05%/°C) Microprocessor Interface Bidirectional 8-bit parallel interface supports: Wide Operation Voltage Range 8080-series and 6800-series MPU VDD1-VSS1=1.8V~3.3V Serial interface (SPI-4) is also supported (write only) VDD2-VSS2=2.4V~3.3V Abundant Functions VDD3-VSS3=2.4V~3.3V Display ON/OFF, Normal/Reverse Display Mode, Set Temperature Range: -30~85°C Display Start Line, Read IC Status, Set all Display Package Type: COG Voltage Follower for LCD Bias Voltage Points ON, Set LCD Bias, Electronic Volume Control, Read-modify-Write, Select Segment Driver Direction, ST7567 6800 , 8080 , 4-Line Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice. Ver 1.4b 1/49 2009/02/04 ST7567 3-1. ST7567 COG OUTLINE Chip Size: 4840 X 660 Bump Height: 15 Unit: um 12 27 Part Number Chip Thickness ST7567-G4 300 10 Bump Size PAD No. Size 1~12, 76~261 16 X 138.5 13~55, 65~75 50 X 45 56~64 45 X 45 35 Bump Space (minimum) PAD No. Space 1~12, 76~87, 88~108, 109~240, 241~261 Refer to Fig 1 13~55, 65~75 15 56~64 10 55-56, 64-65 12.5 Y X * Refer to section “PAD CENTER COORDINATES” for ITO layout. 11 16 38 54 7.5 35 10 16 Fig 1. Chip Outline Ver 1.4b 2/49 2009/02/04 ST7567 3-2. PAD CENTER COORDINATES 65 Duty PAD NO. PIN Name X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 COM[53] COM[54] COM[55] COM[56] COM[57] COM[58] COM[59] COM[60] COM[61] COM[62] COM[63] COMS1 CL CSB RSTB A0 RWR ERD VDDH D0 D1 D2 D3 D4 D5 D6 D7 VDD1 VDD1 VDD2 VDD2 VDD2 VDD3 VSS1 VSS1 VSS3 VSS2 VSS2 VSS2 V0in -2363.00 -2336.00 -2309.00 -2282.00 -2255.00 -2228.00 -2201.00 -2174.00 -2147.00 -2120.00 -2093.00 -2066.00 -1970.00 -1905.00 -1840.00 -1775.00 -1710.00 -1645.00 -1580.00 -1515.00 -1450.00 -1385.00 -1320.00 -1255.00 -1190.00 -1125.00 -1060.00 -995.00 -930.00 -865.00 -800.00 -735.00 -670.00 -605.00 -540.00 -475.00 -410.00 -345.00 -280.00 -215.00 -74.25 -227.75 -74.25 -227.75 -74.25 -227.75 -74.25 -227.75 -74.25 -227.75 -74.25 -227.75 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 Fig 2. PAD Location Ver 1.4b 3/49 2009/02/04 ST7567 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 V0in V0s V0out V0out XV0out XV0out XV0s XV0in XV0in VMO VMO VGin VGin VGs VGout T[6] T[7] T[8] TFCOM T[1] T[2] T[3] T[4] T[5] Vref VSSL VDDH C86 PSB SEL1 VSSL SEL2 VDD1 VDD2 VDD3 COM[31] COM[30] COM[29] COM[28] COM[27] -150.00 -85.00 -20.00 45.00 110.00 175.00 240.00 305.00 370.00 435.00 500.00 565.00 630.00 695.00 760.00 820.00 875.00 930.00 985.00 1040.00 1095.00 1150.00 1205.00 1260.00 1320.00 1385.00 1450.00 1515.00 1580.00 1645.00 1710.00 1775.00 1840.00 1905.00 1970.00 2066.00 2093.00 2120.00 2147.00 2174.00 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -74.25 -227.75 -74.25 -227.75 -74.25 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 COM[26] COM[25] COM[24] COM[23] COM[22] COM[21] COM[20] COM[19] COM[18] COM[17] COM[16] COM[15] COM[14] COM[13] COM[12] COM[11] COM[10] COM[9] COM[8] COM[7] COM[6] COM[5] COM[4] COM[3] COM[2] COM[1] COM[0] COMS2 SEG[0] SEG[1] SEG[2] SEG[3] SEG[4] SEG[5] SEG[6] SEG[7] SEG[8] SEG[9] SEG[10] SEG[11] 2201.00 2228.00 2255.00 2282.00 2309.00 2336.00 2363.00 2363.00 2336.00 2309.00 2282.00 2255.00 2228.00 2201.00 2174.00 2147.00 2120.00 2093.00 2066.00 2039.00 2012.00 1985.00 1958.00 1931.00 1904.00 1877.00 1850.00 1823.00 1768.50 1741.50 1714.50 1687.50 1660.50 1633.50 1606.50 1579.50 1552.50 1525.50 1498.50 1471.50 -227.75 -74.25 -227.75 -74.25 -227.75 -74.25 -227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 Ver 1.4b 4/49 2009/02/04 ST7567 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 SEG[12] SEG[13] SEG[14] SEG[15] SEG[16] SEG[17] SEG[18] SEG[19] SEG[20] SEG[21] SEG[22] SEG[23] SEG[24] SEG[25] SEG[26] SEG[27] SEG[28] SEG[29] SEG[30] SEG[31] SEG[32] SEG[33] SEG[34] SEG[35] SEG[36] SEG[37] SEG[38] SEG[39] SEG[40] SEG[41] SEG[42] SEG[43] SEG[44] SEG[45] SEG[46] SEG[47] SEG[48] SEG[49] SEG[50] SEG[51] 1444.50 1417.50 1390.50 1363.50 1336.50 1309.50 1282.50 1255.50 1228.50 1201.50 1174.50 1147.50 1120.50 1093.50 1066.50 1039.50 1012.50 985.50 958.50 931.50 904.50 877.50 850.50 823.50 796.50 769.50 742.50 715.50 688.50 661.50 634.50 607.50 580.50 553.50 526.50 499.50 472.50 445.50 418.50 391.50 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 SEG[52] SEG[53] SEG[54] SEG[55] SEG[56] SEG[57] SEG[58] SEG[59] SEG[60] SEG[61] SEG[62] SEG[63] SEG[64] SEG[65] SEG[66] SEG[67] SEG[68] SEG[69] SEG[70] SEG[71] SEG[72] SEG[73] SEG[74] SEG[75] SEG[76] SEG[77] SEG[78] SEG[79] SEG[80] SEG[81] SEG[82] SEG[83] SEG[84] SEG[85] SEG[86] SEG[87] SEG[88] SEG[89] SEG[90] SEG[91] 364.50 337.50 310.50 283.50 256.50 229.50 202.50 175.50 148.50 121.50 94.50 67.50 40.50 13.50 -13.50 -40.50 -67.50 -94.50 -121.50 -148.50 -175.50 -202.50 -229.50 -256.50 -283.50 -310.50 -337.50 -364.50 -391.50 -418.50 -445.50 -472.50 -499.50 -526.50 -553.50 -580.50 -607.50 -634.50 -661.50 -688.50 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 Ver 1.4b 5/49 2009/02/04 ST7567 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 SEG[92] SEG[93] SEG[94] SEG[95] SEG[96] SEG[97] SEG[98] SEG[99] SEG[100] SEG[101] SEG[102] SEG[103] SEG[104] SEG[105] SEG[106] SEG[107] SEG[108] SEG[109] SEG[110] SEG[111] SEG[112] SEG[113] SEG[114] SEG[115] SEG[116] SEG[117] SEG[118] SEG[119] SEG[120] SEG[121] SEG[122] SEG[123] SEG[124] SEG[125] SEG[126] SEG[127] SEG[128] SEG[129] SEG[130] SEG[131] -715.50 -742.50 -769.50 -796.50 -823.50 -850.50 -877.50 -904.50 -931.50 -958.50 -985.50 -1012.50 -1039.50 -1066.50 -1093.50 -1120.50 -1147.50 -1174.50 -1201.50 -1228.50 -1255.50 -1282.50 -1309.50 -1336.50 -1363.50 -1390.50 -1417.50 -1444.50 -1471.50 -1498.50 -1525.50 -1552.50 -1579.50 -1606.50 -1633.50 -1660.50 -1687.50 -1714.50 -1741.50 -1768.50 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 COM[32] COM[33] COM[34] COM[35] COM[36] COM[37] COM[38] COM[39] COM[40] COM[41] COM[42] COM[43] COM[44] COM[45] COM[46] COM[47] COM[48] COM[49] COM[50] COM[51] COM[52] -1823.00 -1850.00 -1877.00 -1904.00 -1931.00 -1958.00 -1985.00 -2012.00 -2039.00 -2066.00 -2093.00 -2120.00 -2147.00 -2174.00 -2201.00 -2228.00 -2255.00 -2282.00 -2309.00 -2336.00 -2363.00 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 Ver 1.4b Note: 1. Unit: um 2. This is the default PAD Center Coordinate Table with 1/65 Duty. Other duty output mapping can be found in Section FUNCTION DESCRIPTION and Fig 9. 3. 4. Tolerance: +/- 0.05 um. The definition of pin name is in full duty (65 duty). 5. The definition of output pin name in different duty (55 Duty, 49 Duty and 33 Duty) please refers Fig 9. 