ST Sitronix ST7632 4K Color Dot Matrix LCD Controller/Driver 1. INTRODUCTION The ST7632 is a driver & controller LSI for 4K color graphic dot-matrix liquid crystal display systems. It generates 396 Segment and 132 Common driver circuits. This chip is connected directly to a microprocessor, accepts Serial Peripheral Interface (SPI) or 8-bit/16-bit parallel display data and stores in an on-chip display data RAM. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits necessary to drive liquid crystal, it is possible to make a display system with the fewest components. 2. FEATURES On-chip Low Power Analog Circuit Driver Output Circuits − On-chip oscillator circuit −396 segment outputs / 132 common outputs − Voltage converter (x2, x3, x4, x5, x6, x7, x8) Applicable Duty Ratios − Voltage regulator − Various partial display − On-chip electronic contrast control function − Partial window moving & data scrolling − Voltage follower (LCD bias: 1/5 to 1/12) On-chip Display Data RAM Operating Voltage Range − Capacity: 396 × 132 × 4 =209,088 bits − Supply voltage (VDD, VDD1): 2.0 to 3.3V − 256 colors (RGB)=(332) mode (VDD2, VDD3, VDD4, VDD5): 2.6 to −4K colors (RGB)=(444) mode 3.3V −Dithered 65K colors (RGB)=(565) mode V3 & V4 must large than VDD5 −Dithered 262K colors (RGB)=(666) mode − LCD driving voltage (VLCD = V0 - VSS): 3.76 to 18.0 V −Dithered 16M colors (RGB)=(888) mode − Suggest Vop range=12V~14V,LCD bias=1/12. Microprocessor Interface LCD driving voltage (EEPROM) − 8/16-bit parallel bi-directional interface with 6800-series − To store contrast adjustment value for better display Package Type or 8080-series − 4-line serial interface (4-line-SIF) − Application for COG − 3-line serial interface (3-line-SIF) Par no. ST7632 ST7632 Ver 1.7 Equipment Type Internal Power Supply Thermal Gradient -0.125( +-10% )%/℃ 6800 , 8080 ,4-Line , 3-Line interface 1/96 2006/08/15 ST7632 3. ST7632 Pad Arrangement (COG) Chip Size: 19,550 um × 1,473 um Bump Pitch: PAD NO 1 ~ 496, 632~663: 40 um (COM/SEG), PAD NO 497 ~ 631: 110 um (I/O) Bump size: PAD NO.1~464: 25(x)um X 110(y)um PAD No.465~496, 632~663: 110(x)um X 25(y)um PAD N0. 497~631: 90(x)um X 40(y)um Bump Height: 17um Chip Thickness: 635 um Bump size of PAD 465~496 PAD 632~663 45 25 30 60 unit: um Bump size of PAD 1~464 (-7909.1,189.69) 110 110 30 25 unit: um unit: um 464 463 1 465 663 Y X (0,0) 496 632 497 630 631 498 90 40 30 40 Bump size of PAD 497 ~ 631 (9427.36, -645.88) 25 81.75 60 30 40 unit: um 45 (-174,-483) unit: um Ver 1.7 2/96 unit: um 2006/08/15 ST7632 4. Pad Center Coordinates PAD No. PIN Name X Y PAD No. PIN Name X Y 001 COM[32] 9384 625 036 SEG[394] 7882 625 002 COM[33] 9344 625 037 SEG[393] 7842 625 003 COM[34] 9304 625 038 SEG[392] 7802 625 004 COM[35] 9264 625 039 SEG[391] 7762 625 005 COM[36] 9224 625 040 SEG[390] 7722 625 006 COM[37] 9184 625 041 SEG[389] 7682 625 007 COM[38] 9144 625 042 SEG[388] 7642 625 008 COM[39] 9104 625 043 SEG[387] 7602 625 009 COM[40] 9064 625 044 SEG[386] 7562 625 010 COM[41] 9024 625 045 SEG[385] 7522 625 011 COM[42] 8984 625 046 SEG[384] 7482 625 012 COM[43] 8944 625 047 SEG[383] 7442 625 013 COM[44] 8904 625 048 SEG[382] 7402 625 014 COM[45] 8864 625 049 SEG[381] 7362 625 015 COM[46] 8824 625 050 SEG[380] 7322 625 016 COM[47] 8784 625 051 SEG[379] 7282 625 017 COM[48] 8744 625 052 SEG[378] 7242 625 018 COM[49] 8704 625 053 SEG[377] 7202 625 019 COM[50] 8664 625 054 SEG[376] 7162 625 020 COM[51] 8624 625 055 SEG[375] 7122 625 021 COM[52] 8584 625 056 SEG[374] 7082 625 022 COM[53] 8544 625 057 SEG[373] 7042 625 023 COM[54] 8504 625 058 SEG[372] 7002 625 024 COM[55] 8464 625 059 SEG[371] 6962 625 025 COM[56] 8424 625 060 SEG[370] 6922 625 026 COM[57] 8384 625 061 SEG[369] 6882 625 027 COM[58] 8344 625 062 SEG[368] 6842 625 028 COM[59] 8304 625 063 SEG[367] 6802 625 029 COM[60] 8264 625 064 SEG[366] 6762 625 030 COM[61] 8224 625 065 SEG[365] 6722 625 031 COM[62] 8184 625 066 SEG[364] 6682 625 032 COM[63] 8144 625 067 SEG[363] 6642 625 033 COM[64] 8104 625 068 SEG[362] 6602 625 034 COM[65] 8064 625 069 SEG[361] 6562 625 035 SEG[395] 7922 625 070 SEG[360] 6522 625 Ver 1.7 3/96 2006/08/15 ST7632 PAD No. PIN Name X Y PAD No. PIN Name X Y 071 SEG[359] 6482 625 107 SEG[323] 5042 625 072 SEG[358] 6442 625 108 SEG[322] 5002 625 073 SEG[357] 6402 625 109 SEG[321] 4962 625 074 SEG[356] 6362 625 110 SEG[320] 4922 625 075 SEG[355] 6322 625 111 SEG[319] 4882 625 076 SEG[354] 6282 625 112 SEG[318] 4842 625 077 SEG[353] 6242 625 113 SEG[317] 4802 625 078 SEG[352] 6202 625 114 SEG[316] 4762 625 079 SEG[351] 6162 625 115 SEG[315] 4722 625 080 SEG[350] 6122 625 116 SEG[314] 4682 625 081 SEG[349] 6082 625 117 SEG[313] 4642 625 082 SEG[348] 6042 625 118 SEG[312] 4602 625 083 SEG[347] 6002 625 119 SEG[311] 4562 625 084 SEG[346] 5962 625 120 SEG[310] 4522 625 085 SEG[345] 5922 625 121 SEG[309] 4482 625 086 SEG[344] 5882 625 122 SEG[308] 4442 625 087 SEG[343] 5842 625 123 SEG[307] 4402 625 088 SEG[342] 5802 625 124 SEG[306] 4362 625 089 SEG[341] 5762 625 125 SEG[305] 4322 625 090 SEG[340] 5722 625 126 SEG[304] 4282 625 091 SEG[339] 5682 625 127 SEG[303] 4242 625 092 SEG[338] 5642 625 128 SEG[302] 4202 625 093 SEG[337] 5602 625 129 SEG[301] 4162 625 094 SEG[336] 5562 625 130 SEG[300] 4122 625 095 SEG[335] 5522 625 131 SEG[299] 4082 625 096 SEG[334] 5482 625 132 SEG[298] 4042 625 097 SEG[333] 5442 625 133 SEG[297] 4002 625 098 SEG[332] 5402 625 134 SEG[296] 3962 625 099 SEG[331] 5362 625 135 SEG[295] 3922 625 100 SEG[330] 5322 625 136 SEG[294] 3882 625 101 SEG[329] 5282 625 137 SEG[293] 3842 625 102 SEG[328] 5242 625 138 SEG[292] 3802 625 103 SEG[327] 5202 625 139 SEG[291] 3762 625 104 SEG[326] 5162 625 140 SEG[290] 3722 625 105 SEG[325] 5122 625 141 SEG[289] 3682 625 106 SEG[324] 5082 625 142 SEG[288] 3642 625 Ver 1.7 4/96 2006/08/15 ST7632 PAD No. PIN Name X Y PAD No. PIN Name X Y 143 SEG[287] 3602 625 179 SEG[251] 2162 625 144 SEG[286] 3562 625 180 SEG[250] 2122 625 145 SEG[285] 3522 625 181 SEG[249] 2082 625 146 SEG[284] 3482 625 182 SEG[248] 2042 625 147 SEG[283] 3442 625 183 SEG[247] 2002 625 148 SEG[282] 3402 625 184 SEG[246] 1962 625 149 SEG[281] 3362 625 185 SEG[245] 1922 625 150 SEG[280] 3322 625 186 SEG[244] 1882 625 151 SEG[279] 3282 625 187 SEG[243] 1842 625 152 SEG[278] 3242 625 188 SEG[242] 1802 625 153 SEG[277] 3202 625 189 SEG[241] 1762 625 154 SEG[276] 3162 625 190 SEG[240] 1722 625 155 SEG[275] 3122 625 191 SEG[239] 1682 625 156 SEG[274] 3082 625 192 SEG[238] 1642 625 157 SEG[273] 3042 625 193 SEG[237] 1602 625 158 SEG[272] 3002 625 194 SEG[236] 1562 625 159 SEG[271] 2962 625 195 SEG[235] 1522 625 160 SEG[270] 2922 625 196 SEG[234] 1482 625 161 SEG[269] 2882 625 197 SEG[233] 1442 625 162 SEG[268] 2842 625 198 SEG[232] 1402 625 163 SEG[267] 2802 625 199 SEG[231] 1362 625 164 SEG[266] 2762 625 200 SEG[230] 1322 625 165 SEG[265] 2722 625 201 SEG[229] 1282 625 166 SEG[264] 2682 625 202 SEG[228] 1242 625 167 SEG[263] 2642 625 203 SEG[227] 1202 625 168 SEG[262] 2602 625 204 SEG[226] 1162 625 169 SEG[261] 2562 625 205 SEG[225] 1122 625 170 SEG[260] 2522 625 206 SEG[224] 1082 625 171 SEG[259] 2482 625 207 SEG[223] 1042 625 172 SEG[258] 2442 625 208 SEG[222] 1002 625 173 SEG[257] 2402 625 209 SEG[221] 962 625 174 SEG[256] 2362 625 210 SEG[220] 922 625 175 SEG[255] 2322 625 211 SEG[219] 882 625 176 SEG[254] 2282 625 212 SEG[218] 842 625 177 SEG[253] 2242 625 213 SEG[217] 802 625 178 SEG[252] 2202 625 214 SEG[216] 762 625 Ver 1.7 5/96 2006/08/15 ST7632 PAD No. PIN Name X Y PAD No. PIN Name X Y 215 SEG[215] 722 625 251 SEG[179] -718 625 216 SEG[214] 682 625 252 SEG[178] -758 625 217 SEG[213] 642 625 253 SEG[177] -798 625 218 SEG[212] 602 625 254 SEG[176] -838 625 219 SEG[211] 562 625 255 SEG[175] -878 625 220 SEG[210] 522 625 256 SEG[174] -918 625 221 SEG[209] 482 625 257 SEG[173] -958 625 222 SEG[208] 442 625 258 SEG[172] -998 625 223 SEG[207] 402 625 259 SEG[171] -1038 625 224 SEG[206] 362 625 260 SEG[170] -1078 625 225 SEG[205] 322 625 261 SEG[169] -1118 625 226 SEG[204] 282 625 262 SEG[168] -1158 625 227 SEG[203] 242 625 263 SEG[167] -1198 625 228 SEG[202] 202 625 264 SEG[166] -1238 625 229 SEG[201] 162 625 265 SEG[165] -1278 625 230 SEG[200] 122 625 266 SEG[164] -1318 625 231 SEG[199] 82 625 267 SEG[163] -1358 625 232 SEG[198] 42 625 268 SEG[162] -1398 625 233 SEG[197] 2 625 269 SEG[161] -1438 625 234 SEG[196] -38 625 270 SEG[160] -1478 625 235 SEG[195] -78 625 271 SEG[159] -1518 625 236 SEG[194] -118 625 272 SEG[158] -1558 625 237 SEG[193] -158 625 273 SEG[157] -1598 625 238 SEG[192] -198 625 274 SEG[156] -1638 625 239 SEG[191] -238 625 275 SEG[155] -1678 625 240 SEG[190] -278 625 276 SEG[154] -1718 625 241 SEG[189] -318 625 277 SEG[153] -1758 625 242 SEG[188] -358 625 278 SEG[152] -1798 625 243 SEG[187] -398 625 279 SEG[151] -1838 625 244 SEG[186] -438 625 280 SEG[150] -1878 625 245 SEG[185] -478 625 281 SEG[149] -1918 625 246 SEG[184] -518 625 282 SEG[148] -1958 625 247 SEG[183] -558 625 283 SEG[147] -1998 625 248 SEG[182] -598 625 284 SEG[146] -2038 625 249 SEG[181] -638 625 285 SEG[145] -2078 625 250 SEG[180] -678 625 286 SEG[144] -2118 625 Ver 1.7 6/96 2006/08/15 ST7632 PAD No. PIN Name X Y PAD No. PIN Name X Y 287 SEG[143] -2158 625 323 SEG[107] -3598 625 288 SEG[142] -2198 625 324 SEG[106] -3638 625 289 SEG[141] -2238 625 325 SEG[105] -3678 625 290 SEG[140] -2278 625 326 SEG[104] -3718 625 291 SEG[139] -2318 625 327 SEG[103] -3758 625 292 SEG[138] -2358 625 328 SEG[102] -3798 625 293 SEG[137] -2398 625 329 SEG[101] -3838 625 294 SEG[136] -2438 625 330 SEG[100] -3878 625 295 SEG[135] -2478 625 331 SEG[99] -3918 625 296 SEG[134] -2518 625 332 SEG[98] -3958 625 297 SEG[133] -2558 625 333 SEG[97] -3998 625 298 SEG[132] -2598 625 334 SEG[96] -4038 625 299 SEG[131] -2638 625 335 SEG[95] -4078 625 300 SEG[130] -2678 625 336 SEG[94] -4118 625 301 SEG[129] -2718 625 337 SEG[93] -4158 625 302 SEG[128] -2758 625 338 SEG[92] -4198 625 303 SEG[127] -2798 625 339 SEG[91] -4238 625 304 SEG[126] -2838 625 340 SEG[90] -4278 625 305 SEG[125] -2878 625 341 SEG[89] -4318 625 306 SEG[124] -2918 625 342 SEG[88] -4358 625 307 SEG[123] -2958 625 343 SEG[87] -4398 625 308 SEG[122] -2998 625 344 SEG[86] -4438 625 309 SEG[121] -3038 625 345 SEG[85] -4478 625 310 SEG[120] -3078 625 346 SEG[84] -4518 625 311 SEG[119] -3118 625 347 SEG[83] -4558 625 312 SEG[118] -3158 625 348 SEG[82] -4598 625 313 SEG[117] -3198 625 349 SEG[81] -4638 625 314 SEG[116] -3238 625 350 SEG[80] -4678 625 315 SEG[115] -3278 625 351 SEG[79] -4718 625 316 SEG[114] -3318 625 352 SEG[78] -4758 625 317 SEG[113] -3358 625 353 SEG[77] -4798 625 318 SEG[112] -3398 625 354 SEG[76] -4838 625 319 SEG[111] -3438 625 355 SEG[75] -4878 625 320 SEG[110] -3478 625 356 SEG[74] -4918 625 321 SEG[109] -3518 625 357 SEG[73] -4958 625 322 SEG[108] -3558 625 358 SEG[72] -4998 625 Ver 1.7 7/96 2006/08/15 ST7632 PAD No. PIN Name X Y PAD No. PIN Name X Y 359 SEG[71] -5038 625 395 SEG[35] -6478 625 360 SEG[70] -5078 625 396 SEG[34] -6518 625 361 SEG[69] -5118 625 397 SEG[33] -6558 625 362 SEG[68] -5158 625 398 SEG[32] -6598 625 363 SEG[67] -5198 625 399 SEG[31] -6638 625 364 SEG[66] -5238 625 400 SEG[30] -6678 625 365 SEG[65] -5278 625 401 SEG[29] -6718 625 366 SEG[64] -5318 625 402 SEG[28] -6758 625 367 SEG[63] -5358 625 403 SEG[27] -6798 625 368 SEG[62] -5398 625 404 SEG[26] -6838 625 369 SEG[61] -5438 625 405 SEG[25] -6878 625 370 SEG[60] -5478 625 406 SEG[24] -6918 625 371 SEG[59] -5518 625 407 SEG[23] -6958 625 372 SEG[58] -5558 625 408 SEG[22] -6998 625 373 SEG[57] -5598 625 409 SEG[21] -7038 625 374 SEG[56] -5638 625 410 SEG[20] -7078 625 375 SEG[55] -5678 625 411 SEG[19] -7118 625 376 SEG[54] -5718 625 412 SEG[18] -7158 625 377 SEG[53] -5758 625 413 SEG[17] -7198 625 378 SEG[52] -5798 625 414 SEG[16] -7238 625 379 SEG[51] -5838 625 415 SEG[15] -7278 625 380 SEG[50] -5878 625 416 SEG[14] -7318 625 381 SEG[49] -5918 625 417 SEG[13] -7358 625 382 SEG[48] -5958 625 418 SEG[12] -7398 625 383 SEG[47] -5998 625 419 SEG[11] -7438 625 384 SEG[46] -6038 625 420 SEG[10] -7478 625 385 SEG[45] -6078 625 421 SEG[9] -7518 625 386 SEG[44] -6118 625 422 SEG[8] -7558 625 387 SEG[43] -6158 625 423 SEG[7] -7598 625 388 SEG[42] -6198 625 424 SEG[6] -7638 625 389 SEG[41] -6238 625 425 SEG[5] -7678 625 390 SEG[40] -6278 625 426 SEG[4] -7718 625 391 SEG[39] -6318 625 427 SEG[3] -7758 625 392 SEG[38] -6358 625 428 SEG[2] -7798 625 393 SEG[37] -6398 625 429 SEG[1] -7838 625 394 SEG[36] -6438 625 430 SEG[0] -7878 625 Ver 1.7 8/96 2006/08/15 ST7632 PAD No. PIN Name X Y PAD No. PIN Name X Y 431 COM[66] -8020 625 467 COM[102] -9664 526 432 COM[67] -8060 625 468 COM[103] -9664 486 433 COM[68] -8100 625 469 COM[104] -9664 446 434 COM[69] -8140 625 470 COM[105] -9664 406 435 COM[70] -8180 625 471 COM[106] -9664 366 436 COM[71] -8220 625 472 COM[107] -9664 326 437 COM[72] -8260 625 473 COM[108] -9664 286 438 COM[73] -8300 625 474 COM[109] -9664 246 439 COM[74] -8340 625 475 COM[110] -9664 206 440 COM[75] -8380 625 476 COM[111] -9664 166 441 COM[76] -8420 625 477 COM[112] -9664 126 442 COM[77] -8460 625 478 COM[113] -9664 86 443 COM[78] -8500 625 479 COM[114] -9664 46 444 COM[79] -8540 625 480 COM[115] -9664 6 445 COM[80] -8580 625 481 COM[116] -9664 -34 446 COM[81] -8620 625 482 COM[117] -9664 -74 447 COM[82] -8660 625 483 COM[118] -9664 -114 448 COM[83] -8700 625 484 COM[119] -9664 -154 449 COM[84] -8740 625 485 COM[120] -9664 -194 450 COM[85] -8780 625 486 COM[121] -9664 -234 451 COM[86] -8820 625 487 COM[122] -9664 -274 452 COM[87] -8860 625 488 COM[123] -9664 -314 453 COM[88] -8900 625 489 COM[124] -9664 -354 454 COM[89] -8940 625 490 COM[125] -9664 -394 455 COM[90] -8980 625 491 