SITRONIX ST7636

ST
Sitronix
ST7636
65K Color Dot Matrix LCD Controller/Driver
1. INTRODUCTION
The ST7636 is a driver & controller LSI for 65K color graphic dot-matrix liquid crystal display systems. It generates 396
Segment and 132 Common driver circuits. This chip is connected directly to a microprocessor, accepts Serial Peripheral
Interface (SPI) or 8-bit/16-bit parallel display data and stores in an on-chip display data RAM. It performs display data RAM
read/write operation with no external operating clock to minimize power consumption. In addition, because it contains
power supply circuits necessary to drive liquid crystal, it is possible to make a display system with the fewest components.
2. FEATURES
Driver Output Circuits
On-chip Low Power Analog Circuit
♦ 396 segment outputs / 132 common outputs
♦ On-chip oscillator circuit
Applicable Duty Ratios
♦ Voltage converter (x2, x3, x4, x5, x6, x7, x8)
♦ Various partial display
♦ Voltage regulator
♦ Partial window moving & data scrolling
♦ On-chip electronic contrast control function (406 steps)
Gray-Scale Display
♦ Voltage follower (LCD bias: 1/5 to 1/12)
♦ 4FRC & 31 PWM function circuit to display
Operating Voltage Range
♦ 64 gray-scale display.
♦ Supply voltage (VDD, VDD1): 2.4 to 3.3V
On-chip Display Data RAM
(VDD2, VDD3, VDD4, VDD5): 2.4 to
♦ Capacity: 132 · 132 · 16 =278,784bits
3.3V
♦ 65K colors (RGB)=(565) mode
♦ LCD driving voltage (VOP = V0 - VSS): 3.76 to 18.0 V
♦ Dithered 262K colors (RGB)=(666) mode
♦ the suggested value of V0 is 12~15 V under bias =1/11.
♦ Dithered 16M colors (RGB)=(888) mode
LCD Driving Voltage (EEPROM)
Microprocessor Interface
♦ To store contrast adjustment value for better display
♦ 8/16-bit parallel bi-directional interface with 6800-series
Package Type
♦ Application for COG
or 8080-series
♦ 4-line serial interface (4-line-SIF)
♦ 3-line serial interface (3-line-SIF)
ST7636
Ver 1.3
6800 , 8080 ,4-Line , 3-Line interface
1/99
2006/08/15
ST7636
3. ST7636 Pad Arrangement (COG)
Chip Size: 20,050 um x1,650 um
Bump Pitch:
PAD NO 1 ~ 496, 661~692: 40 um (COM/SEG)
PAD NO 497 ~ 660: 110 um (O)
Bump size:
PAD NO.1~464: 25(x)um X 96(y)um
PAD No.465~ 496,661~692: 96(x)um X 25(y)um
PAD N0. 497~660: 90(x)um X 40(y)um
Bump Height: 17um
Chip Thickness: 635um
Ver 1.3
2/99
2006/08/15
ST7636
4. Pad Center Coordinates
PAD
PIN Name
X
Y
PAD
PIN Name
X
Y
SEG[395]
8141.0
670.5
036
SEG[394]
8101.0
670.5
670.5
037
SEG[393]
8061.0
670.5
9482.0
670.5
038
SEG[392]
8021.0
670.5
COM[72]
9442.0
670.5
039
SEG[391]
7981.0
670.5
COM[37]
COM[74]
9402.0
670.5
040
SEG[390]
7941.0
670.5
007
COM[38]
COM[76]
9362.0
670.5
041
SEG[389]
7901.0
670.5
008
COM[39]
COM[78]
9322.0
670.5
042
SEG[388]
7861.0
670.5
009
COM[40]
COM[80]
9282.0
670.5
043
SEG[387]
7821.0
670.5
010
COM[41]
COM[82]
9242.0
670.5
044
SEG[386]
7781.0
670.5
011
COM[42]
COM[84]
9202.0
670.5
045
SEG[385]
7741.0
670.5
012
COM[43]
COM[86]
9162.0
670.5
046
SEG[384]
7701.0
670.5
013
COM[44]
COM[88]
9122.0
670.5
047
SEG[383]
7661.0
670.5
014
COM[45]
COM[90]
9082.0
670.5
048
SEG[382]
7621.0
670.5
015
COM[46]
COM[92]
9042.0
670.5
049
SEG[381]
7581.0
670.5
016
COM[47]
COM[94]
9002.0
670.5
050
SEG[380]
7541.0
670.5
017
COM[48]
COM[96]
8962.0
670.5
051
SEG[379]
7501.0
670.5
018
COM[49]
COM[98]
8922.0
670.5
052
SEG[378]
7461.0
670.5
019
COM[50]
COM[100]
8882.0
670.5
053
SEG[377]
7421.0
670.5
020
COM[51]
COM[102]
8842.0
670.5
054
SEG[376]
7381.0
670.5
021
COM[52]
COM[104]
8802.0
670.5
055
SEG[375]
7341.0
670.5
022
COM[53]
COM[106]
8762.0
670.5
056
SEG[374]
7301.0
670.5
023
COM[54]
COM[108]
8722.0
670.5
057
SEG[373]
7261.0
670.5
024
COM[55]
COM[110]
8682.0
670.5
058
SEG[372]
7221.0
670.5
025
COM[56]
COM[112]
8642.0
670.5
059
SEG[371]
7181.0
670.5
026
COM[57]
COM[114]
8602.0
670.5
060
SEG[370]
7141.0
670.5
027
COM[58]
COM[116]
8562.0
670.5
061
SEG[369]
7101.0
670.5
028
COM[59]
COM[118]
8522.0
670.5
062
SEG[368]
7061.0
670.5
029
COM[60]
COM[120]
8482.0
670.5
063
SEG[367]
7021.0
670.5
030
COM[61]
COM[122]
8442.0
670.5
064
SEG[366]
6981.0
670.5
031
COM[62]
COM[124]
8402.0
670.5
065
SEG[365]
6941.0
670.5
032
COM[63]
COM[126]
8362.0
670.5
066
SEG[364]
6901.0
670.5
033
COM[64]
COM[128]
8322.0
670.5
067
SEG[363]
6861.0
670.5
034
COM[65]
COM[130]
8282.0
670.5
068
SEG[362]
6821.0
670.5
No.
CSEL=0
CSEL=1
001
COM[32]
COM[64]
9602.0
670.5
035
002
COM[33]
COM[66]
9562.0
670.5
003
COM[34]
COM[68]
9522.0
004
COM[35]
COM[70]
005
COM[36]
006
Ver 1.3
No.
3/99
CSEL=0
CSEL=1
2006/08/15
ST7636
PAD
No.
PIN Name
CSEL=0
X
Y
CSEL=1
PAD
No.