6/49 2009/02/04 ST7567 4. BLOCK DIAGRAM Fig 3. Ver 1.4b Block Diagram 7/49 2009/02/04 ST7567 5. PIN DESCRIPTION LCD Driver Output Pins Pin Name Type Description No. of Pins LCD segment driver outputs. The display data and the frame control the output voltage. SEG0 to SEG131 Display data Frame H O Segment Driver Output Voltage Normal Display Inverse Display + VG VSS H - VSS VG L + VSS VG L - VG VSS VSS VSS Display OFF, Power Save 132 LCD common driver outputs. The internal scanning signal and the frame control the output voltage. COM0 to COM63 Common Driver Output Voltage Scan signal Frame H + XV0 H - V0 L + VM L - VM O Normal Display Display OFF, Power Save COMS1, COMS2 (COMS) Inverse Display 64 VSS LCD common driver outputs for icons. O The output signals of these two pins are the same. 2 When icon feature is not used, these pins should be left open. Microprocessor Interface Pins Pin Name Type RSTB I CSB I A0 I Description No. of Pins Hardware reset input pin. When RSTB is “L”, internal initialization is executed and the internal registers will be initialized. Chip select input pin. Interface access is enabled when CSB is “L”. When CSB is non-active (CSB=“H”), D[7:0] pins are high impedance. 1 1 It determines whether the access is related to data or command. A0=“H” : Indicates that signals on D[7:0] are display data. 1 A0=“L” : Indicates that signals on D[7:0] are command. Read/Write execution control pin. When PSB is “H”, C86 H RWR I L MPU Type 6800 series 8080 series RWR Description Read/Write control input pin. R/W R/W=“H”: read. R/W=“L”: write. 1 Write enable input pin. /WR Signals on D[7:0] will be latched at the rising edge of /WR signal. RWR is not used in serial interface and should fix to “H” by VDD1 or VDDH. Ver 1.4b 8/49 2009/02/04 ST7567 Pin Name Type Description No. of Pins Read/Write execution control pin. When PSB is “H”, MPU Type C86 ERD Description Read/Write control input pin. ERD I R/W=”H“: When E is “H”, D[7:0] are in output 6800 H E series mode. R/W=”L“: Signals on D[7:0] are latched at the 1 falling edge of E signal. 8080 L Read enable input pin. /RD series When /RD is “L”, D[7:0] are in output mode. ERD is not used in serial interface and should fix to “H” by VDD1 or VDDH. When using 8-bit parallel interface: (6800 or 8080 mode) I/O 8-bit bi-directional data bus. Connect to the data bus of 8-bit microprocessor. When CSB is non-active (CSB=“H”), D[7:0] pins are high impedance. When using serial interface: 4-LINE D[7:0] 8 D7=SDA : Serial data input. I D6=SCL : Serial clock input. D[5:0] are not used and should connect to “H” by VDD1 or VDDH. When CSB is non-active (CSB=“H”), D[7:0] pins are high impedance. Note: 1. After VDD1 is turned ON, any MPU interface pins cannot be left floating. Configuration Pins Pin Name Type Description No. of Pins VDDH I Logic “1” level for option pins which should connected to “H”. 2 VSSL I Logic “0” level for option pins which should connected to “L”. 2 PSB I PSB selects the interface type: Serial or Parallel. 1 C86 selects the microprocessor type in parallel interface mode. C86 I PSB C86 Selected Interface “H” “H” Parallel 6800 Series MPU Interface “H” “L” Parallel 8080 Series MPU Interface “L” “X” Serial 4-Line SPI Interface 1 Please refer to “APPLICATION NOTES” and “Microprocessor Interface” (Section 6) for detailed connection of the selected interface. These pins select the display duty and bias of ST7567. SEL[2:1] I SEL2 SEL1 Duty Bias “L” “L” 1/65 1/9 or 1/7 “L” “H” 1/49 1/8 or 1/6 “H” “L” 1/33 1/6 or 1/5 “H” “H” 1/55 1/8 or 1/6 2 Note: 1. Ver 1.4b The detailed definition of output pin name can be found in Fig 9. 9/49 2009/02/04 ST7567 Power System Pins Pin Name Type Description No. of Pins VDD1 Power Digital power. If VDD1=VDD2, connect to VDD2 externally. 3 VDD2 Power Analog power. If VDD1=VDD2, connect to VDD1 externally. 4 VDD3 Power Power for reference voltage circuit. 2 VSS1 Power Digital ground. Connect to VSS2 externally. 2 VSS2 Power Analog ground. Connect to VSS1 externally. 3 VSS3 Power Ground for reference voltage circuit. 1 V0 is the LCD driving voltage for common circuits at negative frame. V0out is the output of V0 regulator. V0s is the feedback of V0 regulator. V0out V0in Power V0s V0in is the V0 input of common circuits. Be sure that: V0 ≥ VG > VM > VSS ≥ XV0 (under operation). V0out, V0in & V0s should be separated in ITO layout. 2 2 1 V0out, V0in & V0s should be connected together in FPC layout. XV0 is the LCD driving voltage for common circuits at positive frame. XV0out XV0in Power XV0s XV0out is the output of XV0 regulator. XV0s is the feedback of XV0 regulator. 2 XV0in is the V0 input of common circuits. 2 XV0out, XV0in & XV0s should be separated in ITO layout. 1 XV0out, XV0in & XV0s should be connected together in FPC layout. VG is the LCD driving voltage for segment circuits. Vgout is the output of VG regulator. VGs is the feedback of VG regulator. VGout Vgin Power VGs Vgin is the VG input of segment circuits. Vgout, Vgin & VGs should be separated in ITO layout. Vgout, Vgin & VGs should be connected together in FPC layout. 1 2 1 1.6 ≤ VG < VDD2. VMO Power VM is the LCD driving voltage for common circuits. 0.8V ≤ VM < VDD2. 2 Test Pins Pin Name Type Vref T T1~T8 T TFCOM T CL T Ver 1.4b Description Test pin for power system. This pin must be left open (without any kinds of connection). Do NOT use. Reserved for testing. Must be floating. Do NOT use. Reserved for testing. Must be floating. Do NOT use. Reserved for testing. Must be floating. 10/49 No. of Pins 1 8 1 1 2009/02/04 ST7567 Recommend ITO Resistance Pin Name ITO Resistance VMO, Vref, T[1:8], TFCOM, CL Floating VDD1, VDD2, VDD3, VSS1, VSS2, VSS3 < 100Ω V0(V0in, V0out, V0s), VG(Vgin, Vgout, VGs), XV0(XV0in, XV0out, XV0s) < 300Ω A0, RWR, ERD, CSB, D[7:0] < 1KΩ PSB, C86, SEL[2:1] < 5KΩ RSTB *1 < 10KΩ Note: 1. To prevent the ESD pulse resetting the internal register, applications should increase the resistance of RSTB signal (add a series resistor or increase ITO resistance). The value is different from modules. 2. The option setting to be “H” should connect to VDD1 or VDDH. 3. The option setting to be “L” should connect to VSS1 or VSSL. Ver 1.4b 11/49 2009/02/04 ST7567 FUNCTION DESCRIPTION Microprocessor Interface Chip Select Input CSB pin is used for chip selection. When CSB is “L”, the microprocessor interface is enabled and ST7567 can interface with an MPU. When CSB is “H”, the inputs of A0, ERD and RWR with any combination will be ignored and D[7:0] are high impedance. In 4-Line serial interface, the internal shift register and serial counter are reset when CSB is “H”. Interface Selection The interface selection is controlled by C86 and PSB pins. The selection for parallel or serial interface is shown in Table 1. Table 1. Parallel/Serial Interface Mode PSB “H” “H” “L” C86 CSB A0 ERD RWR D[7:0] MPU Interface “H” E R/W 6800-series parallel interface D[7:0] CSB A0 “L” /RD /WR 8080-series parallel interface “X” ----Refer to serial interface. 