COM[126] -9664 -434 456 COM[91] -9020 625 492 COM[127] -9664 -474 457 COM[92] -9060 625 493 COM[128] -9664 -514 458 COM[93] -9100 625 494 COM[129] -9664 -554 459 COM[94] -9140 625 495 COM[130] -9664 -594 460 COM[95] -9180 625 496 COM[131] -9664 -634 461 COM[96] -9220 625 497 V0IN -5444 -660 462 COM[97] -9260 625 498 V0IN -5334 -660 463 COM[98] -9300 625 499 V0IN -5224 -660 464 COM[99] -9340 625 500 V0IN -5114 -660 465 COM[100] -9664 606 501 V0IN -5004 -660 466 COM[101] -9664 566 502 V0IN -4894 -660 Ver 1.7 9/96 2006/08/15 ST7632 PAD No. PIN Name X Y PAD No. 503 V0OUT -4784 -660 539 504 V0OUT -4674 -660 505 V0OUT -4564 506 V0OUT 507 X Y D1 -824 -660 540 D2 -714 -660 -660 541 D3 -604 -660 -4454 -660 542 D4 -494 -660 V0OUT -4344 -660 543 D5 -384 -660 508 V0OUT -4234 -660 544 D6 -274 -660 509 V1 -4124 -660 545 D7 -164 -660 510 V2 -4014 -660 546 VSS -54 -660 511 V3 -3904 -660 547 VDD 56 -660 512 V4 -3794 -660 548 D8 166 -660 513 VREF -3684 -660 549 D9 276 -660 514 VSS -3574 -660 550 D10 386 -660 515 VSS -3464 -660 551 D11 496 -660 516 VSS -3354 -660 552 D12 606 -660 517 VSS -3244 -660 553 D13 716 -660 518 VSS -3134 -660 554 D14 826 -660 519 VSS -3024 -660 555 D15 936 -660 520 VSS1 -2914 -660 556 VSS 1046 -660 521 VSS1 -2804 -660 557 VDD 1156 -660 522 VDD1 -2694 -660 558 E_RD 1266 -660 523 VDD1 -2584 -660 559 RST 1376 -660 524 VDD -2474 -660 560 VSS 1486 -660 525 VDD -2364 -660 561 VDD 1596 -660 526 VDD -2254 -660 562 IF1 1706 -660 527 VDD -2144 -660 563 IF2 1816 -660 528 VDD -2034 -660 564 IF3 1926 -660 529 VDD -1924 -660 565 CSEL 2036 -660 530 CL -1814 -660 566 VSS 2146 -660 531 CLS -1704 -660 567 VDD 2256 -660 532 VSS -1594 -660 568 SI 2366 -660 533 VDD -1484 -660 569 SCL 2476 -660 534 A0 -1374 -660 570 /CS 2586 -660 535 RW_WR -1264 -660 571 VDD 2696 -660 536 VSS -1154 -660 572 VDD 2806 -660 537 VDD -1044 -660 573 VDD 2916 -660 538 D0 -934 -660 574 VDD 3026 -660 Ver 1.7 10/96 PIN Name 2006/08/15 ST7632 PAD No. PIN Name X Y PAD No. 575 VDD 3136 -660 611 576 VDD 3246 -660 577 VDD1 3356 578 VDD1 579 PIN Name X Y VDD2 7096 -660 612 VDD2 7206 -660 -660 613 VDD2 7316 -660 3466 -660 614 VDD2 7426 -660 VSS1 3576 -660 615 VDD5 7536 -660 580 VSS1 3686 -660 616 VDD5 7646 -660 581 VSS 3796 -660 617 VDD5 7756 -660 582 VSS 3906 -660 618 VDD5 7866 -660 583 VSS 4016 -660 619 TCAP 7978 -660 584 VSS 4126 -660 620 VOUTIN 8090 -660 585 VSS 4236 -660 621 VOUTIN 8200 -660 586 VSS 4346 -660 622 VOUTIN 8310 -660 587 VSS2 4456 -660 623 VOUTIN 8420 -660 588 VSS2 4566 -660 624 VOUTIN 8530 -660 589 VSS2 4676 -660 625 VOUTIN 8640 -660 590 VSS2 4786 -660 626 VOUTOUT 8750 -660 591 VSS2 4896 -660 627 VOUTOUT 8860 -660 592 VSS2 5006 -660 628 VOUTOUT 8970 -660 593 VSS2 5116 -660 629 VOUTOUT 9080 -660 594 VSS2 5226 -660 630 VOUTOUT 9190 -660 595 VSS2 5336 -660 631 VOUTOUT 9300 -660 596 VSS2 5446 -660 632 COM[0] 9664 -634 597 VSS2 5556 -660 633 COM[1] 9664 -594 598 VSS2 5666 -660 634 COM[2] 9664 -554 599 VSS4 5776 -660 635 COM[3] 9664 -514 600 VSS4 5886 -660 636 COM[4] 9664 -474 601 VDD4 5996 -660 637 COM[5] 9664 -434 602 VDD4 6106 -660 638 COM[6] 9664 -394 603 VDD3 6216 -660 639 COM[7] 9664 -354 604 VDD3 6326 -660 640 COM[8] 9664 -314 605 VDD2 6436 -660 641 COM[9] 9664 -274 606 VDD2 6546 -660 642 COM[10] 9664 -234 607 VDD2 6656 -660 643 COM[11] 9664 -194 608 VDD2 6766 -660 644 COM[12] 9664 -154 609 VDD2 6876 -660 645 COM[13] 9664 -114 610 VDD2 6986 -660 646 COM[14] 9664 -74 Ver 1.7 11/96 2006/08/15 ST7632 PAD No. PIN Name X Y PAD No. PIN Name X Y 647 COM[15] 9664 -34 655 COM[23] 9664 286 648 COM[16] 9664 6 656 COM[24] 9664 326 649 COM[17] 9664 46 657 COM[25] 9664 366 650 COM[18] 9664 86 658 COM[26] 9664 406 651 COM[19] 9664 126 659 COM[27] 9664 446 652 COM[20] 9664 166 660 COM[28] 9664 486 653 COM[21] 9664 206 661 COM[29] 9664 526 654 COM[22] 9664 246 662 COM[30] 9664 566 663 COM[31] 9664 606 Ver 1.7 12/96 2006/08/15 ST7632 5. BLOCK DIAGRAM SEG0 TO SEG395 V0IN V1 V2 V3 V4 SEGMENT DRIVERS COM0 TO COM131 COMMON DRIVERS CSEL VSS DATA LATCHES COMMON OUTPUT CONTROLLER CIRCUIT V/F Circuit FRC/PWM FUNCTION CIRCUIT V0OUT RESET V/R Circuit VREF VDD5 VDD4 VDD3 VDD2 OSCILLATOR DISPLAY DATA RAM (DDRAM) [396X132X4] CLS VDD1 TIMING GENERATOR DISPLAY ADDRESS COUNTER V/C Circuit ADDRESS COUNTER OTP VOUTIN VOUTOUT VSS2 VSS4 VSS1 VSS VDD BUS HOLDER INSTRUCTION DECODER MPU INTERFACE(PARALLEL & SERIAL) TCAP D0 to D15 SI 13/96 SCL E_RD RW_WR A0 /CS /RST IF3 IF2 IF1 Ver 1.7 DATA REGISTER INSTRUCTION REGISTER 2006/08/15 ST7632 6. PIN DESCRIPTION 6.1 POWER SUPPLY Name I/O Description VDD Power Power supply for logic circuit VDD1 Power Power supply for OSC circuit VDD2 Power Power supply for Booster Circuit VDD3 Power Power supply for LCD. VDD4 Power Power supply for LCD. VDD5 Power Power supply for LCD. VSS Power Ground. Ground system should be connected together. VSS1 Power Ground. Ground system should be connected together. VSS2 Power Ground. Ground system should be connected together. VSS4 Power Ground. Ground system should be connected together. VOUTOUT Power VOUTIN Power If the internal voltage generator is used, the VOUTIN & VOUTOUT must be connected together. If an external supply is used, this pin must be left open. An external LCD supply voltage can be supplied using the VOUTIN pad. In this case, VOUTOUT has to be left open, and the internal voltage generator has to be programmed to zero. (SET register VC=0) LCD driver supply voltages The voltage determined by LCD pixel is impedance-converted by an operational amplifier for application. V0IN V0IN & V0OUT should be connected together. V0OUT Voltages should have the following relationship; V1 Power V2 V0 ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ VSS When the internal power circuit is active, these voltages are generated as following table according V3 to the state of LCD bias. V4 LCD bias V1 V2 V3 V4 1/N bias (N-1) / N x V0 (N-2) / N x V0 (2/N) x V0 (1/N) x V0 NOTE: N = 5 to 12 VREF O Reference voltage output for monitor only. Left it opened. 6.2 LCD DRIVER SUPPLY Name I/O CLS I Description When using internal clock oscillator, connect CLS to VDD. When using external clock oscillator, connect CLS to VSS. When using internal clock oscillator, it’s oscillator output. (when CLS=”H”) CL I/O When using external clock oscillator, it’s oscillator input. Ver 1.7 14/96 (when CLS=”L”) 2006/08/15 ST7632 6.3 SYSTEM CONTROL Name I/O Description CSEL I Must contact to VSS TCAP I Test pin. Do not use. Let it open. 6.4 MICROPROCESSOR INTERFACE Name I/O RST I Description Reset input pin When RESETB is “L”, initialization is executed. Parallel / Serial data input select input IF[3:1] I IF1 IF2 IF3 MPU interface type H H H 80 series 16-bit parallel H H L 80 series 8-bit parallel H L L 68 series 16-bit parallel L H H 68 series 8-bit parallel L L H 9-bit serial (3 line) L L L 8-bit serial (4 line) Chip select input pins /CS I Data/instruction I/O is enabled only when /CS is "L". When chip select is non-active, D0 to D7 are high impedance. Register select input pin A0 I − A0 = "H": D0 to D15 or SI are display data − A0 = "L": D0 to D15 or SI are control data In 3-line interface not let it floating, contact it to VSS or VDD. Read / Write execution control pin MPU type RW_WR Description Read / Write control input pin 6800-series RW_WR RW RW = “H” : read RW = “L” : write I Write enable clock input pin 8080-series /WR The data on D0 to D15 are latched at the rising edge of the /WR signal. When not use, contact it to VDD. Ver 1.7 15/96 2006/08/15 ST7632 Read / Write execution control pin MPU Type E_RD Description Read / Write control input pin − RW = “H”: When E is “H”, D0 to D15 are in an output 6800-series E_RD E status. I − RW = “L”: The data on D0 to D15 are latched at the falling edge of the E signal. Read enable clock input pin 8080-series /RD When /RD is “L”, D0 to D15 are in an output status. When not use, contact it to VDD They connect to the standard 8-bit or 16 bit MPU bus via the 8/16 –bit bi-directional bus. When the following interface is selected and the CS pin is high, the following pins become high D15 to D0 I/O impedance. 1. 8-bit parallel: D15-D8 are in the state of high impedance, should contact to “H” level. 2. Serial interface: D15-D0 are in the state of high impedance, should contact to “H” level. This pin is used to input serial data when the serial interface is selected.(3 line and 4 line) SI I When not use contact it to VSS or VDD. This pin is used to input serial clock when the serial interface is selected. SCL I The data is converted in the rising edge. (3 line and 4 line) When not use contact it to VSS or VDD. NOTE: Microprocessor interface pins should not be floating in any operation mode. 6.5 LCD DRIVER OUTPUTS Name I/O Description LCD segment driver outputs The display data and the M signal control the output voltage of segment driver. Segment driver output voltage Display data M (Internal) SEG0 to O SEG395 Reverse display H H V0 V2 H L VSS V3 L H V2 V0 L L V3 VSS VSS VSS Power save mode Ver 1.7 Normal display 16/96 2006/08/15 ST7632 LCD common driver outputs The internal scanning data and M signal control the output voltage of common driver. Scan data M (Internal) Common driver output voltage H H VSS H L V0 L H V1 L L V4 COM0 to O COM131 Power save mode VSS ST7632 I/O PIN ITO Resister Limitation PIN Name ITO Resister IF[2:0],CLS,CSEL No Limitation VREF, TCAP, CLP Floating VDD, VDD1~VDD5, VSS, VSS1, VSS2, VSS4, VOUTIN, VOUTOUT <100Ω V0IN, V0OUT, V1, V2, V3, V4 <100Ω A0, RW_WR, E_RD, /CS, D0 …D15, SCL, SI <1KΩ RESB <10KΩ Suggest Vop range : 12v~14v Ver 1.7 17/96 2006/08/15 ST7632 7. FUNCTIONAL DESCRIPTION 7.1 MICROPROCESSOR INTERFACE Chip Select Input There is /CS pin for chip selection. The ST7632 can interface with an MPU when /CS is "L". When these pins are set to any other combination, A0, E_RD, and RW_WR inputs are disabled and D0 to D15 are to be high impedance. And, in case of serial interface, the internal shift register and the counter are reset. 7.1.1 Selecting Parallel / Serial Interface ST7632 has six types of interface with an MPU, which are two serial and four parallel interfaces. This parallel or serial interface is determined by IF pin as shown in table 7.1.1. Table 7.1.1 Parallel / Serial Interface Mode IF1 IF2 IF3 Interface type /CS A0 E_RD RW_WR D15 to D8 D7 to D0 SI SCL H H H 80 serial 16-bit parallel /CS A0 /RD /WR D15 to D8 D7 to D0 VDD VDD H H L 80 serial 8-bit parallel /CS A0 /RD /WR fix to VDD D7 to D0 VDD VDD H L L 68 serial 16-bit parallel /CS A0 E RW D15 to D8 D7 to D0 VDD VDD L H H 68 serial 8-bit parallel /CS A0 E RW fix to VDD D7 to D0 VDD VDD L L H 9-bit SPI mode (3 line) /CS VDD VDD VDD fix to VDD SI SCL L L L 8-bit SPI mode (4 line) /CS A0 VDD VDD fix to VDD SI SCL 7.1.2 8- or 16-bit Parallel Interface The ST7632 identifies type of the data bus signals according to combinations of A0, E_RD and RW_WR SIGNALS 8-bit as shown in table 7.1.2. Table 7.1.2 Parallel Data Transfer Common 6800-series 8080-series Description A0 RW E /RD /WR H H H L H Display data read out H L H H L Display data write L H H L H Register status read L L H H L Writes to internal register (instruction) Relation between Data Bus and Gradation Data ST7632 offers the 256-color display (8 gray scale) out of 4096, the 4096-color display (16 gray scale), the dithered 65K color display, dithered 262K color display, and dithered 16M color display. When using 256-color display out of 4096 colors, you can specify color for each of R, G and B using the palette function. When using 4096-color display, you can select the type A or B display mode depending on the data bus and RGB you use. When using 65K, 262K, and 16M color, you can specify color for each of R, G, B using the palette function. Ver 1.7 18/96 2006/08/15 ST7632 Use the command for switching between these modes. (1) 256-color display out of 4096 colors Using RGBSET8 command enables you to set color for each of R, G and B by turning on palette function prepared to convert 3-bit or 2-bit data to 4-bit data. 1. 8-bit mode D7, D6, D5, D4, D3, D2, D1, D0 : RRRGGGBB (8 bits) data is converted to RRRRGGGGBBBB (12 bits) and then stored on the display RAM. (2) 4096-color display 1. 8-bit mode D7, D6, D5, D4, D3, D2, D1, D0: XXXXRRRR 1st write D7, D6, D5, D4, D3, D2, D1, D0: GGGGBBBB 2nd write A single pixel of data is read after the second write operation as shown, and it is written in the display RAM. 2. 16-bit mode D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: XXXXRRRRGGGGBBBB A single pixel of data is read and written in the display RAM in a single write operation. “XXXX” are dummy bits, and they are ignored for display. (3) 65K color display 1. 8-bit mode D7, D6, D5, D4, D3, D2, D1, D0: RRRRRGGG 1st write D7, D6, D5, D4, D3, D2, D1, D0: GGGBBBBB 2nd write A single pixel of data is read after the second write operation as shown, and it is written in the display RAM. 2. 16-bit mode D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRGGGGGGBBBBB (16 bits) Data is acquired through signal write operation and then written to the display RAM. (4) 262K color display 1. 8-bit mode D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRXX 1st write D7, D6, D5, D4, D3, D2, D1, D0: GGGGGGXX 2nd write D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBXX 3rd write A single pixel of data is read after the third write operation as shown, and it is written in the display RAM. 2. 16 bit mode D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRXXGGGGGGXX D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBXXXXXXXXXXXX A single pixel of data is read after the second write operation as shown, and it is written in the display RAM. “XXXX” are dummy bits, and they are ignored for display. Ver 1.7 19/96 2006/08/15 ST7632 (5) 16M color display 1. 