SITRONIX ST7636R

ST
Sitronix
ST7636R
65K Color Dot Matrix LCD Controller/Driver
1. INTRODUCTION
The ST7636R is a driver & controller LSI for 65K color graphic dot-matrix liquid crystal display systems. It generates 396
Segment and 132 Common driver circuits. This chip is connected directly to a microprocessor, accepts Serial Peripheral
Interface (SPI) or 8-bit/16-bit parallel display data and stores in an on-chip display data RAM. It performs display data RAM
read/write operation with no external operating clock to minimize power consumption. In addition, because it contains
power supply circuits necessary to drive liquid crystal, it is possible to make a display system with the fewest components.
2. FEATURES
♦ Voltage regulator (temperature gradient -0.15%/℃)
Driver Output Circuits
♦ On-chip electronic contrast control function (406 steps)
♦ 396 segment outputs / 132 common outputs
♦ Voltage follower (LCD bias: 1/5 to 1/12)
Applicable Duty Ratios
Operating Voltage Range
♦ Various partial display
♦ Supply voltage (VDD, VDD1): 1.8 to 3.3V
♦ Partial window moving & data scrolling
(VDD2, VDD3, VDD4, VDD5): 2.4 to
Gray-Scale Display
3.3V
♦ 4FRC & 31 PWM function circuit to display
♦ LCD driving voltage (VOP = V0 - VSS): 3.76 to 18.0 V
♦ 64 gray-scale display.
♦ The suggested value of V0 is 12~15 V under bias =1/11
On-chip Display Data RAM
or 1/12
♦ Capacity: 132 x 132 x 16 =278,784bits
LCD Driving Voltage (EEPROM)
♦ 4K colors (RGB)=(444) mode
♦ To store contrast adjustment value for better display
♦ 65K colors (RGB)=(565) mode
♦ To store adjustment value for best crosstalk
♦ Truncated 262K colors (RGB)=(666) mode
performance
♦ Truncated 16M colors (RGB)=(888) mode
EEPROM Adjustment Voltage
Microprocessor Interface
♦ When writing value to EEPROM, VDD2~VDD5 must
♦ 8/16-bit parallel bi-directional interface with 6800-series
follow as:
or 8080-series
When Booster x6: VDD2~VDD5 =3.3V
♦ 4-line serial interface (4-line-SIF)
When Booster x7: VDD2~VDD5 =2.8V~3.0V
♦ 3-line serial interface (3-line-SIF)
and Booster:ON, Regulator: OFF, Follower: OFF,
On-chip Low Power Analog Circuit
Display OFF (refer EEPROM flow, page.43 , page.105)
♦ On-chip oscillator circuit
Package Type
♦ Voltage converter (x2, x3, x4, x5, x6, x7, x8)
♦ Application for COG
ST7636R
Ver 1.4
6800 , 8080 ,4-Line , 3-Line interface
1/109
2006/09/06
ST7636R
3. ST7636R Pad Arrangement (COG)
Chip Size :
with seal ring & scribe line : 15,090 um x 1,410um
Bump Pitch:
PAD NO 1 ~ 484, 605~648: 31 um (COM/SEG)
PAD NO 485 ~ 604: 110 um (O)
Bump size:
PAD NO.1~440, 479~484, 605~610 :
16 um(x) X 118 um(y)
PAD No.441~ 478, 611~648:
118 um(x) X 16 um(y)
PAD N0. 485~604, Dummy Pad:
90 um(x) X 40 um(y)
Bump Height: 15 um
Chip Thickness: 400 um
Ver 1.4
2/109
2006/09/06
ST7636R
4. Pad Center Coordinates
PAD
PIN Name
X
Y
PAD
PIN Name
X
Y
SEG[383]
5750.5
598.0
036
SEG[382]
5719.5
598.0
598.0
037
SEG[381]
5688.5
598.0
7134.3
598.0
038
SEG[380]
5657.5
598.0
COM[96]
7103.3
598.0
039
SEG[379]
5626.5
598.0
COM[49]
COM[98]
7072.3
598.0
040
SEG[378]
5595.5
598.0
007
COM[50]
COM[100]
7041.3
598.0
041
SEG[377]
5564.5
598.0
008
COM[51]
COM[102]
7010.3
598.0
042
SEG[376]
5533.5
598.0
009
COM[52]
COM[104]
6979.3
598.0
043
SEG[375]
5502.5
598.0
010
COM[53]
COM[106]
6948.3
598.0
044
SEG[374]
5471.5
598.0
011
COM[54]
COM[108]
6917.3
598.0
045
SEG[373]
5440.5
598.0
012
COM[55]
COM[110]
6886.3
598.0
046
SEG[372]
5409.5
598.0
013
COM[56]
COM[112]
6855.3
598.0
047
SEG[371]
5378.5
598.0
014
COM[57]
COM[114]
6824.3
598.0
048
SEG[370]
5347.5
598.0
015
COM[58]
COM[116]
6793.3
598.0
049
SEG[369]
5316.5
598.0
016
COM[59]
COM[118]
6762.3
598.0
050
SEG[368]
5285.5
598.0
017
COM[60]
COM[120]
6731.3
598.0
051
SEG[367]
5254.5
598.0
018
COM[61]
COM[122]
6700.3
598.0
052
SEG[366]
5223.5
598.0
019
COM[62]
COM[124]
6669.3
598.0
053
SEG[365]
5192.5
598.0
020
COM[63]
COM[126]
6638.3
598.0
054
SEG[364]
5161.5
598.0
021
COM[64]
COM[128]
6607.3
598.0
055
SEG[363]
5130.5
598.0
022
COM[65]
COM[130]
6576.3
598.0
056
SEG[362]
5099.5
598.0
No.
CSEL=0
CSEL=1
No.
001
COM[44]
COM[88]
7227.3
598.0
035
002
COM[45]
COM[90]
7196.3
598.0
003
COM[46]
COM[92]
7165.3
004
COM[47]
COM[94]
005
COM[48]
006
CSEL=0
CSEL=1
023
SEG[395]
6122.5
598.0
057
SEG[361]
5068.5
598.0
024
SEG[394]
6091.5
598.0
058
SEG[360]
5037.5
598.0
025
SEG[393]
6060.5
598.0
059
SEG[359]
5006.5
598.0
026
SEG[392]
6029.5
598.0
060
SEG[358]
4975.5
598.0
027
SEG[391]
5998.5
598.0
061
SEG[357]
4944.5
598.0
028
SEG[390]
5967.5
598.0
062
SEG[356]
4913.5
598.0
029
SEG[389]
5936.5
598.0
063
SEG[355]
4882.5
598.0
030
SEG[388]
5905.5
598.0
064
SEG[354]
4851.5
598.0
031
SEG[387]
5874.5
598.0
065
SEG[353]
4820.5
598.0
032
SEG[386]
5843.5
598.0
066
SEG[352]
4789.5
598.0
033
SEG[385]
5812.5
598.0
067
SEG[351]
4758.5
598.0
034
SEG[384]
5781.5
598.0
068
SEG[350]
4727.5
598.0
Ver 1.4
3/109
2006/09/06
ST7636R
PAD
No.
PIN Name
CSEL=0
CSEL=1
X
Y
PAD
No.
PIN Name
CSEL=0
CSEL=1
X
Y
069
SEG[349]
4696.5
598.0
104
SEG[314]
3611.5
598.0
070
SEG[348]
4665.5
598.0
105
SEG[313]
3580.5
598.0
071
SEG[347]
4634.5
598.0
106
SEG[312]
3549.5
598.0
072
SEG[346]
4603.5
598.0
107
SEG[311]
3518.5
598.0
073
SEG[345]
4572.5
598.0
108
SEG[310]
3487.5
598.0
074
SEG[344]
4541.5
598.0
109
SEG[309]
3456.5
598.0
075
SEG[343]
4510.5
598.0
110
SEG[308]
3425.5
598.0
076
SEG[342]
4479.5
598.0
111
SEG[307]
3394.5
598.0
077
SEG[341]
4448.5
598.0
112
SEG[306]
3363.5
598.0
078
SEG[340]
4417.5
598.0
113
SEG[305]
3332.5
598.0
079
SEG[339]
4386.5
598.0
114
SEG[304]
3301.5
598.0
080
SEG[338]
4355.5
598.0
115
SEG[303]
3270.5
598.0
081
SEG[337]
4324.5
598.0
116
SEG[302]
3239.5
598.0
082
SEG[336]
4293.5
598.0
117
SEG[301]
3208.5
598.0
083
SEG[335]
4262.5
598.0
118
SEG[300]
3177.5
598.0
084
SEG[334]
4231.5
598.0
119
SEG[299]
3146.5
598.0
085
SEG[333]
4200.5
598.0
120
SEG[298]
3115.5
598.0
086
SEG[332]
4169.5
598.0
121
SEG[297]
3084.5
598.0
087
SEG[331]
4138.5
598.0
122
SEG[296]
3053.5
598.0
088
SEG[330]
4107.5
598.0
123
SEG[295]
3022.5
598.0
089
SEG[329]
4076.5
598.0
124
SEG[294]
2991.5
598.0
090
SEG[328]
4045.5
598.0
125
SEG[293]
2960.5
598.0
091
SEG[327]
4014.5
598.0
126
SEG[292]
2929.5
598.0
092
SEG[326]
3983.5
598.0
127
SEG[291]
2898.5
598.0
093
SEG[325]
3952.5
598.0
128
SEG[290]
2867.5
598.0
094
SEG[324]
3921.5
598.0
129
SEG[289]
2836.5
598.0
095
SEG[323]
3890.5
598.0
130
SEG[288]
2805.5
598.0
096
SEG[322]
3859.5
598.0
131
SEG[287]
2774.5
598.0
097
SEG[321]
3828.5
598.0
132
SEG[286]
2743.5
598.0
098
SEG[320]
3797.5
598.0
133
SEG[285]
2712.5
598.0
099
SEG[319]
3766.5
598.0
134
SEG[284]
2681.5
598.0
100
SEG[318]
3735.5
598.0
135
SEG[283]
2650.5
598.0
101
SEG[317]
3704.5
598.0
136
SEG[282]
2619.5
598.0
102
SEG[316]
3673.5
598.0
137
SEG[281]
2588.5
598.0
103
SEG[315]
3642.5
598.0
138
SEG[280]
2557.5
598.0
Ver 1.4
4/109
2006/09/06
ST7636R
PAD
No.
PIN Name
CSEL=0
CSEL=1
X
Y
PAD
No.
PIN Name
CSEL=0
CSEL=1
X
Y
139
SEG[279]
2526.5
598.0
174
SEG[244]
1441.5
598.0
140
SEG[278]
2495.5
598.0
175
SEG[243]
1410.5
598.0
141
SEG[277]
2464.5
598.0
176
SEG[242]
1379.5
598.0
142
SEG[276]
2433.5
598.0
177
SEG[241]
1348.5
598.0
143
SEG[275]
2402.5
598.0
178
SEG[240]
1317.5
598.0
144
SEG[274]
2371.5
598.0
179
SEG[239]
1286.5
598.0
145
SEG[273]
2340.5
598.0
180
SEG[238]
1255.5
598.0
146
SEG[272]
2309.5
598.0
181
SEG[237]
1224.5
598.0
147
SEG[271]
2278.5
598.0
182
SEG[236]
1193.5
598.0
148
SEG[270]
2247.5
598.0
183
SEG[235]
1162.5
598.0
149
SEG[269]
2216.5
598.0
184
SEG[234]
1131.5
598.0
150
SEG[268]
2185.5
598.0
185
SEG[233]
1100.5
598.0
151
SEG[267]
2154.5
598.0
186
SEG[232]
1069.5
598.0
152
SEG[266]
2123.5
598.0
187
SEG[231]
1038.5
598.0
153
SEG[265]
2092.5
598.0
188
SEG[230]
1007.5
598.0
154
SEG[264]
2061.5
598.0
189
SEG[229]
976.5
598.0
155
SEG[263]
2030.5
598.0
190
SEG[228]
945.5
598.0
156
SEG[262]
1999.5
598.0
191
SEG[227]
914.5
598.0
157
SEG[261]
1968.5
598.0
192
SEG[226]
883.5
598.0
158
SEG[260]
1937.5
598.0
193
SEG[225]
852.5
598.0
159
SEG[259]
1906.5
598.0
194
SEG[224]
821.5
598.0
160
SEG[258]
1875.5
598.0
195
SEG[223]
790.5
598.0
161
SEG[257]
1844.5
598.0
196
SEG[222]
759.5
598.0
162
SEG[256]
1813.5
598.0
197
SEG[221]
728.5
598.0
163
SEG[255]
1782.5
598.0
198
SEG[220]
697.5
598.0
164
SEG[254]
1751.5
598.0
199
SEG[219]
666.5
598.0
165
SEG[253]
1720.5
598.0
200
SEG[218]
635.5
598.0
166
SEG[252]
1689.5
598.0
201
SEG[217]
604.5
598.0
167
SEG[251]
1658.5
598.0
202
SEG[216]
573.5
598.0
168
SEG[250]
1627.5
598.0
203
SEG[215]
542.5
598.0
169
SEG[249]
1596.5
598.0
204
SEG[214]
511.5
598.0
170
SEG[248]
1565.5
598.0
205
SEG[213]
480.5
598.0
171
SEG[247]
1534.5
598.0
206
SEG[212]
449.5
598.0
172
SEG[246]
1503.5
598.0
207
SEG[211]
418.5
598.0
173
SEG[245]
1472.5
598.0
208
SEG[210]
387.5
598.0
Ver 1.4
5/109
2006/09/06
ST7636R
PAD
No.
PIN Name
CSEL=0
CSEL=1
X
Y
PAD
No.
PIN Name
CSEL=0
CSEL=1
X
Y
209
SEG[209]
356.5
598.0
244
SEG[174]
-728.5
598.0
210
SEG[208]
325.5
598.0
245
SEG[173]
-759.5
598.0
211
SEG[207]
294.5
598.0
246
SEG[172]
-790.5
598.0
212
SEG[206]
263.5
598.0
247
SEG[171]
-821.5
598.0
213
SEG[205]
232.5
598.0
248
SEG[170]
-852.5
598.0
214
SEG[204]
201.5
598.0
249
SEG[169]
-883.5
598.0
215
SEG[203]
170.5
598.0
250
SEG[168]
-914.5
598.0
216
SEG[202]
139.5
598.0
251
SEG[167]
-945.5
598.0
217
SEG[201]
108.5
598.0
252
SEG[166]
-976.5
598.0
218
SEG[200]
77.5
598.0
253
SEG[165]
-1007.5
598.0
219
SEG[199]
46.5
598.0
254
SEG[164]
-1038.5
598.0
220
SEG[198]
15.5
598.0
255
SEG[163]
-1069.5
598.0
221
SEG[197]
-15.5
598.0
256
SEG[162]
-1100.5
598.0
222
SEG[196]
-46.5
598.0
257
SEG[161]
-1131.5
598.0
223
SEG[195]
-77.5
598.0
258
SEG[160]
-1162.5
598.0
224
SEG[194]
-108.5
598.0
259
SEG[159]
-1193.5
598.0
225
SEG[193]
-139.5
598.0
260
SEG[158]
-1224.5
598.0
226
SEG[192]
-170.5
598.0
261
SEG[157]
-1255.5
598.0
227
SEG[191]
-201.5
598.0
262
SEG[156]
-1286.5
598.0
228
SEG[190]
-232.5
598.0
263
SEG[155]
-1317.5
598.0
229
SEG[189]
-263.5
598.0
264
SEG[154]
-1348.5
598.0
230
SEG[188]
-294.5
598.0
265
SEG[153]
-1379.5
598.0
231
SEG[187]
-325.5
598.0
266
SEG[152]
-1410.5
598.0
232
SEG[186]
-356.5
598.0
267
SEG[151]
-1441.5
598.0
233
SEG[185]
-387.5
598.0
268
SEG[150]
-1472.5
598.0
234
SEG[184]
-418.5
598.0
269
SEG[149]
-1503.5
598.0
235
SEG[183]
-449.5
598.0
270
SEG[148]
-1534.5
598.0
236
SEG[182]
-480.5
598.0
271
SEG[147]
-1565.5
598.0
237
SEG[181]
-511.5
598.0
272
SEG[146]
-1596.5
598.0
238
SEG[180]
-542.5
598.0
273
SEG[145]
-1627.5
598.0
239
SEG[179]
-573.5
598.0
274
SEG[144]
-1658.5
598.0
240
SEG[178]
-604.5
598.0
275
SEG[143]
-1689.5
598.0
241
SEG[177]
-635.5
598.0
276
SEG[142]
-1720.5
598.0
242
SEG[176]
-666.5
598.0
277
SEG[141]
-1751.5
598.0
243
SEG[175]
-697.5
598.0
278
SEG[140]
-1782.5
598.0
Ver 1.4
6/109
2006/09/06
ST7636R
PAD
No.
PIN Name
CSEL=0
CSEL=1
X
Y
PAD
No.
PIN Name
CSEL=0
CSEL=1
X
Y
279
SEG[139]
-1813.5
598.0
314
SEG[104]
-2898.5
598.0
280
SEG[138]
-1844.5
598.0
315
SEG[103]
-2929.5
598.0
281
SEG[137]
-1875.5
598.0
316
SEG[102]
-2960.5
598.0
282
SEG[136]
-1906.5
598.0
317
SEG[101]
-2991.5
598.0
283
SEG[135]
-1937.5
598.0
318
SEG[100]
-3022.5
598.0
284
SEG[134]
-1968.5
598.0
319
SEG[99]
-3053.5
598.0
285
SEG[133]
-1999.5
598.0
320
SEG[98]
-3084.5
598.0
286
SEG[132]
-2030.5
598.0
321
SEG[97]
-3115.5
598.0
287
SEG[131]
-2061.5
598.0
322
SEG[96]
-3146.5
598.0
288
SEG[130]
-2092.5
598.0
323
SEG[95]
-3177.5
598.0
289
SEG[129]
-2123.5
598.0
324
SEG[94]
-3208.5
598.0
290
SEG[128]
-2154.5
598.0
325
SEG[93]
-3239.5
598.0
291
SEG[127]
-2185.5
598.0
326
SEG[92]
-3270.5
598.0
292
SEG[126]
-2216.5
598.0
327
SEG[91]
-3301.5
598.0
293
SEG[125]
-2247.5
598.0
328
SEG[90]
-3332.5
598.0
294
SEG[124]
-2278.5
598.0
329
SEG[89]
-3363.5
598.0
295
SEG[123]
-2309.5
598.0
330
SEG[88]
-3394.5
598.0
296
SEG[122]
-2340.5
598.0
331
SEG[87]
-3425.5
598.0
297
SEG[121]
-2371.5
598.0
332
SEG[86]
-3456.5
598.0
298
SEG[120]
-2402.5
598.0
333
SEG[85]
-3487.5
598.0
299
SEG[119]
-2433.5
598.0
334
SEG[84]
-3518.5
598.0
300
SEG[118]
-2464.5
598.0
335
SEG[83]
-3549.5
598.0
301
SEG[117]
-2495.5
598.0
336
SEG[82]
-3580.5
598.0
302
SEG[116]
-2526.5
598.0
337
SEG[81]
-3611.5
598.0
303
SEG[115]
-2557.5
598.0
338
SEG[80]
-3642.5
598.0
304
SEG[114]
-2588.5
598.0
339
SEG[79]
-3673.5
598.0
305
SEG[113]
-2619.5
598.0
340
SEG[78]
-3704.5
598.0
306
SEG[112]
-2650.5
598.0
341
SEG[77]
-3735.5
598.0
307
SEG[111]
-2681.5
598.0
342
SEG[76]
-3766.5
598.0
308
SEG[110]
-2712.5
598.0
343
SEG[75]
-3797.5
598.0
309
SEG[109]
-2743.5
598.0
344
SEG[74]
-3828.5
598.0
310
SEG[108]
-2774.5
598.0
345
SEG[73]
-3859.5
598.0
311
SEG[107]
-2805.5
598.0
346
SEG[72]
-3890.5
598.0
312
SEG[106]
-2836.5
598.0
347
SEG[71]
-3921.5
598.0
313
SEG[105]
-2867.5
598.0
348
SEG[70]
-3952.5
598.0
Ver 1.4
7/109
2006/09/06
ST7636R
PAD
No.