4-Line SPI interface The un-used pins are marked as “---” and should be fixed to “H” by VDD1 or VDDH. Parallel Interface When PSB= “H”, the 8-bit bi-directional parallel interface is enabled and the type of MPU is selected by “C86” pin as shown in Table 2. The data transfer type is determined by signals on A0, ERD and RWR as shown in Table 3. Table 2. Microprocessor Selection for Parallel Interface PSB “H” “H” C86 “H” “L” CSB A0 CSB A0 ERD E /RD RWR R/W /WR D[7:0] D[7:0] MPU Interface 6800-series parallel interface 8080-series parallel interface Table 3. Parallel Data Transfer Type Common Pins CSB “L” A0 “H” “H” “L” “L” 6800-Series E (ERD) “H” “H” “H” “H” R/W (RWR) “H” “L” “H” “L” 8080-Series /RD (ERD) “L” “H” “L” “H” /WR (RWR) “H” “L” “H” “L” Description Display data read out Display data write Internal status read Writes to internal register (instruction) Setting Serial Interface Serial Mode PSB C86 CSB A0 ERD RWR D[7:0] 4-Line SPI interface “L” X CSB A0 ----SDA, SCLK, ---, ---, ---, ---, ---, --* The un-used pins are marked as “---” and should be fixed to “H” by VDD1 or VDDH. * C86 is marked as “X” and can be fixed to “H” or “L”. Note: 1. The option setting to be “H” should connect to VDD1 or VDDH. 2. The option setting to be “L” should connect to VSS1 or VSSL. Ver 1.4b 12/49 2009/02/04 ST7567 4-line SPI interface (PSB=“L”, C86=“H” or “L”) When ST7567 is active (CSB=“L”), serial data (SDA) and serial clock (SCLK) inputs are enabled. When ST7567 is not active (CSB=“H”), the internal 8-bit shift register and 3-bit counter are reset. Serial data on SDA is latched at the rising edge th of serial clock on SCLK. After the 8 serial clock, the serial data will be processed to be 8-bit parallel data. The address th selection pin (A0), which is latched at the 8 clock, indicates the 8-bit parallel data is display data or instruction. The 8-bit parallel data will be display data when A0 is “H” and will be instruction when A0 is “L”. The read feature is not available in this mode. The DDRAM column address pointer will be increased by one automatically after each byte of DDRAM access. Please note that the SCLK signal quality is very important and external noise maybe causes unexpected data/instruction latch. Fig 4. 4-Line SPI Access Note: Some MPU will set the interface to be Hi-Z (high impedance) mode when power saving mode or after hardware reset. This is not allowed when the VDD1of ST7567 is turned ON. Because the floating input (especially for those control pins such as CSB, RSTB, RWR or ERD…) maybe cause abnormal latch and cause abnormal display. Ver 1.4b 13/49 2009/02/04 ST7567 Data Transfer ST7567 uses bus latch and internal data bus for interface data transfer. When writing data from MPU to the DDRAM, data is automatically transferred from the bus latch to the DDRAM as shown in Fig 5. When reading data from the on-chip DDRAM to MPU, the first read cycle reads the content in bus latch (dummy read) and the data that MPU should read will be output at the next read cycle as shown in Fig 6. That means: after setting the target address, a dummy read cycle is required before the following read-operation. Therefore, the data of the specified address cannot be read at the first read of display data right after setting the address, but can be read at the second read of display data. Ver 1.4b Fig 5. Data Transfer : Write Fig 6. Data Transfer : Read 14/49 2009/02/04 ST7567 Display Data RAM (DDRAM) ST7567 is built-in a RAM with 65X132 bit capacity which stores the display data. The display data RAM (DDRAM) store the dot data of the LCD. It is an addressable array with 132 columns by 65 rows (8-page with 8-bit and 1-page with 1-bit). The X-address is directly related to the column output number. Each pixel can be selected when the page and column addresses are specified (please refer to Fig 7 for detailed illustration). The rows are divided into: 8 pages (Page-0 ~ Page-7) each with 8 lines (for COM0~63) and Page-8 with only 1 line (COMS, for icon). The display data (D7~D0) corresponds to the LCD common-line direction and D0 is on top. All pages can be accessed through D[7:0] directly except icon page. Icon RAM uses only 1-bit of data bus (D0). Refer to Fig 8 for detailed illustration. The microprocessor can write to and read from (only Parallel interfaces) DDRAM by the I/O buffer. Since the LCD controller operates independently, data can be written into DDRAM at the same time as data is being displayed without causing the LCD flicker or data-conflict. Fig 7. DDRAM Mapping Mode (Default Setting) Fig 8. Ver 1.4b DDRAM Format 15/49 2009/02/04 ST7567 Addressing Data is downloaded into the Display Data RAM matrix in ST7567 as byte-format. The Display Data RAM has a matrix of 65 by 132 bits. The address ranges are: X=0~131 (column address), Y=0~8 (page address). Addresses outside these ranges are not allowed. Page Address Circuit This circuit provides the page address of DDRAM. It incorporates 4-bit Page Address Register which can be modified by the “Page Address Set” instruction only. The Page Address must be set before accessing DDRAM content. Page Address “8” is a special RAM area for the icons with only one valid bit: D0. Column Address Circuit The column address of DDRAM is specified by the Column Address Set command. The column address is increased (+1) after each display data access (read/write). This allows MPU accessing DDRAM content continuously. This feature stops at the end of each page (Column Address “83h”) because the Column Address and Page Address circuits are independent. For example, both Page Address and Column Address should be assigned for changing the DDRAM pointer from (Page-0, Column-83h) to (Page-1, Column-0). Furthermore, Register MX and MY makes it possible to invert the relationship between the DDRAM and the outputs (COM/SEG). It is necessary to rewrite the display data into DDRAM after changing MX setting. Ver 1.4b 16/49 2009/02/04 ST7567 The relation between DDRAM and outputs with different MX or MY setting is shown below. Fig 9. Ver 1.4b DDRAM and Output Map (COM/SEG) 17/49 2009/02/04 ST7567 Line Address Circuit