PIN Name
CSEL=0
X
Y
CSEL=1
069
SEG[361]
6781.0
670.5
104
SEG[326]
5381.0
670.5
070
SEG[360]
6741.0
670.5
105
SEG[325]
5341.0
670.5
071
SEG[359]
6701.0
670.5
106
SEG[324]
5301.0
670.5
072
SEG[358]
6661.0
670.5
107
SEG[323]
5261.0
670.5
073
SEG[357]
6621.0
670.5
108
SEG[322]
5221.0
670.5
074
SEG[356]
6581.0
670.5
109
SEG[321]
5181.0
670.5
075
SEG[355]
6541.0
670.5
110
SEG[320]
5141.0
670.5
076
SEG[354]
6501.0
670.5
111
SEG[319]
5101.0
670.5
077
SEG[353]
6461.0
670.5
112
SEG[318]
5061.0
670.5
078
SEG[352]
6421.0
670.5
113
SEG[317]
5021.0
670.5
079
SEG[351]
6381.0
670.5
114
SEG[316]
4981.0
670.5
080
SEG[350]
6341.0
670.5
115
SEG[315]
4941.0
670.5
081
SEG[349]
6301.0
670.5
116
SEG[314]
4901.0
670.5
082
SEG[348]
6261.0
670.5
117
SEG[313]
4861.0
670.5
083
SEG[347]
6221.0
670.5
118
SEG[312]
4821.0
670.5
084
SEG[346]
6181.0
670.5
119
SEG[311]
4781.0
670.5
085
SEG[345]
6141.0
670.5
120
SEG[310]
4741.0
670.5
086
SEG[344]
6101.0
670.5
121
SEG[309]
4701.0
670.5
087
SEG[343]
6061.0
670.5
122
SEG[308]
4661.0
670.5
088
SEG[342]
6021.0
670.5
123
SEG[307]
4621.0
670.5
089
SEG[341]
5981.0
670.5
124
SEG[306]
4581.0
670.5
090
SEG[340]
5941.0
670.5
125
SEG[305]
4541.0
670.5
091
SEG[339]
5901.0
670.5
126
SEG[304]
4501.0
670.5
092
SEG[338]
5861.0
670.5
127
SEG[303]
4461.0
670.5
093
SEG[337]
5821.0
670.5
128
SEG[302]
4421.0
670.5
094
SEG[336]
5781.0
670.5
129
SEG[301]
4381.0
670.5
095
SEG[335]
5741.0
670.5
130
SEG[300]
4341.0
670.5
096
SEG[334]
5701.0
670.5
131
SEG[299]
4301.0
670.5
097
SEG[333]
5661.0
670.5
132
SEG[298]
4261.0
670.5
098
SEG[332]
5621.0
670.5
133
SEG[297]
4221.0
670.5
099
SEG[331]
5581.0
670.5
134
SEG[296]
4181.0
670.5
100
SEG[330]
5541.0
670.5
135
SEG[295]
4141.0
670.5
101
SEG[329]
5501.0
670.5
136
SEG[294]
4101.0
670.5
102
SEG[328]
5461.0
670.5
137
SEG[293]
4061.0
670.5
103
SEG[327]
5421.0
670.5
138
SEG[292]
4021.0
670.5
Ver 1.3
4/99
2006/08/15
ST7636
PAD
No.
PIN Name
CSEL=0
X
Y
CSEL=1
PAD
No.
PIN Name
CSEL=0
X
Y
CSEL=1
139
SEG[291]
3981.0
670.5
174
SEG[256]
2581.0
670.5
140
SEG[290]
3941.0
670.5
175
SEG[255]
2541.0
670.5
141
SEG[289]
3901.0
670.5
176
SEG[254]
2501.0
670.5
142
SEG[288]
3861.0
670.5
177
SEG[253]
2461.0
670.5
143
SEG[287]
3821.0
670.5
178
SEG[252]
2421.0
670.5
144
SEG[286]
3781.0
670.5
179
SEG[251]
2381.0
670.5
145
SEG[285]
3741.0
670.5
180
SEG[250]
2341.0
670.5
146
SEG[284]
3701.0
670.5
181
SEG[249]
2301.0
670.5
147
SEG[283]
3661.0
670.5
182
SEG[248]
2261.0
670.5
148
SEG[282]
3621.0
670.5
183
SEG[247]
2221.0
670.5
149
SEG[281]
3581.0
670.5
184
SEG[246]
2181.0
670.5
150
SEG[280]
3541.0
670.5
185
SEG[245]
2141.0
670.5
151
SEG[279]
3501.0
670.5
186
SEG[244]
2101.0
670.5
152
SEG[278]
3461.0
670.5
187
SEG[243]
2061.0
670.5
153
SEG[277]
3421.0
670.5
188
SEG[242]
2021.0
670.5
154
SEG[276]
3381.0
670.5
189
SEG[241]
1981.0
670.5
155
SEG[275]
3341.0
670.5
190
SEG[240]
1941.0
670.5
156
SEG[274]
3301.0
670.5
191
SEG[239]
1901.0
670.5
157
SEG[273]
3261.0
670.5
192
SEG[238]
1861.0
670.5
158
SEG[272]
3221.0
670.5
193
SEG[237]
1821.0
670.5
159
SEG[271]
3181.0
670.5
194
SEG[236]
1781.0
670.5
160
SEG[270]
3141.0
670.5
195
SEG[235]
1741.0
670.5
161
SEG[269]
3101.0
670.5
196
SEG[234]
1701.0
670.5
162
SEG[268]
3061.0
670.5
197
SEG[233]
1661.0
670.5
163
SEG[267]
3021.0
670.5
198
SEG[232]
1621.0
670.5
164
SEG[266]
2981.0
670.5
199
SEG[231]
1581.0
670.5
165
SEG[265]
2941.0
670.5
200
SEG[230]
1541.0
670.5
166
SEG[264]
2901.0
670.5
201
SEG[229]
1501.0
670.5
167
SEG[263]
2861.0
670.5
202
SEG[228]
1461.0
670.5
168
SEG[262]
2821.0
670.5
203
SEG[227]
1421.0
670.5
169
SEG[261]
2781.0
670.5
204
SEG[226]
1381.0
670.5
170
SEG[260]
2741.0
670.5
205
SEG[225]
1341.0
670.5
171
SEG[259]
2701.0
670.5
206
SEG[224]
1301.0
670.5
172
SEG[258]
2661.0
670.5
207
SEG[223]
1261.0
670.5
173
SEG[257]
2621.0
670.5
208
SEG[222]
1221.0
670.5
Ver 1.3
5/99
2006/08/15
ST7636
PAD
No.
PIN Name
CSEL=0
X
Y
CSEL=1
PAD
No.