PIN Name
CSEL=0
CSEL=1
X
Y
PAD
No.
PIN Name
CSEL=0
CSEL=1
X
Y
349
SEG[69]
-3983.5
598.0
384
SEG[34]
-5068.5
598.0
350
SEG[68]
-4014.5
598.0
385
SEG[33]
-5099.5
598.0
351
SEG[67]
-4045.5
598.0
386
SEG[32]
-5130.5
598.0
352
SEG[66]
-4076.5
598.0
387
SEG[31]
-5161.5
598.0
353
SEG[65]
-4107.5
598.0
388
SEG[30]
-5192.5
598.0
354
SEG[64]
-4138.5
598.0
389
SEG[29]
-5223.5
598.0
355
SEG[63]
-4169.5
598.0
390
SEG[28]
-5254.5
598.0
356
SEG[62]
-4200.5
598.0
391
SEG[27]
-5285.5
598.0
357
SEG[61]
-4231.5
598.0
392
SEG[26]
-5316.5
598.0
358
SEG[60]
-4262.5
598.0
393
SEG[25]
-5347.5
598.0
359
SEG[59]
-4293.5
598.0
394
SEG[24]
-5378.5
598.0
360
SEG[58]
-4324.5
598.0
395
SEG[23]
-5409.5
598.0
361
SEG[57]
-4355.5
598.0
396
SEG[22]
-5440.5
598.0
362
SEG[56]
-4386.5
598.0
397
SEG[21]
-5471.5
598.0
363
SEG[55]
-4417.5
598.0
398
SEG[20]
-5502.5
598.0
364
SEG[54]
-4448.5
598.0
399
SEG[19]
-5533.5
598.0
365
SEG[53]
-4479.5
598.0
400
SEG[18]
-5564.5
598.0
366
SEG[52]
-4510.5
598.0
401
SEG[17]
-5595.5
598.0
367
SEG[51]
-4541.5
598.0
402
SEG[16]
-5626.5
598.0
368
SEG[50]
-4572.5
598.0
403
SEG[15]
-5657.5
598.0
369
SEG[49]
-4603.5
598.0
404
SEG[14]
-5688.5
598.0
370
SEG[48]
-4634.5
598.0
405
SEG[13]
-5719.5
598.0
371
SEG[47]
-4665.5
598.0
406
SEG[12]
-5750.5
598.0
372
SEG[46]
-4696.5
598.0
407
SEG[11]
-5781.5
598.0
373
SEG[45]
-4727.5
598.0
408
SEG[10]
-5812.5
598.0
374
SEG[44]
-4758.5
598.0
409
SEG[9]
-5843.5
598.0
375
SEG[43]
-4789.5
598.0
410
SEG[8]
-5874.5
598.0
376
SEG[42]
-4820.5
598.0
411
SEG[7]
-5905.5
598.0
377
SEG[41]
-4851.5
598.0
412
SEG[6]
-5936.5
598.0
378
SEG[40]
-4882.5
598.0
413
SEG[5]
-5967.5
598.0
379
SEG[39]
-4913.5
598.0
414
SEG[4]
-5998.5
598.0
380
SEG[38]
-4944.5
598.0
415
SEG[3]
-6029.5
598.0
381
SEG[37]
-4975.5
598.0
416
SEG[2]
-6060.5
598.0
382
SEG[36]
-5006.5
598.0
417
SEG[1]
-6091.5
598.0
383
SEG[35]
-5037.5
598.0
418
SEG[0]
-6122.5
598.0
Ver 1.4
8/109
2006/09/06
ST7636R
PAD
PIN Name
X
Y
PAD
PIN Name
X
Y
COM[61]
-7438.0
160.5
COM[102]
COM[59]
-7438.0
129.5
456
COM[103]
COM[57]
-7438.0
98.5
598.0
457
COM[104]
COM[55]
-7438.0
67.5
-6700.3
598.0
458
COM[105]
COM[53]
-7438.0
36.5
COM[121]
-6731.3
598.0
459
COM[106]
COM[51]
-7438.0
5.5
COM[72]
COM[119]
-6762.3
598.0
460
COM[107]
COM[49]
-7438.0
-25.5
426
COM[73]
COM[117]
-6793.3
598.0
461
COM[108]
COM[47]
-7438.0
-56.5
427
COM[74]
COM[115]
-6824.3
598.0
462
COM[109]
COM[45]
-7438.0
-87.5
428
COM[75]
COM[113]
-6855.3
598.0
463
COM[110]
COM[43]
-7438.0
-118.5
429
COM[76]
COM[111]
-6886.3
598.0
464
COM[111]
COM[41]
-7438.0
-149.5
430
COM[77]
COM[109]
-6917.3
598.0
465
COM[112]
COM[39]
-7438.0
-180.5
431
COM[78]
COM[107]
-6948.3
598.0
466
COM[113]
COM[37]
-7438.0
-211.5
432
COM[79]
COM[105]
-6979.3
598.0
467
COM[114]
COM[35]
-7438.0
-242.5
433
COM[80]
COM[103]
-7010.3
598.0
468
COM[115]
COM[33]
-7438.0
-273.5
434
COM[81]
COM[101]
-7041.3
598.0
469
COM[116]
COM[31]
-7438.0
-304.5
435
COM[82]
COM[99]
-7072.3
598.0
470
COM[117]
COM[29]
-7438.0
-335.5
436
COM[83]
COM[97]
-7103.3
598.0
471
COM[118]
COM[27]
-7438.0
-366.5
437
COM[84]
COM[95]
-7134.3
598.0
472
COM[119]
COM[25]
-7438.0
-397.5
438
COM[85]
COM[93]
-7165.3
598.0
473
COM[120]
COM[23]
-7438.0
-428.5
439
COM[86]
COM[91]
-7196.3
598.0
474
COM[121]
COM[21]
-7438.0
-459.5
440
COM[87]
COM[89]
-7227.3
598.0
475
COM[122]
COM[19]
-7438.0
-490.5
441
COM[88]
COM[87]
-7438.0
563.5
476
COM[123]
COM[17]
-7438.0
-521.5
442
COM[89]
COM[85]
-7438.0
532.5
477
COM[124]
COM[15]
-7438.0
-552.5
443
COM[90]
COM[83]
-7438.0
501.5
478
COM[125]
COM[13]
-7438.0
-583.5
444
COM[91]
COM[81]
-7438.0
470.5
479
COM[126]
COM[11]
-7227.3
-598.0
445
COM[92]
COM[79]
-7438.0
439.5
480
COM[127]
COM[9]
-7196.3
-598.0
446
COM[93]
COM[77]
-7438.0
408.5
481
COM[128]
COM[7]
-7165.3
-598.0
447
COM[94]
COM[75]
-7438.0
377.5
482
COM[129]
COM[5]
-7134.3
-598.0
448
COM[95]
COM[73]
-7438.0
346.5
483
COM[130]
COM[3]
-7103.3
-598.0
449
COM[96]
COM[71]
-7438.0
315.5
484
COM[131]
COM[1]
-7072.3
-598.0
450
COM[97]
COM[69]
-7438.0
284.5
485
VDD
-6100.1
-634.0
451
COM[98]
COM[67]
-7438.0
253.5
486
CL
-5990.1
-634.0
452
COM[99]
COM[65]
-7438.0
222.5
487
CLS
-5880.1
-634.0
453
COM[100]
COM[63]
-7438.0
191.5
488
VSS
-5770.1
-634.0
No.
CSEL=0
CSEL=1
No.
CSEL=0
CSEL=1
419
COM[66]
COM[131]
-6576.3
598.0
454
COM[101]
420
COM[67]
COM[129]
-6607.3
598.0
455
421
COM[68]
COM[127]
-6638.3
598.0
422
COM[69]
COM[125]
-6669.3
423
COM[70]
COM[123]
424
COM[71]
425
Ver 1.4
9/109
2006/09/06
ST7636R
PAD
No.
PIN Name
CSEL=0
CSEL=1
X
Y
PAD
No.
PIN Name
CSEL=0
CSEL=1
X
Y
489
VDD
-5660.1
-634.0
524
VDD
-1810.1
-634.0
490
A0
-5550.1
-634.0
525
SI
-1700.1
-634.0
491
RW_WR
-5440.1
-634.0
526
SCL
-1590.1
-634.0
492
VSS
-5330.1
-634.0
527
XCS
-1480.1
-634.0
493
VDD
-5220.1
-634.0
528
VDD
-1370.1
-634.0
494
D0
-5110.1
-634.0
529
VDD
-1260.1
-634.0
495
D1
-5000.1
-634.0
530
VDD
-1150.1
-634.0
496
D2
-4890.1
-634.0
531
VDD
-1040.1
-634.0
497
D3
-4780.1
-634.0
532
VDD1
-930.1
-634.0
498
D4
-4670.1
-634.0
533
VDD1
-820.1
-634.0
499
D5
-4560.1
-634.0
534
VSS1
-710.1
-634.0
500
D6
-4450.1
-634.0
535
VSS1
-600.1
-634.0
501
D7
-4340.1
-634.0
536
VSS
-490.1
-634.0
502
VSS
-4230.1
-634.0
537
VSS
-380.1
-634.0
503
VDD
-4120.1
-634.0
538
VSS
-270.1
-634.0
504
D8
-4010.1
-634.0
539
VSS
-160.1
-634.0
505
D9
-3900.1
-634.0
540
VSS
-50.1
-634.0
506
D10
-3790.1
-634.0
541
VSS
59.9
-634.0
507
D11
-3680.1
-634.0
542
VSS2
169.9
-634.0
508
D12
-3570.1
-634.0
543
VSS2
279.9
-634.0
509
D13
-3460.1
-634.0
544
VSS2
389.9
-634.0
510
D14
-3350.1
-634.0
545
VSS2
499.9
-634.0
511
D15
-3240.1
-634.0
546
VSS2
609.9
-634.0
512
VSS
-3130.1
-634.0
547
VSS2
719.9
-634.0
513
VDD
-3020.1
-634.0
548
VSS2
829.9
-634.0
514
E_RD
-2910.1
-634.0
549
VSS2
939.9
-634.0
515
RST
-2800.1
-634.0
550
VSS2
1049.9
-634.0
516
VSS
-2690.1
-634.0
551
VSS4
1159.9
-634.0
517
VDD
-2580.1
-634.0
552
VSS4
1269.9
-634.0
518
CSEL
-2470.1
-634.0
553
VDD4
1379.9
-634.0
519
INTRS
-2360.1
-634.0
554
VDD4
1489.9
-634.0
520
IF1
-2250.1
-634.0
555
VDD3
1599.9
-634.0
521
IF2
-2140.1
-634.0
556
VDD3
1709.9
-634.0
522
IF3
-2030.1
-634.0
557
VDD2
1819.9
-634.0
523
VSS
-1920.1
-634.0
558
VDD2
1929.9
-634.0
Ver 1.4
10/109
2006/09/06
ST7636R
PAD
No.
PIN Name
CSEL=0
CSEL=1
X
Y
PAD
No.
PIN Name
CSEL=0
CSEL=1
X
Y
559
VDD2
2039.9
-634.0
594
V3
5889.9
-634.0
560
VDD2
2149.9
-634.0
595
V2
5999.9
-634.0
561
VDD2
2259.9
-634.0
596
V1
6109.9
-634.0
562
VDD2
2369.9
-634.0
597
V0OUT
6219.9
-634.0
563
VDD2
2479.9
-634.0
598
V0OUT
6329.9
-634.0
564
VDD2
2589.9
-634.0
599
V0OUT
6439.9
-634.0
565
VDD5
2699.9
-634.0
600
V0OUT
6549.9
-634.0
566
VDD5
2809.9
-634.0
601
V0IN
6659.9
-634.0
567
VDD5
2919.9
-634.0
602
V0IN
6769.9
-634.0
568
VDD5
3029.9
-634.0
603
V0IN
6879.9
-634.0
569
TCAP
3139.9
-634.0
604
V0IN
6989.9
-634.0
570
C2P
3249.9
-634.0
605
COM[0]
COM[0]
7072.3
-598.0
571
C2N
3359.9
-634.0
606
COM[1]
COM[2]
7103.3
-598.0
572
C6P
3469.9
-634.0
607
COM[2]
COM[4]
7134.3
-598.0
573
C2N
3579.9
-634.0
608
COM[3]
COM[6]
7165.3
-598.0
574
C4P
3689.9
-634.0
609
COM[4]
COM[8]
7196.3
-598.0
575
C7P
3799.9
-634.0
610
COM[5]
COM[10]
7227.3
-598.0
576
C1N
3909.9
-634.0
611
COM[6]
COM[12]
7438.0
-583.5
577
C5P
4019.9
-634.0
612
COM[7]
COM[14]
7438.0
-552.5
578
C3P
4129.9
-634.0
613
COM[8]
COM[16]
7438.0
-521.5
579
C1N
4239.9
-634.0
614
COM[9]
COM[18]
7438.0
-490.5
580
C1P
4349.9
-634.0
615
COM[10]
COM[20]
7438.0
-459.5
581
VLCDIN
4459.9
-634.0
616
COM[11]
COM[22]
7438.0
-428.5
582
VLCDIN
4569.9
-634.0
617
COM[12]
COM[24]
7438.0
-397.5
583
VLCDIN
4679.9
-634.0
618
COM[13]
COM[26]
7438.0
-366.5
584
VLCDIN
4789.9
-634.0
619
COM[14]
COM[28]
7438.0
-335.5
585
VLCDIN
4899.9
-634.0
620
COM[15]
COM[30]
7438.0
-304.5
586
VLCDIN
5009.9
-634.0
621
COM[16]
COM[32]
7438.0
-273.5
587
VLCDOUT
5119.9
-634.0
622
COM[17]
COM[34]
7438.0
-242.5
588
VLCDOUT
5229.9
-634.0
623
COM[18]
COM[36]
7438.0
-211.5
589
VLCDOUT
5339.9
-634.0
624
COM[19]
COM[38]
7438.0
-180.5
590
VLCDOUT
5449.9
-634.0
625
COM[20]
COM[40]
7438.0
-149.5
591
VREF
5559.9
-634.0
626
COM[21]
COM[42]
7438.0
-118.5
592
VR
5669.9
-634.0
627
COM[22]
COM[44]
7438.0
-87.5
593
V4
5779.9
-634.0
628
COM[23]
COM[46]
7438.0
-56.5
Ver 1.4
11/109
2006/09/06
ST7636R
PAD
PIN Name
X
Y
PAD
PIN Name
X
Y
COM[68]
7438.0
284.5
COM[35]
COM[70]
7438.0
315.5
641
COM[36]
COM[72]
7438.0
346.5
67.5
642
COM[37]
COM[74]
7438.0
377.5
7438.0
98.5
643
COM[38]
COM[76]
7438.0
408.5
COM[58]
7438.0
129.5
644
COM[39]
COM[78]
7438.0
439.5
COM[30]
COM[60]
7438.0
160.5
645
COM[40]
COM[80]
7438.0
470.5
636
COM[31]
COM[62]
7438.0
191.5
646
COM[41]
COM[82]
7438.0
501.5
637
COM[32]
COM[64]
7438.0
222.5
647
COM[42]
COM[84]
7438.0
532.5
638
COM[33]
COM[66]
7438.0
253.5
648
COM[43]
COM[86]
7438.0
563.5
No.
CSEL=0
CSEL=1
No.
CSEL=0
CSEL=1
629
COM[24]
COM[48]
7438.0
-25.5
639
COM[34]
630
COM[25]
COM[50]
7438.0
5.5
640
631
COM[26]
COM[52]
7438.0
36.5
632
COM[27]
COM[54]
7438.0
633
COM[28]
COM[56]
634
COM[29]
635
Dummy Pad
PAD No.
X
Y
dummy1
-6980.1
-634.0
dummy2
-6870.1
-634.0
dummy3
-6760.1
-634.0
dummy4
-6650.1
-634.0
dummy5
-6540.1
-634.0
dummy6
-6430.1
-634.0
dummy7
-6320.1
-634.0
dummy8
-6210.1
-634.0
Ver 1.4
12/109
2006/09/06
ST7636R
5. BLOCK DIAGRAM
SEG0 TO SEG395
COM0 TO COM131
VDD1
VDD
V0 In
V1
V2
V3
V4
SEGMENT DRIVERS
COMMON
DRIVERS
CSEL
VSS
DATA LATCHES
V/F
Circuit
FRC/PWM FUNCTION
CIRCUIT
V0 out
COMMON
OUTPUT
CONTROLLER
CIRCUIT
RESET
VREF
VR
V/R
Circuit
INTRS
VLCDin
VLCDout
Cap1N
Cap2P
Cap2N
Cap3P
Cap4P
Cap5P
Cap6P
Cap7P
OSCILLATOR
DISPLAY DATA RAM
(DDRAM)
[132X132X16]
CLS
TIMING
GENERATOR
DISPLAY
ADDRESS
COUNTER
V/C
Circuit
VDD2
VDD3
VDD4
VDD5
ADDRESS COUNTER
EEPROM
DATA
REGISTER
INSTRUCTION
REGISTER
BUS
HOLDER
INSTRUCTION
DECODER
MPU INTERFACE(PARALLEL & SERIAL)
VSS
TCAP
D0 to D15
13/109
SI
SCL
E_RD
RW_WR
A0
/CS
/RST
IF3
IF2
IF1
Ver 1.4
CL
2006/09/06
ST7636R
6. PIN DESCRIPTION
6.1 POWER SUPPLY
Name
I/O
Description
VDD
Supply
Power supply for logic circuit
VDD1
Supply
Power supply for OSC circuit
VDD2
Supply
Power supply for Booster Circuit
VDD3
Supply
Power supply for LCD.
VDD4
Supply
Power supply for LCD.
VDD5
Supply
Power supply for LCD.
VSS
Supply
Ground for logic circuit. Ground system should be connected together.
VSS1
Supply
Ground for OSC circuit. Ground system should be connected together.
VSS2
Supply
Ground for Booster Circuit. Ground system should be connected together.
VSS4
Supply
Ground for LCD. Ground system should be connected together.
VLCDOUT
Supply
VLCDIN
Supply
If the internal voltage generator is used, the VLCDIN & VLCDOUT must be connected together.
If an external supply is used, this pin must be left open.
An external LCD supply voltage can be supplied using the VLCDIN pad. In this case, VLCDOUT has to
be left open, and the internal voltage generator has to be programmed to zero. (SET register VC=0)
LCD driver supply voltages
V0in & V0out should be connected together.
V0in
Voltages should have the following relationship;
V0out
V1
V2
V0 ( V0in ) ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ VSS, V4 < 2.3V
I/O
When the internal power circuit is active, these voltages are generated as following table according
to the state of LCD bias.
V3
V4
LCD bias
V1
V2
V3
V4
1/N bias
(N-1) / N x V0
(N-2) / N x V0
(2/N) x V0
(1/N) x V0
NOTE: N = 5 to 12
6.2 LCD Power Supply Pins
Pin Name
I/O
CAP1N
O
CAP2N
O
CAP1P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.
CAP2P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.
CAP3P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.
CAP4P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.
Ver 1.4
Function
DC/DC voltage converter. Connect capacitors between this terminal and the CAP1P, CAP3P, CAP5P,
CAP7P terminal.
DC/DC voltage converter. Connect capacitors between this terminal and the CAP2P, CAP4P, CAP6P
terminal.
14/109
2006/09/06
ST7636R
CAP5P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.
CAP6P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.
CAP7P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.
VREF
O
Reference voltage output for monitor only. Left it opened.
VR
I
Reference voltage output for monitor only. Left it opened.
6.3 SYSTEM CONTROL
Name
I/O
CLS
I
CL
I/O
INTRS
I
Description
When using internal clock oscillator, connect CLS to VDD.
When using external clock oscillator, connect CLS to VSS.
When using internal clock oscillator, it’s oscillator output.
When using external clock oscillator, it’s clock input.
This terminal selects the resistors for the V0 voltage level adjustment.
This pin should be fixed to High.
Select Common output direction.
CSEL
I
CSEL=”L”, COM0~COM65 is in one side, COM66~COM131 is in the opposite side.
CSEL=”H”, COM2n(even number) is in the one side, COM2n+1 (odd number) is in the opposite side.