8-bit mode D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRRR 1st write D7, D6, D5, D4, D3, D2, D1, D0: GGGGGGGG 2nd write D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBBB 3rd write A single pixel of data is read after the third write operation as shown, and it is written in the display RAM. 2. 16 bit mode D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRRRGGGGGGGG D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBBBXXXXXXXX A single pixel of data is read after the second write operation as shown, and it is written in the display RAM. 7.1.3 8- and 9-bit Serial Interface The 8-bit serial interface uses four pins /CS, SI, SCL, and A0 to enter commands and data. Meanwhile, the 9-bit serial interface uses three pins /CS, SI and SCL for the same purpose. Data read is not available with the serial interface. Data entered must be 8 bits. Refer to the following chart for entering commands, parameters or gray-scale data. The relation between gray-scale data and data bus in the serial input is the same as that in the 8-bit parallel interface mode at every gradation. (1) 8-bit serial interface (4 line) When entering data (parameters): A0= HIGH at the rising edge of the 8th SCL. When entering command: A0= LOW at the rising edge of the 8th SCL Ver 1.7 20/96 2006/08/15 ST7632 (2) 9-bit serial interface (3 line) When entering data (parameters): SI= HIGH at the rising edge of the 1st SCL. When entering command: SI= LOW at the rising edge of the 1st SCL. l If /CS is caused to HIGH before 8 bits from D7 to D0 are entered, the data concerned is invalidated. Before entering succeeding sets of data, you must correctly input the data concerned again. l In order to avoid data transfer error due to incoming noise, it is recommended to set /CS at HIGH on byte basis to initialize the serial-to-parallel conversion counter and the register. l When executing the command RAMWR, set /CS to HIGH after writing the last address (after starting the 9th pulse in case of 9-bit serial input or after starting the 8th pulse in case of 8-bit serial input). Ver 1.7 21/96 2006/08/15 ST7632 7-2 ACCESS TO DDRAM AND INTERNAL REGISTERS ST7632 realizes high-speed data transfer because the access from MPU is a sort of pipeline processing done via the bus holder attached to the internal, requiring the cycle time alone without needing the wait time. For example, when MPU writes data to the DDRAM, the data is once held by the bus holder and then written to the DDRAM before the succeeding write cycle is started. When MPU reads data from the DDRAM, the first read cycle is dummy and the bus holder holds the data read in the dummy cycle, and then it read from the bus holder to the system bus in the succeeding read cycle. Fig. 7.2.1 illustrates these relations. MPU signal Write Operation A0 /WR DATA N D(N) D(N+1) D(N+2) D(N+3) N D(N) D(N+1) D(N+2) D(N+3) N N+1 N+2 N+3 Dummy D(N) Internal signals /WR BUS HOLDER COLUMN ADDRESS MPU signal Read Operation A0 /WR /RD DATA N D(N+1) Internal signals /WR /RD BUS HOLDER N COLUMN ADDRESS N D(N) D(N+1) D(N+2) D(N) D(N+1) D(N+2) Fig 7.2.1 Ver 1.7 22/96 2006/08/15 ST7632 7-3 DISPLAY DATA RAM (DDRAM) 7.3.1 DDRAM It is 396 X 132 X 4 bits capacity RAM prepared for storing dot data. You can access a desired bit by specifying the page address and column address. Since display data from MCU D7 to D0 and D15 to D8 correspond to one or two pixels of RGB, data transfer related restrictions are reduced, realizing the display flexing. The RAM on ST7632 is separated to a block per 4 lines to allow the display system to process data on the block basis. MPU’s read and write operations to and from the RAM are performed via the I/O buffer circuit; Reading of the RAM for the liquid crystal drive is controlled from another separate circuit. Refer to the following memory map for the RAM configuration. Memory Map (When using the 8 gray-scale. 8-bit mode) RGB alignment (Command of data control parameter2=000) Column Data control command (BCH) LCD P11:0 0 1 131 read P11:1 131 130 0 direction Color Data Page Block P10:0 P10:1 0 131 1 130 2 129 3 128 4 127 5 126 6 125 7 124 8 123 9 122 124 7 125 6 126 5 127 4 128 3 129 2 130 1 131 0 R G B R G B R G B D7 D4 D1 D7 D4 D1 D7 D4 D1 D6 D3 D0 D6 D3 D0 D6 D3 D0 D5 D2 D5 D2 D5 D2 0 1 3 4 393 392 0 1 2 31 32 SEGout Ver 1.7 2 23/96 5 395 2006/08/15 ST7632 Memory Map (When using the 16 gray-scale Type B. 8-bit mode) RGB alignment (Command of data control parameter2=000) Column Data control command (BCH) LCD P11:0 read Color 0 direction Data Page G B R G B R G B D3 D7 D3 D3 D7 D3 D3 D7 D3 D2 D6 D2 D2 D6 D2 D2 D6 D2 D1 D5 D1 D1 D5 D1 D1 D5 D1 D0 D4 D0 D0 D4 D0 D0 D4 D0 131 Color Data Page P10:0 131 R P11:1 Block 1 130 0 R G B R G B R G B D3 D7 D3 D3 D7 D3 D3 D7 D3 D2 D6 D2 D2 D6 D2 D2 D6 D2 D1 D5 D1 D1 D5 D1 D1 D5 D1 D0 D4 D0 D0 D4 D0 D0 D4 D0 0 1 2 3 4 5 393 394 395 P10:1 0 131 1 130 2 129 3 128 4 127 5 126 6 125 7 124 8 123 9 122 124 7 125 6 126 5 127 4 128 3 129 2 130 1 131 0 0 1 2 31 32 SEGout You can change position of R and B with DATACTL command. Ver 1.7 24/96 2006/08/15 ST7632 Memory Map (When using the 16 gray-scale Type B. 16-bit mode, 16 gray-scale 65K (8bit/16bit), 16 gray-scale 262K(8bit/16bit), and 16 gray-scale 65M(8bit/16bit) mode. ) RGB alignment (Command of data control parameter2=000) Column Data control command (BCH) LCD P11:0 read Color 0 direction Data Page G B R G B R G B D11 D7 D3 D11 D7 D3 D11 D7 D3 D10 D6 D2 D10 D6 D2 D10 D6 D2 D9 D5 D1 D9 D5 D1 D9 D5 D1 D8 D4 D0 D8 D4 D0 D8 D4 D0 131 Color Data Page P10:0 131 R P11:1 Block 1 130 0 R G B R G B R G B D11 D7 D3 D11 D7 D3 D11 D7 D3 D10 D6 D2 D10 D6 D2 D10 D6 D2 D9 D5 D1 D9 D5 D1 D9 D5 D1 D8 D4 D0 D8 D4 D0 D8 D4 D0 0 1 2 3 4 5 393 394 395 P10:1 0 131 1 130 2 129 3 128 4 127 5 126 6 125 7 124 8 123 9 122 124 7 125 6 126 5 127 4 128 3 129 2 130 1 131 0 0 1 2 31 32 SEGout You can change position of R and B with DATACTL command. Ver 1.7 25/96 2006/08/15 ST7632 7.3.2 Page Address Control Circuit This circuit is used to control the address in the page direction when MPU accesses the DDRAM or when reading the DDRAM to display image on the LCD. You can specify a scope of the page address with page address set command. When the page-direction scan is specified with DATACTL command and the address are incremented from the start up to the end page, the column address is incremented by 1 and the page address returns to start page. The DDRAM supports up to 132 lines, and thus the total page becomes 132. In the read operation, as the end page is reached, the column address is automatically incremented by 1 and the page address is returned to start page. Using the address normal/inverse parameter of DATACTL command allows you to inverse the correspondence between the DDRAM address and command output. 7.3.3 Column Address Control Circuit This circuit is used to control the address in the column direction when MPU accesses the DDRAM. You can specify a scope of the column address using column address set command. When the column-direction scan is specified with DATACTL command and the address are incremented from the start up to the end page, the page address is incremented by 1 and the column address returns to start column. In the read operation, too, the column address is automatically incremented by 1 and returned to start page as the end column is reached. Just like the page address control circuit, using the column address Normal/Reverse parameter of DATACTL command enables to inverse the correspondence between the DDRAM column address and segment output. This arrangement relaxes restrictions in the chip layout on the LCD module. 7.3.4 I/O Buffer Circuit It is the bi-directional buffer used when MPU reads or writes the DDRAM. Since MPU’s read or write of DDRAM is performed independently from data output to the display data latch circuit, asynchronous access to the DDRAM while the LCD is turned on does not cause troubles such as flicking of the display images. 7.3.5 Block Address Circuit The circuit associates pages on DDRAM with COM output. ST7632 processes signals for the liquid crystal display on 4-page basis. Thus, when specifying a specific area in the area scroll display or partial display, you must designate it in block. 7.3.6 Display data Latch Circuit This circuit is used to temporarily hold display data to be output from the DDRAM to the SEG decoder circuit. Since display normal/inverse and display on/off commands are used to control data in the latch circuit alone, they do not modify data in the DDRAM. Ver 1.7 26/96 2006/08/15 ST7632 7.4 Area Scroll Display Using area scroll set and scroll start set commands allows you to scroll the display screen partially. You can select any one of the following four scroll patterns. Center screen scroll Top screen scroll Fixed area Scroll area Bottom screen scroll Whole screen scroll DDRAM 0 1 2 (32+1) blocks =132 line 27 28 Fixed area 30 Scroll area 31 32 Ver 1.7 Background area 27/96 2006/08/15 ST7632 7.5 Partial Display Using partial in command allows you turn on the partial display (division by line) of the screen. This mode requires less current consumption than the whole screen display, making it suitable for the equipment in the standby state. : Display area (partial display area) : Non-display area If the partial display region is out of the Max. Display range, it would be no operation -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 7.5.1.Reference Example for Partial Display Ver 1.7 28/96 2006/08/15 ST7632 -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 7.5.2.Partial Display (Partial Display Duty=16,initial COM0=0) -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 7.5.3.Moving Display (Partial Display Duty=16,Initial COM0=8) 7.6 Gray-Scale Display ST7632 incorporates a 4FRC & 31 PWM function circuit to display a 16 gray-scale display. 7.7 Oscillation circuit This is on-chip Oscillator without external resistor. When the internal oscillator is used, CLS must connect to VDD; when the external oscillator is used, CL could be input pin. This oscillator signal is used in the voltage converter and display timing generation circuit. Ver 1.7 29/96 2006/08/15 ST7632 7.8 Display Timing Generator Circuit This circuit generates some signals to be used for displaying LCD. The display clock, CL (internal), generated by oscillation clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is generated in synchronization with the display clock and the display data latch circuit latches the 132-bit display data in synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (M), which enables the LCD driver to make an AC drive waveform, and also generates an internal common timing signal and start signal to the common driver. The frame signal or the line signal changes the M by setting internal instruction. Driving waveform and internal timing signal are shown in Figure 7.8.1. 131 132 1 2 3 4 5 6 7 8 9 10 11 12 124 125 126 127 128 129 130 131 132 1 2 3 4 5 CL(Internal) FR(Internal) M(Internal) COM0 VLCD V1 V2 V3 V4 VSS COM1 VLCD V1 V2 V3 V4 VSS SEGn VLCD V1 V2 V3 V4 VSS Figure 7.8.1 2-frame AC Driving Waveform (Duty Ratio: 1/132) 131 132 1 2 3 4 5 6 7 8 9 10 11 12 123 124 125 126 127 128 129 130 131 132 1 2 3 4 CL(Internal) FR(Internal) M(Internal) VLCD V1 V2 V3 V4 Vss COM0 VLCD V1 V2 V3 V4 Vss COM1 VLCD V1 V2 V3 V4 Vss SEGn Figure 7.8.2 N-Line Inversion Driving Waveform (N=5,Duty Ratio=1/132) Ver 1.7 30/96 2006/08/15 ST7632 7.9 Liquid Crystal drive Circuit This driver circuit is configured by 132-channel common drivers and 396-channel segment drivers. This LCD panel driver voltage depends on the combination of display data and M signal. VDD VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS M COM0 COM1 COM0 COM2 COM3 COM4 COM5 COM6 COM1 COM7 COM8 COM9 COM2 COM10 COM11 COM12 COM13 COM14 SEG0 SEG 0 1 2 3 4 VLCD V1 V2 V3 V4 VSS SEG1 Ver 1.7 31/96 2006/08/15 ST7632 7.10 Liquid Crystal Driver Power Circuit The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are controlled by power control instruction. For details, refers to "Instruction Description". Table 7.10.1 shows the referenced combinations in using Power Supply circuits. Table 7.10.1 Recommended Power Supply Combinations Power User setup V/C V/R V/F circuits circuits circuits 111 ON ON ON 011 OFF ON ON control VOUT V0 V1 to V4 Open Open Open Open Open (VC VR VF) Only the internal power supply circuits are used Only the voltage regulator circuits and External voltage follower circuits input are used Only the voltage follower External 001 OFF OFF ON Open circuits are used Open input Only the external power 000 OFF OFF OFF supply circuits are used External External input input Open 7.10.1 Voltage Converter Circuits These circuits boost up the electric potential between VDD2 and Vss to 2, 3, 4, 5, 6, 7 or 8 times toward positive side and booster voltage is outputted from VOUOUT pin. It is possible to select the lower boosting level in any boosting circuit by “ANASET” instruction. 7.10.2 Voltage Regulator Circuits SET VOP (SETVOP) The set VOP function is used to program the optimum LCD supply voltage V0. SETVOP For example when Vop[8:0] is 257DEC = 13.88V. The VOP value is programmed via the Vop[8:0] register. V0=a+( Vop[8:6]Vop[5:0]).b Ex:Vop[5:0]=000001, Vop[8:6]=100 → Vop [8:0]=100000001 → 3.6+257x0.04=13.88 l a is a fixed constant value (see table 7.10.2). l b is a fixed constant value (see table 7.10.2). l Vop[8:0] is the programmed VOP value. The programming range for Vop[8:0] is 4 to 410 (05 to 19A hex). l VOP[5:0] is the set contrast value which can be set via the interface and is in two’s complement format.