PIN Name
CSEL=0
X
Y
CSEL=1
209
SEG[221]
1181.0
670.5
244
SEG[186]
-219.0
670.5
210
SEG[220]
1141.0
670.5
245
SEG[185]
-259.0
670.5
211
SEG[219]
1101.0
670.5
246
SEG[184]
-299.0
670.5
212
SEG[218]
1061.0
670.5
247
SEG[183]
-339.0
670.5
213
SEG[217]
1021.0
670.5
248
SEG[182]
-379.0
670.5
214
SEG[216]
981.0
670.5
249
SEG[181]
-419.0
670.5
215
SEG[215]
941.0
670.5
250
SEG[180]
-459.0
670.5
216
SEG[214]
901.0
670.5
251
SEG[179]
-499.0
670.5
217
SEG[213]
861.0
670.5
252
SEG[178]
-539.0
670.5
218
SEG[212]
821.0
670.5
253
SEG[177]
-579.0
670.5
219
SEG[211]
781.0
670.5
254
SEG[176]
-619.0
670.5
220
SEG[210]
741.0
670.5
255
SEG[175]
-659.0
670.5
221
SEG[209]
701.0
670.5
256
SEG[174]
-699.0
670.5
222
SEG[208]
661.0
670.5
257
SEG[173]
-739.0
670.5
223
SEG[207]
621.0
670.5
258
SEG[172]
-779.0
670.5
224
SEG[206]
581.0
670.5
259
SEG[171]
-819.0
670.5
225
SEG[205]
541.0
670.5
260
SEG[170]
-859.0
670.5
226
SEG[204]
501.0
670.5
261
SEG[169]
-899.0
670.5
227
SEG[203]
461.0
670.5
262
SEG[168]
-939.0
670.5
228
SEG[202]
421.0
670.5
263
SEG[167]
-979.0
670.5
229
SEG[201]
381.0
670.5
264
SEG[166]
-1019.0
670.5
230
SEG[200]
341.0
670.5
265
SEG[165]
-1059.0
670.5
231
SEG[199]
301.0
670.5
266
SEG[164]
-1099.0
670.5
232
SEG[198]
261.0
670.5
267
SEG[163]
-1139.0
670.5
233
SEG[197]
221.0
670.5
268
SEG[162]
-1179.0
670.5
234
SEG[196]
181.0
670.5
269
SEG[161]
-1219.0
670.5
235
SEG[195]
141.0
670.5
270
SEG[160]
-1259.0
670.5
236
SEG[194]
101.0
670.5
271
SEG[159]
-1299.0
670.5
237
SEG[193]
61.0
670.5
272
SEG[158]
-1339.0
670.5
238
SEG[192]
21.0
670.5
273
SEG[157]
-1379.0
670.5
239
SEG[191]
-19.0
670.5
274
SEG[156]
-1419.0
670.5
240
SEG[190]
-59.0
670.5
275
SEG[155]
-1459.0
670.5
241
SEG[189]
-99.0
670.5
276
SEG[154]
-1499.0
670.5
242
SEG[188]
-139.0
670.5
277
SEG[153]
-1539.0
670.5
243
SEG[187]
-179.0
670.5
278
SEG[152]
-1579.0
670.5
Ver 1.3
6/99
2006/08/15
ST7636
PAD
No.
PIN Name
CSEL=0
X
Y
CSEL=1
PAD
No.
PIN Name
CSEL=0
X
Y
CSEL=1
279
SEG[151]
-1619.0
670.5
314
SEG[116]
-3019.0
670.5
280
SEG[150]
-1659.0
670.5
315
SEG[115]
-3059.0
670.5
281
SEG[149]
-1699.0
670.5
316
SEG[114]
-3099.0
670.5
282
SEG[148]
-1739.0
670.5
317
SEG[113]
-3139.0
670.5
283
SEG[147]
-1779.0
670.5
318
SEG[112]
-3179.0
670.5
284
SEG[146]
-1819.0
670.5
319
SEG[111]
-3219.0
670.5
285
SEG[145]
-1859.0
670.5
320
SEG[110]
-3259.0
670.5
286
SEG[144]
-1899.0
670.5
321
SEG[109]
-3299.0
670.5
287
SEG[143]
-1939.0
670.5
322
SEG[108]
-3339.0
670.5
288
SEG[142]
-1979.0
670.5
323
SEG[107]
-3379.0
670.5
289
SEG[141]
-2019.0
670.5
324
SEG[106]
-3419.0
670.5
290
SEG[140]
-2059.0
670.5
325
SEG[105]
-3459.0
670.5
291
SEG[139]
-2099.0
670.5
326
SEG[104]
-3499.0
670.5
292
SEG[138]
-2139.0
670.5
327
SEG[103]
-3539.0
670.5
293
SEG[137]
-2179.0
670.5
328
SEG[102]
-3579.0
670.5
294
SEG[136]
-2219.0
670.5
329
SEG[101]
-3619.0
670.5
295
SEG[135]
-2259.0
670.5
330
SEG[100]
-3659.0
670.5
296
SEG[134]
-2299.0
670.5
331
SEG[99]
-3699.0
670.5
297
SEG[133]
-2339.0
670.5
332
SEG[98]
-3739.0
670.5
298
SEG[132]
-2379.0
670.5
333
SEG[97]
-3779.0
670.5
299
SEG[131]
-2419.0
670.5
334
SEG[96]
-3819.0
670.5
300
SEG[130]
-2459.0
670.5
335
SEG[95]
-3859.0
670.5
301
SEG[129]
-2499.0
670.5
336
SEG[94]
-3899.0
670.5
302
SEG[128]
-2539.0
670.5
337
SEG[93]
-3939.0
670.5
303
SEG[127]
-2579.0
670.5
338
SEG[92]
-3979.0
670.5
304
SEG[126]
-2619.0
670.5
339
SEG[91]
-4019.0
670.5
305
SEG[125]
-2659.0
670.5
340
SEG[90]
-4059.0
670.5
306
SEG[124]
-2699.0
670.5
341
SEG[89]
-4099.0
670.5
307
SEG[123]
-2739.0
670.5
342
SEG[88]
-4139.0
670.5
308
SEG[122]
-2779.0
670.5
343
SEG[87]
-4179.0
670.5
309
SEG[121]
-2819.0
670.5
344
SEG[86]
-4219.0
670.5
310
SEG[120]
-2859.0
670.5
345
SEG[85]
-4259.0
670.5
311
SEG[119]
-2899.0
670.5
346
SEG[84]
-4299.0
670.5
312
SEG[118]
-2939.0
670.5
347
SEG[83]
-4339.0
670.5
313
SEG[117]
-2979.0
670.5
348
SEG[82]
-4379.0
670.5
Ver 1.3
7/99
2006/08/15
ST7636
PAD
No.
PIN Name
CSEL=0
X
Y
CSEL=1
PAD
No.
PIN Name
CSEL=0
X
Y
CSEL=1
349
SEG[81]
-4419.0
670.5
384
SEG[46]
-5819.0
670.5
350
SEG[80]
-4459.0
670.5
385
SEG[45]
-5859.0
670.5
351
SEG[79]
-4499.0
670.5
386
SEG[44]
-5899.0
670.5
352
SEG[78]
-4539.0
670.5
387
SEG[43]
-5939.0
670.5
353
SEG[77]
-4579.0
670.5
388
SEG[42]
-5979.0
670.5
354
SEG[76]
-4619.0
670.5
389
SEG[41]
-6019.0
670.5
355
SEG[75]
-4659.0
670.5
390
SEG[40]
-6059.0
670.5
356
SEG[74]
-4699.0
670.5
391
SEG[39]
-6099.0
670.5
357
SEG[73]
-4739.0
670.5
392
SEG[38]
-6139.0
670.5
358
SEG[72]
-4779.0
670.5
393
SEG[37]
-6179.0
670.5
359
SEG[71]
-4819.0
670.5
394
SEG[36]
-6219.0
670.5
360
SEG[70]
-4859.0
670.5
395
SEG[35]
-6259.0
670.5
361
SEG[69]
-4899.0
670.5
396
SEG[34]
-6299.0
670.5
362
SEG[68]
-4939.0
670.5
397
SEG[33]
-6339.0
670.5
363
SEG[67]
-4979.0
670.5
398
SEG[32]
-6379.0
670.5
364
SEG[66]
-5019.0
670.5
399
SEG[31]
-6419.0
670.5
365
SEG[65]
-5059.0
670.5
400
SEG[30]
-6459.0
670.5
366
SEG[64]
-5099.0
670.5
401
SEG[29]
-6499.0
670.5
367
SEG[63]
-5139.0
670.5
402
SEG[28]
-6539.0
670.5
368
SEG[62]
-5179.0
670.5
403
SEG[27]
-6579.0
670.5
369
SEG[61]
-5219.0
670.5
404
SEG[26]
-6619.0
670.5
370
SEG[60]
-5259.0
670.5
405
SEG[25]
-6659.0
670.5
371
SEG[59]
-5299.0
670.5
406
SEG[24]
-6699.0
670.5
372
SEG[58]
-5339.0
670.5
407
SEG[23]
-6739.0
670.5
373
SEG[57]
-5379.0
670.5
408
SEG[22]
-6779.0
670.5
374
SEG[56]
-5419.0
670.5
409
SEG[21]
-6819.0
670.5
375
SEG[55]
-5459.0
670.5
410
SEG[20]
-6859.0
670.5
376
SEG[54]
-5499.0
670.5
411
SEG[19]
-6899.0
670.5
377
SEG[53]
-5539.0
670.5
412
SEG[18]
-6939.0
670.5
378
SEG[52]
-5579.0
670.5
413
SEG[17]
-6979.0
670.5
379
SEG[51]
-5619.0
670.5
414
SEG[16]
-7019.0
670.5
380
SEG[50]
-5659.0
670.5
415
SEG[15]
-7059.0
670.5
381
SEG[49]
-5699.0
670.5
416
SEG[14]
-7099.0
670.5
382
SEG[48]
-5739.0
670.5
417
SEG[13]
-7139.0
670.5
383
SEG[47]
-5779.0
670.5
418
SEG[12]
-7179.0
670.5
Ver 1.3
8/99
2006/08/15
ST7636
PAD
No.