TCAP
I/O
Test pin. Left it opened.
6.4 MICROPROCESSOR INTERFACE
Name
I/O
RST
I
Description
Reset input pin
When RESETB is “L”, initialization is executed.
Parallel / Serial data input select input
IF[3:1]
I
IF1
IF2
IF3
MPU interface type
H
H
H
80 series 16-bit parallel
H
H
L
80 series 8-bit parallel
H
L
L
68 series 16-bit parallel
L
H
H
68 series 8-bit parallel
L
L
H
9-bit serial (3 line)
L
L
L
8-bit serial (4 line)
Chip select input pins
/CS
I
Data / Instruction I/O is enabled only when /CS is "L". When chip select is non-active, D0 to D15
become high impedance.
A0
Ver 1.4
I
Register select input pin
15/109
2006/09/06
ST7636R
A0 = "H": D0 to D15 or SI are display data
A0 = "L": D0 to D15 or SI are control data
In 3-line or 2-line interface not let it floating, contact it to VSS or VDD.
Read / Write execution control pin
MPU type
RW_WR
Description
Read / Write control input pin
6800-series
RW_WR
RW
RW = “H” : read
I
RW = “L” : write
Write enable clock input pin
8080-series
/WR
The data on D0 to D15 are latched at the
rising edge of the /WR signal.
When in the serial interface, contact it to VSS or VDD.
Read / Write execution control pin
MPU Type
E_RD
Description
Read / Write control input pin
RW = “H”: When E is “H”, D0 to D15 are in an output
E_RD
6800-series
I
E
status.
RW = “L”: The data on D0 to D15 are latched at the
falling edge of the E signal.
8080-series
/RD
Read enable clock input pin
When /RD is “L”, D0 to D15 are in an output status.
When in the serial interface, contact it to VSS or VDD.
They connect to the standard 8-bit or 16 bit MPU bus via the 8/16 –bit bi-directional bus.
When the following interface is selected and the /CS pin is high, the following pins become high
impedance.
D15 to D0
I/O
1.
In 8-bit parallel: D15-D8 are in the state of high impedance, should contact to “H” level or
“L” level.
2.
In Serial interface: D15-D0 are in the state of high impedance, should contact to “H” level or
“L” level.
SI
I
This pin is used to input serial data when the serial interface is selected.(3 line and 4 line)
When not use contact it to VDD (high level).
This pin is used to input serial clock when the serial interface is selected.
SCL
I
The data is converted in the rising edge. (3 line and 4 line)
When not use contact it to VDD (high level).
NOTE:
Microprocessor interface pins should not be floating in any operation mode.
Ver 1.4
16/109
2006/09/06
ST7636R
6.5 LCD DRIVER OUTPUTS
Name
I/O
Description
LCD segment driver outputs
The display data and the M signal control the output voltage of segment driver.
Display data
M (Internal)
H
Normal display
Reverse display
H
V0
V2
H
L
VSS
V3
L
H
V2
V0
L
L
V3
VSS
VSS
VSS
SEG0
to
SEG395
O
Segment driver output voltage
Sleep in mode
LCD common driver outputs
The internal scanning data and M signal control the output voltage of common driver.
COM0
to
COM131
O
Scan data
M (Internal)
Common driver output voltage
H
H
VSS
H
L
V0
L
H
V1
L
L
V4
Sleep in mode
VSS
ST7636R I/O PIN ITO Resister Limitation
Pin Name
ITO Resister
VREF, TCAP, CL, VR
Floating
IF[3:1],CLS,CSEL,INTRS
No Limitation
VDD, VDD1~VDD5, VSS, CAP1N, CAP2N, VLCDIN, VLCDOUT
<100Ω
V0in, V0out, V1, V2, V3, V4, CAP1P~7P
<100Ω
A0, E_RD, RW_WR, /CS, D0 …D15, SCL, SI
<1KΩ
RST
<10KΩ
NOTE:
(1) Make sure the ITO resistance of COM0 ~ COM131 is equal, and so is it of SEG0 ~ SEG395.
(2) All the resistance values in above table are under digital power supply is 2.8V condition.
Ver 1.4
17/109
2006/09/06
ST7636R
7. FUNCTIONAL DESCRIPTION
7.1 MICROPROCESSOR INTERFACE
Chip Select Input
/CS pin is for chip selection. The ST7636R can function with an MPU when /CS is "L". In case of serial interface, the
internal shift register and the counter are reset.
7.1.1 Selecting Parallel / Serial Interface
ST7636R has seven types of interface with an MPU, which are two serial and four parallel interfaces. This parallel or serial
interface is determined by IF pin as shown in table 7.1.1.
Table 7.1.1 Parallel / Serial Interface Mode
I/F Mode
IF1 IF2 IF3
H
H
H
H
H
L
H
L
L
L
H
H
L
L
L
L
L
H
I/F Description
80 serial 16-bit parallel
80 serial 8-bit parallel
68 serial 16-bit parallel
68 serial 8-bit parallel
8-bit SPI mode (4 line)
9-bit SPI mode (3 line)
/CS
/CS
/CS
/CS
/CS
/CS
/CS
A0
A0
A0
A0
A0
A0
--
E_RD
/RD
/RD
E
E
---
Pin Assignment
RW_WR D15 to D8
/WR
D15 ~ D8
/WR
-R/W
D15 ~ D8
R/W
------
D7 to D0
D7 ~ D0
D7 ~ D0
D7 ~ D0
D7 ~ D0
---
SI
----SI
SI
SCL
----SCL
SCL
NOTE: When these pins are set to any other combination, A0, E_RD and RW_WR inputs are disabled and D0 to D15 are
to be high impedance.
7.1.2 8-bit or 16-bit Parallel Interface
The ST7636R identifies the type of the data bus signals according to the combination of A0, /RD (E) and /WR (W/R) signals,
as shown in table 7.1.2.
Table 7.1.2 Parallel Data Transfer
Common
6800-series
8080-series
Description
A0
R/W
E
/RD
/WR
H
H
H
L
H
Display data read out
H
L
H
H
L
Display data write
L
H
H
L
H
Register status read
L
L
H
H
L
Writes to internal register (instruction)
Relation between Data Bus and Gradation Data
ST7636R offers 4096 color display, 65K color display, truncated 262K color, and truncated 16M color.
When using 4096, 65K, 262K, and 16M color, you can specify color for each of R, G, B using the palette function.
Use the command for switching between these modes.
(1) 4096-color display
(1-1) Type A 4096 color display
1. 8-bit mode
D7, D6, D5, D4, D3, D2, D1, D0: RRRRGGGG
1st write
D7, D6, D5, D4, D3, D2, D1, D0: BBBBRRRR
2nd write
Ver 1.4
18/109
2006/09/06
ST7636R
D7, D6, D5, D4, D3, D2, D1, D0: GGGGBBBB
3rd write
2 pixels of data are read after the third write operation as shown, and it is written in the display RAM.
2. 16-bit mode
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRGGGGBBBBXXXX
Data is acquired through signal write operation and then written to the display RAM.
“XXXX” are dummy bits, and they are ignored for display.
(1-2) Type B 4096 color display
1. 8-bit mode
D7, D6, D5, D4, D3, D2, D1, D0: XXXXRRRR
1st write
D7, D6, D5, D4, D3, D2, D1, D0: GGGGBBBB
2nd write
A single pixel of data is read after the second write operation as shown, and it is written in the display RAM.
2. 16-bit mode
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: XXXXRRRRGGGGBBBB
A single pixel of data is read and written in the display RAM in a single write operation.
“XXXX” are dummy bits, and they are ignored for display.
(2) 65K color input mode
1. 8-bit mode
D7, D6, D5, D4, D3, D2, D1, D0: RRRRRGGG
1st write
D7, D6, D5, D4, D3, D2, D1, D0: GGGBBBBB
2nd write
A single pixel of data is read after the second write operation as shown, and it is written in the display RAM.
2. 16-bit mode
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRGGGGGGBBBBB (16 bits)
Data is acquired through signal write operation and then written to the display RAM.
(3) truncated 262K color input mode
1. 8-bit mode
D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRXX
1st write
D7, D6, D5, D4, D3, D2, D1, D0: GGGGGGXX
2nd write
D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBXX
3rd write
A single pixel of data is read after the third write operation as shown, and it is written in the display RAM.
“X” is dummy bit, and it is ignored for display.
2. 16 bit mode
Ver 1.4
19/109
2006/09/06
ST7636R
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRXXGGGGGGXX
1st write
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBXXXXXXXXXXXX
2nd write
A single pixel of data is read after the second write operation as shown, and it is written in the display RAM.
(4) truncated 16M color input mode
1. 8-bit mode
D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRRR
1st write
D7, D6, D5, D4, D3, D2, D1, D0: GGGGGGGG
2nd write
D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBBB
3rd write
A single pixel of data is read after the third write operation as shown, and it is written in the display RAM.
2. 16 bit mode
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRRRGGGGGGGG
1st write
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBBBXXXXXXXX
2nd write
A single pixel of data is read after the second write operation as shown, and it is written in the display RAM.
Ver 1.4
20/109
2006/09/06
ST7636R
7.1.3 8- and 9-bit Serial Interface
The 8-bit serial interface uses four pins /CS, SI, SCL, and A0 to enter commands and data. Meanwhile, the 9-bit serial
interface uses three pins /CS, SI and SCL for the same purpose.
Data read is not available in the serial interface. Data entered must be 8 bits. Refer to the following chart for entering
commands, parameters or gray-scale data.
The relation between gray-scale data and data bus in the serial input is the same as that in the 8-bit parallel interface mode
at every gradation.
(1) 8-bit serial interface (4 line )
th
When entering data (parameters): A0= HIGH at the rising edge of the 8 SCL.
th
When entering command: A0= LOW at the rising edge of the 8 SCL
Ver 1.4
21/109
2006/09/06
ST7636R
(2) 9-bit serial interface (3 line )
st
When entering data (parameters): SI= HIGH at the rising edge of the 1 SCL.
/CS
Data
SI
Data
D/C
D7
D6
D5
D4
D3
D2
D1
D0
D/C
D7
D6
1
2
3
4
5
6
7
8
9
1
2
3
SCL
st
When entering command: SI= LOW at the rising edge of the 1 SCL.
z
If /CS is set to HIGH while the 8 bits from D7 to D0 are entered, the data concerned is invalidated. Before entering
succeeding sets of data, you must correctly input the data concerned again.
z
In order to avoid data transfer error due to incoming noise, it is recommended to set /CS at HIGH on byte basis to
initialize the serial-to-parallel conversion counter and the register.
z
th
When executing the command RAMWR, set /CS to HIGH after writing the last address (after starting the 9 pulse in
th
case of 9-bit serial input or after starting the 8 pulse in case of 8-bit serial input).
Ver 1.4
22/109
2006/09/06
ST7636R
7.2 ACCESS TO DDRAM AND INTERNAL REGISTERS
ST7636R realizes high-speed data transfer because the access from MPU is a sort of pipeline processing done via the bus
holder attached to the internal, requiring the cycle time alone without needing the wait time.
For example, when MPU writes data to the DDRAM, the data is once held by the bus holder and then written to the
DDRAM before the succeeding write cycle is started. When MPU reads data from the DDRAM, the first read cycle is
dummy and the bus holder holds the data read in the dummy cycle, and then it read from the bus holder to the system bus
in the succeeding read cycle. Figure 7.2.1 illustrates these relations.
In 80-series interface mode:
MPU signal
Write
Operation
A0
/WR
DATA
N
D(N)
D(N+1) D(N+2)
D(N+3)
Internal signals
/WR
D(N)
N
BUS HOLDER
N
ADDRESS COUNTER
N+1
D(N+1)
N+2
D(N+2)
D(N+3)
N+3
MPU signal
Read
Operation
A0
/WR
/RD
DATA
N
Dummy
D(N)
D(N+1)
Internal signals
/WR
/RD
BUS HOLDER
ADDRESS COUNTER
N
D(N)
D(N)
D(N+1)
D(N+2)
D(N+1)
D(N+2)
D(N+3)
Figure 7.2.1
Ver 1.4
23/109
2006/09/06
ST7636R
7.3 DISPLAY DATA RAM (DDRAM)
7.3.1 DDRAM
It is 132 X 132 X 16 bits capacity RAM prepared for storing dot data. You can access a desired bit by specifying the page
address and column address. Since display data from MCU D7 to D0 and D15 to D8 correspond to one or two pixels of
RGB, data transfer related restrictions are reduced, realizing the display flexing.
The RAM on ST7636R is separated to a block per 4 lines to allow the display system to process data on the block basis.
MPU’s read and write operations to and from the RAM are performed via the I/O buffer circuit; Reading of the RAM for the
liquid crystal drive is controlled from another separate circuit. Refer to the following memory map for the RAM
configuration.
Memory Map (When using the Type A 4096 color. 8-bit mode,)
RGB alignment ( Command of Data Control Parameter2 = 000 )
Column
scan
direction
P11:0
P11:1
Color
Example:
Data/Scan format
BLOCK
0
1
31
32
Ver 1.4
R
D0_7
D0_6
D0_5
D0_4
0
1
131
131
130
0
G
D0_3
D0_2
D0_1
D0_0
B
D1_7
D1_6
D1_5
D1_4
R
D1_3
D1_2
D1_1
D1_0
Page scan
P10:0
0
1
2
3
4
5
6
7
124
125
126
127
128
129
130
131
SEGout
G
D2_7
D2_6
D2_5
D2_4
B
D2_3
D2_2
D2_1
D2_0
R
D196_3
D196_2
D196_1
D196_0
G
D197_7
D197_6
D197_5
D197_4
B
D197_3
D197_2
D197_1
D197_0
393
394
395
Memory Map
P10:1
131
130
129
128
127
126
125
124
7
6
5
4
3
2
1
0
0
1
2
3
24/109
4
5
2006/09/06
ST7636R
Memory Map (When using the Type A 4096 color. 16-bit mode,)
RGB alignment ( Command of Data Control Parameter2 = 000 )
Column
scan
direction
P11:0
P11:1
Color
Example:
Data/Scan format
BLOCK
0
1
31
32
Ver 1.4
R
D0_15
D0_14
D0_13
D0_12
0
1
131
131
130
0
G
D0_11
D0_10
D0_9
D0_8
B
D0_7
D0_6
D0_5
D0_4
R
D1_15
D1_14
D1_13
D1_12
Page scan
P10:0
0
1
2
3
4
5
6
7
124
125
126
127
128
129
130
131
SEGout
G
D1_11
D1_10
D1_9
D1_8
B
D1_7
D1_6
D1_5
D1_4
R
D131_15
D131_14
D131_13
D131_12
G
D131_11
D131_10
D131_9
D131_8
B
D131_7
D131_6
D131_5
D131_4
393
394
395
Memory Map
P10:1
131
130
129
128
127
126
125
124
7
6
5
4
3
2
1
0
0
1
2
3
25/109
4
5
2006/09/06
ST7636R
Memory Map (When using the Type B 4096 color. 8-bit mode,)
RGB alignment ( Command of Data Control Parameter2 = 000 )
Column
scan
direction
P11:0
P11:1
Color
Example:
Data/Scan format
BLOCK
0
1
31
32
R
D0_3
D0_2
D0_1
D0_0
0
1
131
131
130
0
G
D1_7
D1_6
D1_5
D1_4
B
D1_3
D1_2
D1_1
D1_0
R
D2_3
D2_2
D2_1
D2_0
Page scan
P10:0
0
1
2
3
4
5
6
7
124
125
126
127
128
129
130
131
SEGout
G
D3_7
D3_6
D3_5
D3_4
B
D3_3
D3_2
D3_1
D3_0
R
D262_3
D262_2
D262_1
D262_0
G
D263_7
D263_6
D263_5
D263_4
B
D263_3
D263_2
D263_1
D263_0
393
394
395
Memory Map
P10:1
131
130
129
128
127
126
125
124
7
6
5
4
3
2
1
0
0
1
2
3
4
5
You can change position of R and B with DATACTL command.
Ver 1.4
26/109
2006/09/06
ST7636R
Memory Map (When using the Type B 4096 color. 16-bit mode,)
RGB alignment ( Command of Data Control Parameter2 = 000 )
Column
scan
direction
P11:0
P11:1
Color
Example:
Data/Scan format
BLOCK
0
1
31
32
R
D0_11
D0_10
D0_9
D0_8
0
1
131
131
130
0
G
D0_7
D0_6
D0_5
D0_4
B
D0_3
D0_2
D0_1
D0_0
R
D1_11
D1_10
D1_9
D1_8
Page scan
P10:0
0
1
2
3
4
5
6
7
124
125
126
127
128
129
130
131
SEGout
G
D1_7
D1_6
D1_5
D1_4
B
D1_3
D1_2
D1_1
D1_0
R
D131_11
D131_10
D131_9
D131_8
G
D131_7
D131_6
D131_5
D131_4
B
D131_3
D131_2
D131_1
D131_0
393
394
395
Memory Map
P10:1
131
130
129
128
127
126
125
124
7
6
5
4
3
2
1
0
0
1
2
3
4
5
You can change position of R and B with DATACTL command.
Ver 1.4
27/109
2006/09/06
ST7636R
Memory Map (When using the 65Kcolor. 8-bit mode,)
RGB alignment ( Command of Data Control Parameter2 = 000 )
Column
scan
direction
P11:0
P11:1
Color
Example:
Data/Scan format
BLOCK
0
1
31
32
R
D0_7
D0_6
D0_5
D0_4
D0_3
0
1
131
131
130
0
G
D0_2
D0_1
D0_0
D1_7
D1_6
D1_5
B
D1_4
D1_3
D1_2
D1_1
D1_0
R
D2_7
D2_6
D2_5
D2_4
D2_3
Page scan
P10:0
0
1
2
3
4
5
6
7
124
125
126
127
128
129
130
131
SEGout
G
D2_2
D2_1
D2_0
D3_7
D3_6
D3_5
B
D3_4
D3_3
D3_2
D3_1
D3_0
R
D262_7
D262_6
D262_5
D262_4
D262_3
G
D262_2
D262_1
D262_0
D263_7
D263_6
D263_5
B
D263_4
D263_3
D263_2
D263_1
D263_0
393
394
395
Memory Map
P10:1
131
130
129
128
127
126
125
124
7
6
5
4
3
2
1
0
0
1
2
3
4
5
You can change position of R and B with DATACTL command.
Ver 1.4
28/109
2006/09/06
ST7636R
Memory Map (When using the 65K color. 16-bit mode)
RGB alignment ( Command of Data Control Parameter2 = 000 )
Column
scan
direction
P11:0
P11:1
Color
Example:
Data/Scan format
BLOCK
0
1
31
32
R
D0_15
D0_14
D0_13
D0_12
D0_11
0
1
131
131
130
0
G
D0_10
D0_9
D0_8
D0_7
D0_6
D0_5
B
D0_4
D0_3
D0_2
D0_1
D0_0
R
D1_15
D1_14
D1_13
D1_12
D1_11
Page scan
P10:0
0
1
2
3
4
5
6
7
124
125
126
127
128
129
130
131
SEGout
G
D1_10
D1_9
D1_8
D1_7
D1_6
D1_5
B
D1_4
D1_3
D1_2
D1_1
D1_0
R
D131_15
D131_14
D131_13
D131_12
D131_11
G
D131_10
D131_9
D131_8
D131_7
D131_6
D131_5
B
D131_4
D131_3
D131_2
D131_1
D131_0
393
394
395
Memory Map
P10:1
131
130
129
128
127
126
125
124
7
6
5
4
3
2
1
0
0
1
2
3
4
5
You can change position of R and B with DATACTL command.