(See command VOLUP & VOLDOWN) Ver 1.7 32/96 2006/08/15 ST7632 Table 7.10.2 SYMBOL VALUE UNIT a 3.6 V b 0.04 V The VOP[8:0] value must be in the VLCD programming range as given in Fig.7.10.2. Evaluating equation (1), values outside the programming range indicated in Fig.7.10.2 may result. Calculated values below VOP[8:0]=4 will be mapped to VOP[8:0]=4, resulting VOP values higher than VOP[8:0]=410 will be mapped to VOP=410. VLCD Programming range (05HEX to 19AHEX) b a Vop 00 01 02 03 04 05 06 ..... 410DEC Vop[8:0] programming, (05hex to 19Ahex) Fig. 7.10.2 VLCD programming range As the programming range for the internally generated V0 allows values above the max. Allowed V0 (18V) the user has to ensure while setting the VOP register and the temperature compensation that under all conditions and including all tolerances the V0 remains below 18V. Ver 1.7 Par no. Equipment Type Thermal Gradient ST7632 Internal Power Supply -0.125( +-10% )%/℃ 33/96 2006/08/15 ST7632 Booster Efficiency By Booster Stages (2X, 3X, 4X, 5X, 6X, 7X, 8X) and Booster Efficiency (Level1~4) commands, we could easily set the best Booster performance with suitable current consumption. If the Booster Efficiency is set to higher level (level4 is higher than level1), The Boost Efficiency is better than lower level, and it just need few more power consumption current. It could be applied to each multiple voltage Condition. When the LCD Panel loading is heavier, the performance of Booster will be not in a good working condition. User could set the BE level to be higher and just need few more current. Never consider to change to higher Booster Stage at beginning stage unless it really necessary. The Booster Efficiency Command could be used together with Booster Stage Command to choose one best Boost output condition. Users could see the Booster Stage Command as a large scale operation, and see the Booster Efficiency Command as a small scale operation. These commands are very convenient for using. Level1 Vout Voltage Level2 Level3 Level4 5X boost Loading VSS Current Level1 Level2 Level3 Level4 5X Current Loading Ver 1.7 34/96 2006/08/15 ST7632 RESET CIRCUIT When Power is Turned On Input power (VDD1~VDD5) ↓ Be sure to apply POWER-ON RESET (RES = LOW) ↓ <Display Setting> <<State after resetting>> Display control (DISCTL) Setting clock dividing ratio: 1 dividing Duty setting: 1/4 Setting reverse rotation number of line: 11h reverse rotations Common scan direction (COMSCN) Setting scan direction: COM1 -> COM68, COM69 -> COM132 Oscillation ON (OSCON) Oscillation OFF ↓ Sleep-out (SLIPOUT) Sleep-in ↓ <Power Supply Setting> <<State after resetting>> Electronic volume control (VOLCTR) Setting volume value : 0 Setting built-in resistance value: 0 (3.76) Power control (PWRCTR) Setting operation of power supply circuit: All OFF ↓ <Display Setting 2> <<State after resetting>> Normal rotation of display (DISNOR)/Inversion of display (DISINV): Normal rotation of display Partial-in (PTLIN)/Partial-out (PTLOUT) Partial-out Setting fix area: 0 Area scroll set (ASSET) Setting area scroll region: 0 Setting area scroll type: Full-screen scroll Scroll start set (SCSTART) Setting scroll start address: 0 ↓ <Display Setting 3> <<State after resetting>> Data control (DATCTL) Setting Normal/Reverse rotation of page address: Normal rotation Setting Normal/Reverse rotation of column address: Normal rotation Setting direction of address scanner: Column direction Ver 1.7 35/96 2006/08/15 ST7632 Setting RGB arrangement: RGB Setting gradation: 8 gradations 256-color position set (RGBSET8) Setting color position at 256-color ↓ <RAM Setting> All 0 <<State after resetting>> Page address set (PASET) Setting start page address: 0 Setting end page address: 0 Column address set (CASET) Setting start column address: 0 Setting end column address: 0 ↓ <RAM Write> <<State after resetting>> Memory write command (RAMWR) Writing displayed data : Repeat as many as the number needed and exit by entering other command. ↓ <Waiting (approximately 100ms)> Wait until the power supply voltage has stabilized. Enter the power supply control command first, then wait at least 100ms before entering the display ON command when the built-in power supply circuit operates. If you do not wait, an unwanted display may appear on the liquid crystal panel. ↓ Display ON (DISON): Ver 1.7 Display OFF 36/96 2006/08/15 ST7632 8. COMMANDS Ext=0 Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 DISON 0 1 0 1 0 1 0 1 1 1 1 Display On AF None 1 DISOFF 0 1 0 1 0 1 0 1 1 1 0 Display Off AE None 2 DISNOR 0 1 0 1 0 1 0 0 1 1 0 Normal Display A6 None 3 DISINV 0 1 0 1 0 1 0 0 1 1 1 Inverse Display A7 None 4 COMSCN 0 1 0 1 0 1 1 1 0 1 1 Com Scan Direc. BB 1 byte 5 DISCTR 0 1 0 1 1 0 0 1 0 1 0 Display Control CA 3 byte 6 SLPIN 0 1 0 1 0 0 1 0 1 0 1 Sleep In 95 None 7 SLPOUT 0 1 0 1 0 0 1 0 1 0 0 Sleep Out 94 None 8 PASET 0 1 0 0 1 1 1 0 1 0 1 Page Addr. Set 75 2 byte 9 CASET 0 1 0 0 0 0 1 0 1 0 1 Column Addr. Set 15 2 byte 10 DATCTL 0 1 0 1 0 1 1 1 1 0 0 Data Scan Direction BC 3 byte 11 RGBSET8 0 1 0 1 1 0 0 1 1 1 0 256-color position set CE 20 byte 12 RAMWR 0 1 0 0 1 0 1 1 1 0 0 Writing to Memory 5C Data 13 RAMRD 0 1 0 0 1 0 1 1 1 0 1 Reading from Memory 5D Data 14 PLTIN 0 1 0 1 0 1 0 1 0 0 0 Partial display in A8 2 byte 15 PLTOUT 0 1 0 1 0 1 0 1 0 0 1 Partial display out A9 None 16 RMWIN 0 1 0 1 1 1 0 0 0 0 0 Read and Modify Write E0 None 17 RMWOUT 0 1 0 1 1 1 0 1 1 1 0 RMW end EE None 18 ASCSET 0 1 0 1 0 1 0 1 0 1 0 Area Scroll Set AA 4 byte 19 SCSTART 0 1 0 1 0 1 0 1 0 1 1 Scroll Start Set AB 1 byte 20 OSCON 0 1 0 1 1 0 1 0 0 0 1 Internal OSC on D1 None 21 OSCOFF 0 1 0 1 1 0 1 0 0 1 0 Internal OSC off D2 None 22 PWRCTL 0 1 0 0 0 1 0 0 0 0 0 Power Control 20 1 byte 23 VOLCTR 0 1 0 1 0 0 0 0 0 0 1 EC control 81 2 byte 24 VOLUP 0 1 0 1 1 0 1 0 1 1 0 EC increase 1 D6 None 25 VOLDOWN 0 1 0 1 1 0 1 0 1 1 1 EC decrease 1 D7 None 26 RESERVED 0 1 0 1 0 0 0 0 0 1 0 Not Use 82 EPSRRD1 0 1 0 0 1 1 1 1 1 0 0 READ Register1 7C None 28 EPSRRD2 0 1 0 0 1 1 1 1 1 0 1 READ Register2 7D None 29 NOP 0 1 0 0 0 1 0 0 1 0 1 NOP Instruction 25 None 30 STREAD 0 0 1 MRW Set 0 1 0 0 0 0 0 0 0 0 1 Memory R/W Register Set 01 1 byte 32 CVV 0 1 0 0 0 0 0 0 1 0 0 Control Vout-V0 04 1 byte 33 CATR 0 1 0 0 0 0 0 0 1 1 0 Close Autoread 06 1 byte 34 Ver 1.7 Status Read Function Hex Parameter Index 27 Status Read 37/96 31 2006/08/15 ST7632 EEOK 0 1 0 0 0 0 0 0 1 1 1 EEPROM Function Strat 07 1 byte 35 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Red1 Set 0 1 0 0 0 1 0 0 0 0 0 FRAME 1 Red PWM Set 20 16 byte 1 Red2 Set 0 1 0 0 0 1 0 0 0 0 1 FRAME 2 Red PWM Set 21 16 byte 2 Red3 Set 0 1 0 0 0 1 0 0 0 1 0 FRAME 3 Red PWM Set 22 16 byte 3 Red4 Set 0 1 0 0 0 1 0 0 0 1 1 FRAME 4 Red PWM Set 23 16 byte 4 Grn1 Set 0 1 0 0 0 1 0 0 1 0 0 FRAME 1 Grn PWM Set 24 16 byte 5 Grn2 Set 0 1 0 0 0 1 0 0 1 0 1 FRAME 2 Grn PWM Set 25 16 byte 6 Grn3 Set 0 1 0 0 0 1 0 0 1 1 0 FRAME 3 Grn PWM Set 26 16 byte 7 Grn4 Set 0 1 0 0 0 1 0 0 1 1 1 FRAME 4 Grn PWM Set 27 16 byte 8 Blu1 Set 0 1 0 0 0 1 0 1 0 0 0 FRAME 1 Blu PWM Set 28 16 byte 9 Blu2 Set 0 1 0 0 0 1 0 1 0 0 1 FRAME 2 Blu PWM Set 29 16 byte 10 Blu3 Set 0 1 0 0 0 1 0 1 0 1 0 FRAME 3 Blu PWM Set 2A 16 byte 11 Blu4 Set 0 1 0 0 0 1 0 1 0 1 1 FRAME 4 Blu PWM Set 2B 16 byte 12 ANASET 0 1 0 0 0 1 1 0 0 1 0 Analog 32 4 byte 13 DITHOFF 0 1 0 0 0 1 1 0 1 0 0 Dithering Circuit Off 34 None 14 DITHON 0 1 0 0 0 1 1 0 1 0 1 Dithering Circuit On 35 None 15 EPCTIN 0 1 0 1 1 0 0 1 1 0 1 Control EEPROM CD 1 byte 17 EPCOUT 0 1 0 1 1 0 0 1 1 0 0 Cancel EEPROM CC None 18 EPMWR 0 1 0 1 1 1 1 1 1 0 0 Write to EEPROM FC None 19 EPMRD 0 1 0 1 1 1 1 1 1 0 1 Read from EEPROM FD None 20 Ext=1 Command Function Hex Parameter Index Ext=1 or Ext=0 Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Ext In 0 1 0 0 0 1 1 0 0 0 0 Ext=0 Set 30 None -- Ext Out 0 1 0 0 0 1 1 0 0 0 1 Ext=1 Set 31 None -- Ver 1.7 38/96 Function Hex Parameter Index 2006/08/15 ST7632 EXT=”0” (1) Display ON (DISON) Command: 1; Parameter: None (AFH) It is used to turn the display on. When the display is turned on, segment outputs and common outputs are generated at the level corresponding to the display data and display timing. You can’t turn on the display as long as the sleep mode is selected. Thus, whenever using this command, you must cancel the sleep mode first. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 1 1 1 1 Command (2) Display OFF (DISOFF) Command: 1; Parameter: None (AEH) It is used to forcibly turn the display off. As long as the display is turned off, every on segment and common outputs are forced to Vss level. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 1 1 1 0 (3) Normal display (DISNOR) Command: 1; Parameter: None (A6H) It is used to normally highlight the display area without modifying contents of the display data RAM. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 0 1 1 0 (4) Inverse display (DISINV) Command: 1; Parameter: None (A7) It is used to inversely highlight the display area without modifying contents of the display data RAM. This command does not invert non-display areas in case of using partial display. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 0 1 1 1 (5) Common scan (COMSCAN) Command: 1; Parameter: 1 (BBH) It is used to specify the direction the common output direction. This command helps increasing degrees of freedom of wiring on the LCD panel. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 0 1 1 1 0 1 1 - Parameter1 (P1) 1 1 0 * * * * * P12 P11 P10 Command Scan direction When 1/132 is selected for the display duty, pins and common output are scanned in the order shown below. Common scan direction P12 P11 P10 COM0 pin Ver 1.7 COM65 pin COM66 pin COM131 pin 0 0 0 0 à 65 66 à 131 0 0 1 0 à 65 131 à 66 0 1 0 65 à 0 66 à 131 0 1 1 65 à 0 131 à 66 39/96 2006/08/15 ST7632 Common scan direction Original graphic : Com0 Com66 Com65 Com131 P12:P11:P10:0:0:0 (0à65,66à131) P12:P11:P10:0:0:1 (0à65, 131à66) Com0 Com66 Com65 Com131 Com0 Com131 Com65 Com66 P12:P11:P10:0:1:0 (65à0, 66à131) P12:P11:P10:0:1:1 (65à0, 131à66) Com65 Com66 Com0 Com131 Com65 Com131 Com0 Com66 Ver 1.7 40/96 2006/08/15 ST7632 (6) Display control (DISCTL) Command: 1; Parameter: 3 (CAH) This command and succeeding parameters are used to perform the display timing-related setups. This command must be selected before using SLPOUT. Don’t change this command while the display is turned on. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 1 0 0 1 0 1 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 * * CL dividing ratio,F1 and F2 drive pattern. Parameter2(P2) 1 1 0 0 0 P25 P24 P23 P22 P21 P20 Drive duty Parameter3(P3) 1 1 0 * * * P34 P33 P32 P31 P30 FR inverse-set value P1: it is used to specify the CL dividing ratio. P10, P11: do not use P14, P13, P12: CL dividing ratio. They are used to change number of dividing stages of external or internal clock. P14 P13 P12 CL dividing ratio 0 0 0 Not divide 0 0 1 2 divisions 0 1 0 Not divide 0 1 1 Not divide P2: It is used to specify the duty of the module on block basis. Duty * * P25 P24 P23 P22 P21 P20 (Numbers of display lines)/4-1 Example: 1/128 duty 0 0 0 1 1 1 1 1 128/4-1=31 P3: It is used to specify number of lines to be inversely highlighted on LCD panel from P33 to P30 (lines can be inversely highlighted in the range of 2 to 16) Inversely highlighted line * * * P34 P33 P32 P31 P30 Inversely highlighted lines-1 Example: 11H 0 0 0 0 1 0 1 0 11-1=10 Example: 13H 0 0 0 1 1 1 0 0 13-1=12 In the default, 11H inverse highlight is selected. P34=”0”: Inversion occur every frame. P34=”1”: Independent from frames. (7) Sleep in (SPLIN) Command: 1; Parameter: None (95H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 0 1 0 1 0 1 (8) Sleep out (SLPOUT) Command: 1;Parameter: None (94H) Command Ver 1.7 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 0 1 0 1 0 0 41/96 2006/08/15 ST7632 (9) Page address set (PASET) Command: 1; Parameter: 2 (75H) When MPU makes access to the display data RAM, this command and succeeding parameters are used to specify the page address area. As the addresses are incremented from the start to the end page in the page-direction scan, the column address is incremented by 1 and the page address is returned to the start page. Note that the start and end page must be specified as a pair. Also, the relation “start page <end page” must be maintained. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 1 1 1 0 1 0 1 - Parameter1(P1) 1 1 0 P17 P16 P15 P14 P13 P12 P11 P10 Start page Parameter2(P2) 1 1 0 P27 P26 P25 P24 P23 P22 P21 P20 End page (10) Column address set (CASET) Command: 1; Parameter: 2 (15H) When MPU makes access to the display data RAM, this command and succeeding parameters are used to specify the column address area. As the addresses are incremented from the start to the end column in the column-direction scan, the page address is incremented by 1 and the column address is returned to the start column. Note that the start and end page must be specified as a pair. Also, the relation “start column <end column” must be maintained. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 0 1 0 1 0 1 - Parameter1(P1) 1 1 0 P17 P16 P15 P14 P13 P12 P11 P10 Start address Parameter2(P2) 1 1 0 P27 P26 P25 P24 P23 P22 P21 P20 End address (11) Data control (DATCTL) Command: 1;Parameter: 3 (BCH) This command and succeeding parameters are used to perform various setups needed when MPU operates display data stored on the built-in RAM. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function 0 1 0 1 0 1 1 1 1 0 0 - Normal/Reverse display of Parameter1(P1) 1 1 0 * * * * * P12 P11 P10 page address and page-address scan direction. Parameter2(P2) 1 1 0 * * * * * * * P20 RGB arrangement Parameter3(P3) 1 1 0 * * P35 P34 P33 P32 P31 P30 Gray-scale setup P1: It is used to specify the normal or inverse display of the page address and also to specify the page address scanning direction. P10: Normal/Reverse display of the page address. P10=0: Normal and P10=1: Reverse P11: Normal/Reverse turn of column address. P11=0: Normal rotation and P11=1: Reverse rotation. P12: Address-scan direction. P12=0: In the column direction and P12=1: In the page direction. Ver 1.7 42/96 2006/08/15 ST7632 Page address and page-address scan direction. P12=0 Column direction P11=0 P11=1 P10=0 0 1 2 P10=1 131 130 129 129 130 131 2 1 0 0 131 1 130 2 129 129 2 130 1 131 0 1 130 2 129 129 2 130 1 131 0 P12=1 Page direction P11=0 P11=1 P10=0 0 1 2 0 131 P10=1 131 130 129 129 130 131 2 1 0 Examples of Normal or Inverse page/column scan direction Ver 1.7 43/96 2006/08/15 ST7632 c ST7632 ( BUMP SIDE ) ST7632 ( BUMP SIDE ) (a) COMMAND #BCH, DATA #00H (b) COMMAND #BCH, DATA #01H ST7632 ( BUMP SIDE ) ST7632 ( BUMP SIDE ) (c) COMMAND #BCH, DATA #02H (d) COMMAND #BCH, DATA #03H Different RAM accessing setupunder COMMAND #BBH, DATA #00H (a) COMMAND #BCH, DATA #00H (b) COMMAND #BCH, DATA #01H (c) COMMAND #BCH, DATA #02H (d) COMMAND #BCH, DATA #03H Ver 1.7 44/96 2006/08/15 ST7632 ST7632 ( BUMP SIDE ) ST7632 ( BUMP SIDE ) (e) COMMAND #BCH, DATA #04H (f) COMMAND #BCH, DATA #05H ST7668 ( BUMP SIDE ) ST7632 ( BUMP SIDE ) (g) COMMAND #BCH, DATA #06H (h) COMMAND #BCH, DATA #07H Figure 8.2.3 Different RAM accessing setup when CSEL=0 under COMMAND #BBH, DATA #00H (continue) (e) COMMAND #BCH, DATA #04H (f) COMMAND #BCH, DATA #05H (g) COMMAND #BCH, DATA #06H Ver 1.7 45/96 2006/08/15 ST7632 P2: RGB arrangement. This parameter allows you to change RGB arrangement of the segment output according to RGB arrangement on the LCD panel. In this case, writing position of data {R=(D7, D6, D5), G=(D4, D3, D2), B=(D1, D0)} on the display memory is changed. Line SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 … SEG395 Even page R G B R G B R G … B Odd page R G B R G B R G … B 1 B G R B G R B G … R 2 B G R B G R B G … R P20 0 1 P3: Gray scale setup. Using this parameter, you can a select desired display colors between the 256 colors (8 gray-scale) or 4096 colors (16 gray-scales) for the display color. For 16 gray-scale display, you can select the Type A, Type B, 65K, 262K, and 16M display mode depending on the difference in RGB data arrangement. P35 P34 P33 P32 P31 P30 Numbers of gray-scale 0 0 0 0 0 1 8 gray-scale 0 0 0 1 0 0 16 gray-scale display 4K 0 0 1 0 0 0 16-gray 65K 0 1 0 0 0 0 16-gray 262K 1 0 0 0 0 0 16-gray 16M (12) 256-color position set (RGBSET8) Command: 1;Parameter: 20 (CEH) When turning on 256-color display (8 gray-scale), this command allows you to choose colors to represent each of red, green and blue from 4096 colors. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 1 0 0 1 1 1 0 -- Parameter(P1) 1 1 0 * * * * P13 P12 P11 P10 Intermediate red tone 000 Intermediate red tone Parameter(P8) 1 1 0 * * * * P83 P82 P81 P80 111 Intermediate green tone Parameter(P9) 1 1 0 * * * * P93 P92 P91 P90 000 Intermediate green Parameter(P16) 1 1 0 * * * * P163 P162 P161 P160 tone 111 Parameter(P17) 1 1 0 * * * * P173 P172 P171 P170 Intermediate blue tone 00 Parameter(P20) 1 1 0 * * * * P203 P202 P201 P200 Intermediate blue tone 11 Data (Red and Green: 3 bits and Blue: 2 bits) to be written from MPU to the DDRAM are converted to 4-bit data before the write operation takes place. When reading data from the DDRAM, data on red and green are converted to 3 bits and that on blue are converted 2 bits before the output. Ver 1.7 46/96 2006/08/15 ST7632 (13) Memory write (RAMWR) Command: 1;Parameter: Numbers of data written (5CH) When MPU writes data to the display memory, this command turns on the data entry mode. Entering this command always sets the page and column address at the start address. You can rewrite contents of the display data RAM by entering data succeeding to this command. At the same time, this operation increments the page or column address as applicable. The write mode is automatically cancelled if any other command is entered. 1. 8-bit bus A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 1 0 1 1 1 0 0 - Parameter 1 1 0 A0 RD RW D15 D14 … D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 * * … * * 0 1 0 1 1 1 0 0 Memory write parameter 1 1 0 Data to be written Data to be written 2. 16-bit bus Data to be written Write date (14) Memory read (RAMRD) Command: 1; Parameter: Numbers of data read (5DH) When MPU read data from the display memory, this command turns on the data read mode. Entering this command always sets the page and column address at the start address. After entering this command, you can read contents of the display data RAM. At the same time, this operation increments the page or column address as applicable. The data read mode is automatically cancelled if any other command is entered. 1. 8-bit bus A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 1 0 1 1 1 0 1 -- Parameter 1 0 1 A0 RD RW D15 Command 0 1 0 * parameter 1 0 1 Data to be read Data to be read 2. 16-bit bus D14 …. D9 D8 * * * * D7 D6 D5 D4 D3 D2 D1 D0 Function 0 1 0 1 1 1 0 1 Memory read Data to be read Read date (15) Partial in (PTLIN) Command: 1; Parameter: 2 (A8H) This command and succeeding parameters specify the partial display area. This command is used to turn on partial display of the screen (dividing screen by lines) in order to save power. Since ST7632 processes the liquid crystal display signal on 4-line basis (block basis), the display and non-display areas are also specified on 4-bit line (block basis). A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 0 1 0 1 0 0 0 -- Parameter(P1) 1 1 0 * * P15 P14 P13 P12 P11 P10 Start block address Parameter(P2) 1 1 0 * * P25 P24 P23 P22 P21 P20 End block address A block address that can be specified for the partial display must be the display one (don’t try to specify an address not to be displayed when scrolled). Ver 1.7 47/96 2006/08/15 ST7632 (16) Partial out (PTLOUT) Command: 1; Parameter: 0 (A9H) This command is used to exit from the partial display mode. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 1 0 0 1 (17) Read modify write in (RMWIN) Command: 1; Parameter: 0 (E0H) This command is used along with the column address set command, page address set command and read modify write out command. This function is used when frequently modifying data to specify a specific display area such as blinking cursor. First set a specific display area using the column and page address commands. Then, enter this command to set the column and page addresses at the start address of the specific area. When this operation is complete, the column (page) address won’t be modified by the display data read command. It is incremented only when the display data write command is used. You can cancel this mode by entering the read modify write out or any other command Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 0 0 0 0 0 Page address set Column address set Read-modify-write cycle Dummy read Data read Data write NO Is modification Complete YES END Ver 1.7 48/96 2006/08/15 ST7632 (18) Read modify write out (RMWOUT) Command: 1; Parameter: 0 (EEH) Enter this command cancels the read modify write mode A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 0 1 1 1 0 Command (19) Area scroll set (ASCSET) Command: 1; Parameter: 4 (AAH) It is used when scrolling only the specified portion of the screen (dividing the screen by lines). This command and succeeding parameters specify the type of area scroll, FIX area and scroll area. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 0 1 0 1 0 1 0 Parameter(P1) 1 1 0 * * P15 P14 P13 P12 P11 P10 Top block address Parameter(P2) 1 1 0 * * P25 P24 P23 P22 P21 P20 Bottom block address Parameter(P3) 1 1 0 * * P35 P34 P33 P32 P31 P30 Number of specified blocks Parameter(P4) 1 1 0 * * * * * * P41 P40 Area scroll mode -- P4: It is used to specify an area scroll mode. P41 P40 Type of area scroll 0 0 Center screen scroll 0 1 Top screen scroll 1 0 Bottom screen scroll 1 1 Whole screen scroll Center screen scroll Fixed area Ver 1.7 Top screen scroll Bottom screen scroll Whole screen scroll Scroll area 49/96 2006/08/15 ST7632 Since ST7632 processes the liquid crystal display signals on the four-line basis (block basis), FIX and scroll areas are also specified on the four-line basis (block basis). DDRAM address corresponding to the top FIX area is set in the block address incrementing direction starting with 0 block. DDRAM address corresponding to the bottom FIX area is set in the block address decreasing direction starting with 41st block. Other DDRAM blocks excluding the top and bottom FIX areas are assigned to the scroll + background areas. P1: It is used to specify the top block address of the scroll+ background areas. Specify the 0th block for the top screen scroll or whole screen scroll. P2: It specifies the bottom address of the scroll+ background areas. Specify the 32th block for the bottom or whole screen scroll. Required relation between the start and end blocks (top block address<bottom block address) must be maintained. P3: It specifies a specific number of blocks {Numbers of (Top FIX area +Scroll area) block-1}. When the bottom scroll or whole screen scroll, the value is identical with P2. You can turn on the area scroll function by executing the area scroll set command first and then specifying the display start block of the scroll area with the scroll start set command. [Area Scroll Setup Example] In the center screen scroll of 1/120 duty (display range: 120 lines=30 blocks), if 8 lines=2 blocks and 8 lines=2 blocks are specified for the top and bottom FIX areas, 104 lines =26 blocks is specified for the scroll areas, respectively, 12 lines = 3 blocks on the DDRAM are usable as the background area. Value of each parameter at this time is as shown below. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 P1 1 1 0 * * 0 0 0 0 1 0 Top block address = 2 P2 1 1 0 * * 0 1 1 1 1 0 Bottom block address = 30 P3 1 1 0 * * 0 1 1 0 1 1 Number of specific blocks = 27 P4 1 1 0 * * * * * * 0 0 Area scroll mode = center (20) Scroll start address set (SCSTART) Command:1 Parameter: 1 (ABH) This command and succeeding parameters are used to specify the start block address of the scroll area. Note that you must execute this command after executing the area scroll set command. Scroll becomes available by dynamically changing the start block address. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 1 0 1 0 1 0 1 1 Parameter(P1) 1 1 0 * * P15 P14 P13 P12 P11 P10 Ver 1.7 50/96 Function -Start block address 2006/08/15 ST7632 (21) Internal oscillation on (OSCON) Command: 1; Parameter: 0 (D1H) This command turns on the internal oscillation circuit. It is valid only when the internal oscillation circuit of CLS = HIGH is used. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 0 0 0 1 (22) Internal oscillation off (OSOFF) Command: 1; Parameter: 0 (D2H) It turns off the internal oscillation circuit. This circuit is turned off in the reset mode. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 0 0 1 0 (23) Power control set (PWRCTR) Command: 1; Parameter: 1 (20H) This command is used to turn on or off the Booster circuit, voltage regulator circuit, and follower voltage. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 1 0 0 0 1 0 0 0 0 Parameter(P1) 1 1 0 * * * * P13 * P11 P10 Function -LCD drive power P10: It turns on or off the regulator circuit. P10 = “1”: ON. P10 =” 0”: OFF P11: It turns on or off the follower circuit. P11 = “1”: ON. P11 =” 0”: OFF P12: can not use P13:It turns on or off the booster circuit. P13 = “1”: ON. P13 =” 0”: OFF (24) Electronic volume control (VOLCTR) Command: 1; Parameter: 2 (81H) The command is used to program the optimum LCD supply voltage VLCD. Reference to 7.10.2 A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 1 0 0 0 0 0 0 1 Parameter(P1) 1 1 0 * * P15 P14 P13 P12 P11 P10 Set Vop[5:0] Parameter(P2) 1 1 0 * * * * * P18 P17 P16 Set Vop[8:6] Function -- (25) Increment electronic control (VOLUP) Command: 1; Parameter: 0 (D6H) With the VOLUP and VOLDOWN command the VLCD voltage and therewith the contrast of the LCD can be adjusted. This command increments electronic control value Vop[5:0]of voltage regulator circuit by 1. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 0 1 1 0 If you set the electronic control value to 111111, the control value is set to 000000 after this command has been executed. Ver 1.7 51/96 2006/08/15 ST7632 (26) Decrement electronic control (VOLDOWN) Command: 1; Parameter: 0 (D7H) With the VOLUP and VOLDOWN command the VLCD voltage and therewith the contrast of the LCD can be adjusted. This command decrements electronic control value Vop[5:0]of voltage regulator circuit by 1. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 0 1 1 1 Command If you set the electronic control value to 000000, the control value is set to 111111 after this command has been executed. Table 8.1.1 Possible Vop[5:0] values Electronic Control Value Decimal Equivalent VLCD Offset 111111 31 +1240 mV 111110 30 +1200 mV 111101 29 +1160 mV … … … 000010 2 +80 mV 000001 1 +40 mV 000000 0 0 mV 111111 -1 -40 mV 111110 -2 -80 mV … … … 100010 -30 -1200 mV 100001 -31 -1240 mV 100000 -32 -1280mV (27) Reserved (82H) Do not use this command Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 0 0 0 0 1 0 (28) Read Register 1 (EPSRRD1) Command: 1; Parameter: 0 (7CH) Issue the EPSRRD1 and STREAD (Status Read) commands in succession to read the Electronic Control value. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 1 1 1 1 0 0 Issue the Status Read command immediately after this command. Also, always issue the NOP command after the STREAD (Status Read) command. (29) Read Register 2 (EPSRRD2) Command: 1 ;Parameter: 0 (7DH) Issue the EPSRRD1 and STREAD (Status Read) commands in succession to read the built-in resistance ratio. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 1 1 1 1 0 1 Issue the Status Read command immediately after this command. Also, always issue the NOP command after the STREAD (Status Read) command. Ver 1.7 52/96 2006/08/15 ST7632 (30) Non-operating (NOP) Command: 1; Parameter: 0 (25H) This command does not affect the operation. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 0 0 1 0 1 Command This command, however, has the function of canceling the IC test mode. Thus, it is recommended to enter it periodically to prevent malfunctioning due to noise and such. (31) Status read (STREAD) Command: 1; Parameter: None It is the command for reading the internal condition of the IC. One status can be displayed depending on the setting. A0 RD RW 0 0 1 Command D7 D6 D5 D4 D3 D2 D1 D0 Status data Status after reset or after NOP operation D7: Area scroll mode Refer to P41 (ASCSET) D6: Area scroll mode Refer to P40 (ASCSET) D5: RMW on/off 0 : Out 1 : In D4: Scan direction 0 : Column 1 : Page D3: Display ON/OFF 0 : OFF 1 : ON D2: EEPROM access 0: OutAccess 1: InAccess D1: Display normal/inverse 0 : Inverse 1 : Normal D0: Partial display 0 : OFF 1 : ON (32) Memory R/W Register Set (MRW Set) Command: 1; Parameter: 1 (01H) This command can set memory read/write register.It must be issued in the initial flow and set parameter =F0H. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 0 0 0 0 0 1 -- Parameter(P1) 1 1 0 1 1 1 1 0 0 0 0 F0H (33) Control Vout V0(CVV) Command: 1; Parameter: 1 (04H) Using this command can control the relationship of VOUT and V0. It must be issued in the initial flow and set parameter =04H. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 0 0 0 1 0 0 -- Parameter(P1) 1 1 0 0 0 0 0 0 1 1 0 06H (34) Close Autoread (CATR) Command: 1; Parameter: 1 (06H) This command is used for closing the autoread function of EEPROM. It must be issued in the initial flow and set parameter =41H. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 0 0 1 1 0 0 -- Parameter(P1) 1 1 0 0 1 0 0 0 0 0 1 41H Ver 1.7 53/96 Function 2006/08/15 ST7632 (35) EEPROM Function Strat(EEOK) Command:1;Parameter:1(07) In the OTP read flow,this command can increase the clock of EEPROM.It must be issued in the initial flow and set parameter=1BH. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 0 0 0 1 1 1 -- Parameter(P1) 1 1 0 0 0 0 1 1 0 1 1 1BH EXT=”1” (1)Set Red 1 value (Red1 set) Command: 1; Parameter: 16 (20H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Red1 Set 0 1 0 0 0 1 0 0 0 0 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set red level 0 and 1st frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set red level 1 and 1st frame Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set red level 13 and 1st frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set red level 15 and 1st frame FRAME 1 Red PWM Set Function - (2)Set Red 2 value (Red2 set) Command: 1; Parameter: 16 (21H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Red2 Set 0 1 0 0 0 1 0 0 0 0 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set red level 0 and 2nd frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set red level 1 and 2nd frame Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set red level 13 and 2nd frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set red level 15 and 2nd frame Ver 1.7 54/96 Function FRAME 2 Red PWM Set Function - 2006/08/15 ST7632 (3) Set Red 3 value (Red3 set) Command: 1; Parameter: 16 (22H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Red3 Set 0 1 0 0 0 1 0 0 0 1 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set red level 0 and 3rd frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set red level 1 and 3rdframe Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set red level 13 and 3rd frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set red level 15 and 3rd frame FRAME 3 Red PWM Set Function - (4) Set Red 4 value (Red4 set) Command: 1; Parameter: 16 (23H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Red4 Set 0 1 0 0 0 1 0 0 0 1 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set red level 0 and 4th frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set red level 1 and 4thframe Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set red level 13 and 4th frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set red level 15 and 4th frame Ver 1.7 55/96 Function FRAME 4 Red PWM Set Function - 2006/08/15 ST7632 The default value of Red level set RED1SET RED2SET RED3SET RED4SET FRAM1 FRAM2 FRAM3 FRAME4 red level0 00 00 00 00 red level1 03 03 03 03 red level2 06 06 06 06 red level3 08 08 08 09 red level4 0B 0B 0B 0C red level5 0E 0E 0E 0D red level6 10 11 10 11 red level7 12 13 12 13 red level8 14 15 14 15 red level9 17 17 17 16 red level10 19 19 19 18 red level11 1A 1B 1A 1B red level12 1C 1C 1C 1B red level13 1D 1D 1D 1E red level14 1E 1E 1E 1F red level15 1F 1F 1F 1F (5) Set Green 1 value (Grn1 set) Command: 1; Parameter: 16 (24H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Grn 1 Set 0 1 0 0 0 1 0 0 1 0 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set green level 0 and 1st frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set green level 1 and 1st frame Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set green level 13 and 1st frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set green level 15 and 1st frame Ver 1.7 56/96 Function FRAME 1 Grn PWM Set Function - 2006/08/15 ST7632 (6) Set Green 2 value (Grn2 set) Command: 1;Parameter: 16 (25H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Grn2 Set 0 1 0 0 0 1 0 0 1 0 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set green level 0 and 2nd frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set green level 1 and 2nd frame Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set green level 13 and 2nd frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set green level 15 and 2nd frame FRAME 2 Grn PWM Set Function - (7) Set Green 3 value (Grn3 set) Command: 1; Parameter: 16 (26H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Grn3 Set 0 1 0 0 0 1 0 0 1 0 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set green level 0 and 3rd frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set green level 1 and 3rdframe Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set green level 13 and 3rd frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set green level 15 and 3rd frame Ver 1.7 57/96 Function FRAME 3 Grn PWM Set Function - 2006/08/15 ST7632 (8) Set Green 4 value (Grn4 set) Command: 1;Parameter: 16 (27H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Grn4 Set 0 1 0 0 0 1 0 0 1 1 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set green level 0 and 4th frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set green level 1 and 4thframe Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set green level 13 and 4th frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set green level 15 and 4th frame FRAME 4 Grn PWM Set Function - The default value of Green level set GRN1SET GRN2SET GRN3SET GRN4SET FRAM1 FRAM2 FRAM3 FRAME4 green level0 00 00 00 00 green level1 03 03 03 03 green level2 06 06 06 06 green level3 08 08 08 09 green level4 0B 0B 0B 0C green level5 0E 0E 0E 0D green level6 10 11 10 11 green level7 12 13 12 13 green level8 14 15 14 15 green level9 17 17 17 16 green level10 19 19 19 18 green level11 1A 1B 1A 1B green level12 1C 1C 1C 1B green level13 1D 1D 1D 1E green level14 1E 1E 1E 1F green level15 1F 1F 1F 1F Ver 1.7 58/96 2006/08/15 ST7632 (9) Set Blue 1 value (Blu 1 set) Command: 1; Parameter: 16 (28H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Grn 1 Set 0 1 0 0 0 1 0 0 1 0 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set blue level 0 and 1st frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set blue level 1 and 1st frame Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set blue level 13 and 1st frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set blue level 15 and 1st frame FRAME 1 Blu PWM Set Function - (10) Set Blue 2 value (Blu2 set) Command: 1; Parameter: 16 (29H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Grn2 Set 0 1 0 0 0 1 0 0 1 0 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set blue level 0 and 2nd frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set blue level 1 and 2nd frame Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set blue level 13 and 2nd frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set blue level 15 and 2nd frame Ver 1.7 59/96 Function FRAME 2 Blu PWM Set Function - 2006/08/15 ST7632 (11) Set Blue 3 value (Blu3 set) Command: 1; Parameter: 16 (2AH) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Grn3 Set 0 1 0 0 0 1 0 0 1 1 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set blue level 0 and 3rd frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set blue level 1 and 3rdframe Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set blue level 13 and 3rd frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set blue level 15 and 3rd frame FRAME 3 Blu PWM Set Function - (12) Set Blue 4 value (Blu4 set) Command: 1; Parameter: 16 (2BH) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Grn4 Set 0 1 0 0 0 1 0 0 1 1 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 0 0 0 0 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set blue level 0 and 4th frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set blue level 1 and 4thframe Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set blue level 13 and 4th frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set blue level 15 and 4th frame Ver 1.7 60/96 Function FRAME 4 Blu PWM Set Function - 2006/08/15 ST7632 The default value of Blue level set GRN1SET GRN2SET GRN3SET GRN4SET FRAM1 FRAM2 FRAM3 FRAME4 blue level0 00 00 00 00 blue level1 03 03 03 03 blue level2 06 06 06 06 blue level3 08 08 08 09 blue level4 0B 0B 0B 0C blue level5 0E 0E 0E 0D blue level6 10 11 10 11 blue level7 12 13 12 13 blue level8 14 15 14 15 blue level9 17 17 17 16 blue level10 19 19 19 18 blue level11 1A 1B 1A 1B blue level12 1C 1C 1C 1B blue level13 1D 1D 1D 1E blue level14 1E 1E 1E 1F blue level15 1F 1F 1F 1F (13) ANASET Command 1; Parameter: 4 (32H) A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 0 0 1 1 0 0 1 0 Parameter1(P1) 1 1 0 * * * * * P12 P11 P10 OSC frequency Adjustment Parameter2(P2) 1 1 0 * * * * * * P21 P20 Booster Efficiency Set Parameter3(P3) 1 1 0 * * * * * P32 P31 P30 Booster setting Parameter4(P4) 1 1 0 * * * * * P42 P41 P40 Bias setting Ver 1.7 61/96 Function - 2006/08/15 ST7632 P1: Oscillator frequency adjustment (vdd=2.8V) P12 P11 P10 CL(kHz) 0 0 0 10 0 0 1 10.5 0 1 0 11.5 0 1 1 13 1 0 0 15 1 0 1 17 1 1 0 20.5 1 1 1 25.5 FRAME=CL/(1/DUTY+1) Ex:1/132 duty,(P12,P11,P10)=(0,0,0) , Frame=10k/(132+1)=75.19Hz P2: Booster Efficiency set (vdd=2.8v) P21 P20 Frequency(kHz) 0 0 1000 0 1 840 1 0 650 1 1 450 P3: Booster setting P32 P31 P30 0 0 0 Booster off 0 0 1 2 times boosting circuit 0 1 0 3 times boosting circuit 0 1 1 4 times boosting circuit 1 0 0 5 times boosting circuit 1 0 1 6 times boosting circuit 1 1 0 7 times boosting circuit 1 1 1 8 times boosting circuit Ver 1.7 62/96 2006/08/15 ST7632 P4: Select LCD bias ratio of the voltage required for driving the LCD. P42 P41 P40 LCD bias 0 0 0 1/12 0 0 1 1/11 0 1 0 1/10 0 1 1 1/9 1 0 0 1/8 1 0 1 1/7 1 1 0 1/6 1 1 1 1/5 (14) Color Dither OFF (DITHOFF) Command: 1; Parameter: None (34H) Turn off the dithering circuit. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 0 1 0 0 (15) Color Dither ON (DITHON) Command: 1; Parameter: None (35H) Turn on the dithering circuit. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 0 1 0 1 (16) Control EEPROM:1 Parameter: 1 (CDH) A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 1 1 0 0 1 1 0 1 Parameter (P1) 1 1 0 * * P15 * * * * * P15: when setting “1” è The Write Enable of EEPROM will be opened. P15: when setting “0” è The Read Enable of EEPROM will be opened. (17) Cancel EEPROM Command: 1;Parameter : None (CCH) Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 0 1 1 0 0 (18) Write data to EEPROM (EPMWR) Command: 1; Parameter: None (FCH) Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 1 1 1 0 0 (19) Read data from EEPROM (EPMWR) Command: 1; Parameter: None (FDH) Command Ver 1.7 A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 1 1 1 0 1 63/96 2006/08/15 ST7632 EXT=”1” or “0” (1) Extension instruction disable (EXT IN) Command:1 Parameter: None (30H) Use the “Ext=0” command table Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 0 0 0 0 (2) Extension instruction enable (EXT OUT) Command:1 Parameter: None (31H) Use the extended command table (EXT=”1”) Command Ver 1.7 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 0 0 0 1 64/96 2006/08/15 ST7632 EEPROM Setting Following The ST7632 chip provides the Write and Read function to write the Electronic Control value and Built-in resistance ratio into and read them from the built-in EEPROM. Using the Write and Read functions, you can store these values appropriate to each LCP panel. This function is very convenient for user in setting from some different panel’s voltage. But using this function must attention the setting procedure. Please see the following diagram. Note: When writing value to EEPROM, the voltage of Voutin must be more than 16V. Increase or decrease EC value (command D6 or D7) ( get the V0 value you need) Display Off (command AEH) Open Extension mode (command 31H) Open EEPROM Enable (command CDH) (parameter 20H) Display On (command AFH) Wait for 100ms Turn off the power Write into EEPROM (command FCH) Wait for 100ms Wait for 100ms Turn on the power Disable EEPROM (command CCH) Check the EC value Close Extension mode (command 30H) Referential Instruction Setup Flow: Initializing with the built-in Power Supply Circuits Ver 1.7 65/96 2006/08/15 ST7632 User System Setup by External Pins Start of Initialization Power ON(VDD-VSS) Keeping the /RES Pin="L" Waiting for Stabilizing the Power /RES Pin="H" Load EE Flow Command 06H Parameter 41H Command 07H Parameter 1BH Command 31H Command CDH Parameter 0FH DELAY 100ms Command FDH DELAY 50ms Command CCH Command 30H User Application Setup by Internal Instructions [Display Duty Select] [Osc on] [Sleep out] User LCD Power Setup by Internal Instructions [Electronic volume set] [DC-DC Step-up Register Select] [Regulator Resistor] [LCD Bias Register Select] [Page and Column Set] Initial Function set Command 06H---(1) Parameter 41H----(1) Command 01H---(2) Parameter F0H----(2) Command 04H---(3) Parameter 06H----(3) Display on End of Initialization Initializing with the Built-in Power Supply Circuits Ver 1.7 66/96 2006/08/15 ST7632 Example: 128X128 INITIAL FLOW ;;;;;;;;;;;;OTP READ;;;;;;;;;;;;;;;;;;;;;;;;;;;;; COMMAND #06H ;INITIAL FUNCTION(1) PARA #41H ; ; COMMAND #07H ;START OTP PARA #1BH ; ; COMMAND #31H ;SET EXT=1 COMMAND #CDH ;CONTROL EEPROM ENABLE PARA #0FH ;READ ENABLE CALL DELAY_100MS ; COMMAND #FDH ;READ EEPROM CALL DELAY_50MS ; COMMAND #CCH ;DISABLE EEPROM COMMAND #30H ; ;;;;;;;;;;;;;INITIAL LCD;;;;;;;;;;;;;;;;;;;;;;;;; COMMAND #CAH ;DISPLAY CONTROL (DISCTL) PARA #00000000B ;CL DIVIDINB RATIO PARA #00011111B ;DRIVE DUTY (DUTY)/4-1 PARA #00000000B ; ; COMMAND #D1H ;TURN ON OSC ; COMMAND #94H ;SLEEP OUT ; COMMAND #81H ;ELECTRONIC VOLUME CONTROL PARA #00011111B ;B5~B0==>VPR8~VPR5 PARA #00000011B ;B2~B0==>RA/RB RATIO ; COMMAND #20H ;POWER CONTROL PARA #00001111B ;B0:R,B1:F,B3:B,B2,B4:DON'T USE ; COMMAND #31H ;SET EXT=1 (OPEN EXT) ; COMMAND #32H ;ANALOG SET PARA #00000000B ;B2~B0==> OSC FREQUENCY ADJUSTMENT PARA #00000011B ;B1~B0==> BOOSTER EFFICIENY SET PARA #00000001B ;B2~B0==>BOOSTER SET (2X) PARA #00000000B ;B2~B0==>BIAS SET COMMAND PARA PARA PARA PARA #32H #00000000B #00000011B #00000101B #00000000B ;ANALOG SET ;B2~B0==> OSC FREQUENCY ADJUSTMENT ;B1~B0==> BOOSTER EFFICIENY SET ;B2~B0==>BOOSTER SET (6X) ;B2~B0==>BIAS SET ; ;SET EXT=0 (CLOSE EXT) ; ;DATA CONTROL ;USE B2~B0 ;USE B0==>0==>RGB,B0==>1==>BGR ;16 GRAY-SCALE DISPLAY TYPE B,4096 ; ;COM DIRECTION ; ; COMMAND #30H COMMAND PARA PARA PARA #BCH #00000011B #00000000B #00000100B COMMAND #BBH PARA #00000001B Ver 1.7 67/96 2006/08/15 ST7632 COMMAND #75H PARA #00000000B PARA #128 ;PAGE ADDRESS SET ;B7~B0==>START PAGEPARA ;;B7~B0==>STOP PAGE ; COMMAND #15H ;COLUMN ADDRESS SET PARA #00000000B ;B7~B0==>START COLUMN PARA #128 ;B7~B0==>STOP COLUMN(B) COMMAND #A7H ;INVERSE DISPLAY ; COMMAND #A6H ;NORMAL DISPLAY ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;----------------INITIAL CODE ------------------; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; COMMAND #06H ;INITIAL FUNCTION (1) PARA #41H ; ; COMMAND #01H ;INITIAL FUNCTION (2) PARA #F0H ; ; ; COMMAND #04H ;INITIAL FUNCTION (3) PARA #06H ; ; COMMAND #AFH ;DISPLAY ON RET ; Ver 1.7 68/96 2006/08/15 ST7632 Sleep In/Out Referential Instruction Setup Flow: Data Displaying End of Initialization Display Data RAM Addressing by Instruction [Initial Display Line] [Set Page Address] [Set Column Address] Write Display Data by Instruction [Display Data Write] Turn Display ON/OFF Instruction [Display ON/OFF] End of Data Display Data Displaying Ver 1.7 69/96 2006/08/15 ST7632 Referential Instruction Setup Flow: Power OFF Optional Status Set Sleep In /RES Pin =“L” Power OFF (VDD-VSS) End of Power OFF VDD tOFF /RES tR Internal status Normal operation Sleep in Power off Power OFF Ver 1.7 70/96 2006/08/15 ST7632 Partial Display In/Out Ver 1.7 71/96 2006/08/15 ST7632 9. LIMITING VALUES In accordance with the Absolute Maximum Rating System; see notes 1 and 2. Parameter Symbol Conditions Unit Power Supply Voltage VDD,VDD1~5 –0.5 ~ 4.0 V Power supply voltage (VDD standard) VOUTIN –0.5 ~ +20 V Power supply voltage (VDD standard) V1, V2, V3, V4 0.3 to VOUTIN V Input voltage VIN –0.5 to VDD+0.5 V Output voltage VO –0.5 to VDD+0.5 V Operating temperature (Die) TOPR –30 to +85 °C Storage temperature (Die) TSTR –40 to +125 °C VLCD V1 to V4 VDD VDD VSS VSS System (MPU) side VSS ST7632 chip side Notes 1. Stresses above those listed under Limiting Values may cause permanent damage to the device. 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. 3. Insure that the voltage levels of V1, V2, V3, and V4 are always such that VOUTIN ≧ V0 ≧ V1 ≧ V2 ≧ V3 ≧ V4 ≧ VSS Ver 1.7 72/96 2006/08/15 ST7632 10. HANDLING Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS devices”). 11. DC CHARACTERISTICS VDD = 2.6 V to 3.3V; VSS= 0 V; VLCD = 4.0 to 18.0V; Tamb = -30℃ to +85℃; unless otherwise specified. Rating Item Applicable Symbol Condition Operating Voltage (1) Units VDD1 Min. Typ. 2.0 — Pin Max. 3.3(+10% V VSS *1 3.3 V VSS2 VDD V *2 0.2 x VDD V *2 VDD V *3 *3 Range) VDD2 High-level Input Voltage VIHC 0.8 x VDD — Low-level Input Voltage VILC VSS High-level Output Voltage VOHC 0.8 x VDD — Low-level Output Voltage VOLC VSS — 0.2 x VDD V Input leakage current ILI VIN = VDD or VSS –1.0 — 1.0 μA *4 Output leakage current ILO VIN = VDD or VSS –3.0 — 3.0 μA *5 — 2.0 3.5 Liquid Crystal Driver ON (Relative to VSS) — Operating Voltage (2) Ta = VOUTIN = 25°C 15.0 V 2.6 — KΩ RON Resistance (Relative VOUTIN = 8.0 To VSS) V Internal Oscillator fOSC Oscillator SEGn COMn *6 — 3.2 5.4 10.2 -- 10.3 kHz 73.2 77 80.9 Hz *7 Ta = 25°C 1/132 duty Frequency Frame frequency fFRAME 31 PWM Rating Item Input voltage Symbol VDD Condition Units Applicable Pin (Relative To VSS) Min. Typ. 2.0 — Max. 3.3(+10% V Internal Power Range) Supply Step-up output VOUOUT (Relative To VSS) — — 18 V VOUOUT VOUTIN (Relative To VSS) — — 18 V VOUTIN voltage Circuit Voltage regulator Circuit Operating Voltage Ver 1.7 73/96 2006/08/15 ST7632 Dynamic Consumption Current : During Display, with the Internal Power Supply OFF Current consumed by total ICs when an external power supply is used . Rating Test pattern Symbol Display Pattern Condition VDD = 2.8 V, 1/12 bias ,6x ISS SNOW (die) Sleep In ISS V0 – VSS = 12.5 V Ta = 25°C Units Notes 420 μA *8 10 μA die Min. Typ. Max. — 350 — — Notes to the DC characteristics 1. The maximum possible VLCD voltage that may be generated is dependent on voltage, temperature and (display) load, Internal clock 2. Power-down mode. During power down all static currents are switched off. 3. If external VLCD, the display load current is not transmitted to IDD. 4. VLCD external voltage applied to VOUTIN pin; VOUTIN disconnected from VOUOUT References for items mark with * *1 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden fluctuations to the voltage while the MPU is being accessed. *2 The A0, D0 to D5, D6 (SI), D7 (SCL), /RD (E), /WR ,/(R/W),CL, RESB ,and terminals. *3 The D0 to D7 erminals. *4 The A0,/RD (E), /WR ,/(R/W),/CS,RESB ,and terminals. *5 Applies when the D0 to D5, D6 (SI), D7 (SCL) terminals are in a high impedance state. *6 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range. RON = 0.1 V /ΔI (Where ΔI is the current that flows when 0.1 V is applied while the power supply is ON.) *7 The relationship between the oscillator frequency and the frame rate frequency. *8,9 It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on. Ver 1.7 74/96 2006/08/15 ST7632 12. TIMING CHARACTERISTICS System Bus Read/Write Characteristics 1 (For the 8080 Series MPU) A0 tAW8 tAH8 /CS tCYC8 tCCLR,tCCLW WR,RD tCCHR,tCCHW tDS8 tDH8 D0 to D7 (Write) tACC8 tOH8 D0 to D7 (Read) Figure 39. (VDD = 3.3V , Ta =-30°C ~85°C, die) Rating Item Signal Symbol Condition Units Min. Max. tAH8 30 — tAW8 30 — tCYC8 370 — tCCLW 120 — tCCHW 250 — tCCLR 60 — Enable H pulse width (READ) tCCHR 140 WRITE Data setup time tDS8 200 — tDH8 30 — Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) ns RD WRITE Address hold time D0 to D7 READ access time tACC8 CL = 100 pF — 70 READ Output disable time tOH8 CL = 100 pF — 50 Ver 1.7 75/96 2006/08/15 ST7632 (VDD = 2.8 V , Ta =-30°C ~85°C, die ) Rating Item Signal Symbol Condition Units Min. Max. tAH8 30 — tAW8 30 — tCYC8 470 — tCCLW 200 — tCCHW 280 — tCCLR 80 — Enable H pulse width (READ) tCCHR 190 — WRITE Data setup time tDS8 280 — tDH8 30 — Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) RD WRITE Address hold time D0 to D7 READ access time tACC8 CL = 100 pF — 140 READ Output disable time tOH8 CL = 100 pF — 100 ns (VDD = 2.0V , Ta =-30°C ~85°C, die ) Rating Item Signal Symbol Condition Units Min. Max. tAH8 30 — tAW8 30 — tCYC8 880 — tCCLW 340 — tCCHW 540 — tCCLR 170 — Enable H pulse width (READ) tCCHR 360 WRITE Data setup time tDS8 420 — tDH8 30 — Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) ns RD WRITE Address hold time D0 to D7 READ access time tACC8 CL = 100 pF — 240 READ Output disable time tOH8 CL = 100 pF — 200 *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tCCLW and tCCLR are specified as the overlap between /CS being “L” and WR and RD being at the “L” level. Ver 1.7 76/96 2006/08/15 ST7632 System Bus Read/Write Characteristics 1 (For the 6800 Series MPU) A0 R/W tAW6 tAH6 CS1 (CS2="1") tCYC6 tEWLR,tEWLW E tEWHR,tEWHW tDS6 tDH6 D0 to D7 (Write) tACC6 tOH6 D0 to D7 (Read) Figure 40. (VDD = 3.3 V , Ta =-30°C ~85°C, die ) Rating Item Signal Symbol Condition Units Min. Max. tAH6 30 — tAW6 30 — tCYC6 380 — tEWLW 120 — tEWHW 260 — tEWLR 60 — Enable H pulse width (READ) tEWHR 130 WRITE Data setup time tDS6 200 — tDH6 30 — Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) ns RD WRITE Address hold time D0 to D7 READ access time tACC6 CL = 100 pF — 70 READ Output disable time tOH6 CL = 100 pF — 50 Ver 1.7 77/96 2006/08/15 ST7632 (VDD = 2.8V , Ta =-30°C ~85°C, die ) Rating Item Signal Symbol Condition Min. Max. tAH6 30 — tAW6 30 — tCYC6 490 — tEWLW 200 — tEWHW 290 — tEWLR 80 — Enable H pulse width (READ) tEWHR 190 — WRITE Data setup time tDS6 290 — tDH6 40 — Address hold time A0 Address setup time System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) RD WRITE Address hold time D0 to D7 Units ns READ access time tACC6 CL = 100 pF — 140 READ Output disable time tOH6 CL = 100 pF — 100 (VDD =2.0V , Ta =-30°C ~85°C, die ) Rating Item Signal Symbol Condition Units Min. Max. tAH6 30 — tAW6 30 — tCYC6 890 — tEWLW 340 — tEWHW 550 — tEWLR 170 — Enable H pulse width (READ) tEWHR 360 — WRITE Data setup time tDS6 420 — tDH6 30 — Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) RD WRITE Address hold time D0 to D7 READ access time tACC6 CL = 100 pF — 240 READ Output disable time tOH6 CL = 100 pF — 200 ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tEWLW and tEWLR are specified as the overlap between /CS being “L” and E. Ver 1.7 78/96 2006/08/15 ST7632 SERIAL INTERFACE(4-Line Interface) tCCSS tCSH /CS1 (CS2="1") tSAS tSAH A0 tSCYC tSLW SCL tSHW tf tr tSDS tSDH SI Fig 41. (VDD=3.3V, Ta =-30°C ~85°C, die) Rating Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Symbol Condition Units Min. Max. tSCYC 110 — tSHW 60 — tSLW 50 — tSAS 30 — tSAH 50 — tSDS 30 — tSDH 50 — tCSS 30 — tCSH 60 — A0 Address hold time Data setup time SI Data hold time CS-SCL time CSB CS-SCL time ns (VDD=2.8V, Ta =-30°C ~85°C, die) Rating Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Symbol Condition Units Min. Max. tSCYC 130 — tSHW 70 — tSLW 50 — tSAS 40 — tSAH 60 — tSDS 40 — tSDH 50 — tCSS 40 — tCSH 90 — A0 Address hold time Data setup time SI Data hold time CS-SCL time CSB CS-SCL time Ver 1.7 79/96 ns 2006/08/15 ST7632 (VDD=2.0V, Ta =-30°C ~85°C, die) Rating Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Symbol Condition Units Min. Max. tSCYC 240 — tSHW 140 — tSLW 110 — tSAS 60 — tSAH 90 — tSDS 60 — tSDH 90 — tCSS 60 — tCSH 140 — A0 Address hold time Data setup time SI Data hold time CS-SCL time CSB CS-SCL time ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard. SERIAL INTERFACE(3-Line Interface) tCCSS tCSH /CS1 (CS2="1") tSCYC tSLW SCL tSHW tf tr tSDS tSDH SI Fig 42. (VDD=3.3V, Ta =-30°C ~85°C, die) Rating Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Data setup time Symbol Condition Units Min. Max. tSCYC 110 — tSHW 60 — tSLW 50 — tSDS 30 — tSDH 50 — tCSS 30 — tCSH 60 — SI Data hold time CS-SCL time CSB CS-SCL time Ver 1.7 80/96 ns 2006/08/15 ST7632 (VDD=2.8V, Ta =-30°C ~85°C, die) Rating Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Data setup time Symbol Condition Units Min. Max. tSCYC 120 — tSHW 70 — tSLW 50 — tSDS 40 — tSDH 50 — tCSS 40 — tCSH 90 — SI Data hold time CS-SCL time CSB CS-SCL time ns (VDD=2.0V, Ta =-30°C ~85°C, die) Rating Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Data