The Line Address Circuit incorporates a counter and a Line Address register which is changed only by the “Display Start Line Set” instruction. This circuit assigns DDRAM a Line Address corresponding to the first display line (COM0). Therefore, by setting Line Address repeatedly, ST7567 can realize the screen scrolling without changing the contents of DDRAM as shown in Fig 10. The last common is always the COMS (common output for the icons). That means the icons will never 7B 7C 7D 7E 7F 80 81 82 83 08 07 06 05 04 03 02 01 00 83 82 81 80 7F 7E 7D 7C 7B 00 01 02 03 04 05 06 07 08 scroll with the general display data. 64 Lines Line Address (Hex), Start Line S[6:0] = 0x1C Ver 1.4b 232 233 234 235 236 237 238 239 240 S123 S124 S125 S126 S127 S128 S129 S130 S131 S0 S1 S2 S3 S4 S5 S6 S7 S8 109 110 111 112 113 114 115 116 117 Start Fig 10. Start Line Function 18/49 2009/02/04 ST7567 Display Data Latch Circuit The display data latch circuit latches temporarily display data of each segment output which will be output at the next clock. The special functions such as reverse display, display OFF and display all points ON only change the data in the latch and the content in the Display Data RAM is not changed. Oscillation Circuit The built-in oscillation circuit generates the system clock for the liquid crystal driving circuit. The oscillation circuit is enabled after initializing ST7567. The clock will not be output to reduce the power consumption. Liquid Crystal Driver Power Circuit The built-in power circuits generate the voltage levels which are necessary to drive the liquid crystal. It consumes low power with the fewest external components. The built-in power system has voltage booster, voltage regulator and voltage follower circuits. Before power ST7567 OFF, a Power OFF procedure is needed (please refer to the OPERATION FLOW section). External Components of Power Circuit The recommended external power components need only 2 capacitors. The detailed values of these two capacitors are determined by the panel size and loading. IC Internal IC External V0 Generator V0 C2 VG Grnerator VG C1 VDD2 VSS2 VSS2 XV0 Generator Fig 11. R1 XV0 C1: 0.1uF~1.0uF (Non-Polar/6V) C2: 0.1uF~1.0uF (Non-Polar/16V) R1: Reserved (Default NC) Power Circuit Regulator Circuit The built-in high accuracy regulation circuit has 8 regulation ratios and each one has 64 EV-levels for voltage adjustment. Without additional external component, the output voltage can be changed by instructions such as “Regulation Ratio” and “Set EV”. The detailed setting method can be found in the INSTRUCTION DESCRIPTION section. Ver 1.4b 19/49 2009/02/04 ST7567 RESET CIRCUIT Setting RSTB to “L” can initialize internal function. While RSTB is “L”, no instruction except read status can be accepted. RSTB pin must connect to the reset pin of MPU and initialization by RSTB pin is essential before operating. Please note the hardware reset is not same as the software reset. When RSTB becomes “L”, the hardware reset procedure will start. When RESET instruction is executed, the software reset procedure will start. The procedure is listed below: Procedure Hardware Reset Software Reset Display OFF: D=0, all SEGs/COMs output at VSS V X Normal Display: INV=0, AP=0 V X SEG Normal Direction: MX=0 V X Clear Serial Counter and Shift Register (if using Serial Interface) V X Bias Selection: BS=0 V X Booster Level BL=0 V X Exit Power Saving Mode V X Power Control OFF: VB=0, VR=0, VF=0 V X Exit Read-modify-Write mode V V Start Line S[5:0]=0 V V Column Address X[7:0]=0 V V Page Address Y[3:0]=0 V V COM Normal Direction: MY=0 V V V0 Regulation Ratio RR[2:0]=(1,0,0) V V EV[5:0]=(1,0,0,0,0,0) V V Exit Test Mode V V After power-on, RAM data are undefined and the display status is “Display OFF”. It’s better to initialize whole DDRAM (ex: fill all 00h or write the display pattern) before turning the Display ON. Besides, the power is not stable at the time that the power is just turned ON. A hardware reset is needed to initialize those internal registers after the power is stable. Ver 1.4b 20/49 2009/02/04 ST7567 8. INSTRUCTION TABLE COMMAND BYTE A0 R/W (RWR) D7 D6 D5 D4 D3 D2 D1 D0 (1) Display ON/OFF 0 0 1 0 1 0 1 1 1 D D=1, display ON D=0, display OFF (2) Set Start Line 0 0 0 1 S5 S4 S3 S2 S1 S0 Set display start line (3) Set Page Address 0 0 1 0 1 1 Y3 Y2 Y1 Y0 Set page address (4) Set Column Address 0 0 0 0 0 1 X7 X6 X5 X4 Set column address (MSB) 0 0 0 0 0 0 X3 X2 X1 X0 Set column address (LSB) (5) Read Status 0 1 0 MX D RST 0 0 0 0 (6) Write Data 1 0 D7 D6 D5 D4 D3 D2 D1 D0 Write display data to RAM (7) Read Data 1 1 D7 D6 D5 D4 D3 D2 D1 D0 Read display data from RAM (8) SEG Direction 0 0 1 0 1 0 0 0 0 MX Set scan direction of SEG MX=1, reverse direction MX=0, normal direction (9) Inverse Display 0 0 1 0 1 0 0 1 1 INV INV =1, inverse display INV =0, normal display (10) All Pixel ON 0 0 1 0 1 0 0 1 0 AP AP=1, set all pixel ON AP=0, normal display (11) Bias Select 0 0 1 0 1 0 0 0 1 BS Select bias setting 0=1/9; 1=1/7 (at 1/65 duty) (12) Read-modify-Write 0 0 1 1 1 0 0 0 0 0 Column address increment: Read:+0 , Write:+1 INSTRUCTION DESCRIPTION Read IC Status (13) END 0 0 1 1 1 0 1 1 1 0 Exit Read-modify-Write mode (14) RESET 0 0 1 1 1 0 0 0 1 0 Software reset (15) COM Direction 0 0 1 1 0 0 MY - - - Set output direction of COM MY=1, reverse direction MY=0, normal direction (16) Power Control 0 0 0 0 1 0 1 VB VR VF Control built-in power circuit ON/OFF (17) Regulation Ratio 0 0 0 0 1 0 0 RR2 RR1 RR0 Select regulation resistor ratio 0 0 1 0 0 0 0 0 0 0 0 0 0 EV5 EV4 EV3 EV2 EV1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 BL (20) Power Save 0 0 (21) NOP 0 0 1 1 1 0 0 0 1 1 No operation (22) Test 0 0 1 1 1 1 1 1 1 - Do NOT use. Reserved for testing. (18) Set EV (19) Set Booster 1 Double command!! Set EV0 electronic volume (EV) level Compound Command Double command!! Set booster level: BL=0: 4X BL=1: 5X Display OFF + All Pixel ON Note: Symbol “-” means this bit can be “H” or “L”. Ver 1.4b 21/49 2009/02/04 ST7567 9. INSTRUCTION DESCRIPTION Display ON/OFF The D flag selects the display mode. D7 A0 R/W(RWR) 0 0 1 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 D D=1: Normal Display Mode. D=0: Display OFF. All SEGs/COMs output with VSS. Set Start Line This instruction sets the line address of the Display Data RAM to determine the initial display line. The display data of the specified line address is displayed at the top row (COM0) of the LCD panel. D7 D6 D5 D4 D3 D2 D1 D0 A0 R/W(RWR) 0 0 0 1 S5 S4 S3 S2 S1 