PIN Name
CSEL=0
X
Y
CSEL=1
PAD
PIN Name
No.
CSEL=0
CSEL=1
X
Y
419
SEG[11]
-7219.0
670.5
454
COM[89]
COM[85]
-9202.0
670.5
420
SEG[10]
-7259.0
670.5
455
COM[90]
COM[83]
-9242.0
670.5
421
SEG[9]
-7299.0
670.5
456
COM[91]
COM[81]
-9282.0
670.5
422
SEG[8]
-7339.0
670.5
457
COM[92]
COM[79]
-9322.0
670.5
423
SEG[7]
-7379.0
670.5
458
COM[93]
COM[77]
-9362.0
670.5
424
SEG[6]
-7419.0
670.5
459
COM[94]
COM[75]
-9402.0
670.5
425
SEG[5]
-7459.0
670.5
460
COM[95]
COM[73]
-9442.0
670.5
426
SEG[4]
-7499.0
670.5
461
COM[96]
COM[71]
-9482.0
670.5
427
SEG[3]
-7539.0
670.5
462
COM[97]
COM[69]
-9522.0
670.5
428
SEG[2]
-7579.0
670.5
463
COM[98]
COM[67]
-9562.0
670.5
429
SEG[1]
-7619.0
670.5
464
COM[99]
COM[65]
-9602.0
670.5
430
SEG[0]
-7659.0
670.5
465
COM[100]
COM[63]
-9870.5
650.0
431
COM[66]
COM[131]
-8282.0
670.5
466
COM[101]
COM[61]
-9870.5
610.0
432
COM[67]
COM[129]
-8322.0
670.5
467
COM[102]
COM[59]
-9870.5
570.0
433
COM[68]
COM[127]
-8362.0
670.5
468
COM[103]
COM[57]
-9870.5
530.0
434
COM[69]
COM[125]
-8402.0
670.5
469
COM[104]
COM[55]
-9870.5
490.0
435
COM[70]
COM[123]
-8442.0
670.5
470
COM[105]
COM[53]
-9870.5
450.0
436
COM[71]
COM[121]
-8482.0
670.5
471
COM[106]
COM[51]
-9870.5
410.0
437
COM[72]
COM[119]
-8522.0
670.5
472
COM[107]
COM[49]
-9870.5
370.0
438
COM[73]
COM[117]
-8562.0
670.5
473
COM[108]
COM[47]
-9870.5
330.0
439
COM[74]
COM[115]
-8602.0
670.5
474
COM[109]
COM[45]
-9870.5
290.0
440
COM[75]
COM[113]
-8642.0
670.5
475
COM[110]
COM[43]
-9870.5
250.0
441
COM[76]
COM[111]
-8682.0
670.5
476
COM[111]
COM[41]
-9870.5
210.0
442
COM[77]
COM[109]
-8722.0
670.5
477
COM[112]
COM[39]
-9870.5
170.0
443
COM[78]
COM[107]
-8762.0
670.5
478
COM[113]
COM[37]
-9870.5
130.0
444
COM[79]
COM[105]
-8802.0
670.5
479
COM[114]
COM[35]
-9870.5
90.0
445
COM[80]
COM[103]
-8842.0
670.5
480
COM[115]
COM[33]
-9870.5
50.0
446
COM[81]
COM[101]
-8882.0
670.5
481
COM[116]
COM[31]
-9870.5
10.0
447
COM[82]
COM[99]
-8922.0
670.5
482
COM[117]
COM[29]
-9870.5
-30.0
448
COM[83]
COM[97]
-8962.0
670.5
483
COM[118]
COM[27]
-9870.5
-70.0
449
COM[84]
COM[95]
-9002.0
670.5
484
COM[119]
COM[25]
-9870.5
-110.0
450
COM[85]
COM[93]
-9042.0
670.5
485
COM[120]
COM[23]
-9870.5
-150.0
451
COM[86]
COM[91]
-9082.0
670.5
486
COM[121]
COM[21]
-9870.5
-190.0
452
COM[87]
COM[89]
-9122.0
670.5
487
COM[122]
COM[19]
-9870.5
-230.0
453
COM[88]
COM[87]
-9162.0
670.5
488
COM[123]
COM[17]
-9870.5
-270.0
Ver 1.3
9/99
2006/08/15
ST7636
PAD
PIN Name
X
Y
PAD
PIN Name
X
Y
NC
-5385.0
-699.0
525
NC
-5275.0
-699.0
-390.0
526
NC
-5165.0
-699.0
-9870.5
-430.0
527
NC
-5055.0
-699.0
COM[7]
-9870.5
-470.0
528
NC
-4945.0
-699.0
COM[129]
COM[5]
-9870.5
-510.0
529
NC
-4835.0
-699.0
495
COM[130]
COM[3]
-9870.5
-550.0
530
NC
-4725.0
-699.0
496
COM[131]
COM[1]
-9870.5
-590.0
531
NC
-4615.0
-699.0
No.
CSEL=0
CSEL=1
No.
489
COM[124]
COM[15]
-9870.5
-310.0
524
490
COM[125]
COM[13]
-9870.5
-350.0
491
COM[126]
COM[11]
-9870.5
492
COM[127]
COM[9]
493
COM[128]
494
CSEL=0
CSEL=1
497
NC
-8355.0
-699.0
532
NC
-4505.0
-699.0
498
NC
-8245.0
-699.0
533
VDD
-4395.0
-699.0
499
NC
-8135.0
-699.0
534
CL
-4285.0
-699.0
500
NC
-8025.0
-699.0
535
CLS
-4175.0
-699.0
501
NC
-7915.0
-699.0
536
VSS
-4065.0
-699.0
502
NC
-7805.0
-699.0
537
VDD
-3955.0
-699.0
503
NC
-7695.0
-699.0
538
A0
-3845.0
-699.0
504
NC
-7585.0
-699.0
539
RW_WR
-3735.0
-699.0
505
NC
-7475.0
-699.0
540
VSS
-3625.0
-699.0
506
NC
-7365.0
-699.0
541
VDD
-3515.0
-699.0
507
NC
-7255.0
-699.0
542
D0
-3405.0
-699.0
508
NC
-7145.0
-699.0
543
D1
-3295.0
-699.0
509
NC
-7035.0
-699.0
544
D2
-3185.0
-699.0
510
NC
-6925.0
-699.0
545
D3
-3075.0
-699.0
511
NC
-6815.0
-699.0
546
D4
-2965.0
-699.0
512
NC
-6705.0
-699.0
547
D5
-2855.0
-699.0
513
NC
-6595.0
-699.0
548
D6
-2745.0
-699.0
514
NC
-6485.0
-699.0
549
D7
-2635.0
-699.0
515
NC
-6375.0
-699.0
550
VSS
-2525.0
-699.0
516
NC
-6265.0
-699.0
551
VDD
-2415.0
-699.0
517
NC
-6155.0
-699.0
552
D8
-2305.0
-699.0
518
NC
-6045.0
-699.0
553
D9
-2195.0
-699.0
519
NC
-5935.0
-699.0
554
D10
-2085.0
-699.0
520
NC
-5825.0
-699.0
555
D11
-1975.0
-699.0
521
NC
-5715.0
-699.0
556
D12
-1865.0
-699.0
522
NC
-5605.0
-699.0
557
D13
-1755.0
-699.0
523
NC
-5495.0
-699.0
558
D14
-1645.0
-699.0
Ver 1.3
10/99
2006/08/15
ST7636
PAD
No.