Ver 1.4
29/109
2006/09/06
ST7636R
Memory Map (When using the 262K/16Mcolor. 8-bit mode,)
RGB alignment ( Command of Data Control Parameter2 = 000 )
Column
scan
direction
P11:0
P11:1
Color
Example:
Data/Scan format
BLOCK
0
1
31
32
R
D0_7
D0_6
D0_5
D0_4
D0_3
D0_2
D0_1
D0_0
0
1
131
131
130
0
G
D1_7
D1_6
D1_5
D1_4
D1_3
D1_2
D1_1
D1_0
B
D2_7
D2_6
D2_5
D2_4
D2_3
D2_2
D2_1
D2_0
R
D3_7
D3_6
D3_5
D3_4
D3_3
D3_2
D3_1
D3_0
Page scan
P10:0
0
1
2
3
4
5
6
7
124
125
126
127
128
129
130
131
SEGout
G
D4_7
D4_6
D4_5
D4_4
D4_3
D4_2
D4_1
D4_0
B
D5_7
D5_6
D5_5
D5_4
D5_3
D5_2
D5_1
D5_0
R
D393_7
D393_6
D393_5
D393_4
D393_3
D393_2
D393_1
D393_0
G
D394_7
D394_6
D394_5
D394_4
D394_3
D394_2
D394_1
D394_0
B
D395_7
D395_6
D395_5
D395_4
D395_3
D395_2
D395_1
D395_0
393
394
395
Memory Map
P10:1
131
130
129
128
127
126
125
124
7
6
5
4
3
2
1
0
0
1
2
3
4
5
You can change position of R and B with DATACTL command.
Ver 1.4
30/109
2006/09/06
ST7636R
Memory Map (When using the 16 gray-scale, 262K/16M color. 16-bit mode)
RGB alignment ( Command of Data Control Parameter2 = 000 )
Column
scan
direction
P11:0
P11:1
Color
Example:
Data/Scan format
BLOCK
0
1
31
32
R
D0_15
D0_14
D0_13
D0_12
D0_11
D0_10
D0_9
D0_8
0
1
131
131
130
0
G
D0_7
D0_6
D0_5
D0_4
D0_3
D0_2
D0_1
D0_0
B
D1_15
D1_14
D1_13
D1_12
D1_11
D1_10
D1_9
D1_8
R
D1_
D1_6
D1_5
D1_4
D1_3
D1_2
D1_1
D1_0
Page scan
P10:0
0
1
2
3
4
5
6
7
124
125
126
127
128
129
130
131
SEGout
G
D2_7
D2_6
D2_5
D2_4
D2_3
D2_2
D2_1
D2_0
B
D2_7
D2_6
D2_5
D2_4
D2_3
D2_2
D2_1
D2_0
R
D176_7
D176_6
D176_5
D176_4
D176_3
D176_2
D176_1
D176_0
G
D177_7
D177_6
D177_5
D177_4
D177_3
D177_2
D177_1
D177_0
B
D177_7
D177_6
D177_5
D177_4
D177_3
D177_2
D177_1
D177_0
393
394
395
Memory Map
P10:1
131
130
129
128
127
126
125
124
7
6
5
4
3
2
1
0
0
1
2
3
4
5
You can change position of R and B with DATACTL command.
Ver 1.4
31/109
2006/09/06
ST7636R
Memory Map (When using the 16 gray-scale, 262K/16M color. 16-bit mode)
RGB alignment ( Command of Data Control Parameter2 = 000 )
Column
scan
direction
P11:0
P11:1
Color
Example:
Data/Scan format
BLOCK
0
1
31
32
R
D0_15
D0_14
D0_13
D0_12
D0_11
D0_10
D0_9
D0_8
0
1
131
131
130
0
G
D0_7
D0_6
D0_5
D0_4
D0_3
D0_2
D0_1
D0_0
B
D1_15
D1_14
D1_13
D1_12
D1_11
D1_10
D1_9
D1_8
R
D1_
D1_6
D1_5
D1_4
D1_3
D1_2
D1_1
D1_0
Page scan
P10:0
0
1
2
3
4
5
6
7
124
125
126
127
128
129
130
131
SEGout
G
D2_7
D2_6
D2_5
D2_4
D2_3
D2_2
D2_1
D2_0
B
D2_7
D2_6
D2_5
D2_4
D2_3
D2_2
D2_1
D2_0
R
D176_7
D176_6
D176_5
D176_4
D176_3
D176_2
D176_1
D176_0
G
D177_7
D177_6
D177_5
D177_4
D177_3
D177_2
D177_1
D177_0
B
D177_7
D177_6
D177_5
D177_4
D177_3
D177_2
D177_1
D177_0
393
394
395
Memory Map
P10:1
131
130
129
128
127
126
125
124
7
6
5
4
3
2
1
0
0
1
2
3
4
5
You can change position of R and B with DATACTL command.
Ver 1.4
32/109
2006/09/06
ST7636R
7.3.2 Page Address Control Circuit
This circuit is used to control the address in the page direction when MPU accesses the DDRAM or when reading the
DDRAM to display image on the LCD.
You can specify a scope of the page address with page address set command. When the page-direction scan is specified
with DATACTL command and the address are incremented from the start up to the end page, the column address is
incremented by 1 and the page address returns to start page.
The DDRAM supports up to 132 lines, and thus the total page becomes 132.
In the read operation, as the end page is reached, the column address is automatically incremented by 1 and the page
address is returned to start page.
Using the address normal/inverse parameter of DATACTL command allows you to inverse the correspondence between
the DDRAM address and command output.
7.3.3 Column Address Control Circuit
This circuit is used to control the address in the column direction when MPU accesses the DDRAM. You can specify a
scope of the column address using column address set command. When the column-direction scan is specified with
DATACTL command and the address are incremented from the start up to the end page, the page address is incremented
by 1 and the column address returns to start column.
In the read operation, too, the column address is automatically incremented by 1 and returned to start page as the end
column is reached.
Just like the page address control circuit, using the column address normal/inverse parameter of DATACTL command
enables to inverse the correspondence between the DDRAM column address and segment output. This arrangement
relaxes restrictions in the chip layout on the LCD module.
7.3.4 I/O Buffer Circuit
It is the bi-directional buffer used when MPU reads or writes the DDRAM. Since MPU’s read or write of DDRAM is
performed independently from data output to the display data latch circuit, asynchronous access to the DDRAM when the
LCD is turned on does not cause troubles such as flicking of the display images.
7.3.5 Block Address Circuit
The circuit associates pages on DDRAM with COM output. ST7636R processes signals for the liquid crystal display on
4-page basis. Thus, when specifying a specific area in the area scroll display or partial display, you must designate it in
block.
7.3.6 Display data Latch Circuit
This circuit is used to temporarily hold display data to be output from the DDRAM to the SEG decoder circuit. Since display
normal/inverse and display on/off commands are used to control data in the latch circuit alone, they do not modify data in
the DDRAM.
Ver 1.4
33/109
2006/09/06
ST7636R
7.4 Area Scroll Display
Using area scroll set and scroll start set commands allows you to scroll the display screen partially. You can select any one
of the following four scroll patterns.
Fixed area
Scroll area
DDRAM
0
1
2
30 blocks
=128 line
27
28
Fixed area
30
Scroll area
31
32
Ver 1.4
Background area
34/109
2006/09/06
ST7636R
7.5 Partial Display
Using partial in command allows you turn on the partial display (division by line) of the screen. This mode requires less
current consumption than the whole screen display, making it suitable for the equipment in the standby state.
: Display area (partial display area)
: Non-display area
If the partial display region is out of the Max. Display range, it would be no operation
-COM0
-COM1
-COM2
-COM3
-COM4
-COM5
-COM6
-COM7
-COM8
-COM9
-COM10
-COM11
-COM12
-COM13
-COM14
-COM15
-COM16
-COM17
-COM18
-COM19
-COM20
-COM21
-COM22
-COM23
Figure 7.5.1 Reference Example for Partial Display
Ver 1.4
35/109
2006/09/06
ST7636R
-COM0
-COM1
-COM2
-COM3
-COM4
-COM5
-COM6
-COM7
-COM8
-COM9
-COM10
-COM11
-COM12
-COM13
-COM14
-COM15
-COM16
-COM17
-COM18
-COM19
-COM20
-COM21
-COM22
-COM23
Figure 7.5.2 Partial Display (Partial Display Duty=16,initial COM0=0)
-COM0
-COM1
-COM2
-COM3
-COM4
-COM5
-COM6
-COM7
-COM8
-COM9
-COM10
-COM11
-COM12
-COM13
-COM14
-COM15
-COM16
-COM17
-COM18
-COM19
-COM20
-COM21
-COM22
-COM23
Figure 7.5.3 Moving Display (Partial Display Duty=16,Initial COM0=8)
7.6 Gary-Scale Display
ST7636R incorporates a 4FRC & 31 PWM function circuit to display a 64 gray-scale display.
7.7 Oscillation circuit
This is on-chip Oscillator without external resistor. When the internal oscillator is used, CLS must connect to VDD; when
the external oscillator is used, CL could be input pin. This oscillator signal is used in the voltage converter and display
timing generation circuit.
Ver 1.4
36/109
2006/09/06
ST7636R
7.8 Display Timing Generator Circuit
This circuit generates some signals to be used for displaying LCD. The display clock, CL (internal), generated by oscillation
clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is
generated in synchronization with the display clock and the display data latch circuit latches the 132-bit display data in
synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the
access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (M), which
enables the LCD driver to make an AC drive waveform, and also generates an internal common timing signal and start
signal to the common driver. The frame signal or the line signal changes the M by setting internal instruction. Driving
waveform and internal timing signal are shown in Figure 7.8.1.
131 132
1
2
3
4
5
6
7
8
9
10
11
12
124 125 126 127 128 129 130 131 132 1
2
3
4
5
CL(Internal)
FR(Internal)
M(Internal)
COM0
VLCD
V1
V2
V3
V4
VSS
COM1
VLCD
V1
V2
V3
V4
VSS
SEGn
VLCD
V1
V2
V3
V4
VSS
Figure 7.8.1 2-frame AC Driving Waveform (Duty Ratio: 1/132)
127
128
1
2
3
4
5
6
7
8
9
10
11
12
119
120
121
122
123
124
125
126
127
128
1
2
3
4
CL(Internal)
FR(Internal)
M(Internal)
VLCD
V1
V2
V3
V4
Vss
COM0
VLCD
V1
V2
V3
V4
Vss
COM1
VLCD
V1
V2
V3
V4
Vss
SEGn
Figure 7.8.2 N-Line Inversion Driving Waveform (N=5,Duty Ratio=1/128)
Ver 1.4
37/109
2006/09/06
ST7636R
7.9 Liquid Crystal drive Circuit
This driver circuit is configured by 132-channel common drivers and 396-channel segment drivers. This LCD panel driver
voltage depends on the combination of display data and M signal.
VDD
VSS
VLCD
V1
V2
V3
V4
VSS
VLCD
V1
V2
V3
V4
VSS
VLCD
V1
V2
V3
V4
VSS
VLCD
V1
V2
V3
V4
VSS
VLCD
V1
V2
V3
V4
VSS
M
COM0
COM1
COM0
COM2
COM3
COM4
COM5
COM6
COM1
COM7
COM8
COM9
COM2
COM10
COM11
COM12
COM13
COM14
SEG0
SEG 0
1
2
3
4
SEG1
Ver 1.4
38/109
2006/09/06
ST7636R
7.10 Liquid Crystal Driver Power Circuit
The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power
consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage
follower circuits. They are controlled by power control instruction. For details, refers to "Instruction Description". Table
7.10.1 shows the referenced combinations in using Power Supply circuits.
Table 7.10.1 Recommended Power Supply Combinations
Power
User setup
control
(VC VR VF)
Only the internal power
supply circuits are used
V/C
V/R
V/F
circuits
circuits
circuits
VLCD
To series a
111
ON
ON
ON
capacitor
to GND
V0
V1 to V4
To series a
To series a
capacitor to GND
Only the voltage
regulator circuits and
voltage follower circuits
011
OFF
ON
ON
External
input
Only the voltage follower
circuits are used
Only the external power
supply circuits are used
Ver 1.4
to GND
To series a
To series a
capacitor to GND
are used
capacitor
capacitor
to GND
To series a
001
OFF
OFF
ON
Open
External input
capacitor
to GND
000
OFF
OFF
39/109
OFF
Open
External input
External
input
2006/09/06
ST7636R
7.10.1 Voltage Converter Circuits
The Step-up Voltage Circuits
Ver 1.4
40/109
2006/09/06
ST7636R
7.10.2 Voltage Regulator Circuits
SET VOP (SETVOP)
The set VOP function is used to program the optimum LCD supply voltage V0.
SETVOP
Reset state of Vop[8:0] is 257DEC = 13.88V.
The VOP value is programmed via the Vop[8:0] register.
V0=a+( Vop[8:6]Vop[5:0]).b
Ex:Vop[5:0]=000001, Vop[8:6]=100
→ Vop [8:0]=100000001
→ 3.6+257x0.04=13.88
z
a is a fixed constant value (see table 7.10.2).
z
b is a fixed constant value (see table 7.10.2).
z
Vop[8:0] is the programmed VOP value. The programming range for Vop[8:0] is 5 to 410 (19Ahex).
z
Vop[5:0] is the set contrast value which can be set via the command SETVOP and EEPROM.(See command
VOLUP & VOLDOWN)
z
Table 7.10.2
SYMBOL
VALUE
UNIT
a
3.6
V
b
0.04
V
The Vop[8:0] value must be in the VOP programming range as given in Figure 7.10.2. Evaluating equation (1), values
outside the programming range indicated in Figure 7.10.2 may result. Calculated values below 4 will be mapped to
Vop[8:0] = 4, resulting Vop[8:0] values higher than 410 will be mapped to Vop[8:0] = 410. (Sitronix suggests that the
Vop range is equal 4.5V to 18V.
Ver 1.4
41/109
2006/09/06
ST7636R
Figure 7.10.2 VOP programming range
As the programming range for internal generated V0 voltage allows itself value above the max voltage (18V).
So users have to ensure, under all conditions, like setting the VPR register and the temperature compensation, the V0
voltage must remaine below 18V including all tolerances.
Ver 1.4
42/109
2006/09/06
ST7636R
7.10.3 EEPROM Setting Flow
EEPROM Setting Flow
(Detail flow chart and its application programs, refer page.104)
The ST7636R provide the Write and Read function to write the Electronic Control value and Built-in resistance
ratio into and read them from the built-in EEPROM. Using the Write and Read functions, you can store these
values appropriate to each LCD panel. This function is very convenient for user in setting from some different
panel’s voltage. But using this function must attend the setting procedure. Please see the following diagram.
Note1: This setting flow is used for LCM assembler.
Note2: When writing value to EEPROM, the voltage of VDD2~VDD5 (Analog power) = 2.8V~3.0V when
Booster x7, and VDD2~VDD5 (Analog power) = 3.3V when Booster x6.
Note3: When writing value to EEPROM, the Booster must turn ON, Regulator and Follower must turn
OFF, and Display also must turn OFF.
Note4: When writing value to EEPROM, the voltage of VLCD must be more than 18V (Booster efficiency
must be concerned).
Note5: To avoid some errors during IC operation, EEPROM shouldn’t be written without preceding
loading correctly register values from EEPROM.
Note6: If the EEPROM is exposed to a high temperature for hours, data in the memory cell may
probably be lost before the data retention guarantee period. To retain data in the memory cell,
keep the mamory cell below 90℃. The data retention guarantee period is specified including
the retention period.
Figure 7.10.5 EC value control for different modules by loading EEPROM offset
Ver 1.4
43/109
2006/09/06
ST7636R
7.11 RESET CIRCUIT
When Power is Turned On
Input power (VDD1~VDD5)
↓
Be sure to apply POWER-ON RESET (RESET=LOW)
↓
<< State after reset >>
< Display Setting 1 >
Display control (DISCTL)
Setting clock dividing ratio :
2 divisions
Duty setting :
1/4
Setting reverse rotation number of line :
11H reverse rotations
Common scan direction (COMSCN)
Setting scan direction :
COM0ÆCOM65, COM66ÆCOM131
Oscillation on (OSCON) :
Oscillation off
↓
Sleep-out (SLIPOUT) :
Sleep-in
↓
< Power Supply Setting >
<< State after reset >>
Electronic volume control (VOLCTR)
Setting volume value :
0
Setting built-in resistance value :
0 (3.76)
Power control (PWRCTR)
Setting operation of power supply circuit :
ALL OFF
↓
< Display Setting 2 >
<< State after reset >>
Normal rotation of display (DISNOR) / inversion of display (DISINV) :
Normal rotation of display
Partial-in (PTLIN) / Partial-out (PLOUT)
Partial-out
Setting fix area :
Area scroll set (ASCSET)
Setting area scroll region :
0
Setting area scroll type :
Full-screen scroll
Scroll start set (SCSTART)
0
Setting scroll start address :
↓
<< State after reset >>
< Display Setting 3 >
Data control (DATCTL)
Setting normal radiation / inversion of page address :
Normal rotation
Setting normal radiation / inversion of column address :
Normal rotation
Ver 1.4
44/109
2006/09/06
ST7636R
Setting direction of address scanner :
Setting RGB arrangement :
Column direction
Setting gradation :
RGB
65K-color position set (RGBSET8)
65K
Setting color position at 65K-color :
All 0
↓
< RAM Setting >
<< State after reset >>
Page address set (PASET)
Setting start page address :
Setting end page address :
0
Column address set (PASET)
0
Setting start column address :
0
Setting end column address :
0
↓
< RAM Write >
<< State after reset >>
Memory write command (RAMWR)
Writing displayed data : repeat as many as the number needed and
exit by entering other command.
↓
< Waiting (approximately 100ms) >
Wait until the power supply voltage has stabilized.
Enter the power supply control command first, then wait at least
100ms before entering the Display ON command when the built-in
power supply circuit operates. If you do not wait, an unwanted
display may appear on the liquid crystal panel.