S0 S5 S4 S3 S2 S1 S0 Line address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 2 0 : 0 : 0 : 0 : 1 : 1 : 3 : 1 1 1 1 1 1 1 1 0 1 1 0 61 62 1 1 1 1 1 1 63 D3 D2 D1 D0 Y3 Y2 Y1 Y0 Set Page Address Y [3:0] defines the Y address vector address of the display RAM. A0 R/W(RWR) D7 D6 D5 D4 0 0 1 0 1 1 Y3 Y2 Y1 Y0 Page Address Valid Bit 0 0 0 0 0 0 0 1 Page0 Page1 D0~ D7 D0~ D7 0 : 0 : 1 : 0 : Page2 : D0~ D7 : 0 0 1 1 1 1 0 1 Page6 Page7 D0~ D7 D0~ D7 1 0 0 0 Page8 (icon page) D0 Ver 1.4b 22/49 2009/02/04 ST7567 Set Column Address The range of column address is 0…131. The parameter is separated into 2 instructions. The column address is increased (+1) after each byte of display data access (read/write). This allows MPU accessing DDRAM content continuously. This feature stops at the end of each page (Column Address “83h”). D7 D6 D5 D4 D3 D2 D1 D0 A0 R/W(RWR) 0 0 0 0 0 1 X7 X6 X5 X4 A0 R/W(RWR) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 X3 X2 X1 X0 D1 D0 0 0 X7 X6 X5 X4 X3 X2 X1 X0 Column address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 2 3 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 129 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 120 131 Read Status Read the internal status of ST7567. The read function is not available in serial interface mode. D7 D6 D5 D4 D3 D2 A0 R/W(RWR) 0 1 0 MX D Flag MX D RST RST 0 0 Description MX=0: Normal direction (SEG0->SEG131) MX=1: Reverse direction (SEG131->SEG0) D=0: Display ON D=1: Display OFF RST=1: During reset (hardware or software reset) RST=0: Normal operation Write Data 8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written. A0 R/W(RWR) D7 D6 D5 D4 D3 D2 D1 D0 1 0 Write Data Read Data 8-bit data of Display Data from the RAM location specified by the column address and page address can be read to the microprocessor. The read function is not available in serial interface mode. A0 R/W(RWR) D7 D6 D5 D4 D3 D2 D1 D0 1 Ver 1.4b 1 Read Data 23/49 2009/02/04 ST7567 SEG Direction A0 R/W(RWR) D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 0 0 0 0 MX Flag MX Description MX=0: Normal direction (SEG0->SEG131) MX=1: Reverse direction (SEG131->SEG0) Inverse Display This instruction changes the selected and non-selected voltage of SEG. The display will be inversed (white -> Black, Black -> White) while the display data in the Display Data RAM is never changed. A0 R/W(RWR) D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 0 0 1 1 INV Flag INV Description INV=0: Normal display INV =1: Inverse display All Pixel ON This instruction will let all segments output the selected voltage and make all pixels turned ON. A0 R/W(RWR) D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 0 0 1 0 AP D3 D2 D1 D0 0 0 1 BS Flag AP Description AP =0: Normal display AP =1: All pixels ON Bias Select Select LCD bias ratio of the voltage required for driving the LCD. D7 D6 D5 D4 A0 R/W(RWR) 0 Duty 0 1 0 1 0 Reference LCD Bias Voltage (1/65 Duty with 1/9 Bias) Bias BS=0 BS=1 Symbol Bias Voltage 1/65 1/9 1/7 1/49 1/33 1/8 1/6 1/6 1/5 V0 VG V0 2/9 x V0 1/55 1/8 1/6 VM VSS 1/9 x V0 VSS Please Note: * VG range: 1.24V ≤ VG < VDD2. * VM range: 0.62V ≤ VM < VDD2. Ver 1.4b 24/49 2009/02/04 ST7567 Read-modify-Write This command is used paired with the “END” instruction. Once this command has been input, the display data read operation will not change the column address, but only the display data write operation will increase the column address (X[7:0]+1). This mode is maintained until the END command is input. This function makes it possible to reduce the load on the MPU when there are repeating data changes in a specified display region, such as a blanking cursor. D7 D6 D5 D4 D3 D2 D1 D0 A0 R/W(RWR) 0 0 1 1 1 0 0 0 0 0 In Read-modify-Write mode, other instructions aside from display data read/write commands can also be used. Read-Modify-Write Page Address Set Column Address Set Read-Modify-Write Cycle Dummy Read Data Read No Modify Data Data Write (at same Address) Finished? Yes Done END When the END command is input, the Read-modify-Write mode is released and the column address returns to the address it was when the Read-modify-Write instruction was entered. A0 R/W(RWR) D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 1 0 1 1 1 0 RESET This instruction resets Start Line (S[5:0]), Column Address (X[7:0]), Page Address (Y[3:0]) and COM Direction (MY) to their default setting. Please note this instruction is not complete same as hardware reset (RSTB=L) and cannot initialize the built-in power circuit which is initialized by the RSTB pin. The detailed information is in “Section RESET CIRCUIT”. A0 R/W(RWR) D7 D6 D5 D4 D3 D2 D1 D0 0 Ver 1.4b 0 1 1 1 0 25/49 0 0 1 0 2009/02/04 ST7567 COM Direction This instruction controls the common output status which changes the vertical display direction. The detailed information can be found in Fig 9. D7 D6 D5 D4 D3 D2 D1 D0 A0 R/W(RWR) 0 0 1 1 0 Flag MY 0 MY - - - Description MY=0: Normal direction (COM0->COM63) MY=1: Reverse direction (COM63->COM0) Power Control This instruction controls the built-in power circuits. Typically, these 3 flags are turned ON at the same time. D7 D6 D5 D4 D3 D2 D1 A0 R/W(RWR) 0 0 0 0 1 Flag VB VR VF 0 D0 1 VB VR VF D3 D2 D1 D0 0 RR2 RR1 RR0 Description VB=0: Built-in Booster OFF VB=1: Built-in Booster ON VR=0: Built-in Regulator OFF VR=1: Built-in Regulator ON VF=0: Built-in Follower OFF VF=1: Built-in Follower ON Regulation Ratio This instruction controls the regulation ratio of the built-in regulator. A0 R/W(RWR) D7 D6 D5 D4 0 0 0 0 1 RR2 RR1 RR0 Regulation Ratio (RR) 0 0 0 0 0 1 3.0 3.5 0 0 1 1 0 1 4.0 4.5 1 1 0 0 0 1 5.0 5.5 1 1 1 1 0 1 6.0 6.5 0 The operation voltage (V0) calculation formula is shown below: (RR comes from Regulation Ratio, EV comes from EV[5:0]) V0 = RR X [ 1 – (63 – EV) / 162 ] X 2.1, or V0 = RR X [ ( 99 + EV ) / 162 ] X 2.1 Ver 1.4b SYMBOL REGISTER VALUE RR EV RR[2:0] EV[5:0] 3, 3.5, 4, 4.5, 5, 5.5, 6 and 6.5 0~63 26/49 2009/02/04 ST7567 Set EV This is double byte instruction. The first byte set ST7567 into EV adjust mode and the following instruction will change the EV setting. That means these 2 bytes must be used together. They control the electronic volume to adjust a suitable V0 voltage for the LCD. D7 D6 D5 D4 D3 D2 D1 D0 A0 R/W(RWR) 0 0 0 0 1 0 0 0 0 EV5 0 EV4 0 EV3 0 EV2 0 EV1 1 EV0 Electronic Volume Set Set EV (byte-1) (0x81) Set EV (byte-2) (depends on requirement) No Set Complete? Yes Done The maximum voltage that can be generated is dependent on the VDD2 voltage and the loading