PIN Name
CSEL=0
X
Y
CSEL=1
PAD
No.
PIN Name
CSEL=0
X
Y
CSEL=1
559
D15
-1535.0
-699.0
594
VSS
2315.0
-699.0
560
VSS
-1425.0
-699.0
595
VSS
2425.0
-699.0
561
VDD
-1315.0
-699.0
596
VSS
2535.0
-699.0
562
E_RD
-1205.0
-699.0
597
VSS
2645.0
-699.0
563
RST
-1095.0
-699.0
598
VSS
2755.0
-699.0
564
VSS
-985.0
-699.0
599
VSS
2865.0
-699.0
565
VDD
-875.0
-699.0
600
VSS
2975.0
-699.0
566
CSEL
-765.0
-699.0
601
VSS
3085.0
-699.0
567
INTRS
-655.0
-699.0
602
VSS
3195.0
-699.0
568
IF1
-545.0
-699.0
603
VSS
3305.0
-699.0
569
IF2
-435.0
-699.0
604
VSS
3415.0
-699.0
570
IF3
-325.0
-699.0
605
VDD4
3525.0
-699.0
571
VSS
-215.0
-699.0
606
VDD4
3635.0
-699.0
572
VDD
-105.0
-699.0
607
VDD3
3745.0
-699.0
573
SI
5.0
-699.0
608
VDD3
3855.0
-699.0
574
SCL
115.0
-699.0
609
VDD2
3965.0
-699.0
575
/CS
225.0
-699.0
610
VDD2
4075.0
-699.0
576
VDD
335.0
-699.0
611
VDD2
4185.0
-699.0
577
VDD
445.0
-699.0
612
VDD2
4295.0
-699.0
578
VDD
555.0
-699.0
613
VDD2
4405.0
-699.0
579
VDD
665.0
-699.0
614
VDD2
4515.0
-699.0
580
VDD
775.0
-699.0
615
VDD2
4625.0
-699.0
581
VDD
885.0
-699.0
616
VDD2
4735.0
-699.0
582
VDD1
995.0
-699.0
617
VDD2
4845.0
-699.0
583
VDD1
1105.0
-699.0
618
VDD2
4955.0
-699.0
584
VSS
1215.0
-699.0
619
VDD5
5065.0
-699.0
585
VSS
1325.0
-699.0
620
VDD5
5175.0
-699.0
586
VSS
1435.0
-699.0
621
VDD5
5285.0
-699.0
587
VSS
1545.0
-699.0
622
VDD5
5395.0
-699.0
588
VSS
1655.0
-699.0
623
TCAP
5505.0
-699.0
589
VSS
1765.0
-699.0
624
CAP2P
5615.0
-699.0
590
VSS
1875.0
-699.0
625
CAP2N
5725.0
-699.0
591
VSS
1985.0
-699.0
626
CAP6P
5835.0
-699.0
592
VSS
2095.0
-699.0
627
CAP2N
5945.0
-699.0
593
VSS
2205.0
-699.0
628
CAP4P
6055.0
-699.0
Ver 1.3
11/99
2006/08/15
ST7636
PAD
No.
PIN Name
CSEL=0
X
Y
CSEL=1
PAD
PIN Name
No.
CSEL=0
CSEL=1
X
Y
629
CAP7P
6165.0
-699.0
661
COM[0]
COM[0]
9870.5
-590.0
630
CAP1N
6275.0
-699.0
662
COM[1]
COM[2]
9870.5
-550.0
631
CAP5P
6385.0
-699.0
663
COM[2]
COM[4]
9870.5
-510.0
632
CAP3P
6495.0
-699.0
664
COM[3]
COM[6]
9870.5
-470.0
633
CAP1N
6605.0
-699.0
665
COM[4]
COM[8]
9870.5
-430.0
634
CAP1P
6715.0
-699.0
666
COM[5]
COM[10]
9870.5
-390.0
635
VOUTIN
6825.0
-699.0
667
COM[6]
COM[12]
9870.5
-350.0
636
VOUTIN
6935.0
-699.0
668
COM[7]
COM[14]
9870.5
-310.0
637
VOUTIN
7045.0
-699.0
669
COM[8]
COM[16]
9870.5
-270.0
638
VOUTIN
7155.0
-699.0
670
COM[9]
COM[18]
9870.5
-230.0
639
VOUTIN
7265.0
-699.0
671
COM[10]
COM[20]
9870.5
-190.0
640
VOUTIN
7375.0
-699.0
672
COM[11]
COM[22]
9870.5
-150.0
641
VOUTOUT
7485.0
-699.0
673
COM[12]
COM[24]
9870.5
-110.0
642
VOUTOUT
7595.0
-699.0
674
COM[13]
COM[26]
9870.5
-70.0
643
VOUTOUT
7705.0
-699.0
675
COM[14]
COM[28]
9870.5
-30.0
644
VOUTOUT
7815.0
-699.0
676
COM[15]
COM[30]
9870.5
10.0
645
VOUTOUT
7925.0
-699.0
677
COM[16]
COM[32]
9870.5
50.0
646
VOUTOUT
8035.0
-699.0
678
COM[17]
COM[34]
9870.5
90.0
647
VREF
8145.0
-699.0
679
COM[18]
COM[36]
9870.5
130.0
648
VR
8255.0
-699.0
680
COM[19]
COM[38]
9870.5
170.0
649
V4
8365.0
-699.0
681
COM[20]
COM[40]
9870.5
210.0
650
V3
8475.0
-699.0
682
COM[21]
COM[42]
9870.5
250.0
651
V2
8585.0
-699.0
683
COM[22]
COM[44]
9870.5
290.0
652
V1
8695.0
-699.0
684
COM[23]
COM[46]
9870.5
330.0
653
V0OUT
8805.0
-699.0
685
COM[24]
COM[48]
9870.5
370.0
654
V0OUT
8915.0
-699.0
686
COM[25]
COM[50]
9870.5
410.0
655
V0OUT
9025.0
-699.0
687
COM[26]
COM[52]
9870.5
450.0
656
V0OUT
9135.0
-699.0
688
COM[27]
COM[54]
9870.5
490.0
657
V0IN
9245.0
-699.0
689
COM[28]
COM[56]
9870.5
530.0
658
V0IN
9355.0
-699.0
690
COM[29]
COM[58]
9870.5
570.0
659
V0IN
9465.0
-699.0
691
COM[30]
COM[60]
9870.5
610.0
660
V0IN
9575.0
-699.0
692
COM[31]
COM[62]
9870.5
650.0
Ver 1.3
12/99
2006/08/15
ST7636
5. BLOCK DIAGRAM
SEG0 TO SEG395
COM0 TO COM131
VDD1
VDD
V0 In
V1
V2
V3
V4
SEGMENT DRIVERS
COMMON
DRIVERS
CSEL
VSS
DATA LATCHES
COMMON
OUTPUT
CONTROLLER
CIRCUIT
V/F
Circuit
FRC/PWM FUNCTION
CIRCUIT
V0 out
RESET
VREF
VR
V/R
Circuit
INTRS
CL
OSCILLATOR
DISPLAY DATA RAM
(DDRAM)
[132X132X16]
VOUTin
VOUTout
Cap1N
Cap2P
Cap2N
Cap3P
Cap4P
Cap5P
Cap6P
Cap7P
DISPLAY
ADDRESS
COUNTER
V/C
Circuit
VDD2
VDD3
VDD4
VDD5
ADDRESS COUNTER
OTP
DATA
REGISTER
INSTRUCTION
REGISTER
BUS
HOLDER
INSTRUCTION
DECODER
MPU INTERFACE(PARALLEL & SERIAL)
VSS
TCAP
D0 to D15
SI
13/99
SCL
RW_WR
E_RD
A0
/CS
/RST
IF3
IF2
IF1
Ver 1.3
CLS
TIMING
GENERATOR
2006/08/15
ST7636
6. PIN DESCRIPTION
6.1 POWER SUPPLY
Name
I/O
Description
VDD
Supply
Power supply for logic circuit
VDD1
Supply
Power supply for OSC circuit
VDD2
Supply
Power supply for Booster Circuit
VDD3
Supply
Power supply for LCD.