↓
Display on (DISON) :
Display off
Note:
1. If changes are unnecessary after reset, command input is unnecessary.
2. Detail initial program please refer page.70
Ver 1.4
45/109
2006/09/06
ST7636R
8. COMMANDS
8.1 Command table
Ext=0
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
DISON
0
1
0
1
0
1
0
1
1
1
1
Display On
AF
None
1
DISOFF
0
1
0
1
0
1
0
1
1
1
0
Display Off
AE
None
2
DISNOR
0
1
0
1
0
1
0
0
1
1
0
Normal Display
A6
None
3
DISINV
0
1
0
1
0
1
0
0
1
1
1
Inverse Display
A7
None
4
COMSCN
0
1
0
1
0
1
1
1
0
1
1
Com Scan Direction
BB
1 byte
5
DISCTR1
0
1
0
1
1
0
0
1
0
1
0
Display Control_1
CA
3 byte
6
SLPP
0
1
0
0
0
0
0
0
1
0
0
Sleep In/Out Preparation
04
1 byte
7
SLPIN
0
1
0
1
0
0
1
0
1
0
1
Sleep In
95
None
8
SLPOUT
0
1
0
1
0
0
1
0
1
0
0
Sleep Out
94
None
9
PASET
0
1
0
0
1
1
1
0
1
0
1
Page Address Set
75
2 byte
10
CASET
0
1
0
0
0
0
1
0
1
0
1
Column Address Set
15
2 byte
11
DATCTL
0
1
0
1
0
1
1
1
1
0
0
Data Scan Direction
BC
3 byte
12
RAMWR
0
1
0
0
1
0
1
1
1
0
0
Writing to Memory
5C
Data
13
RAMRD
0
1
0
0
1
0
1
1
1
0
1
Reading from Memory
5D
Data
14
PLTIN
0
1
0
1
0
1
0
1
0
0
0
Partial display in
A8
2 byte
15
PLTOUT
0
1
0
1
0
1
0
1
0
0
1
Partial display out
A9
None
16
RMWIN
0
1
0
1
1
1
0
0
0
0
0
Read Modify Write In
E0
None
17
RMWOUT
0
1
0
1
1
1
0
1
1
1
0
Read Modify Write Out
EE
None
18
ASCSET
0
1
0
1
0
1
0
1
0
1
0
Area Scroll Set
AA
4 byte
19
SCSTART
0
1
0
1
0
1
0
1
0
1
1
Scroll Start Set
AB
1 byte
20
OSCON
0
1
0
1
1
0
1
0
0
0
1
Internal OSC on
D1
None
21
OSCOFF
0
1
0
1
1
0
1
0
0
1
0
Internal OSC off
D2
None
22
PWRCTL
0
1
0
0
0
1
0
0
0
0
0
Power Control
20
1 byte
23
VOLCTR
0
1
0
1
0
0
0
0
0
0
1
EC control
81
2 byte
24
VOLUP
0
1
0
1
1
0
1
0
1
1
0
EC increase 1
D6
None
25
VOLDOWN
0
1
0
1
1
0
1
0
1
1
1
EC decrease 1
D7
None
26
STREAD
0
0
1
EPSRRD1
0
1
0
0
1
1
1
1
1
0
0
READ Register1
7C
None
28
EPSRRD2
0
1
0
0
1
1
1
1
1
0
1
READ Register2
7D
None
29
NOP
0
1
0
0
0
1
0
0
1
0
1
NOP Instruction
25
None
30
EEOK
0
1
0
0
0
0
0
0
1
1
1
EEPROM Function Start
07
1 byte
31
RESERVED
0
1
0
1
0
0
0
0
0
1
0
Do not Use
82
AUSAM
0
1
0
0
1
1
0
0
0
0
0
Auto-sampling
60
Ver 1.4
Status Read
Function
Hex Parameter Index
Status Read
46/109
27
32
1 byte
2006/09/06
33
ST7636R
Ext=1
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Frame1 Set
0
1
0
0
0
1
0
0
0
0
0
FRAME 1 PWM Set
20
16 byte
1
Frame2 Set
0
1
0
0
0
1
0
0
0
0
1
FRAME 2 PWM Set
21
16 byte
2
Frame3 Set
0
1
0
0
0
1
0
0
0
1
0
FRAME 3 PWM Set
22
16 byte
3
Frame4 Set
0
1
0
0
0
1
0
0
0
1
1
FRAME 4 PWM Set
23
16 byte
4
ANASET
0
1
0
0
0
1
1
0
0
1
0
Analog Set
32
3 byte
5
EPCTIN
0
1
0
1
1
0
0
1
1
0
1
Control EEPROM
CD
1 byte
6
EPCOUT
0
1
0
1
1
0
0
1
1
0
0
Cancel EEPROM
CC
None
7
EPMWR
0
1
0
1
1
1
1
1
1
0
0
Write to EEPROM
FC
None
8
EPMRD
0
1
0
1
1
1
1
1
1
0
1
Read from EEPROM
FD
None
9
DISCTR2
0
1
0
1
1
1
1
0
0
1
1
Display Control_2
F3
1 byte
10
DISPADJ
0
1
0
1
1
1
1
1
0
1
0
FA
1 byte
11
IIPP
0
1
0
1
1
1
1
0
1
0
0
F4
1 byte
12
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Ext In
0
1
0
0
0
1
1
0
0
0
0
Ext=0 Set
30
None
--
Ext Out
0
1
0
0
0
1
1
0
0
0
1
Ext=1 Set
31
None
--
Display Performance
Adjustment
Internal Initialize
Preparation
Hex Parameter Index
Ext=1 or Ext=0
Command
Ver 1.4
47/109
Function
Hex Parameter Index
2006/09/06
ST7636R
8.2 EXT=”0” Function Description
(1) Display ON (DISON) Command: 1; Parameter: None (AFH)
It is used to turn the display on. When the display is turned on, segment outputs and common outputs are generated at the
level corresponding to the display data and display timing. You can’t turn on the display as long as the sleep mode is
selected. Thus, whenever using this command, you must cancel the sleep mode first.
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
1
1
1
1
(2) Display OFF (DISOFF) Command: 1; Parameter: None (AEH)
It is used to forcibly turn the display off. As long as the display is turned off, every on segment and common outputs are
forced to VSS level.
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
1
1
1
0
(3) Normal display (DISNOR) Command: 1; Parameter: None (A6H)
It is used to normally highlight the display area without modifying contents of the display data RAM.
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
0
1
1
0
(4) Inverse display (DISINV) Command: 1; Parameter: None (A7)
It is used to inversely highlight the display area without modifying contents of the display data RAM. This command does
not invert non-display areas in case of using partial display.
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
0
1
1
1
(5) Common scan (COMSCAN) Command: 1; Parameter: 1 (BBH)
It is used to specify the common output direction in the pin of CSEL = L. This command helps increasing degrees of
freedom of wiring on the LCD panel.
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
1
0
1
1
1
0
1
1
-
Parameter1 (P1)
1
1
0
*
*
*
*
*
P12
P11
P10
Command Scan direction
When CSEL=0 configuration is selected, pins and common outputs are scanned in the order shown below.
Ver 1.4
Common scan direction
P12
P11
P10
0
0
0
0
Æ
65
66
Æ
131
0
0
1
0
Æ
65
131
Æ
66
0
1
0
65
Æ
0
66
Æ
131
0
1
1
65
Æ
0
131
Æ
66
COM0 pin
COM65 pin
48/109
COM66 pin
COM131 pin
2006/09/06
ST7636R
Common scan direction
Original graphic :
Com0
Com66
Com65
Com131
P12:P11:P10:0:0:0 (0Æ65,66Æ131)
P12:P11:P10:0:0:1 (0Æ65, 131Æ66)
Com0
Com66
Com0
Com65
Com131
Com131
Com66
P12:P11:P10:0:1:0 (65Æ0, 66Æ131)
P12:P11:P10:0:1:1 (65Æ0, 131Æ66)
Com65
Com66
Com65
Com65
Com131
Com0
Com131
Com0
Com66
Figure 8.2.1 Common scan direction configuration when CSEL=0
Ver 1.4
49/109
2006/09/06
ST7636R
Figure 8.2.2 Common scan direction configuration when CSEL=1
Note : under CSEL=1 configuration, command #BBH will have no effect upon IC operation.
The common scan direction is fixed.
(6) Display control_1 (DISCTR1) Command: 1; Parameter: 3 (CAH)
This command and succeeding parameters are used to perform the display timing-related setups. This command must be
selected before using SLPOUT. Don’t change this command while the display is turned on.
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
1
1
0
0
1
0
1
0
-
Parameter1(P1)
1
1
0
*
*
*
P14
P13
P12
*
*
Parameter2(P2)
1
1
0
*
*
P25
P24
P23
P22
P21
P20 Drive duty
Parameter3(P3)
1
1
0
*
*
*
P34
P33
P32
P31
P30
CL dividing ratio, F1 and F2
drive pattern.
FR inverse-set value 1
(value 2 is in EXT=”1” mode)
P1: it is used to specify the CL dividing ratio.
P14, P13, P12: CL dividing ratio. They are used to change number of dividing stages of external or internal clock.
P14
P13
P12
CL dividing ratio
0
0
0
Not divide
0
0
1
2 divisions
0
1
0
4 divisions
0
1
1
8 divisions
P2: It is used to specify the duty of the module on block basis.
Duty
*
*
P25
P24
P23
P22
P21
P20
(Numbers of display lines)/4-1
Example: 1/128 duty
0
0
0
1
1
1
1
1
128/4-1=31
This will output driving voltage waveforms from com0 to com127.
.
P3: It is used to specify the number of lines to be inversely highlighted on LCD panel from P34 to P30
(Lines can be inversely highlighted in the range of 2 to 128 and P12 to P11 could be set in EXT=”1” mode)
Ver 1.4
50/109
2006/09/06
ST7636R
Define example
EXT=1
EXT=0
(command= F3H)
(command= CAH)
Inversely highlighted line
P12
P11
P10
P34
P33
P32
P31
P30
Inversely highlighted lines-1
Example: 0AH
0
0
0
0
1
0
1
0
11-1=10
Example: 8CH
1
0
0
0
1
1
0
0
77-1=76
In the default, 0 inverse highlight lines are selected.
P34=”0”: Inversion occours every frame. P34=”1”: Independent from frames.
(7) Sleep In/Out Preparation (SLPP) Command: 1; Parameter: 1 (04H)
Using this command to setup ready status for sleep-in or sleep out.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
0
0
0
1
0
0
-
Parameter(P1)
1
1
0
0
0
1
1
1
1
1
P10
Sleep in/out ready
P10 =” 1”: Ready for sleep in. P10 = “0”: Ready for sleep out.
Parameter 3FH is used to initialize sleep-in sequencing, and parameter 3EH is used to initialize sleep-out sequencing.
(8) Sleep in (SPLIN) Command: 1; Parameter: None (95H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
0
1
0
1
0
1
(9) Sleep out (SLPOUT) Command: 1;Parameter: None (94H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
0
1
0
1
0
0
(10) Page address set (PASET) Command: 1; Parameter: 2 (75H)
When MPU makes access to the display data RAM, this command and succeeding parameters are used to specify the
page address area. As the addresses are incremented from the start to the end page in the page-direction scan, the
column address is incremented by 1 and the page address is returned to the start page.
Note: that the start and end page must be specified as a pair. Also, the relation “start page < end page” must be
maintained.
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
1
1
1
0
1
0
1
-
Parameter1(P1)
1
1
0
P17
P16
P15
P14
P13
P12
P11
P10
Start page
Parameter2(P2)
1
1
0
P27
P26
P25
P24
P23
P22
P21
P20
End page
Ver 1.4
51/109
2006/09/06
ST7636R
(11) Column address set (CASET) Command: 1; Parameter: 2 (15H)
When MPU makes access to the display data RAM, this command and succeeding parameters are used to specify the
column address area. As the addresses are incremented from the start to the end column in the column-direction scan, the
page address is incremented by 1 and the column address is returned to the start column.
Note: that the start and end column must be specified as a pair. Also, the relation “start column < end column” must be
maintained.
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
0
1
0
1
0
1
-
Parameter1(P1)
1
1
0
P17
P16
P15
P14
P13
P12
P11
P10
Start address
Parameter2(P2)
1
1
0
P27
P26
P25
P24
P23
P22
P21
P20
End address
(12) Data control (DATCTL) Command: 1;Parameter: 3 (BCH)
This command and succeeding parameters are used to perform various setups needed when MPU operates display data
stored on the built-in RAM.
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
0
1
0
1
0
1
1
1
1
0
0
-
Normal/inverse display of
Parameter1(P1)
1
1
0
*
*
*
*
*
P12
P11
P10 page / column address and
address scan direction.
Parameter2(P2)
1
1
0
*
*
*
*
*
*
*
P20 RGB arrangement
Parameter3(P3)
1
1
0
*
*
*
*
*
P32
P31
P30 Gray-scale setup
P1: It is used to specify the normal or inverse display of the page / column address and also to specify the address
scanning direction.
P10: Normal/inverse display of the page address. P10=0: Normal and P10=1: Inverse
P11: Normal/reverse turn of column address. P11=0: Normal rotation and P11=1: Reverse rotation.
P12: Address-scan direction. P12=0: In the column direction and P12=1: In the page direction.
Page address and page-address scan direction
P12=0 Column direction
Ver 1.4
P11=0
P11=1
P10=0
0
1
2
0
131
P10=1
131
130
129
129
130
131
2
1
0
1
130
2
129
52/109
129
2
130
1
131
0
2006/09/06
ST7636R
P12=1 Page direction
P11=0
P11=1
P10=0
0
1
2
0
131
P10=1
131
130
129
129
130
131
2
1
0
1
130
2
129
129
2
130
1
131
0
P2: RGB arrangement. This parameter allows you to change RGB arrangement of data which is going to be written into
RAM, and therefore causes the inverse RGB rotation of the segment output of ST7636R. You can fit RGB arrangement
on the LCD panel according to this parameter setting.
P20
SEG0
SEG1
SEG2
SEG3
SEG4
SEG5
SEG6
SEG7
…
SEG395
0
R
G
B
R
G
B
R
G
…
B
1
B
G
R
B
G
R
B
G
…
R
ST7636R
( BUMP SIDE )
ST7636R
( BUMP SIDE )
(a) COMMAND #BCH, DATA #00H
Ver 1.4
(b) COMMAND #BCH, DATA #01H
53/109
2006/09/06
ST7636R
ST7636R
( BUMP SIDE )
ST7636R
( BUMP SIDE )
(c) COMMAND #BCH, DATA #02H
(d) COMMAND #BCH, DATA #03H
Figure 8.2.3 Different RAM accessing setup when CSEL=0 under COMMAND #BBH, DATA #00H
(a) COMMAND #BCH, DATA #00H
(b) COMMAND #BCH, DATA #01H
(c) COMMAND #BCH, DATA #02H
(d) COMMAND #BCH, DATA #03H
ST7636R
( BUMP SIDE )
ST7636R
( BUMP SIDE )
(e) COMMAND #BCH, DATA #04H
Ver 1.4
(f) COMMAND #BCH, DATA #05H
54/109
2006/09/06
ST7636R
ST7636R
( BUMP SIDE )
ST7636R
( BUMP SIDE )
(g) COMMAND #BCH, DATA #06H
(h) COMMAND #BCH, DATA #07H
Figure 8.2.3 Different RAM accessing setup when CSEL=0 under COMMAND #BBH, DATA #00H (continue)
(e) COMMAND #BCH, DATA #04H
(f) COMMAND #BCH, DATA #05H
(g) COMMAND #BCH, DATA #06H
(h) COMMAND #BCH, DATA #07H
P3: Gray scale setup. Using this parameter, you can select the 4K, 65K, 262K, and 16M display mode depending on the
difference in RGB data arrangement.
P32
P31
P30
Numbers of gray-scale
0
0
1
64-gray 65K
0
1
0
64-gray 262K
1
0
0
64-gray 16M
1
0
1
16-gray 4K Type A
1
1
0
16-gray 4K Type B
(13) Memory write (RAMWR) Command: 1; Parameter: Numbers of data written (5CH)
When MPU writes data to the display memory, this command turns on the data entry mode. Entering this command always
sets the page and column address at the start address. You can rewrite contents of the display data RAM by entering data
succeeding to this command. At the same time, this operation increments the page or column address as applicable. The
write mode is automatically cancelled if any other command is entered.
Ver 1.4
55/109
2006/09/06
ST7636R
1. 8-bit bus
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
1
0
1
1
1
0
0
-
Parameter
1
1
0
A0
RD
RW
D15
D14
…
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
*
*
…
*
*
0
1
0
1
1
1
0
0
Memory write
parameter
1
1
0
Data to be written
Data to be written
2. 16-bit bus
Data to be written
Write data
(14) Memory read (RAMRD) Command: 1; Parameter: Numbers of data read (5DH)
When MPU read data from the display memory, this command turns on the data read mode. Entering this command
always sets the page and column address at the start address. After entering this command, you can read contents of the
display data RAM. At the same time, this operation increments the page or column address as applicable. The data read
mode is automatically cancelled if any other command is entered.
1. 8-bit bus
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
1
0
1
1
1
0
1
-
Parameter
1
0
1
A0
RD
RW
D15
Command
0
1
0
*
parameter
1
0
1
Data to be read
Data to be read
2. 16-bit bus
D14
….
D9
D8
*
*
*
*
D7
D6
D5
D4
D3
D2
D1
D0
Function
0
1
0
1
1
1
0
1
Memory read
Data to be read
Read data
(15) Partial in (PTLIN) Command: 1; Parameter: 2 (A8H)
This command and succeeding parameters specify the partial display area. This command is used to turn on partial display
of the screen (dividing screen by lines) in order to save power. Since ST7636R processes the liquid crystal display signal
on 4-line basis (block basis), the display and non-display areas are also specified on 4-bit line (block basis).
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
1
0
1
0
1
0
0
0
-
Parameter(P1)
1
1
0
*
*
P15
P14
P13
P12
P11
P10
Start block address
Parameter(P2)
1
1
0
*
*
P25
P24
P23
P22
P21
P20
End block address
A block address that can be specified for the partial display must be the display one (don’t try to specify an address not to
be displayed when scrolled).
(16) Partial out (PTLOUT) Command: 1; Parameter: 0 (A9H)
This command is used to exit from the partial display mode.
Command
Ver 1.4
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
1
0
0
1
56/109
2006/09/06
ST7636R
(17) Read modify write in (RMWIN) Command: 1; Parameter: 0 (E0H)
This command is used along with the column address set command, page address set command and read modify write out
command. This function is used when frequently modifying data to specify a specific display area such as blinking cursor.
First set a specific display area using the column and page address commands. Then, enter this command to set the
column and page addresses at the start address of the specific area. When this operation is complete, the column (page)
address won’t be modified by the display data read command. It is incremented only when the display data write command
is used. You can cancel this mode by entering the read modify write out or any other command.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
1
0
0
0
0
0
(18) Read modify write out (RMWOUT) Command: 1; Parameter: 0 (EEH)
Enter this command cancels the read modify write mode
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
1
0
1
1
1
0
(19) Area scroll set (ASCSET) Command: 1; Parameter: 4 (AAH)
It is used when scrolling only the specified portion of the screen (dividing the screen by lines). This command and
succeeding parameters specify the type of area scroll, fix area and scroll area.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
1
0
1
0
1
0
1
0
-
Parameter(P1)
1
1
0
*
*
P15
P14
P13
P12
P11
P10
Top block address
Parameter(P2)
1
1
0
*
*
P25
P24
P23
P22
P21
P20
Bottom block address
Parameter(P3)
1
1
0
*
*
P35
P34
P33
P32
P31
P30
Number of specified blocks
Parameter(P4)
1
1
0
*
*
*
*
*
*
P41
P40
Area scroll mode
P4: It is used to specify an area scroll mode.
P41
P40
Type of area scroll
0
0
Center screen scroll
0
1
Top screen scroll
1
0
Bottom screen scroll
1
1
Whole screen scroll
Ver 1.4
57/109
2006/09/06
ST7636R
Center screen scroll
Top screen scroll
Fixed area
Bottom screen scroll
Whole screen scroll
Scroll area
Since ST7636R processes the liquid crystal display signals on the four-line basis (block basis), FIX and scroll areas are
also specified on the four-line basis (block basis).
DDRAM address corresponding to the top FIX area is set in the block address incrementing direction starting with 0 block.
DDRAM address corresponding to the bottom FIX area is set in the block address decreasing direction starting with 32
st
block. Other DDRAM blocks excluding the top and bottom FIX areas are assigned to the scroll + background areas.
th
P1: It is used to specify the top block address of the scroll + background areas. Specify the 0 block for the top screen
scroll or whole screen scroll.
th
P2: It specifies the bottom address of the scroll+ background areas. Specify the 32 block for the bottom or whole screen
scroll.
Required relation between the start and end blocks (top block address<bottom block address) must be maintained.
P3: It specifies a specific number of blocks {Numbers of (Top FIX area +Scroll area) block-1}. When the bottom scroll or
whole screen scroll, the value is identical with P2.
You can turn on the area scroll function by executing the area scroll set command first and then specifying the display start
block of the scroll area with the scroll start set command.
[Area Scroll Setup Example]
In the center screen scroll of 1/120 duty (display range: 120 lines=30 blocks), if 8 lines=2 blocks and 8 lines=2 blocks are
specified for the top and bottom FIX areas, 104 lines =26 blocks is specified for the scroll areas, respectively, 12 lines = 3
blocks on the DDRAM are usable as the background area. Value of each parameter at this time is as shown below.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
P1
1
1
0
*
*
0
0
0
0
1
0
Top block address = 2
P2
1
1
0
*
*
0
1
1
1
1
0
Bottom block address = 30
Ver 1.4
58/109
2006/09/06
ST7636R
P3
1
1
0
*
*
0
1
1
1
1
0
Number of specific blocks = 30
P4
1
1
0
*
*
*
*
*
*
0
0
Area scroll mode = center
(20) Scroll start address set (SCSTART) Command:1 Parameter: 1 (ABH)
This command and succeeding parameters are used to specify the start block address of the scroll area.
Note: that you must execute this command after executing the area scroll set command. Scroll becomes available by
dynamically changing the start block address.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
1
0
1
0
1
0
1
1
-
Parameter(P1)
1
1
0
*
*
P15
P14
P13
P12
P11
P10
Start block address
(21) Internal oscillation on (OSCON) Command: 1; Parameter: 0 (D1H)
This command turns on the internal oscillation circuit. It is valid only when the internal oscillation circuit of CLS = HIGH is
used.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
1
0
0
0
1
(22) Internal oscillation off (OSOFF) Command: 1; Parameter: 0 (D2H)
It turns off the internal oscillation circuit. This circuit is turned off in the reset mode.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
1
0
0
1
0
(23) Power control set (PWRCTR) Command: 1; Parameter: 1 (20H)
This command is used to turn on or off the Booster circuit, follower voltage, and voltage regulator circuit.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
1
0
0
1
0
0
0
0
0
Parameter(P1)
1
1
0
*
*
*
0
P13
0
P11
P10
Function
-
LCD drive power
P10: It turns on or off the voltage regulator voltage.