of LCD module. There are 8 V0 voltage curve can be selected. It is recommended the EV should be close to the center (1FH) for easy contrast adjustment. Please refer to the “Selection of Application Voltage” section for detailed information. EV[5:0] and RR[2:0] vs. V0 Voltage Fig 21 Setting V0 Voltage Ver 1.4b 27/49 2009/02/04 ST7567 Power Save (Compound Instruction) st nd This is compound instruction. The 1 instruction is Display OFF (D=0) and the 2 instruction is All Pixel ON (AP=1). The Power Save mode starts the following procedure: (the display data and register settings are still kept except D-Flag and AP-Flag) 1. Stops internal oscillation circuit; 2. Stops the built-in power circuits; 3. Stops the LCD driving circuits and keeps the common and segment outputs at VSS. Normal Mode Power Save Mode Display OFF (AEH) Cancel All Pixel ON (A4H) All Pixel ON (A5H) Display ON (AFH) Power Save Mode Normal Mode Enter Power Save Mode Exit Power Save Mode After exiting Power Save mode, the settings will return to be as they were before. Set Booster This is double byte instruction. The first byte set ST7567 into booster configuration mode and the following instruction will change the booster setting. That means these 2 bytes must be used together. They control the built-in booster circuit to provide the power source of the built-in regulator. ST7567 booster is built-in booster capacitors. The only external component is a keep capacitor between V0 and XV0. Booster level can be changed with instruction only without changing hardware connection. A0 R/W(RWR) D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 BL D2 D1 D0 0 1 1 Booster Ratio Set Set Booster (byte-1) (F8H) BL Boost Level 0 X4 1 X5 Set Booster (byte-2) (depends on requirement) Set Complete? No Yes Done NOP “No Operation” instruction. ST7567 will do nothing when receiving this instruction. A0 R/W(RWR) D7 D6 D5 D4 D3 0 0 1 1 1 0 0 Test The test mode is reserved for IC testing. Please don’t use this instruction. If the test mode is enabled accidentally, it can be cleared by: issuing an “L” pulse on RSTB pin, issuing RESET instruction or issuing NOP instruction. A0 R/W(RWR) D7 D6 D5 D4 D3 D2 D1 D0 0 0 Note: “-” means “1” or “0”. Ver 1.4b 1 1 1 1 28/49 1 1 1 - 2009/02/04 ST7567 10. OPERATION FLOW This section introduces some reference operation flows. Power ON R R n O p o n F o w Reeefffeeerrreeen ntttiiiaaalll O Op peeerrraaatttiiio on nF Flllo ow w O O p o n S q u n Op peeerrraaatttiiio on nS Seeeq qu ueeen nccceee Power ON Case 1: RSTB=L while Power ON Wait power stable, t>1ms (depends on system power) Keep RSTB=L …*1 Wait reset start, t>5us Set RSTB=H …*1 Wait reset finished, t>5us Default State ……*2 Function Set (by user) (11) Bias Select (8) SEG Direction (15) COM Direction Function Set (by user) (17) Regulation Ratio (18) Set EV Arrange to execute all these procedures from releasing the reset state to setting the Power Control within 5ms. In case of other models, execute these procedures from turning ON the power to setting the Power Control in 5ms. ……*3 Function Set (by user) (16) Power Control Case 2: RSTB=H while Power ON VDD1 * 50% VDDI VDD1 * 90% (VDD1) tON-V2 VDDA VDD2 * 90% VDD2 * 50% (VDD2,VDD3) Initialize DDRAM (Page 0~8) tRW RSTB VIL tON-RST [ Display ON ] Normal Operating Note: The detailed description can be found in the respective sections listed below. 1. Please refer to the timing specification of tRW and tR. 2. Refer to Section RESET CIRCUIT. 3. The 5ms requirement depends on the characteristics of LCD panel and the external component of the power circuit. It is recommended to check with the real products with external component. 4. The detailed instruction functionality is described in Section 9. INSTRUCTION DESCRIPTION; 5. Power stable is defined as the time that the later power (VDDI or VDDA) reaches 90% of its rated voltage. Timing Requirement: Item VDDA power delay Symbol Requirement tON-V2 0 ≤ tON-V2 Note Applying VDDI and VDDA in any order will not damage IC. If RSTB is Low, High or unstable during power ON, a successful hardware reset by RSTB is required after VDDI is stable. RSTB input time tON-RST No Limitation RSTB=L can be input at any time after power is stable. tRW & tR should match the timing specification of RSTB. To prevent abnormal display, the recommended timing is: 0 ≤ tON-RST ≤ 30 ms. The requirement listed here is to prevent abnormal display on LCD module. Ver 1.4b 29/49 2009/02/04 ST7567 Display Data Write Display Data (After Initialized) Function setup by command (user setting) (2) Display Start Line Set (3) Page Address Set (4) Column Address Set Data setup by Data Write (6) Display Data Write Function setup by command (user setting) (1) Display ON/OFF End of Write Display Data Notes: Reference items 1. The detailed instruction functionality is described in Section 9. INSTRUCTION DESCRIPTION; 2. It is recommended to write display data (initialize DDRAM) before Display ON. Refresh It is recommended to use the refresh sequence regularly in a specified interval. Ver 1.4b 30/49 2009/02/04 ST7567 Power-Save Flow and Sequence ENTERING THE POWER SAVE MODE EXITING THE POWER SAVE MODE Normal Mode Power Save Mode Display OFF (AEH) Cancel All Pixel ON (A4H) All Pixel ON (A5H) Display ON (AFH) Power Save Mode Normal Mode Enter Power Save Mode Exit Power Save Mode INTERNAL SEQUENCE of EXIT POWER SAVE MODE After receiving “PD=0”, the internal circuits (Power) will starts the following procedure. Note: 1. The power stable time is determined by LCD panel loading. 2. The power stable time in this figure is base on: LCD Panel Size = 1.4” with C1=1uF, C2=1uF (VDD=2.7V, Vop=9V). Ver 1.4b 31/49 2009/02/04 ST7567 Power OFF Flow and Sequence In power save mode, LCD outputs are fixed to VSS and all analog outputs are discharged. The power can be turned OFF after ST7567 is in the power save mode. The power save mode can be triggered by the following two methods. R R n P o w O F F F o w Reeefffeeerrreeen ntttiiiaaalll P Po ow weeerrr O OF FF FF Flllo ow w O O p o n S q u n Op peeerrraaatttiiio on nS Seeeq qu ueeen nccceee CASE 1: Use Power Save Instruction Normal Mode Display OFF (AEH) All Pixel ON (A5H) Wait 250ms Turn VDD1~VDD3 OFF Power OFF Power OFF Flow Instruction Flow After the built-in power circuits are OFF and completely discharged, the power (VDDI, VDDA) can be removed. CASE 2: Use Hardware Reset Function Normal Mode Set RSTB=L (wait > tRW) Set RSTB=H Wait 250ms Turn VDD1~VDD3 OFF Power OFF Power OFF Flow Instruction Flow After the built-in power circuits are OFF and completely discharged, the power (VDDI, VDDA) can be removed. Note: 1. tPOFF: Internal Power discharge time. => 250ms (max). 