VDD4
Supply
Power supply for LCD.
VDD5
Supply
Power supply for LCD.
VSS
Supply
Ground. Ground system should be connected together.
VOUTOUT
Supply
VOUTIN
Supply
If the internal voltage generator is used, the VOUTIN & VOUTOUT must be connected together.
If an external supply is used, this pin must be left open.
An external LCD supply voltage can be supplied using the VOUTIN pad. In this case, VOUTOUT has to
be left open, and the internal voltage generator has to be programmed to zero. (SET register VC=0)
LCD driver supply voltages
V0in & V0out should be connected together.
V0in
Voltages should have the following relationship;
V0out
V0 ( V0in ) ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ VSS.
V1
I/O
V2
When the internal power circuit is active, these voltages are generated as following table according
to the state of LCD bias.
V3
LCD bias
V1
V2
V3
V4
1/N bias
(N-1) / N x V0
(N-2) / N x V0
(2/N) x V0
(1/N) x V0
V4
NOTE: N = 5 to 12
6.2 LCD Power Supply Pins
Pin Name
I/O
CAP1N
O
Function
DC/DC voltage converter. Connect capacitors between this terminal and the CAP1P, CAP3P, CAP5P,
CAP7P terminal.
DC/DC voltage converter. Connect capacitors between this terminal and the CAP2P, CAP4P, CAP6P
CAP2N
O
terminal.
CAP1P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.
CAP2P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.
CAP3P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.
CAP4P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.
CAP5P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.
CAP6P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.
Ver 1.3
14/99
2006/08/15
ST7636
CAP7P
O
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.
VREF
O
Reference voltage output for monitor only. Left it opened.
VR
I
Reference voltage output for monitor only. Left it opened.
6.3 SYSTEM CONTROL
Name
I/O
CLS
I
Description
When using internal clock oscillator, connect CLS to VDD.
When using external clock oscillator, connect CLS to VSS.
When using internal clock oscillator, it’s oscillator output.
CL
I/O
When using external clock oscillator, it’s clock input.
This terminal selects the resistors for the V0 voltage level adjustment.
INTRS
I
This pin should be fixed to High.
Select Common output direction.
CSEL
I
CSEL=”L”, COM0~COM65 is in one side, COM66~COM131 is in the opposite side.
CSEL=”H”, COM2n(even number) is in the one side, COM2n+1 (odd number) is in the opposite side.
TCAP
I/O
Test pin. Left it opened.
6.4 MICROPROCESSOR INTERFACE
Name
I/O
RST
I
Description
Reset input pin
When RESETB is “L”, initialization is executed.
Parallel / Serial data input select input
IF[3:1]
IF1
IF2
IF3
MPU interface type
H
H
H
80 series 16-bit parallel
H
H
L
80 series 8-bit parallel
H
L
L
68 series 16-bit parallel
L
H
H
68 series 8-bit parallel
L
L
H
9-bit serial (3 line)
L
L
L
8-bit serial (4 line)
I
Chip select input pins
/CS
I
Data / Instruction I/O is enabled only when /CS is "L". When chip select is non-active, D0 to D15
become high impedance.
Ver 1.3
15/99
2006/08/15
ST7636
Register select input pin
A0 = "H": D0 to D15 or SI are display data
A0
I
A0 = "L": D0 to D15 or SI are control data
In 3-line interface not let it floating, contact it to VSS or VDD.
Read / Write execution control pin
MPU type
RW_WR
Description
Read / Write control input pin
6800-series
RW_WR
RW = “H” : read
RW
RW = “L” : write
I
Write enable clock input pin
8080-series
/WR
The data on D0 to D15 are latched at the
rising edge of the /WR signal.
When in the serial interface, contact it to VSS or VDD.
Read / Write execution control pin
MPU Type
E_RD
Description
Read / Write control input pin
RW = “H”: When E is “H”, D0 to D15 are in an output
6800-series
E_RD
E
I
status.
RW = “L”: The data on D0 to D15 are latched at the
falling edge of the E signal.
Read enable clock input pin
8080-series
/RD
When /RD is “L”, D0 to D15 are in an output status.
When in the serial interface, contact it to VSS or VDD.
They connect to the standard 8-bit or 16 bit MPU bus via the 8/16 –bit bi-directional bus.
When the following interface is selected and the /CS pin is high, the following pins become high
impedance.
1.
D15 to D0
I/O
In 8-bit parallel: D15-D8 are in the state of high impedance, should contact to “H” level or
“L” level.
2.
In Serial interface: D15-D0 are in the state of high impedance, should contact to “H” level or
“L” level.
This pin is used to input serial data when the serial interface is selected.(3 line and 4 line)
SI
I
When not use contact it to VSS.
This pin is used to input serial clock when the serial interface is selected.
SCL
I
The data is converted in the rising edge. (3 line and 4 line)
When not use contact it to VSS.
NOTE: Microprocessor interface pins should not be floating in any operation mode.
Ver 1.3
16/99
2006/08/15
ST7636
6.5 LCD DRIVER OUTPUTS
Name
I/O
Description
LCD segment driver outputs
The display data and the M signal control the output voltage of segment driver.
Segment driver output voltage
Display data
M (Internal)
SEG0
to
O
SEG395
Normal display
Reverse display
H
H
V0
V2
H
L
VSS
V3
L
H
V2
V0
L
L
V3
VSS
VSS
VSS
Sleep in mode
LCD common driver outputs
The internal scanning data and M signal control the output voltage of common driver.