P10 = “1”: ON. P10 =” 0”: OFF
P11: It turns on or off the follower circuit.
P11 = “1”: ON. P11 =” 0”: OFF
P13:It turns on or off the Booster.
P13 = “1”: ON. P13 =” 0”: OFF
(24) Electronic volume control (VOLCTR) Command: 1; Parameter: 2 (81H)
The command is used to program the optimum LCD supply voltage VOP (V0) Reference to 7.10.2
Command
Ver 1.4
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
0
1
0
1
0
0
0
0
0
0
1
-
59/109
2006/09/06
ST7636R
Parameter(P1)
1
1
0
*
*
P15
P14
P13
P12
P11
P10
Set Vop[5:0]
Parameter(P2)
1
1
0
*
*
*
*
*
P18
P17
P16
Set Vop[8:6]
(25) Increment electronic control (VOLUP) Command: 1; Parameter: 0 (D6H)
With the VOLUP and VOLDOWN command the VOP voltage and therewith the contrast of the LCD can be adjusted.
This command increments electronic control value Vop[5:0] of voltage regulator circuit by 1.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
1
0
1
1
0
If you set the electronic control value to 111111, the control value is set to 000000 after this command has been executed.
(26) Decrement electronic control (VOLDOWN) Command: 1; Parameter: 0 (D7H)
With the VOLUP and VOLDOWN command the VOP voltage and therewith the contrast of the LCD can be adjusted.
This command decrements electronic control value Vop[5:0] of voltage regulator circuit by 1.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
1
0
1
1
1
If you set the electronic control value to 000000, the control value is set to 111111 after this command has been executed.
Table 8.1.1 Possible Vop[5:0] values
Ver 1.4
Electronic Control Value
Decimal Equivalent
VOP Offset
111111
31
+1240 mV
111110
30
+1200 mV
111101
29
+1160 mV
…
…
…
000010
2
+80 mV
000001
1
+40 mV
000000
0
0 mV
111111
-1
-40 mV
111110
-2
-80 mV
…
…
…
100010
-30
-1200 mV
100001
-31
-1240 mV
100000
-32
-1280mV
60/109
2006/09/06
ST7636R
(27) Status read (STREAD) Command: 1; Parameter: None
It is the command for reading the internal condition of the IC.
A0
RD
RW
0
0
1
Command
D7
D6
D5
D4
D3
D2
D1
D0
(8) Status data
Issue STREAD (Status Read) command only to read the internal condition of the IC. One status data can be displayed
depending on the setting. Issue the NOP command after the STREAD (Status Read) command.
The Status data will be composed of 8 bits below:
D7: Area scroll mode
Refer to P41 (ASCSET)
D6: Area scroll mode
Refer to P40 (ASCSET)
D5: RMW on/off
0 : Out
1 : In
D4: Scan direction
0 : Column
1 : Page
D3: Display ON/OFF
0 : OFF
1 : ON
D2: EEPROM access
0: OutAccess
1: InAccess
D1: Display normal/inverse
0 : Normal
1 : Inverse
D0: Partial display
0 : OFF
1 : ON
(28) Read Register 1 (EPSRRD1) Command: 1; Parameter: 0 (7CH)
It is the command for reading the Electronic Control values.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
1
1
1
0
0
Issue the EPSRRD1 and then STREAD (Status Read) commands in succession to read the Electronic Control values. One
status data can be displayed depending on the setting. Also, always issue the NOP command after the STREAD (Status
Read) command.
The Status data will be composed of 8 bits below:
D7: 0
D6: 0
D[5:0]: Vop[5:0]
Refer to electronic volume control values Vop[5:0]
(29) Read Register 2 (EPSRRD2) Command: 1 ;Parameter: 0 (7DH)
It is the command for reading ID codes of the ST7636R and the built-in resistance ratio.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
1
1
1
0
1
Issue the EPSRRD2 and then STREAD (Status Read) commands in succession to read IC’s ID and the built-in resistance
ratio. One status data can be displayed depending on the setting. Also, always issue the NOP command after the STREAD
(Status Read) command.
The Status data will be composed of 8 bits below:
D[7:3]: ST7636R ID codes
00001
D[2:0]: Vop[8:6]
Refer to the built-in resistance ratio Vop[8:6]
Ver 1.4
61/109
2006/09/06
ST7636R
(30) Non-operating (NOP) Command: 1; Parameter: 0 (25H)
This command does not affect the operation.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
1
0
0
1
0
1
Command
This command, however, has the function of canceling the IC test mode. Thus, it is recommended to enter it periodically to
prevent malfunctioning due to noise and such.
(31) EEPROM Function Start (EEOK) Command:1;Parameter:1(07H)
In the OTP read/write flow, EEPROM is ready after issuing this command. Its parameter is set to 19H.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
0
0
0
1
1
1
-
Parameter(P1)
1
1
0
0
0
0
1
1
0
0
1
19H
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
0
0
0
0
1
0
(32) Reserved (82H)
Do not use this command.
Command
(33) Auto-sampling (AUSAM) Command: 1; Parameter: None (60H)
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
0
0
0
0
0
Command
8.3 EXT=”1” Function Description
(1) Set Frame1 value (Frame1 set) Command: 1; Parameter: 16 (20H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Frame1 Set
0
1
0
0
0
1
0
0
0
0
0
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set RGB level 0 of 1st frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set RGB level 1 of 1st frame
Parameter15(P15)
1
1
0
*
*
*
P154 P153 P152 P151 P150 Set RGB level 14 of 1st frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set RGB level 15 of 1st frame
FRAME 1 PWM Set
Function
(2)Set Frame2 value (Frame2 set) Command: 1; Parameter: 16 (21H)
Command
Ver 1.4
A0
RD
WR
D7
D6
D5
D4
D3
62/109
D2
D1
D0
Function
2006/09/06
ST7636R
Frame2 Set
0
1
0
0
0
1
0
0
0
0
1
FRAME 2 PWM Set
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set RGB level 0 of 2nd frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set RGB level 1 of 2nd frame
Parameter15(P15)
1
1
0
*
*
*
P154 P153 P152 P151 P150 Set RGB level 14 of 2nd frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set RGB level 15 of 2nd frame
Function
(3) Set Frame3 value (Frame3 set) Command: 1; Parameter: 16 (22H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Frame3 Set
0
1
0
0
0
1
0
0
0
1
0
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set RGB level 0 of 3rd frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set RGB level 1 of 3rd frame
Parameter15(P15)
1
1
0
*
*
*
P154 P153 P152 P151 P150 Set RGB level 14 of 3rd frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set RGB level 15 of 3rd frame
FRAME 3 PWM Set
Function
(4) Set Frame4 value (Frame4 set) Command: 1; Parameter: 16 (23H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Frame4 Set
0
1
0
0
0
1
0
0
0
1
1
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set RGB level 0 of 4th frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set RGB level 1 of 4th frame
Parameter15(P15)
1
1
0
*
*
*
P154 P153 P152 P151 P150 Set RGB level 14 of 4th frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set RGB level 15 of 4th frame
FRAME 4 PWM Set
Function
The default value of RGB level set
FRAM1 SET
FRAM2 SET
FRAM3 SET
FRAME4 SET
RGB level0
00
00
00
00
RGB level1
02
02
02
02
RGB level2
05
05
05
05
RGB level3
07
07
07
08
Ver 1.4
63/109
2006/09/06
ST7636R
RGB level4
0A
0A
0A
0B
RGB level5
0D
0D
0D
0C
RGB level6
0F
10
0F
10
RGB level7
11
12
11
12
RGB level8
13
14
13
14
RGB level9
16
16
16
15
RGB level10
18
18
18
17
RGB level11
19
19
19
1A
RGB level12
1B
1B
1B
1A
RGB level13
1C
1C
1C
1D
RGB level14
1D
1D
1D
1E
RGB level15
1E
1E
1E
1E
All the modulation range of each level for each frame is from 00’H to 1F’H.
Example:Paint setup
void LoadPaint( void )
{
Write( COMMAND, 0x0031 );
Ver 1.4
// Ext = 1
Write( COMMAND, 0x0020 );
Write( DATA, 0x0000 );
Write( DATA, 0x0002 );
Write( DATA, 0x0005 );
…….
…….
Write( DATA, 0x001E );
// Palette FRC1 Setup
// RGB Level0 Setup
// RGB Level1 Setup
// RGB Level2 Setup
…….
…….
// RGB Level15 Setup
Write( COMMAND, 0x0021 );
Write( DATA, 0x0000 );
Write( DATA, 0x0002 );
Write( DATA, 0x0005 );
…….
…….
Write( DATA, 0x001E );
// Palette FRC2 Setup
// RGB Level0 Setup
// RGB Level1 Setup
// RGB Level2 Setup
…….
…….
// RGB Level15 Setup
Write( COMMAND, 0x0022 );
Write( DATA, 0x0000 );
Write( DATA, 0x0002 );
Write( DATA, 0x0005 );
…….
…….
Write( DATA, 0x001E );
// Palette FRC3 Setup
// RGB Level0 Setup
// RGB Level1 Setup
// RGB Level2 Setup
…….
…….
// RGB Level15 Setup
Write( COMMAND, 0x0023 );
Write( DATA, 0x0000 );
Write( DATA, 0x0002 );
Write( DATA, 0x0005 );
…….
…….
// Palette FRC4 Setup
// RGB Level0 Setup
// RGB Level1 Setup
// RGB Level2 Setup
…….
…….
64/109
2006/09/06
ST7636R
Write( DATA, 0x001E );
// RGB Level15 Setup
Write( COMMAND, 0x0030 );
// Ext = 0
}
(5) Analog set (ANASET) Command 1; Parameter: 3 (32H)
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
1
1
0
0
1
0
-
Parameter1(P1)
1
1
0
*
*
*
*
*
P12
P11
P10 OSC frequency Adjustment
Parameter2(P2)
1
1
0
*
*
*
*
*
*
P21
P20 Booster Efficiency Set
Parameter3(P3)
1
1
0
*
*
*
*
*
P32
P31
P30 Bias setting
P1: OSC frequency adjustment
P12
P11
P10
CL pin frequency ( KHz ) :
CL pin frequency ( KHz ) :
CL dividing ratio setting = 00H
CL dividing ratio setting = 04H
(No division)
(Divided by 2)
0
0
0
10.46
5.23
0
0
1
10.82
5.41
0
1
0
11.67
5.84
0
1
1
12.74
6.37
1
0
0
14.03
7.02
1
0
1
15.63
7.82
1
1
0
17.61
8.81
1
1
1
20.32
10.16
OSC frequency can be adjusted by P1 setting and command CAH, see page 51.
The default OSC frequency (CL pin frequency) is 10.46 KHz.
And the frame frequency is from OSC frequency and duty setting, as the formula shown below:
Frame frequency = OSC frequency / (Duty+1)
Example:
1.
duty=132, P1 setting=[000], frame frequency=10.46KHz/133~78.64Hz
2.
duty=128, P1 setting=[101], frame frequency=15.63KHz/129~121.16Hz
P2: Booster Efficiency set
P21
P20
0
0
Level 1
0
1
Level 2
1
0
Level 3
Ver 1.4
Frequency ( Hz )
65/109
2006/09/06
ST7636R
1
1
Level 4
By Booster Stages (2X, 3X, 4X, 5X, 6X, 7X, 8X) and Booster Efficiency (Level1~4) commands, we could easily set the best
Booster performance with suitable current consumption. If the Booster Efficiency is set to higher level (level4 is higher than
level1). The Boost Efficiency is better than lower level, and it just need few more power consumption current.
P3: Select LCD bias ratio of the voltage required for driving the LCD.
P32
P31
P30
LCD bias
0
0
0
1/12
0
0
1
1/11
0
1
0
1/10
0
1
1
1/9
1
0
0
1/8
1
0
1
1/7
1
1
0
1/6
1
1
1
1/5
(6) Control EEPROM: 1; Parameter: 1 (CDH)
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
1
1
0
0
1
1
0
1
Parameter1(P1)
1
1
0
*
*
P15
*
*
*
*
*
P15: when setting “1” Î The Write Enable of EEPROM will be opened.
P15: when setting “0” Î The Read Enable of EEPROM will be opened.
(7) Cancel EEPROM Command: 1;Parameter: None
Command
(CCH)
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
0
1
1
0
0
(8) Write data to EEPROM (EPMWR) Command: 1; Parameter: None (FCH)
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
1
1
1
1
0
0
(9) Read data from EEPROM (EPMWR) Command: 1; Parameter: None (FDH)
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
1
1
1
1
0
1
(10) Display control_2 (DISCTR2) Command: 1; Parameter: 1 (F3H)
Ver 1.4
66/109
2006/09/06
ST7636R
This command is used to extend the higher byte of inversing lines highlighted on LCD panel from P12 to P10 and P33 to
P30 (lines can be inversely highlighted in the range of 2 to 128)
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
1
1
1
1
0
0
1
1
-
Parameter1(P1)
1
1
0
*
*
*
*
*
P12
P11
Define example
EXT=1
EXT=0
(command= F3H)
(command= CAH)
P10 FR inverse-set value 2
Inversely highlighted line
P12
P11
P10
P34
P33
P32
P31
P30
Inversely highlighted lines-1
Example: 0AH
0
0
0
0
1
0
1
0
11-1=10
Example: 8CH
1
0
0
0
1
1
0
0
77-1=76
In the default, 0 inverse highlight lines are selected.
P34=”0”: Inversion occours every frame. P34=”1”: Independent from frames.
(11) Display performance adjustment (DISPADJ) Command: 1; Parameter: 1 (FAH)
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
1
1
1
1
1
0
1
0
Parameter1(P1)
1
1
0
*
*
*
P14
P13
P12
P11
Function
Display performance adjustment
P10 Fine tuning level set
ST7636R provide the function of 32 levels fine tuning to adjust best crosstalk performance for each module. Just like Vop
offset for different modules, the fine tuning level value can also be stored in EEPROM, and therefore each module can
have its individual setup for best display performance.
Due to IC and module process variation, it’s hard for all modules to have same display performance. By using this
command, different modules can adjust to the best performance by having different parameters of DISPADJ. When loading
EEPROM, this individual parameter can be loaded into IC and best display performance can be achieved. Detail using
method please refer ST7636R EEPROM User Manual guide.
(12) Internal Initialize Preparation (IIPP) Command: 1; Parameter: 1 (F4H)
Use this command to set internal initializing for ready status.
Command
Parameter(P1)
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
0
1
0
1
1
1
1
0
1
0
0
-
1
1
0
0
1
0
1
1
0
0
0
Internal initialize
sequencing
8.4 EXT=”0” or ”1” Function Description
(1) Extension instruction disable (EXT IN) Command:1 Parameter: None (30H)
Use the “Ext=0” command table
Ver 1.4
67/109
2006/09/06
ST7636R
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
1
1
0
0
0
0
(2) Extension instruction enable (EXT OUT) Command:1 Parameter: None (31H)
Use the extended command table (EXT=”1”)
Command
Ver 1.4
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
1
1
0
0
0
1
68/109
2006/09/06
ST7636R
8.5 Referential Instruction Setup Flow
8.5.1 Initializing with the Built-in Power Supply Circuits
Figure 8.5.1.1 Initializing with the Built-in Power Supply Circuits
Ver 1.4
69/109
2006/09/06
ST7636R
Example:Initial code for 128X128
void ST7636R_Init( void )
{
Write( COMMAND, 0x30 );
Write( COMMAND, 0x04 );
Write( DATA, 0x3e );
Ver 1.4
// Ext = 0
// Sleep In/Out Preparation
// Sleep In/Out Sequencing
Write( COMMAND, 0x31 );
Write( COMMAND, 0xf4 );
Write( DATA, 0x58 );
// Ext = 1
// Internal Initialize Preparation
// Internal Initialize Sequencing
Write( COMMAND, 0x30 );
Write( COMMAND, 0x94 );
Write( COMMAND, 0xd1 );
Write( COMMAND, 0xca );
Write( DATA, 0x00 );
Write( DATA, 0x1f );
Write( DATA, 0x00 );
// Ext = 0
// Sleep Out
// Internal OSC on
// Display Control
// CL divisions Ratio
// Duty Setting (= 128)
// N-Line Inverse-set value
Write( COMMAND, 0x31 );
Write( COMMAND, 0x32 );
Write( DATA, 0x00 );
Write( DATA, 0x01 );
Write( DATA, 0x00 );
// Ext = 1
// Analog Setting
// OSC Freqency adjustment
// Booster Efficiency Setting
// Bias Setting (=1/12)
Write( COMMAND, 0x30 );
Write( COMMAND, 0x81 );
Write( DATA, 0x1B );
Write( DATA, 0x04 );
Write( COMMAND, 0x20 );
Write( DATA, 0x0b );
// Ext = 0
// Electronic Volume Control
// EV:Vop[5:0]_6bit
// EV:Vop[8:6]_3bit
// Vop is 14.92V under this condition for example
// Power Control
// B/F/R = On/On/On
Write( COMMAND, 0x30 );
Write( COMMAND, 0x60 );
delay(50000);
LoadEEPROM();
LoadPaint();
// Ext = 0
// Auto-sampling
// Delay 50ms
// Load EEPROM (refer page 71)
// Load Gamma Table Parameter (refer page 64)
Write( COMMAND, 0x30 );
Write( COMMAND, 0xa7 );
Write( COMMAND, 0xbb );
Write( DATA, 0x01 );
Write( COMMAND, 0xbc );
Write( DATA, 0x00 );
Write( DATA, 0x00 );
Write( DATA, 0x01 );
// Ext = 0
// Inverse Display
// Com Scan Direction
// 0~65 / 131~66
// Data Scan Direction
// Page / Column Address Setting
// RGB arrangement (0:RGB 1:BGR)
// Gray-scale setup ( 64-gray: 01H)
Write( COMMAND, 0x75 );
Write( DATA, 0x00 );
Write( DATA, 0x7f );
Write( COMMAND, 0x15 );
Write( DATA, 0x00 );
Write( DATA, 0x7f );
// Page address set
// From page address 0
// to page address 127
// Column address set
// From column address 0
// to column address 127
Write( COMMAND, 0xaf );
Write( COMMAND, 0x30 );
// Display On
// Ext = 0
70/109
2006/09/06
ST7636R
}
Example:Load EEPROM
void LoadEEPROM( void )
{
Write( COMMAND, 0x31 );
Write( COMMAND, 0xcd );
Write( DATA, 0x00 );
delay(50000);
Write( COMMAND, 0xfd );
delay(50000);
Write( COMMAND, 0xcc );
Write( COMMAND, 0x30 );
// Ext = 1
// Enable EEPROM
//
// Delay 50ms
// Load EEPROM
// Delay 50ms
// Disable EEPROM
// Ext = 0
}
8.5.2 Data Displaying
Normal State
Display Data RAM Addressing by Instruction
[Data Control: BCH]
[Set Page Address: 75H]
[Set Column Address: 15H]
[Entry Memory Write Mode: 5CH]
Display Data Write
[Display Data Write]
No
End of Display Data Write ?
Yes
End of Data Display
Figure 8.5.2.1 Data Displaying
Ver 1.4
71/109
2006/09/06
ST7636R
Example:Display for 128X128
void Display( char *pattern )
{
unsigned char i, j;
Write( COMMAND, 0x30 );
Write( COMMAND, 0x15 );
Write( DATA, 0 );
Write( DATA, 127 );
Write( COMMAND, 0x75 );
Write( DATA, 0 );
Write( DATA, 127 );
Write( COMMAND, 0x5c )
for( j = 0; j < 127 ; j++ )
for( i = 0 ; i < 127 ; i++ )
Write( DATA, pattern[j*128+i] );
// Ext = 0
// Column address set
// From column address 0 to 127
// Page address set
// From page address 0 to 127
// Entry Memory Write Mode
// Display Data Write
}
8.5.3 Partial Display In/Out
Figure 8.5.3.1 Partial Display In/Out
Ver 1.4
72/109
2006/09/06
ST7636R
Example:Partial Display In Operation
void PartailIn( unsigned char start_block, unsigned char end_block )
{
Write( COMMAND, 0x30 );
// Ext = 0
Write( COMMAND, 0xA8);
// Partial Display In Function
Write( DATA, start_block );
// Start Block
Write( DATA, end_block );
// End Block
}
void PartailOut( void )
{
Write( COMMAND, 0x30 );
Write( COMMAND, 0xA9 );
// Ext = 0
// Partial Display Out Function
}
extern unsigned char *display_pattern;
void main()
{
PartialIn( 11, 18 );
// entry partial display mode
Windowing( 0, 11*4, 131, 18*4 );
PartialDisplay( display_pattern );
.