2. tV2OFF: Period between VDDI and VDDA OFF time. => 0 ms (min). 3. It is NOT recommended to turn VDDI OFF before VDDA. Without VDDI, the internal status cannot be guaranteed and internal discharge-process maybe stopped. The un-discharged power maybe flows into COM/SEG output(s) and the liquid crystal in panel maybe polarized. 4. IC will NOT be damaged if either VDDI or VDDA is OFF while another is ON. 5. The timing is dependent on panel loading and the external capacitor(s). 6. The timing in these figures is base on the condition that: LCD Panel Size = 1.4” with C1=1uF, C2=1uF. 7. When turning VDDA OFF, the falling time should follow the specification: 20ms ≤ tPfall ≤ 0.2sec Ver 1.4b 32/49 2009/02/04 ST7567 11. LIMITING VALUES In accordance with the Absolute Maximum Rating System; please refer to notes 1 and 2. Symbol Conditions Unit Digital Power Supply Voltage Parameter VDD1 -0.3 ~ 3.6 V Analog Power supply voltage VDD2, VDD3 -0.3 ~ 3.6 V LCD Power supply voltage V0-XV0 -0.3 ~ 16 V LCD Power supply voltage VG -0.3 ~ 3.6 V LCD Power supply voltage VM -0.3 ~ VDD2 V Vi -0.3 ~ VDD1+0.3 Input Voltage Operating temperature Storage temperature TOPR TSTR V –30 to +85 ° C –55 to +125 ° C Notes 1. Stresses above those listed under Limiting Values may cause permanent damage to the device. 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. 3. Insure the voltage levels of V0, VDD2, VG, VM, VSS and XV0 always match the correct relation: V0 ≥ VDD2 > VG > VM > VSS ≥ XV0 Ver 1.4b 33/49 2009/02/04 ST7567 12. HANDLING Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices. 13. DC CHARACTERISTICS ° ° VSS=0V; Tamb = -30 C to +85 C; unless otherwise specified. Item Symbol Condition Rating Min. Typ. Max. Unit Applicable Pin Operating Voltage (1) VDD1 1.7 — 3.3 V VDD1 Operating Voltage (2) VDD2 2.4 — 3.3 V VDD2 Operating Voltage (3) VDD3 2.4 — 3.3 V VDD3 Input High-level Voltage VIHC 0.7 x VDD1 — VDD1 V Input Low-level Voltage VILC VSS1 — 0.3 x VDD1 V Output High-level Voltage VOHC IOUT=1mA, VDD1=1.8V 0.8 x VDD1 — VDD1 V D[7:0] Output Low-level Voltage VOLC IOUT=-1mA, VDD1=1.8V VSS1 — 0.2 x VDD1 V D[7:0] MPU Interface MPU Interface MPU Input Leakage Current ILI -1.0 — 1.0 µA Output Leakage Current ILO -3.0 — 3.0 µA — 0.6 0.8 KΩ COMx — 1.3 1.5 KΩ SEGx 70 75 80 Hz Vop=8.5V, Liquid Crystal Driver ON Resistance RON ° Ta=25 C ΔV=0.85V VG=1.9V, ΔV=0.19V Frame Frequency Ver 1.4b FR Duty=1/65, Vop=8.5V Ta = 25°C 34/49 Interface MPU Interface 2009/02/04 ST7567 Current consumption: During Display, with internal power system, current consumed by whole IC (bare die). Test Pattern Symbol Condition Rating Unit Min. Typ. Max. — 150 300 µA — 95 190 uA — 8 16 µA Note VDD1=VDD2=VDD3=3.0V, Display Pattern: SNOW (Static) ISS Booster X5 VOP = 8.5 V, Bias=1/9 ° Ta=25 C VDD1=VDD2=VDD3=3.0V, Display OFF ISS Booster X5 VOP = 8.5 V, Bias=1/9 ° Ta=25 C Power Down ISS VDD1=VDD2=VDD3=3.0V, ° Ta=25 C Note: The Current Consumption is DC characteristics Ver 1.4b 35/49 2009/02/04 ST7567 14. TIMING CHARACTERISTICS System Bus Timing for 6800 Series MPU ° (VDD1 = 3.3V , Ta =25 C) Min. Max. tAW6 0 — tAH6 10 — System cycle time tCYC6 240 — Enable L pulse width (WRITE) tEWLW 80 — tEWHW 80 — Enable L pulse width (READ) tEWLR 80 — Enable H pulse width (READ) tEWHR 140 Write data setup time tDS6 40 — Write data hold time tDH6 10 — Item Address setup time Address hold time Enable H pulse width (WRITE) Read data access time Signal A0 E D[7:0] Read data output disable time Symbol Condition tACC6 CL = 16 pF — 70 tOH6 CL = 16 pF 5 50 Unit ns ° (VDD1 = 2.8V , Ta =25 C) Item Address setup time Signal Symbol Condition Min. Max. tAW6 0 — tAH6 0 — System cycle time tCYC6 400 — Enable L pulse width (WRITE) tEWLW 220 — tEWHW 180 — Enable L pulse width (READ) tEWLR 220 — Enable H pulse width (READ) tEWHR 180 — tDS6 40 — Address hold time Enable H pulse width (WRITE) A0 E Write data setup time Write data hold time Read data access time Read data output disable time Ver 1.4b D[7:0] 20 — tACC6 tDH6 CL = 16 pF — 140 tOH6 CL = 16 pF 10 100 36/49 Unit ns 2009/02/04 ST7567 ° (VDD1 = 1.8V , Ta =25 C) Item Address setup time Address hold time Signal A0 Symbol Condition tAW6 Min. Max. 0 — tAH6 0 — System cycle time tCYC6 640 — Enable L pulse width (WRITE) tEWLW 360 — tEWHW 280 — Enable L pulse width (READ) tEWLR 360 — Enable H pulse width (READ) tEWHR 280 — tDS6 80 — tDH6 20 — Enable H pulse width (WRITE) E Write data setup time Write data hold time Read data access time Read data output disable time D[7:0] tACC6 CL = 16 pF — 240 tOH6 CL = 16 pF 10 200 Unit ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr + tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified. *2 All timing is specified using 20% and 80% of VDD1 as the reference. *3 tEWLW and tEWLR are specified as the overlap between CSB being “L” and E. Ver 1.4b 37/49 2009/02/04 ST7567 System Bus Timing for 8080 Series MPU ° (VDD1 = 3.3V , Ta =25 C) Item Address setup time Address hold time Signal A0 System cycle time /WR L pulse width (WRITE) /WR /WR H pulse width (WRITE) /RD L pulse width (READ) /RD H pulse width (READ) RD WRITE Data setup time WRITE Data hold time READ access time D[7:0] READ Output disable time Symbol Condition tAW8 Min. Max. 0 — tAH8 10 — tCYC8 240 — tCCLW 80 — tCCHW 80 — tCCLR 140 — tCCHR 80 tDS8 40 — tDH8 20 — tACC8 CL = 16 pF — 70 tOH8 CL = 16 pF 5 50 Unit ns ° (VDD1 = 2.8V , Ta =25 C) Item Address setup time Address hold time Signal A0 System cycle time /WR L pulse width (WRITE) /WR /WR H pulse width (WRITE) /RD L pulse width (READ) /RD H pulse width (READ) RD WRITE Data setup time WRITE Data hold time READ access time READ Output disable time Ver 1.4b D[7:0] Symbol Condition Min. Max. tAW8 0 — tAH8 0 — tCYC8 400 — tCCLW 220 — tCCHW 180 — tCCLR 220 — tCCHR 180 — tDS8 40 — tDH8 20 — tACC8 CL = 16 pF — 140 tOH8 CL = 16 pF 10 100 38/49 Unit ns 2009/02/04 ST7567 ° (VDD1 = 1.8V , Ta =25 C) Item Address setup time Address hold time Signal A0 System cycle time /WR L pulse width (WRITE) /WR /WR H pulse width (WRITE) /RD L pulse width (READ) /RD H pulse width (READ) RD WRITE Data setup time WRITE Data hold time READ access time READ Output disable time D[7:0] Symbol Condition tAW8 Min. Max. 0 — tAH8 0 — tCYC8 640 — tCCLW 360 — tCCHW 280 — tCCLR 360 — tCCHR 280 tDS8 80 — tDH8 20 — tACC8 CL = 16 pF — 240 tOH8 CL = 16 pF 10 200 Unit ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr + tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified. *2 All timing is specified using 20% and 80% of VDD1 as the reference. *3 tCCLW and tCCLR are specified as the overlap between CSB being “L” and WR and RD being at the “L” level. Ver 1.4b 39/49 2009/02/04 ST7567 System Bus Timing for 4-Line Serial Interface First bit Last bit ° (VDD1 = 3.3V , Ta =25 C) Item Signal Serial clock period SCLK “H” pulse width SCLK SCLK “L” pulse width Address setup time Address hold time Data setup time A0 SDA Data hold time CSB-SCLK time CSB-SCLK time CSB Symbol Min. Max. tSCYC Condition 50 — tSHW 25 — tSLW 25 — tSAS 20 — tSAH 10 — tSDS 20 — tSDH 10 — tCSS 20 — tCSH 40 — Unit ns ° (VDD1 = 2.8V , Ta =25 C) Item Signal Serial clock period SCLK “H” pulse width SCLK Symbol Condition Min. Max. tSCYC 100 — tSHW 50 — SCLK “L” pulse width tSLW 50 — Address setup time tSAS 30 — tSAH 20 — tSDS 30 — tSDH 20 — tCSS 30 — tCSH 60 — Address hold time Data setup time Data hold time CSB-SCLK time CSB-SCLK time Ver 1.4b A0 SDA CSB 40/49 Unit ns 2009/02/04 ST7567 ° (VDD1 = 1.8V , Ta =25 C) Item Signal Serial clock period SCLK “H” pulse width SCLK SCLK “L” pulse width Address setup time Address hold time Data setup time Data hold time CSB-SCLK time CSB-SCLK time A0 SDA CSB Symbol Condition Min. Max. tSCYC 200 — tSHW 80 — tSLW 80 — tSAS 60 — tSAH 30 — tSDS 60 — tSDH 30 — tCSS 40 — tCSH 100 — Unit ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD1 as the standard. Ver 1.4b 41/49 2009/02/04 ST7567 Hardware Reset Timing tRW RSTB tR Internal Status During Reset ... Reset Finished ° (VDD1 = 3.3V , Ta =25 C) Item Reset time Reset “L” pulse width Symbol Condition Min. Max. tR — 1.0 tRW 1.0 — Unit us ° (VDD1 = 2.8V , Ta =25 C) Item Reset time Reset “L” pulse width Symbol Condition Min. Max. tR — 2.0 tRW 2.0 — Unit us ° (VDD1 = 1.8V , Ta =25 C) Item Reset time Reset “L” pulse width Ver 1.4b Symbol Condition Min. Max. tR — 3.0 tRW 3.0 — 42/49 Unit us 2009/02/04 ST7567 APPLICATION NOTE Application Circuits 88 89 86 76 87 6800 Interface Booster X4 Duty: 1/33 Vop: 5.5~6.7V Bias: 1/6 C1=0.1uF~1uF (6V) 77 75 VDD3 C2=0.1uF~1uF (16V) VDD2 C3=10pF~100pF (6V) VDD1 108 SEL2 110 VSSL 109 SEL1 PSB C86 VDDH VSSL 64 59 56 Vref T[5] T[4] T[3] T[2] T[1] TFCOM T[8] T[7] T[6] VGout 54 VGs VG VGin C1 VGin VMO VMO TP3 XV0in XV0in 47 XV0 XV0s XV0out XV0out TP1 C2 V0out V0out 42 V0s V0in V0in VSS2 VSS2 VSS2 TP2 V0 R1 Default NC VSS VSS3 VSS1 34 VSS1 VDD3 VDD2 VDD2 VDD2 VDD VDD1 VDD1 D7 D7 D6 D6 D5 D4 D3 D3 D2 D2 D1 20 D0 D0 ERD E 240 A0 242 RSTB CSB 13 11 261 260 Ver 1.4b 1 D1 VDDH RWR 241 D5 D4 CL R/W A0 RSTB C3 CSB Default NC 12 2 43/49 2009/02/04 ST7567 88 89 86 76 87 8080 Interface Booster X4 Duty: 1/55 Vop: 6.0~7.5V Bias: 1/6 C1=0.1uF~1uF (6V) 77 75 VDD3 C2=0.1uF~1uF (16V) VDD2 C3=10pF~100pF (6V) VDD1 108 SEL2 110 VSSL 109 SEL1 PSB C86 VDDH VSSL 64 59 56 Vref T[5] T[4] T[3] T[2] T[1] TFCOM T[8] T[7] T[6] VGout 54 VGs VG VGin C1 VGin VMO VMO TP3 XV0in XV0in 47 XV0 XV0s XV0out XV0out TP1 C2 V0out V0out 42 V0s V0in V0in VSS2 VSS2 VSS2 TP2 V0 R1 Default NC VSS VSS3 VSS1 34 VSS1 VDD3 VDD2 VDD2 VDD2 VDD VDD1 VDD1 D7 D7 D6 D6 D5 D4 D3 D3 D2 D2 D1 20 D0 240 D0 ERD /RD A0 RSTB 242 13 11 261 260 Ver 1.4b 1 D1 VDDH RWR 241 D5 D4 /RW A0 CSB RSTB C3 CL CSB Default NC 12 2 44/49 2009/02/04 ST7567 Ver 1.4b 45/49 2009/02/04 ST7567 Selection of Application Voltage Referential LCD Module Setting VDD1=2.8V, VDD2=VDD3=2.8V, Panel Size=1.4”, Ta=25°C Duty Booster 1/65 X5 1/55 X5 1/49 X5 1/33 X5 Vop Bias 8.5 ~ 9.5 1/9 6.5 ~ 7.5 1/7 7.5 ~ 8.5 1/8 5.5 ~ 6.5 1/6 7.5 ~ 8.5 1/8 5.5 ~ 6.5 1/6 5.5 ~ 6.5 1/6 4.5 ~ 5.5 1/5 It is recommended to reserve some range for user adjustment and temperature effect. Note: Positive Booster: (VDD2 x BL x BE) ≥ V0 or (VDD2 x BL x BE) ≥ Vop; Negative Booster: [–VDD2 x (BL – 1) x BE] ≤ XV0 or [VDD2 x (BL – 1) x BE] ≥ (Vop – VG), where VG = Vop x 2 / N; Vop requirement: [VDD2 x (BL – 1) x BE] ≥ [Vop x (N – 2) / N] or [Vop ≤ VDD2 x (BL – 1) x BE x N / (N – 2)]. BL is the booster stage and BE is the booster efficiency. Referential values are listed below: (assume VDD2=VDD3=2.8V) Module Size ≤ 1.4”: BE=80% (Typical); Module Size = 1.4”~1.8”: BE=76% (Typical). Actual BE should be determined by module loading and ITO resistance value. 1.6 ≤ VG < VDD2. Recommend VG is: VDD2-VG around 0.5~0.8V. VM=VG/2 and 0.8V ≤ VM < VDD2. The worse condition should be considered: Low temperature effect and display on with snow pattern on panel (max: 1.8”). Ver 1.4b 46/49 2009/02/04 ST7567 ITO Layout Reference The reference ITO layout is shown below: VGout VGs VGin VGin XV0in XV0in XV0s XV0out XV0out V0out V0out V0s V0in V0in VSS2 VSS2 VSS2 VSS3 VSS1 VSS1 VDD3 VDD2 VDD2 VDD2 VDD1 VDD1 The equivalent circuit is shown below: V V X V & V G V000,,, X XV V000 & &V VG G V V D D VD DD D V V S S VS SS S Ideal Layout: Ideal Layout: Ideal Layout: => R4=0 Ohm. R2>>R1>R3. => R4=0 Ohm. R3>>R1>R2. => R4=0 Ohm. R2>>R1>R3. Acceptable Layout: Acceptable Layout: Acceptable Layout: => R4≠0. R2>>R1>R3>R4. => R4≠0. R3>>R1>R2>R4. => R4≠0. R2>>R1>R3>R4. Not Acceptable: Not Acceptable: Not Acceptable: => R4 ≥ (R1 or R2 or R3). => R4 ≥ (R1 or R2 or R3). => R4 ≥ (R1 or R2 or R3). Ver 1.4b 47/49 2009/02/04 ST7567 ITO Layout Guide The reference ITO layout is shown below: Note: Recommend ITO resistance refer to Page11. Ver 1.4b 48/49 2009/02/04 ST7567 REVERSION HISTORY Version Date Description 0.0 0.0a 0.1 2007/06/2 2007/06/19 0.1a 2008/01/21 1.0 2008/02/15 1.0a 2008/02/19 1.1 1.2 2008/03/21 2008/06/26 Rearrange section. Rewrite description. Add Application Circuit. Add pad location. Redraw application circuit (remove VMO capacitor). Reserve R1 for abnormal power off procedure. Rewrite description. Add more application notes. Fix Thermal Gradient. Update DC Characteristics. Update Timing Characteristic. Update Chip Thickness. Add Pass Number. Modify outline description. Fix some arrow direction in Block Diagram. Add more information of operation flow. Change DC Characteristics of VDD1 range: 1.7V ~ 3.3V. Add ITO layout note. Modify Voltage Booster Level. Add Application Voltage Guide. Modify storage temperature. Modify Current Consumption of DC Characteristics. Modify temperature range of Timing Characteristic. Add ITO Layout Guide. Modify Power ON Sequence. Add Cap. C3 in Application Note. Modify ITO Layout Guide. Modify Application note. 1.3 2008/07/11 1.3a 2008/07/22 1.4 2008/10/16 1.4a 2008/11/06 Modify ITO Layout Guide. 1.4b 2009/02/04 Add description of output pin name in different duty. Ver 1.4b 49/49 2009/02/04