Scan data
M (Internal)
Common driver output voltage
H
H
VSS
H
L
V0
L
H
V1
L
L
V4
COM0
to
O
COM131
Sleep in mode
VSS
ST7636 I/O PIN ITO Resister Limitation
Pin Name
ITO Resister
VREF, TCAP, CL, VR
Floating
IF[3:1],CLS,CSEL,INTRS
No Limitation
VDD, VDD1~VDD5, VSS, CAP1N, CAP2N, VOUTIN, VOUTOUT
<100Ω
V0in, V0out, V1, V2, V3, V4, CAP1P~7P
<100Ω
A0, E_RD, RW_WR, /CS, D0 …D15, SCL, SI
<1KΩ
RST
<10KΩ
NOTE:
Make sure the ITO resistance of COM0 ~ COM131 is equal, and so is it of SEG0 ~ SEG395.
Ver 1.3
17/99
2006/08/15
ST7636
7. FUNCTIONAL DESCRIPTION
7.1 MICROPROCESSOR INTERFACE
Chip Select Input
/CS pin is for chip selection. The ST7636 can function with an MPU when /CS is "L". In case of serial interface, the internal
shift register and the counter are reset.
7.1.1 Selecting Parallel / Serial Interface
ST7636 has six types of interface with an MPU, which are two serial and four parallel interfaces. This parallel or serial
interface is determined by IF pin as shown in table 7.1.1.
Table 7.1.1 Parallel / Serial Interface Mode
I/F Mode
IF1 IF2 IF3
H
H
H
H
H
L
H
L
L
L
H
H
L
L
L
L
L
H
I/F Description
80 serial 16-bit parallel
80 serial 8-bit parallel
68 serial 16-bit parallel
68 serial 8-bit parallel
8-bit SPI mode (4 line)
9-bit SPI mode (3 line)
/CS
/CS
/CS
/CS
/CS
/CS
/CS
A0
A0
A0
A0
A0
A0
--
E_RD
/RD
/RD
E
E
---
Pin Assignment
RW_WR D15 to D8
/WR
D15 ~ D8
/WR
-R/W
D15 ~ D8
R/W
------
D7 to D0
D7 ~ D0
D7 ~ D0
D7 ~ D0
D7 ~ D0
---
SI
----SI
SI
SCL
----SCL
SCL
NOTE: When these pins are set to any other combination, A0, E_RD and RW_WR inputs are disabled and D0 to D15 are
to be high impedance.
7.1.2 8-bit or 16-bit Parallel Interface
The ST7636 identifies the type of the data bus signals according to the combination of A0, /RD (E) and /WR (W/R) signals,
as shown in table 7.1.2.
Table 7.1.2 Parallel Data Transfer
Common
6800-series
8080-series
Description
A0
R/W
E
/RD
/WR
H
H
H
L
H
Display data read out
H
L
H
H
L
Display data write
L
H
H
L
H
Register status read
L
L
H
H
L
Writes to internal register (instruction)
Relation between Data Bus and Gradation Data
ST7636 offers the 65K color display, dithered 262K color, and dithered 16M color.
When using 65K, 262K, and 16M color, you can specify color for each of R, G, B using the palette function.
Ver 1.3
18/99
2006/08/15
ST7636
Use the command for switching between these modes.
(1) 65K color input mode
1. 8-bit mode
D7, D6, D5, D4, D3, D2, D1, D0: RRRRRGGG
1st write
D7, D6, D5, D4, D3, D2, D1, D0: GGGBBBBB
2nd write
A single pixel of data is read after the second write operation as shown, and it is written in the display RAM.
2. 16-bit mode
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRGGGGGGBBBBB (16 bits)
Data is acquired through signal write operation and then written to the display RAM.
(2) 262K color input mode
1. 8-bit mode
D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRXX
1st write
D7, D6, D5, D4, D3, D2, D1, D0: GGGGGGXX
2nd write
D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBXX
3rd write
A single pixel of data is read after the third write operation as shown, and it is written in the display RAM.
“X” is dummy bit, and it is ignored for display.
2. 16 bit mode
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRXXGGGGGGXX
1st write
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBXXXXXXXXXXXX
2nd write
A single pixel of data is read after the second write operation as shown, and it is written in the display RAM.
(3) 16M color input mode
1. 8-bit mode
D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRRR
1st write
D7, D6, D5, D4, D3, D2, D1, D0: GGGGGGGG
2nd write
D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBBB
3rd write
A single pixel of data is read after the third write operation as shown, and it is written in the display RAM.
2. 16 bit mode
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRRRGGGGGGGG
1st write
D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBBBXXXXXXXX
2nd write
A single pixel of data is read after the second write operation as shown, and it is written in the display RAM.
Ver 1.3
19/99
2006/08/15
ST7636
7.1.3 8- and 9-bit Serial Interface
The 8-bit serial interface uses four pins /CS, SI, SCL, and A0 to enter commands and data. Meanwhile, the 9-bit serial
interface uses three pins /CS, SI and SCL for the same purpose.
Data read is not available in the serial interface. Data entered must be 8 bits. Refer to the following chart for entering
commands, parameters or gray-scale data.
The relation between gray-scale data and data bus in the serial input is the same as that in the 8-bit parallel interface mode
at every gradation.
(1) 8-bit serial interface (4 line )
When entering data (parameters): A0= HIGH at the rising edge of the 8th SCL.
When entering command: A0= LOW at the rising edge of the 8th SCL
(2) 9-bit serial interface (3 line )
When entering data (parameters): SI= HIGH at the rising edge of the 1st SCL.
Ver 1.3
20/99
2006/08/15
ST7636
When entering command: SI= LOW at the rising edge of the 1st SCL.
l
If /CS is set to HIGH while the 8 bits from D7 to D0 are entered, the data concerned is invalidated. Before entering
succeeding sets of data, you must correctly input the data concerned again.
l
In order to avoid data transfer error due to incoming noise, it is recommended to set /CS at HIGH on byte basis to
initialize the serial-to-parallel conversion counter and the register.
l
When executing the command RAMWR, set /CS to HIGH after writing the last address (after starting the 9th pulse in
case of 9-bit serial input or after starting the 8th pulse in case of 8-bit serial input).
7.2 ACCESS TO DDRAM AND INTERNAL REGISTERS
ST7636 realizes high-speed data transfer because the access from MPU is a sort of pipeline processing done via the bus
holder attached to the internal, requiring the cycle time alone without needing the wait time.
For example, when MPU writes data to the DDRAM, the data is once held by the bus holder and then written to the
DDRAM before the succeeding write cycle is started. When MPU reads data from the DDRAM, the first read cycle is
dummy and the bus holder holds the data read in the dummy cycle, and then it read from the bus holder to the system bus
in the succeeding read cycle. Figure 7.2.1 illustrates these relations.
In 80-series interface mode:
MPU signal
Write
Operation
A0
/WR
DATA
N
D(N)
D(N+1) D(N+2)
D(N+3)
Internal signals
/WR
BUS HOLDER
ADDRESS COUNTER
Ver 1.3
N
D(N)
N
21/99
N+1
D(N+1)
N+2
D(N+2)
D(N+3)
N+3
2006/08/15
ST7636
MPU signal
Read
Operation
A0
/WR
/RD
DATA
N
Dummy
D(N)
D(N+1)
Internal signals
/WR
/RD
BUS HOLDER
ADDRESS COUNTER
N
D(N)
D(N)
D(N+1)
D(N+2)
D(N+1)
D(N+2)
D(N+3)
Figure 7.2.1
7.3 DISPLAY DATA RAM (DDRAM)
7.3.1 DDRAM
It is 132 X 132 X 16 bits capacity RAM prepared for storing dot data. You can access a desired bit by specifying the page
address and column address. Since display data from MCU D7 to D0 and D15 to D8 correspond to one or two pixels of
RGB, data transfer related restrictions are reduced, realizing the display flexing.