.
.
PartialOut();
// set the page and column range
// Fill the data into partial display area
// Out of partial display mode
}
Ver 1.4
73/109
2006/09/06
ST7636R
8.5.4 Scroll Display
Figure 8.5.4.1 Scroll Display
Example:Screen Scroll Operation
void CenterScreenScroll( void )
{
Write( COMMAND, 0x30 );
Write( COMMAND, 0xAA);
Write( DATA, 0x0a );
Write( DATA, 0x14 );
Write( DATA, 0x14 );
Write( DATA, 0x00 );
// Ext = 0
// Partial Display In Function
// Top_Block=10
// Bottom_Block=20
// Number of Specified Blocks=Bottom_Block=20
// Area Scroll Type=Center Screen Scroll
ScrollUp() or ScrollDown();
// Scroll Up or Scroll Down
}
Ver 1.4
74/109
2006/09/06
ST7636R
void TopScreenScroll( void )
{
Write( COMMAND, 0x30 );
Write( COMMAND, 0xAA);
Write( DATA, 0x00 );
Write( DATA, 0x14 );
Write( DATA, 0x14 );
Write( DATA, 0x01 );
// Ext = 0
// Partial Display In Function
// Top_Block=0
// Bottom_Block=20
// Number of Specified Blocks=Bottom_Block=20
// Area Scroll Type=Top Screen Scroll
ScrollUp() or ScrollDown();
// Scroll Up or Scroll Down
}
void BottomScreenScroll( void )
{
Write( COMMAND, 0x30 );
Write( COMMAND, 0xAA);
Write( DATA, 0x0a );
Write( DATA, 0x20 );
Write( DATA, 0x20 );
Write( DATA, 0x02 );
// Ext = 0
// Partial Display In Function
// Top_Block=10
// Bottom_Block=32
// Number of Specified Blocks=Bottom_Block=32
// Area Scroll Type=Bottom Screen Scroll
ScrollUp() or ScrollDown();
// Scroll Up or Scroll Down
}
void WholeScreenScroll( void )
{
Write( COMMAND, 0x30 );
Write( COMMAND, 0xAA);
Write( DATA, 0x00 );
Write( DATA, 0x20 );
Write( DATA, 0x20 );
Write( DATA, 0x03 );
// Ext = 0
// Partial Display In Function
// Top_Block=0
// Bottom_Block=32
// Number of Specified Blocks=Bottom_Block=32
// Area Scroll Type=Whole Screen Scroll
ScrollUp() or ScrollDown();
// Scroll Up or Scroll Down
}
void ScrollUp( void )
{
Ver 1.4
Write( COMMAND, 0x30 );
Write( COMMAND, 0xAB);
Write( DATA, Top_Block);
Delay();
// Ext = 0
// Scroll Start Set
// Start Block Address=Top_Block
// Delay
Write( COMMAND, 0x00AB);
Write( DATA, Top_Block +1 );
Delay();
// Scroll Start Set
// Start Block Address= Top_Block+1
// Delay
Write( COMMAND, 0x00AB);
Write( DATA, Top_Block +2 );
Delay();
……
// Scroll Start Set
// Start Block Address= Top_Block +2
// Delay
75/109
2006/09/06
ST7636R
……
Write( COMMAND, 0x00AB);
Write( DATA, Bottom_Block );
Delay();
// Scroll Start Set
// Start Block Address= Bottom_Block
// Delay
}
void ScrollDown( void )
{
Write( COMMAND, 0x30 );
Write( COMMAND, 0x00AB);
Write( DATA, Bottom_Block);
Delay();
// Ext = 0
// Scroll Start Set
// Start Block Address= Bottom_Block
// Delay
Write( COMMAND, 0x00AB);
Write( DATA, Bottom_Block -1 );
Delay();
// Scroll Start Set
// Start Block Address= Bottom_Block -1
// Delay
Write( COMMAND, 0x00AB);
Write( DATA, Bottom_Block -2 );
Delay();
……
……
Write( COMMAND, 0x00AB);
Write( DATA, Top _Block );
Delay();
// Scroll Start Set
// Start Block Address= Bottom_Block -2
// Delay
// Scroll Start Set
// Start Block Address= Top_Block
// Delay
}
8.5.5 Read-Modify-Write Cycle
Ver 1.4
76/109
2006/09/06
ST7636R
Figure 8.5.5.1 Read-Write-Modify Cycle
Example:Read-Write-Modify Cycle
void ReadModifyWriteIn( void )
{
Write( COMMAND, 0x30 );
Write( COMMAND, 0xE0 );
}
void ReadModifyWriteOut( void )
{
Write( COMMAND, 0x30 );
Write( COMMAND, 0xEE );
}
// Ext = 0
// Entry the Read-Modify-Write mode
// Ext = 0
// Out of partial display mode
extern unsigned char *display_pattern;
void main()
{
unsigned pixel, i;
Windowing( 11, 31, 80, 50 );
ReadModifyWriteIn();
Ver 1.4
// set the page and column range
// entry the Read-Modify-Write mode
77/109
2006/09/06
ST7636R
for( i = 0 ; i < 1400 ; i++ )
{
Read( DATA );
pixel = Read( DATA );
pixel = pixel & 0x07ff;
Write( DATA, pixel );
}
// For dummy read
// Pixel read
// Pixel modify: red filter
ReadModifyWriteOut();
// Out of Read-Modify-Write mode
}
8.5.6 Power OFF
Power OFF
Normal State
Execute the “Sleep In Flow”
Keeping /RES Pin =“L”
Power Off (VDD-VSS)
End of Power OFF
VDD
/RES
tR > 12 ms
tR
Internal
State
Normal State
Reset
Power Off
Keep the /RES = Low
Figure 8.5.6.1 Power off
8.5.7 Sleep In/Out
Ver 1.4
78/109
2006/09/06
ST7636R
Normal State
Sleep In Status
Start of Sleep In
Start of Sleep Out
Sleep In Sequencing :
[Display Off: AEH]
[Booster Off Only: 20H^03H]
[Set Sleep In Preparation: 04H^3FH]
Sleep Out Sequencing :
[Set Sleep Out Preparation: 04H^3EH]
[Set Analog Power Control: 20H^0BH]
Delay 500ms
[Set Sleep Out by Instruction: 94H]
[Set Sleep In by Instruction: 95H]
Delay 100ms
End of Sleep In
[Display On: AFH]
End of Sleep Out
Fig 8.5.7.1 Sleep In/Out Flow
Example:Sleep In Operation
void SleepIn( void )
{
Write( COMMAND, 0x30 );
Write( COMMAND, 0xae );
Write( COMMAND, 0x20);
Write( DATA, 0x03 );
Write( COMMAND, 0x04 );
Write( DATA, 0x3f );
Delay( 500ms);
Write( COMMAND, 0x95 );
}
// Ext = 0
// Display Off
// Power Control
// B/F/R = Off/On/On
// Sleep In Preparation
// Sleep In Sequencing
// Delay 500ms
// Sleep In
Example:Sleep Out Operation
void SleepOut( void )
{
Write( COMMAND, 0x30 );
Write( COMMAND, 0x04 );
Write( DATA, 0x3e );
Write( COMMAND, 0x20 );
Write( DATA, 0x0b );
Write( COMMAND, 0x94 );
Delay( 100ms );
Write( COMMAND, 0xaf );
}
// Ext = 0
// Sleep Out Preparation
// Sleep Out Sequencing
// Power Control
// B/F/R = On/On/On
// Sleep Out
// Delay 100ms
// Display On
9. LIMITING VALUES
Ver 1.4
79/109
2006/09/06
ST7636R
In accordance with the Absolute Maximum Rating System; see notes 1 and 2.
Parameter
Symbol
Conditions
Unit
Power supply voltage
VDD, VDD1~VDD5
–0.5 ~ +3.6
V
Power supply voltage
VLCDIN
–0.5 ~ +20
V
Power supply voltage
V1, V2, V3, V4
0.3 to VLCDIN
V
Input voltage
VIN
–0.5 to VDD+0.5
V
Output voltage
VO
–0.5 to VDD+0.5
V
Operating temperature (Die)
TOPR
–30 to +85
°C
Storage temperature (Die)
TSTR
–40 to +125
°C
VLCD
V1 to V4
VDD
VDD
VSS
VSS
System (MPU) side
VSS
ST7636R chip side
Notes
1. Stresses above those listed under Limiting Values may cause permanent damage to the device.
2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to
VSS unless otherwise noted.
3. Insure that the voltage levels of V1, V2, V3, and V4 are always such as below:
VLCDIN ≧ V0 ≧ V1 ≧ V2 ≧ V3 ≧ V4 ≧ VSS, V4 < 2.3V
Ver 1.4
80/109
2006/09/06
ST7636R
10. HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS devices”).
11. DC CHARACTERISTICS
VDD = 1.8 V to 3.3V (VDD, VDD1), VDD = 2.4 V to 3.3V (VDD2, VDD3, VDD4, VDD5)
; VSS = 0 V; VLCD = 3.76 to 18.0V; Tamb = -30℃ to +85℃; unless otherwise specified.
Item
Symbol
High-level Input Voltage
Rating
Condition
Units
Applicable
Pin
Min.
Typ.
Max.
VIHC
0.7 x VDD
—
VDD
V
*1
Low-level Input Voltage
VILC
VSS
—
0.3 x VDD
V
*1
High-level Output Voltage
VOHC
0.7 x VDD
—
VDD
V
*2
Low-level Output Voltage
VOLC
VSS
—
0.3 x VDD
V
*2
Input leakage current
ILI
VIN = VDD or VSS
-1.0
—
1.0
µA
*3
Output leakage current
ILO
VIN = VDD or VSS
-3.0
—
3.0
µA
*4
—
1
10
KΩ
Ta = 25°C
Liquid Crystal Driver ON
RON
Resistance
(Relative V0IN =14.7 V
To VSS)
SEGn
COMn *5
Internal Oscillator
fOSC
—
10.42
20.83
kHz
*6
External Input
fCL
—
323.02
645.73
kHz
OSC
Oscillator
1/132 duty
Frequency
Ta = 25°C Internal OSC:
31 PWM
Frame frequency fFRAME
fFRAME = fOSC /(Duty+1)
Hz
External OSC:
fFRAME = fCL /[31*(Duty+1)]
Item
Internal Power
Operating Voltage (1)
VDD
VDD1
Rating
Condition
Units
Applicable Pin
3.3
V
VSS*7
—
3.3
V
VSS
—
20
V
VLCDOUT
Min.
Typ.
Max.
(Relative to VSS)
1.8
—
(Relative to VSS)
2.4
(Relative To VSS)
—
VDD2
Operating Voltage (2)
VDD3
VDD4
VDD5
Supply Step-up output
voltage Circuit
Ver 1.4
Symbol
VLCDOUT
81/109
2006/09/06
ST7636R
Voltage regulator
Circuit Operating
VLCDIN
(Relative To VSS)
—
—
20
V
VLCDIN
Voltage
Dynamic Consumption Current: During Display, with the Internal Power Supply OFF Current consumed by total ICs when
an external power supply is used.
Test pattern
Display Pattern
Normal
Power Down
Symbol
Rating
Condition
Units
Notes
—
µA
*8
10
µA
die
Min.
Typ.
Max.
—
500
—
—
VDD = 2.8 V, Booster x 7
ISS
V0 – VSS (Vop) = 13.84 V
@ 1/12 bias,1/132 duty
ISS
Ta = 25°C
Notes to the DC characteristics
1. The maximum possible VLCD voltage that may be generated is depend on voltage, temperature, loading (display
pattern), and internal clock rate.
2. Power-down mode is meaning that during power down state, all static currents are switched off.
3. If external VLCD, the display load current is not transmitted to IDD.
4. External VLCD voltage is applied to VLCDIN pin; VLCDIN is disconnected from VLCDOUT.
References for items market with *
*1 The A0, D0 to D5, D6 (SI), D7 (SCL), /RD (E), /WR ,/(R/W), /CS, IMS, OSC, P/S, /DOF, RESB terminals.
*2 The D0 to D7.
*3 The A0,/RD (E), /WR ,/(R/W), /CS, and RES terminals.
*4 Applies when the D0 to D5, D6 (SI), D7 (SCL) terminals are in a high impedance state.
*5 These are the resistance values for when a 0.2 x V0 voltage is applied between the output terminal SEGn or COMn and
the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range.
RON = 0.2 V0/∆I (Where ∆I is the current that flows when 0.2 V0 is applied while the power supply is ON.)
*6 The relationship between the oscillator frequency and the frame rate frequency under CL dividing ratio setting = 00H.
*7 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden
fluctuations to the voltage while the MPU is being accessed.
*8 It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on.
Ver 1.4
82/109
2006/09/06
ST7636R
12. TIMING CHARACTERISTICS
System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)
A0
tAW8
tAH8
tAS8
/CS
tCYC8
tCCLR,tCCLW
WR,RD
tCCHR,tCCHW
tDS8
tDH8
D0 to D7
(Write)
tACC8
tOH8
D0 to D7
(Read)
Figure 12.1
(VDD=3.3V, Ta= –30°C to 85°C, die)
Item
Signal
Symbol
Condition
Rating
Min.
Max.
tAH8
10
—
tAS8
40
—
Address setup time
tAW8
0
—
System cycle time (WRITE)
tCYC8
170
—
tCCLW
50
—
/WR H pulse width (WRITE)
tCCHW
130
—
System cycle time (READ)
tCYC8
160
—
tCCLR
80
—
/RD H pulse width (READ)
tCCHR
80
—
WRITE data setup time
tDS8
50
—
tDH8
10
—
Address hold time
Address setup time
/WR L pulse width (WRITE)
/RD L pulse width (READ)
WRITE data hold time
READ access time
READ Output disable time
Ver 1.4
A0
WR
RD
D0 to D7
tACC8
CL = 100 pF
—
70
tOH8
CL = 100 pF
—
60
83/109
Units
ns
ns
2006/09/06
ST7636R
(VDD=2.8V, Ta= –30°C to 85°C, die)
Item
Signal
Symbol
Condition
Rating
Min.
Max.
tAH8
10
—
tAS8
50
—
Address setup time
tAW8
0
—
System cycle time (WRITE)
tCYC8
180
—
tCCLW
55
—
/WR H pulse width (WRITE)
tCCHW
140
—
System cycle time (READ)
tCYC8
180
—
tCCLR
90
—
/RD H pulse width (READ)
tCCHR
90
—
WRITE data setup time
tDS8
55
—
tDH8
10
—
Address hold time
Address setup time
/WR L pulse width (WRITE)
/RD L pulse width (READ)
WRITE data hold time
READ access time
A0
WR
RD
D0 to D7
READ Output disable time
tACC8
CL = 100 pF
—
75
tOH8
CL = 100 pF
—
65
Units
ns
ns
(VDD=1.8V, Ta= –30°C to 85°C, die)
Item
Signal
Symbol
Condition
Rating
Min.
Max.
tAH8
10
—
tAS8
80
—
Address setup time
tAW8
0
—
System cycle time (WRITE)
tCYC8
400
—
tCCLW
70
—
/WR H pulse width (WRITE)
tCCHW
300
—
System cycle time (READ)
tCYC8
400
—
tCCLR
200
—
/RD H pulse width (READ)
tCCHR
200
—
WRITE data setup time
tDS8
90
—
tDH8
10
—
Address hold time
Address setup time
/WR L pulse width (WRITE)
/RD L pulse width (READ)
WRITE data hold time
READ access time
READ Output disable time
A0
WR
RD
D0 to D7
tACC8
CL = 100 pF
—
90
tOH8
CL = 100 pF
—
80
Units
ns
ns
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,
(tr +tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified.
*2 All timing is specified using 20% and 80% of VDD as the reference.
*3 tCCLW and tCCLR are specified as the overlap between /CS being “L” and WR and RD being at the “L” level.
Ver 1.4
84/109
2006/09/06
ST7636R
System Bus Read/Write Characteristics 1 (For the 6800 Series MPU)
A0
R/W
tAW6
tAH6
tAS6
CS1
(CS2="1")
tCYC6
tCCLR,tCCLW
E
tCCHR,tCCHW
tDS6
tDH6
D0 to D7
(Write)
tACC6
tOH6
D0 to D7
(Read)
Figure 12.2
(VDD=3.3V, Ta= –30°C to 85°C, die)
Item
Signal
Symbol
Condition
Rating
Min.
Max.
tAH6
10
—
tAS6
50
—
Address setup time
tAW6
0
—
System cycle time (WRITE)
tCYC6
170
—
tCCLW
130
—
Enable H pulse width (WRITE)
tCCHW
40
—
System cycle time (READ)
tCYC6
160
—
tCCLR
80
—
Enable H pulse width (READ)
tCCHR
80
—
WRITE data setup time
tDS6
50
—
tDH6
10
—
Address hold time
Address setup time
Enable L pulse width (WRITE)
Enable L pulse width (READ)
WRITE data hold time
READ access time
READ Output disable time
Ver 1.4
A0
WR
RD
D0 to D7
tACC6
CL = 100 pF
—
70
tOH6
CL = 100 pF
—
60
85/109
Units
ns
ns
2006/09/06
ST7636R
(VDD=2.8V, Ta= –30°C to 85°C, die)
Item
Signal
Symbol
Condition
Rating
Min.
Max.
tAH6
10
—
tAS6
60
—
Address setup time
tAW6
0
—
System cycle time (WRITE)
tCYC6
195
—
tCCLW
160
—
Enable H pulse width (WRITE)
tCCHW
45
—
System cycle time (READ)
tCYC6
180
—
tCCLR
90
—
Enable H pulse width (READ)
tCCHR
90
—
WRITE data setup time
tDS6
55
—
tDH6
10
—
Address hold time
Address setup time
Enable L pulse width (WRITE)
Enable L pulse width (READ)
WRITE data hold time
READ access time
A0
WR
RD
D0 to D7
READ Output disable time
tACC6
CL = 100 pF
—
75
tOH6
CL = 100 pF
—
65
Units
ns
ns
(VDD=1.8V, Ta= –30°C to 85°C, die)
Item
Signal
Symbol
Condition
Rating
Min.
Max.
tAH6
10
—
tAS6
100
—
Address setup time
tAW6
0
—
System cycle time (WRITE)
tCYC6
390
—
tCCLW
300
—
Enable H pulse width (WRITE)
tCCHW
60
—
System cycle time (READ)
tCYC6
400
—
tCCLR
200
—
Enable H pulse width (READ)
tCCHR
200
—
WRITE data setup time
tDS6
90
—
tDH6
10
—
Address hold time
Address setup time
Enable L pulse width (WRITE)
Enable L pulse width (READ)
WRITE data hold time
READ access time
READ Output disable time
A0
WR
RD
D0 to D7
tACC6
CL = 100 pF
—
90
tOH6
CL = 100 pF
—
80
Units
ns
ns
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,
(tr +tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified.
*2 All timing is specified using 20% and 80% of VDD as the reference.
*3 tEWLW and tEWLR are specified as the overlap between /CS being “L” and E.
Ver 1.4
86/109
2006/09/06
ST7636R
Serial Interface Characteristics (For 4-Line Interface)
tCCSS
tCSH
/CS1
(CS2="1")
tSAS
tSAH
A0
tSCYC
tSLW
SCL
tSHW
tf
tr
tSDS
tSDH
SI
Fig 12.3
(VDD=3.3V,Ta= –30°C to 85°C, die)
Item
Signal
Serial clock period
SCL “H” pulse width
SCL
SCL “L” pulse width
Address setup time
Address hold time
Data setup time
Data hold time
CS-SCL time
CS-SCL time
Ver 1.4
A0
SI
/CS
Symbol
Condition
Rating
Min.