setup time Symbol Condition Units Min. Max. tSCYC 260 — tSHW 140 — tSLW 120 — tSDS 60 — tSDH 90 — tCSS 60 — tCSH 120 — SI Data hold time CS-SCL time CSB CS-SCL time ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard. Ver 1.7 81/96 2006/08/15 ST7632 13. RESET TIMING tRW /RES tR Internal status During reset Reset complete Fig 43. (VDD = 3.3V , Ta =-30°C ~85°C, die) Rating Item Signal Reset time Reset “L” pulse width RESB Symbol Condition Units Min. Typ. Max. tR — — 1 us tRW 1 — — us (VDD = 2.8V , Ta =-30°C ~85°C, die ) Rating Item Signal Reset time Reset “L” pulse width RESB Symbol Condition Units Min. Typ. Max. tR — — 1.5 us tRW 1.5 — — us (VDD = 2.0V , Ta =-30°C ~85°C, die ) Rating Item Signal Reset time Reset “L” pulse width Ver 1.7 RESB Symbol Condition Units Min. Typ. Max. tR — — 2.0 us tRW 2.0 — — us 82/96 2006/08/15 ST7632 The pinning of the ST7632 is optimized for single plane wiring e.g. for chip-on-glass display modules. Display size: Display 132 X 132 pixels Display 128 X 128 pixels COM COM VDD: VDD, VDD1 VSS1 VSS2 VSS4 *6 if external oscillator VDD2 VDD ST7632 VDD VSS VLCDOUT VLCDIN V0OUT V0IN SEG 5 CLVCD VDD2: VDD2, VDD3, VDD4, VDD5 I/O CVDD Fig 44. Application diagram: internal charge pump is used and s single VDD Display 132 X 132 pixels Display 128 X 128 pixels COM ST7632 VDD2 VDD *6 if external oscillator VDD: VDD, VDD1 VDD2: VDD2, VDD3, VDD4, VDD5 COM VSS1 VSS2 VSS4 VLCDOUT VLCDIN V0OUT V0IN SEG 5 VDD1 CVDD1 CLVCD I/O VDD2 CVDD2 VSS Fig 45. Application diagram: Internal charge pump is used and two separate VDD1(VDD2) Ver 1.7 83/96 2006/08/15 ST7632 Display 132 X 132 pixels Display 128 X 128 pixels SEG ST7632 VDD2 VDD *6 if external oscillator VDD: VDD, VDD1 VDD2: VDD2, VDD3, VDD4, VDD5 COM VSS1 VSS2 VSS4 VLCDOUT VLCDIN V0OUT V0IN COM 5 VL2 I/O VDD2 CVDD VSS Fig 46. application diagram : External high voltage generation is used The requiblue minimum value for the external capacitors in an application with the ST7632 are: CVLCD = min. 3.3uF CVDD1,2= min. 1.0 μF Higher capacitor values are recommended for ripple. Ver 1.7 84/96 2006/08/15 ST7632 14. THE MPU INTERFACE (REFERENCE EXAMPLES) The ST7632 Series can be connected to either 8080 Series MPUs or to 6800 Series MPUs. Moreover, using the serial interface it is possible to operate the ST7632 series chips with fewer signal lines. The display area can be enlarged by using multiple ST7632 Series chips. When this is done, the chip select signal can be used to select the individual Ics to access. (1) 8080 Series MPUs VDD VCC VDD A0 A0 MPU ST7632 CS1 CS1 D0 to D7 E (/RD) R/W (/WR) /RES DO to D7 RD WR RES GND IF1 IF2 IF3 VSS RESET VSS (2) 6800 Series MPUs V DD V DD A0 A0 CS1 CS1 DO to D 7 RD WR RES GND IF1 IF2 IF3 ST7632 MPU VCC D 0 to D7 /RD (E) /W R (R/W ) /RES V SS RESET V SS (3) Using the Serial Interface (4-line interface) VDD V CC V DD A0 CS1 CS1 IF1 IF2 IF3 Port 1 Port 2 RE S GND ST7632 MPU A0 SI SCL /RE S V SS RESET V SS Ver 1.7 85/96 2006/08/15 ST7632 (4) Using the Serial Interface (3-line interface) V DD or V SS V CC V DD IF1 IF2 IF3 CS1 Port 1 Port 2 RES GND ST7632 MPU CS1 SI SCL /RES V SS RESET V SS Ver 1.7 86/96 2006/08/15 1.5M Ver 1.7 C3 C4 C5 C6 C8 C7 Vss 87/96 Note : 6800--16 bit interface IF1: IF2: IF3 = 1 : 0: 0 CLS='1',using internal colock Vdd operation voltage range 2.0V to 3.6V Vdd2 operation voltage range 2.4 V to 3.3 V Vop=12~14V C3~C7=1uF~3.3uF C8,C9=0.1uF~1uF 2006/08/15 /CS C9 1.5M VDD2 COM72 COM71 COM70 COM69 COM68 COM67 COM66 SEG0 SEG1 SEG2 SEG3 COM37 COM36 COM35 COM34 COM33 COM32 SEG392 SEG393 SEG394 SEG395 COM65 COM64 COM63 COM62 SEG383 ST7632 E /RST D8 D9 D10 D11 D12 D13 D14 D15 D0 D1 D2 D3 D4 D5 D6 D7 A0 RW VDD V0IN V0OUT V1 V2 V3 V4 VREF VSS VSS1 VDD1 VDD CL CLS VSS VDD A0 RW_WR VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 VSS VDD E_RD RST VSS VDD I F1 I F2 I F3 CSEL VSS VDD SI SCL /CS VDD VDD1 VSS1 VSS VSS2 VSS4 VDD4 VDD3 VDD2 VDD5 TCAP VOUTin VOUTout COM129 COM130 COM131 VSS 497~502 503~508 509 510 511 512 513 514~519 520,521 522,523 524~529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571~576 577,578 579,580 581~586 587~598 599,600 601,602 603,604 605~614 615~618 619 620~625 626~631 494 495 496 COM100 COM101 COM102 V1 V2 V3 V4 V0 465 466 467 COM99 COM98 COM97 6 5 4 3 2 1 38 37 36 35 34 33 32 31 47 437 436 435 434 433 432 431 430 429 428 427 464 463 462 ST7632 Application circuit : (A) 6800-16 bit interface (V0 and VLCD –internal ) C? C1 2.2uF COM31 COM29 COM28 663 662 661 COM2 COM1 COM0 634 633 632 C2 2.2uF Ver 1.7 Vss C3 C4 C5 C6 C8 C7 88/96 Note : 6800--8 bit interface IF1: IF2: IF3 = 0 : 1: 1 CLS='1',using internal colock Vdd operation voltage range 2.0V to 3.6V Vdd2 operation voltage range 2.4 V to 3.3 V Vop=12~14V C3~C7=1uF~3.3uF C8,C9=0.1uF~1uF 2006/08/15 C9 1.5M VDD2 V0IN V0OUT V1 V2 V3 V4 VREF VSS VSS1 VDD1 VDD CL CLS VSS VDD A0 RW_WR VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 VSS VDD E_RD RST VSS VDD I F1 I F2 I F3 CSEL VSS VDD SI SCL /CS VDD VDD1 VSS1 VSS VSS2 VSS4 VDD4 VDD3 VDD2 VDD5 TCAP VOUTin VOUTout COM72 COM71 COM70 COM69 COM68 COM67 COM66 SEG0 SEG1 SEG2 SEG3 COM37 COM36 COM35 COM34 COM33 COM32 SEG392 SEG393 SEG394 SEG395 COM65 COM64 COM63 COM62 SEG383 ST7632 /CS E /RST D0 D1 D2 D3 D4 D5 D6 D7 A0 RW VDD VSS 497~502 503~508 509 510 511 512 513 514~519 520,521 522,523 524~529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571~576 577,578 579,580 581~586 587~598 599,600 601,602 603,604 605~614 615~618 619 620~625 626~631 COM129 COM130 COM131 V1 V2 V3 V4 V0 494 495 496 COM100 COM101 COM102 1.5M 465 466 467 COM99 COM98 COM97 6 5 4 3 2 1 38 37 36 35 34 33 32 31 47 437 436 435 434 433 432 431 430 429 428 427 464 463 462 ST7632 (B) 6800-8 bit interface (V0 and VLCD –internal ) C? C1 2.2uF COM31 COM29 COM28 663 662 661 COM2 COM1 COM0 634 633 632 C2 2.2uF 1.5M Ver 1.7 C3 C4 C5 C6 Vss C3~C7=1uF~3.3uF C8,C9=0.1uF~1uF 89/96 C8 2006/08/15 /CS C9 1.5M VDD2 COM72 COM71 COM70 COM69 COM68 COM67 COM66 SEG0 SEG1 SEG2 SEG3 COM37 COM36 COM35 COM34 COM33 COM32 SEG392 SEG393 SEG394 SEG395 COM65 COM64 COM63 COM62 SEG383 ST7632 /RD /RST D8 D9 D10 D11 D12 D13 D14 D15 D0 D1 D2 D3 D4 D5 D6 D7 A0 /WR V0IN V0OUT V1 V2 V3 V4 VREF VSS VSS1 VDD1 VDD CL CLS VSS VDD A0 RW_WR VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 VSS VDD E_RD RST VSS VDD IF1 IF2 IF3 CSEL VSS VDD SI SCL /CS VDD VDD1 VSS1 VSS VSS2 VSS4 VDD4 VDD3 VDD2 VDD5 TCAP VOUTin VOUTout COM129 COM130 COM131 VDD 497~502 503~508 509 510 511 512 513 514~519 520,521 522,523 524~529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571~576 577,578 579,580 581~586 587~598 599,600 601,602 603,604 605~614 615~618 619 620~625 626~631 494 495 496 COM100 COM101 COM102 VSS V0 V1 V2 V3 V4 465 466 467 COM99 COM98 COM97 6 5 4 3 2 1 38 37 36 35 34 33 32 31 47 437 436 435 434 433 432 431 430 429 428 427 464 463 462 ST7632 (C) 8080-16 bit interface (V0 and VLCD –internal ) C? C1 2.2uF COM31 COM29 COM28 663 662 661 COM2 COM1 COM0 634 633 632 C2 2.2uF C7 Note : 8080--16 bit interface IF1: IF2: IF3 = 1 : 1: 1 CLS='1',using inte rnal colock Vdd operation voltage range 2.0V to 3.6V Vdd2 ope ration voltage range 2.4 V to 3.3 V Vop=12~14V Title Ver 1.7 Vss C3 C4 C5 C6 C3~C7=1uF~3.3uF C8,C9=0.1uF~1uF 90/96 C8 2006/08/15 C9 1.5M VDD2 V0IN V0OUT V1 V2 V3 V4 VREF VSS VSS1 VDD1 VDD CL CLS VSS VDD A0 RW_WR VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 VSS VDD E_RD RST VSS VDD IF1 IF2 IF3 CSEL VSS VDD SI SCL /CS VDD VDD1 VSS1 VSS VSS2 VSS4 VDD4 VDD3 VDD2 VDD5 TCAP VOUTin VOUTout COM72 COM71 COM70 COM69 COM68 COM67 COM66 SEG0 SEG1 SEG2 SEG3 COM37 COM36 COM35 COM34 COM33 COM32 SEG392 SEG393 SEG394 SEG395 COM65 COM64 COM63 COM62 SEG383 ST7632 /CS /RD /RST D0 D1 D2 D3 D4 D5 D6 D7 A0 /WR VDD 497~502 503~508 509 510 511 512 513 514~519 520,521 522,523 524~529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571~576 577,578 579,580 581~586 587~598 599,600 601,602 603,604 605~614 615~618 619 620~625 626~631 COM129 COM130 COM131 VSS V0 V1 V2 V3 V4 494 495 496 COM100 COM101 COM102 1.5M 465 466 467 COM99 COM98 COM97 6 5 4 3 2 1 38 37 36 35 34 33 32 31 47 437 436 435 434 433 432 431 430 429 428 427 464 463 462 ST7632 (D) 8080-8 bit interface (V0 and VLCD –internal ) C? C1 2.2uF COM31 COM29 COM28 663 662 661 COM2 COM1 COM0 634 633 632 C2 2.2uF C7 Note : 8080--8 bit interface IF1: IF2: IF3 = 1 : 1: 0 CLS='1',using inte rnal colock Vdd operation voltage range 2.0V to 3.6V Vdd2 operation voltage range 2.4 V to 3.3 V Vop=12~14V Title 1.5M Ver 1.7 C3 C4 C5 C6 Vss C3~C7=1uF~3.3uF C8,C9=0.1uF~1uF 91/96 C8 C7 Note : 4 Lines (8 bits) interface IF1: IF2: IF3 = 0 : 0: 0 CLS='1',using inte rnal colock Vdd operation voltage range 2.0V to 3.6V Vdd2 ope ration voltage range 2.4 V to 3.3 V Vop=12~14V 2006/08/15 C9 1.5M VDD2 COM72 COM71 COM70 COM69 COM68 COM67 COM66 SEG0 SEG1 SEG2 SEG3 COM37 COM36 COM35 COM34 COM33 COM32 SEG392 SEG393 SEG394 SEG395 COM65 COM64 COM63 COM62 SEG383 ST7632 SI SCL /CS /RST A0 V0IN V0OUT V1 V2 V3 V4 VREF VSS VSS1 VDD1 VDD CL CLS VSS VDD A0 RW_WR VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 VSS VDD E_RD RST VSS VDD IF1 IF2 IF3 CSEL VSS VDD SI SCL /CS VDD VDD1 VSS1 VSS VSS2 VSS4 VDD4 VDD3 VDD2 VDD5 TCAP VOUTin VOUTout COM129 COM130 COM131 VDD 497~502 503~508 509 510 511 512 513 514~519 520,521 522,523 524~529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571~576 577,578 579,580 581~586 587~598 599,600 601,602 603,604 605~614 615~618 619 620~625 626~631 494 495 496 COM100 COM101 COM102 VSS V0 V1 V2 V3 V4 465 466 467 COM99 COM98 COM97 6 5 4 3 2 1 38 37 36 35 34 33 32 31 47 437 436 435 434 433 432 431 430 429 428 427 464 463 462 ST7632 (E) 4 Lines (8 bits) interface (V0 and VLCD –internal ) C? C1 2.2uF COM31 COM29 COM28 663 662 661 COM2 COM1 COM0 634 633 632 C2 2.2uF 1.5M Ver 1.7 C3 C4 C5 C6 C8 C7 Vss C3~C9=1uF~3.3uF C8,C9=0.1uF~1uF Note : 3 Lines (9 bits) interface IF1: IF2: IF3 = 0 : 0: 1 CLS='1',using inte rnal colock Vdd operation voltage range 2.0V to 3.6V Vdd2 ope ration voltage range 2.4 V to 3.3 V Vop=12~14V 92/96 2006/08/15 SI SCL /CS /RST C9 1.5M VDD2 V0IN V0OUT V1 V2 V3 V4 VREF VSS VSS1 VDD1 VDD CL CLS VSS VDD A0 RW_WR VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 VSS VDD E_RD RST VSS VDD I F1 I F2 I F3 CSEL VSS VDD SI SCL /CS VDD VDD1 VSS1 VSS VSS2 VSS4 VDD4 VDD3 VDD2 VDD5 TCAP VOUTin VOUTout COM129 COM130 COM131 VDD 497~502 503~508 509 510 511 512 513 514~519 520,521 522,523 524~529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571~576 577,578 579,580 581~586 587~598 599,600 601,602 603,604 605~614 615~618 619 620~625 626~631 494 495 496 COM100 COM101 COM102 VSS V0 V1 V2 V3 V4 465 466 467 COM37 COM36 COM35 COM34 COM33 COM32 SEG392 SEG393 SEG394 SEG395 COM65 COM64 COM63 COM62 SEG383 COM72 COM71 COM70 COM69 COM68 COM67 COM66 SEG0 SEG1 SEG2 SEG3 COM99 COM98 COM97 6 5 4 3 2 1 38 37 36 35 34 33 32 31 47 437 436 435 434 433 432 431 430 429 428 427 464 463 462 ST7632 (F) 3 Lines (9 bits) interface (V0 and VLCD –internal ) U1 ST7632 C1 2.2uF COM31 COM29 COM28 COM2 COM1 COM0 C2 2.2uF 663 662 661 634 633 632 ST7632 (G) Example 132X132 : Duty=1/132 Vop=12~14V Bias=1/12 bias COM0 COM1 COM2 COM3 COM4 COM5 COM66 COM67 COM68 (P12,P11,P10)=(0,0,1) Ver 1.7 6 5 4 3 2 1 COM37 COM36 COM35 COM34 COM33 COM32 631 VLCDOUT 38 37 36 35 34 33 32 SEG392 SEG393 SEG394 SEG395 COM65 COM64 COM63 434 433 432 431 430 429 428 427 V0IN ST7632 (CSEL=0) 497 COM129 COM130 COM131 S? COM69 COM68 COM67 COM66 SEG0 SEG1 SEG2 SEG3 464 463 462 494 495 496 COM100 COM101 COM102 COM64 COM65 COM130 COM131 COM99 COM98 COM97 465 466 467 132X132 93/96 2006/08/15 COM31 COM29 COM28 COM2 COM1 COM0 663 662 661 634 633 632 ST7632 (H) Example 128X128 : Duty=1/128 Vop=12~14V Bias=1/12 bias COM0 COM1 COM2 COM3 COM4 COM5 COM66 COM67 COM68 (P12,P11,P10)=(0,0,1) 128X128 COM64 COM65 Ver 1.7 6 5 4 3 2 1 COM37 COM36 COM35 COM34 COM33 COM32 VLCDOUT 40 39 38 37 36 35 34 33 32 SEG390 SEG391 SEG392 SEG393 SEG394 SEG395 COM65 COM64 COM63 436 435 434 433 432 431 430 429 428 427 COM71 COM70 COM69 COM68 COM67 COM66 SEG0 SEG1 SEG2 SEG3 ST7632 (CSEL=0) 631 COM129 COM130 COM131 S? 497 494 495 496 COM100 COM101 COM102 V0IN 465 466 467 COM99 COM98 COM97 464 463 462 seg0 seg0 seg0 COM127 COM128 94/96 2006/08/15 COM31 COM29 COM28 COM2 COM1 COM0 663 662 661 634 633 632 ST7632 (I)128X96 Duty=1/132 Vop=12~14V Bias=1/12 bias Display window set: start page=16,end page=111 COM48 COM49 COM50 COM94 COM95 COM94 COM95 128X96 COM0 COM1 COM46 COM47 COM46 COM47 6 5 4 3 2 1 COM37 COM36 COM35 COM34 COM33 COM32 631 ST7632 (CSEL=0) VLCDOUT 40 39 38 37 36 35 34 33 32 SEG390 SEG391 SEG392 SEG393 SEG394 SEG395 COM65 COM64 COM63 448 447 436 435 434 433 432 431 430 429 428 427 COM71 COM70 COM69 COM68 COM67 COM66 SEG0 SEG1 SEG2 SEG3 V0IN COM129 COM130 COM131 S? 497 494 495 496 COM100 COM101 COM102 COM83 COM82 465 466 467 COM99 COM98 COM97 464 463 462 seg0 seg0 seg0 (P12,P11,P10)=(0,0,1) COM48 COM49 COM0 COM1 COM2 COM3 COM4 COM5 NOTE: Microprocessor interface pins should not be floating in any operation mode. Ver 1.7 95/96 2006/08/15 COM31 COM29 COM28 COM17 COM16 COM0 663 662 661 649 648 632 ST7632 ST7632 Serial Specification Revision History Ver 1.7 Version Date Description 1.0 2004/8/31 Remove preliminary 1.1 2004/10/11 Correct errors in writting words & Modify Timing Characteristic 1.2 2004/12/07 Addition V3&V4 must <Vdd (p1), p48,p49 graphic diagram, and analog set flow p70,modify timing character 1.3 2005/02/01 Modify p75 LIMITING VALUES 1.4 2005/5/20 1.5 2005/09/15 Addition DC/AC application range 1.6 2006/7/31 Modify Application Circuit P87~P92 1.7 2006/8/15 Add microprocessor notice item(p.16, p.95). Remove the IIC Interface 96/96 2006/08/15