Max.
tSCYC
80
—
tSHW
40
—
tSLW
40
—
tSAS
10
—
tSAH
30
—
tSDS
10
—
tSDH
30
—
tCSS
10
—
tCSH
30
—
87/109
Units
ns
ns
2006/09/06
ST7636R
(VDD=2.8V, Ta= –30°C to 85°C, die)
Item
Signal
Serial clock period
SCL “H” pulse width
SCL
SCL “L” pulse width
Address setup time
Address hold time
Data setup time
A0
SI
Data hold time
CS-SCL time
/CS
CS-SCL time
Symbol
Condition
Rating
Min.
Max.
tSCYC
90
—
tSHW
45
—
tSLW
45
—
tSAS
10
—
tSAH
35
—
tSDS
10
—
tSDH
35
—
tCSS
10
—
tCSH
35
—
Units
ns
ns
(VDD=1.8V, Ta= –30°C to 85°C, die)
Item
Signal
Serial clock period
SCL “H” pulse width
SCL
SCL “L” pulse width
Address setup time
Address hold time
Data setup time
Data hold time
CS-SCL time
CS-SCL time
A0
SI
/CS
Symbol
Condition
Rating
Min.
Max.
tSCYC
100
—
tSHW
50
—
tSLW
50
—
tSAS
10
—
tSAH
40
—
tSDS
10
—
tSDH
40
—
tCSS
10
—
tCSH
40
—
Units
ns
ns
*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
*2 All timing is specified using 20% and 80% of VDD as the standard.
Ver 1.4
88/109
2006/09/06
ST7636R
Serial Interface Characteristics (For 3-Line Interface)
tCCSS
tCSH
/CS1
(CS2="1")
tSCYC
tSLW
SCL
tSHW
tf
tr
tSDS
tSDH
SI
Fig 12.4
(VDD=3.3V, Ta= –30°C to 85°C, die)
Item
Signal
Serial clock period
SCL “H” pulse width
SCL
SCL “L” pulse width
Data setup time
Data hold time
CS-SCL time
CS-SCL time
Ver 1.4
SI
/CS
Symbol
Condition
Rating
Min.
Max.
tSCYC
80
—
tSHW
40
—
tSLW
40
—
tSDS
10
—
tSDH
30
—
tCSS
10
—
tCSH
30
—
89/109
Units
ns
ns
2006/09/06
ST7636R
(VDD=2.8V, Ta= –30°C to 85°C, die)
Item
Signal
Serial clock period
SCL “H” pulse width
SCL
SCL “L” pulse width
Data setup time
SI
Data hold time
CS-SCL time
/CS
CS-SCL time
Symbol
Condition
Rating
Min.
Max.
tSCYC
90
—
tSHW
45
—
tSLW
45
—
tSDS
10
—
tSDH
35
—
tCSS
10
—
tCSH
35
—
Units
ns
ns
(VDD=1.8V, Ta= –30°C to 85°C, die)
Item
Signal
Serial clock period
SCL “H” pulse width
SCL
SCL “L” pulse width
Data setup time
Data hold time
CS-SCL time
CS-SCL time
SI
/CS
Symbol
Condition
Rating
Min.
Max.
tSCYC
100
—
tSHW
50
—
tSLW
50
—
tSDS
10
—
tSDH
40
—
tCSS
10
—
tCSH
40
—
Units
ns
ns
*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
*2 All timing is specified using 20% and 80% of VDD as the standard.
Ver 1.4
90/109
2006/09/06
ST7636R
13. RESET TIMING
tRW
/RES
tR
Internal
status
During reset
Reset complete
Fig 13.1
(VDD = 3.3V, Ta = –30°C to 85°C, die)
Item
Signal
Reset time
Reset “L” pulse width
RESB
Symbol
Condition
Rating
Units
Min.
Typ.
Max.
tR
900
—
—
ns
tRW
1200
—
—
ns
(VDD = 2.8V, Ta = –30°C to 85°C, die)
Item
Signal
Reset time
Reset “L” pulse width
RESB
Symbol
Condition
Rating
Units
Min.
Typ.
Max.
tR
860
—
—
ns
tRW
1300
—
—
ns
(VDD = 1.8V, Ta = –30°C to 85°C, die)
Item
Signal
Reset time
Reset “L” pulse width
Ver 1.4
RESB
Symbol
Condition
Rating
Units
Min.
Typ.
Max.
tR
690
—
—
ns
tRW
2040
—
—
ns
91/109
2006/09/06
ST7636R
14. Display Application Examples between ST7636R and Panel
14.1 128 X 128 panel and CSEL=0 configuration
Figure 14.1 128 X 128 panel and CSEL=0 configuration
Initialize Setting:
Application Suggestion
VDD, VDD1 = 1.8 ~ 3.3 ( V )
VDD2 ~ VDD5 = 2.4 ~ 3.3 ( V )
Bias = 1 / 12
Duty = 128
Option Pin Setting:
CSEL = 0
COMMAND
BBH
CAH
75H
15H
BCH
BCH
Register Setting:
PARAMETER
DESCRIPTION
P1 = 01H
Common scan direction
P2 = 31H
Duty = 128
P1 = 0, P2 = 127
Page = 0 ~ 127
P1 = 0, P2 = 127
Column = 0 ~ 127
P1 = 00H
Address scan direction
P2 = 00H
RGB arrangement
9. Display Application Examples between
Ver 1.4
92/109
2006/09/06
ST7636R
14.2 128 X 128 panel and CSEL=0 configuration
Figure 14.2 128 X 128 panel and CSEL=0 configuration
Initialize Setting:
Application Suggestion
VDD, VDD1 = 1.8 ~ 3.3 ( V )
VDD2 ~ VDD5 = 2.4 ~ 3.6 ( V )
Bias = 1 / 12
Duty = 128
Option Pin Setting:
CSEL = 0
Ver 1.4
COMMAND
BBH
CAH
75H
15H
BCH
BCH
Register Setting:
PARAMETER
DESCRIPTION
P1 = 01H
Common scan direction
P2 = 31H
Duty = 128
P1 = 0, P2 = 127
Page = 0 ~ 127
P1 = 4, P2 = 131
Column = 4 ~ 131
P1 = 02H
Address scan direction
P2 = 01H
RGB arrangement
93/109
2006/09/06
ST7636R
14.3 128 X 128 panel and CSEL=1 configuration
Figure 14.3 128 X 128 panel and CSEL=1 configuration
Initialize Setting:
Application Suggestion
VDD, VDD1 = 1.8 ~ 3.3 ( V )
VDD2 ~ VDD5 = 2.4 ~ 3.6 ( V )
Bias = 1/12
Duty = 128
COMMAND
CAH
75H
15H
BCH
BCH
Register Setting:
PARAMETER
DESCRIPTION
P2 = 31H
Duty = 128
P1 = 0, P2 = 127
Page = 0 ~ 127
P1 = 0, P2 = 127
Column = 0 ~ 127
P1 = 00H
Address scan direction
P2 = 00H
RGB arrangement
Option Pin Setting:
CSEL = 1
Ver 1.4
94/109
2006/09/06
ST7636R
14.4 128 X 128 panel and CSEL=1 configuration
Figure 14.4 128 X 128 panel and CSEL=1 configuration
Initialize Setting:
Application Suggestion
VDD, VDD1 = 1.8 ~ 3.3 ( V )
VDD2 ~ VDD5 = 2.4 ~ 3.6 ( V )
Bias = 1/12
Duty = 128
COMMAND
CAH
75H
15H
BCH
BCH
Register Setting:
PARAMETER
DESCRIPTION
P2 = 31H
Duty = 128
P1 = 0, P2 = 127
Page = 0 ~ 127
P1 = 0, P2 = 127
Column = 0 ~ 127
P1 = 03H
Address scan direction
P2 = 00H
RGB arrangement
Option Pin Setting:
CSEL = 1
Ver 1.4
95/109
2006/09/06
ST7636R
15. THE MPU INTERFACE (REFERENCE EXAMPLES)
The ST7636R Series can be connected to either 8080 Series MPUs or to 6800 Series MPUs. Moreover, using the serial
interface it is possible to operate the ST7636R series chips with fewer signal lines.
The display area can be enlarged by using multiple ST7636R Series chips. When this is done, the chip select signal can be
used to select the individual Ics to access.
(1) 8080 Series MPUs
VDD
VDD
VCC
A0
A0
MPU
ST7636R
CS1
CS1
D0 to D7
/RD (E)
/WR (R/W)
/RES
DO to D7
RD
WR
RES
GND
IF1
IF2
IF3
VSS
RESET
VSS
(2) 6800 Series MPUs
V DD
V DD
A0
A0
CS1
CS1
DO to D7
RD
WR
RES
GND
IF1
IF2
IF3
ST7636R
MPU
V CC
D0 to D7
E(/RD)
R/W (/W R)
/RES
V SS
RESET
V SS
(3) Using the Serial Interface (4-line interface)
V DD
V CC
V DD
A0
C S1
C S1
IF1
IF2
IF3
Port 1
Port 2
RE S
GND
ST7636R
MPU
A0
SI
SC L
/R ES
V SS
R ESE T
V SS
Ver 1.4
96/109
2006/09/06
ST7636R
(4) Using the Serial Interface (3-line interface)
V DD or V SS
V DD
V CC
IF1
IF2
IF3
CS1
SI
SCL
/RES
Port 1
Port 2
RES
GND
ST7636
MPU
CS1
V SS
RESET
V SS
Ver 1.4
97/109
2006/09/06
ST7636R
Application Circuits
( A ) 80 Series 16-bit Parallel Interface:
Interface: 80 series 16-bit Interface
Booster: 7x
Use Internal Resistors
Capacitor: 1.0 uF
Ver 1.4
98/109
2006/09/06
ST7636R
Application Circuits (Continue)
( B ) 80 Series 8-bit Parallel Interface:
Interface: 80 series 8-bit Interface
Booster: 7x
Use Internal Resistors
Capacitor: 1.0 uF / 25V
Ver 1.4
99/109
2006/09/06
ST7636R
Application Circuits (Continue)
( C ) 68 Series 16-bit Parallel Interface ( with external power supply to VLCD ):
Interface: 68 series 16-bit Interface
Booster: register VC = 0
Use External Power Supply to VLCD
Capacitor: 1.0 uF / 25V
Ver 1.4
100/109
2006/09/06
ST7636R
Application Circuits (Continue)
( D ) 3 Line Serial Peripheral Interface:
Interface: 3 Line Serial Peripheral Interface
Booster: 7x
Use Internal Resistors
Capacitor: 1.0 uF / 25V
Ver 1.4
101/109
2006/09/06
ST7636R
Application Circuits (Continue)
( E ) 4 Line Serial Peripheral Interface:
Interface: 4 Line Serial Peripheral Interface
Booster: 7x
Use Internal Resistors
Capacitor: 1.0 uF / 25V
Ver 1.4
102/109
2006/09/06
ST7636R
16. Application Note of VLCD and Vop (V0) ITO Layout
When using internal voltage generator, VLCDIN、VLCDOUT must be connected together. V0IN
and V0OUT must be connected together too. In the following is the ITO layout for VLCDIN、
VLCDOUT、V0IN and V0OUT individually. Please follow the way as below for these two LCD
power voltages.
Ver 1.4
103/109
2006/09/06
ST7636R
17. Application Note of VDD and VSS ITO Layout
In the following is the ITO layout of power system (VDD and VSS). Please follow the way as
below for VDD and VSS ITO layout.
Ver 1.4
104/109
2006/09/06
ST7636R
18. Application Note of EEPROM Flow
In the following is EEPROM flow chart and its detail application programs.
z
EEPROM Flow Chart
RESET
Internal Initialize
Write( COMMAND , 0x31);
Write( COMMAND , 0xF4);
Write( DATA , 0x58);
A:Initial Flow
Show Test Pattern
EEPROM Operation
B:Adjust Vop Offset
C:Write EEPROM
When Booster x6: VDD2~VDD5 =3.3V
When Booster x7: VDD2~VDD5 =2.8V~3.0V
Load EEPROM
and
Booster: ON, Regulator: OFF,
Follower: OFF, Display OFF
RESET
NG
Internal Initialize
Write( COMMAND , 0x31);
Write( COMMAND , 0xF4);
A:Initial Flow
Write( DATA , 0x58);
Show Test Pattern
Check If Write
Successfully?
OK
Finish
Ver 1.4
105/109
2006/09/06
ST7636R
z
Application Programs
A. Initial Flow
void ST7636R_Init( void )
{
Write( COMMAND, 0x30 );
Write( COMMAND, 0x04 );
Write( DATA, 0x3e );
Ver 1.4
// Ext = 0
// Sleep In/Out Preparation
// Sleep In/Out Sequencing
Write( COMMAND, 0x31 );
Write( COMMAND, 0xf4 );
Write( DATA, 0x58 );
// Ext = 1
// Internal Initialize Preparation
// Internal Initialize Sequencing
Write( COMMAND, 0x30 );
Write( COMMAND, 0x94 );
Write( COMMAND, 0xd1 );
Write( COMMAND, 0xca );
Write( DATA, 0x00 );
Write( DATA, 0x1f );
Write( DATA, 0x00 );
// Ext = 0
// Sleep Out
// Internal OSC on
// Display Control
// CL divisions Ratio
// Duty Setting (= 128)
// N-Line Inverse-set value
Write( COMMAND, 0x31 );
Write( COMMAND, 0x32 );
Write( DATA, 0x00 );
Write( DATA, 0x01 );
Write( DATA, 0x00 );
// Ext = 1
// Analog Setting
// OSC Freqency adjustment
// Booster Efficiency Setting
// Bias Setting (=1/12)
Write( COMMAND, 0x30 );
Write( COMMAND, 0x81 );
Write( DATA, 0x1B );
Write( DATA, 0x04 );
Write( COMMAND, 0x20 );
Write( DATA, 0x0b );
// Ext = 0
// Electronic Volume Control
// EV:Vop[5:0]_6bit
// EV:Vop[8:6]_3bit
// Vop is 14.92V under this condition for example
// Power Control
// B/F/R = On/On/On
Write( COMMAND, 0x30 );
Write( COMMAND, 0x60 );
delay(50000);
LoadEEPROM();
LoadPaint();
// Ext = 0
// Auto-sampling
// Delay 50ms
// Load EEPROM (refer page 71)
// Load Gamma Table Parameter (refer page 64)
Write( COMMAND, 0x30 );
Write( COMMAND, 0xa7 );
Write( COMMAND, 0xbb );
Write( DATA, 0x01 );
Write( COMMAND, 0xbc );
Write( DATA, 0x00 );
Write( DATA, 0x00 );
Write( DATA, 0x01 );
// Ext = 0
// Inverse Display
// Com Scan Direction
// 0~65 / 131~66
// Data Scan Direction
// Page / Column Address Setting
// RGB arrangement (0:RGB 1:BGR)
// Gray-scale setup ( 64-gray: 01H)
Write( COMMAND, 0x75 );
Write( DATA, 0x00 );
Write( DATA, 0x7f );
Write( COMMAND, 0x15 );
Write( DATA, 0x00 );
// Page address set
// From page address 0
// to page address 127
// Column address set
// From column address 0
106/109
2006/09/06
ST7636R
Write( DATA, 0x7f );
// to column address 127
Write( COMMAND, 0xaf );
Write( COMMAND, 0x30 );
// Display On
// Ext = 0
}
B. Adjust Vop Offset
void adj_Vop_offset(void)
{
int i,j=1;
while(j)
{
if (KeyScan1==0)i=1;
if (KeyScan2==0)i=2;
if (KeyScan3==0)i=3;
if (KeyScan1==1 & KeyScan2==1 & KeyScan3==1)i=4;
switch (i)
{
Case 1:
Write( COMMAND, 0xd6 );
break;
case 2:
Write( COMMAND, 0xd7 );
break;
case 3:
write_7636Reeprom();
j=0;
break;
default:
break;
}
}
}
// Define KeyScan1 for “D6” use
// Define KeyScan2 for “D7” use
// Define KeyScan3 for “write” use
// Jump to break
// Vop Offset +1 step
// Vop Offset -1 step
// Write EEPROM Flow
C. Write EEPROM
void write_7636Reeprom(void)
{
Write( COMMAND, 0x30 );
Ver 1.4
// EXT=0
Write( COMMAND, 0xae );
Write( COMMAND, 0x20 );
Write( DATA, 0x08 );
// Display Off
// Power Control
// B/F/R = ON/OFF/OFF
Write( COMMAND, 0x8e );
// Enable EEPORM Write Mode
Write( COMMAND, 0x31 );
// EXT=1
Write( COMMAND, 0xeb );
Write( DATA, 0x00 );
Write( COMMAND, 0x31 );
Write( COMMAND, 0xcd );
Write( DATA, 0x20 );
delay(50000);
Write( COMMAND, 0xfc );
// Select EEPROM
// EEPROM 1st byte
// EXT=1
// Control EEPROM ON
// Write EEPROM Mode
// Delay 50 ms
// Write Data to EEPROM
107/109
2006/09/06
ST7636R
delay(50000);
// Delay 50ms
Write( COMMAND, 0xeb );
Write( DATA, 0x01 );
Write( COMMAND, 0x31 );
Write( COMMAND, 0xcd );
Write( DATA, 0x20 );
delay(50000);
Write( COMMAND, 0xfc );
delay(50000);
// Select EEPROM
// EEPROM 2nd byte
// EXT=1
// Control EEPROM ON
// Write EEPROM Mode
// Delay 50 ms
// Write Data to EEPROM
// Delay 50ms
Write( COMMAND, 0xeb );
Write( DATA, 0x02 );
Write( COMMAND, 0x31 );
Write( COMMAND, 0xcd );
Write( DATA, 0x20 );
delay(50000);
Write( COMMAND, 0xfc );
delay(50000);
// Select EEPROM
// EEPROM 3rd byte
// EXT=1
// Control EEPROM ON
// Write EEPROM Mode
// Delay 50 ms
// Write Data to EEPROM
// Delay 50ms
Write( COMMAND, 0xeb );
Write( DATA, 0x03 );
Write( COMMAND, 0x31 );
Write( COMMAND, 0xcd );
Write( DATA, 0x20 );
delay(50000);
Write( COMMAND, 0xfc );
delay(50000);
// Select EEPROM
// EEPROM 4th byte
// EXT=1
// Control EEPROM ON
// Write EEPROM Mode
// Delay 50 ms
// Write Data to EEPROM
// Delay 50ms
Write( COMMAND, 0xeb );
Write( DATA, 0x04 );
Write( COMMAND, 0x31 );
Write( COMMAND, 0xcd );
Write( DATA, 0x20 );
delay(50000);
Write( COMMAND, 0xfc );
delay(50000);
// Select EEPROM
// EEPROM 5th byte
// EXT=1
// Control EEPROM ON
// Write EEPROM Mode
// Delay 50 ms
// Write Data to EEPROM
// Delay 50ms
Write( COMMAND, 0x31 );
// EXT=1
Write( COMMAND, 0xcc );
delay(50000);
Write( COMMAND, 0x30 );
Write( COMMAND, 0x8f );
// Cancel EEPROM
// Delay 50ms
// EXT=0
// Disable EEPORM Write Mode
Write( COMMAND, 0x30 );
Write( COMMAND, 0x20 );
Write( DATA, 0x0b );
Write( COMMAND, 0xaf );
// EXT=0
// Power Control
// B/F/R = On/On/On
// Display On
}
NOTE:
Microprocessor interface pins should not be floating in any operation mode.
Ver 1.4
108/109
2006/09/06
ST7636R
ST7636R Serial Specification Revision History
Version
Date
0.x
--
1.0
1.1
Ver 1.4
Description
Preliminary version
To modify:
1. EEPROM flow
2006/03/24
2. Application note for ITO layout
3. Command in extention enable/disable mode
1. Remove the resistor from Vout in the application circuits
2006/6/14 2. identify V4 < Vdd-Vdiode
3. identify the sequence of power on and power off
1.2
2006/8/14
Add microprocessor notice item(p.16, p.108).
1.3
2006/9/5
Modify the value of OSC frequency and the bump size diagram
of pad 485~604 and dummy pad
1.4
2006/9/6
Modify the table of OSC frequency adjustment
109/109
2006/09/06