The RAM on ST7636 is separated to a block per 4 lines to allow the display system to process data on the block basis.
MPU’s read and write operations to and from the RAM are performed via the I/O buffer circuit; Reading of the RAM for the
liquid crystal drive is controlled from another separate circuit. Refer to the following memory map for the RAM
configuration.
Ver 1.3
22/99
2006/08/15
ST7636
Memory Map (When using the 65Kcolor. 8-bit mode,)
RGB alignment ( Command of Data Control Parameter2 = 000 )
Column
scan
direction
P11:0
P11:1
Color
Example:
Data/Scan format
BLOCK
0
1
31
32
0
1
131
131
130
0
R
D0_7
G
D0_2
B
D1_4
R
D2_7
G
D2_2
B
D3_4
R
G
B
D262_7 D262_2 D263_4
D0_6
D0_5
D0_4
D0_1
D0_0
D1_7
D1_3
D1_2
D1_1
D2_6
D2_5
D2_4
D2_1
D2_0
D3_7
D3_3
D3_2
D3_1
D262_6 D262_1 D263_3
D262_5 D262_0 D263_2
D262_4 D263_7 D263_1
D0_3
D1_6
D1_5
D1_0
D2_3
D3_6
D3_5
D3_0
D262_3 D263_6 D263_0
D263_5
Page scan
P10:0
Memory Map
P10:1
0
1
2
131
130
129
3
4
5
6
128
127
126
125
7
124
124
7
125
126
127
6
5
4
128
129
130
3
2
1
131
SEGout
0
0
1
2
3
4
5
393
394
395
You can change position of R and B with DATACTL command.
Ver 1.3
23/99
2006/08/15
ST7636
Memory Map (When using the 65K color. 16-bit mode)
RGB alignment ( Command of Data Control Parameter2 = 000 )
Column
scan
direction
P11:0
P11:1
Color
Example:
Data/Scan format
BLOCK
0
1
31
32
0
1
131
131
130
0
R
D0_15
G
D0_10
B
D0_4
R
D1_15
G
D1_10
B
D1_4
R
G
B
D131_15 D131_10 D131_4
D0_14
D0_13
D0_12
D0_9
D0_8
D0_7
D0_3
D0_2
D0_1
D1_14
D1_13
D1_12
D1_9
D1_8
D1_7
D1_3
D1_2
D1_1
D131_14 D131_9 D131_3
D131_13 D131_8 D131_2
D131_12 D131_7 D131_1
D0_11
D0_6
D0_5
D0_0
D1_11
D1_6
D1_5
D1_0
D131_11 D131_6 D131_0
D131_5
Page scan
P10:0
Memory Map
P10:1
0
1
2
131
130
129
3
4
5
6
128
127
126
125
7
124
124
7
125
126
127
6
5
4
128
129
130
3
2
1
131
SEGout
0
0
1
2
3
4
5
393
394
395
You can change position of R and B with DATACTL command.
Ver 1.3
24/99
2006/08/15
ST7636
Memory Map (When using the 262K/16Mcolor. 8-bit mode,)
RGB alignment ( Command of Data Control Parameter2 = 000 )
Column
scan
direction
P11:0
P11:1
Color
Example:
Data/Scan format
BLOCK
0
1
31
32
0
1
131
131
130
0
R
D0_7
G
D1_7
B
D2_7
R
D3_7
G
D4_7
B
D5_7
R
G
B
D393_7 D394_7 D395_7
D0_6
D0_5
D0_4
D0_3
D1_6
D1_5
D1_4
D1_3
D2_6
D2_5
D2_4
D2_3
D3_6
D3_5
D3_4
D3_3
D4_6
D4_5
D4_4
D4_3
D5_6
D5_5
D5_4
D5_3
D393_6
D393_5
D393_4
D393_3
D0_2
D0_1
D0_0
D1_2
D1_1
D1_0
D2_2
D2_1
D2_0
D3_2
D3_1
D3_0
D4_2
D4_1
D4_0
D5_2
D5_1
D5_0
D393_2 D394_2 D395_2
D393_1 D394_1 D395_1
D393_0 D394_0 D395_0
Page scan
P10:0
131
130
2
3
4
5
129
128
127
126
6
7
125
124
124
125
126
127
7
6
5
4
128
129
130
3
2
1
131
SEGout
0
D395_6
D395_5
D395_4
D395_3
Memory Map
P10:1
0
1
D394_6
D394_5
D394_4
D394_3
0
1
2
3
4
5
393
394
395
You can change position of R and B with DATACTL command.
Ver 1.3
25/99
2006/08/15
ST7636
Memory Map (When using the 16 gray-scale, 262K/16M color. 16-bit mode)
RGB alignment ( Command of Data Control Parameter2 = 000 )
Column
scan
direction
P11:0
P11:1
Color
Example:
Data/Scan format
BLOCK
0
1
31
32
0
1
131
131
130
0
R
D0_15
G
D0_7
B
D1_15
R
D1_
G
D2_7
B
D2_7
R
G
B
D176_7 D177_7 D177_7
D0_14
D0_13
D0_12
D0_11
D0_6
D0_5
D0_4
D0_3
D1_14
D1_13
D1_12
D1_11
D1_6
D1_5
D1_4
D1_3
D2_6
D2_5
D2_4
D2_3
D2_6
D2_5
D2_4
D2_3
D176_6
D176_5
D176_4
D176_3
D0_10
D0_9
D0_8
D0_2
D0_1
D0_0
D1_10
D1_9
D1_8
D1_2
D1_1
D1_0
D2_2
D2_1
D2_0
D2_2
D2_1
D2_0
D176_2 D177_2 D177_2
D176_1 D177_1 D177_1
D176_0 D177_0 D177_0
Page scan
P10:0
131
130
2
3
4
5
129
128
127
126
6
7
125
124
124
125
126
127
7
6
5
4
128
129
130
3
2
1
131
SEGout
0
D177_6
D177_5
D177_4
D177_3
Memory Map
P10:1
0
1
D177_6
D177_5
D177_4
D177_3
0
1
2
3
4
5
393
394
395
You can change position of R and B with DATACTL command.
Ver 1.3
26/99
2006/08/15
ST7636
7.3.2 Page Address Control Circuit
This circuit is used to control the address in the page direction when MPU accesses the DDRAM or when reading the
DDRAM to display image on the LCD.
You can specify a scope of the page address with page address set command. When the page-direction scan is specified
with DATACTL command and the address are incremented from the start up to the end page, the column address is
incremented by 1 and the page address returns to start page.
The DDRAM supports up to 132 lines, and thus the total page becomes 132.
In the read operation, as the end page is reached, the column address is automatically incremented by 1 and the page
address is returned to start page.
Using the address normal/inverse parameter of DATACTL command allows you to inverse the correspondence between
the DDRAM address and command output.
7.3.3 Column Address Control Circuit
This circuit is used to control the address in the column direction when MPU accesses the DDRAM. You can specify a
scope of the column address using column address set command. When the column-direction scan is specified with
DATACTL command and the address are incremented from the start up to the end page, the page address is incremented
by 1 and the column address returns to start column.
In the read operation, too, the column address is automatically incremented by 1 and returned to start page as the end
column is reached.
Just like the page address control circuit, using the column address normal/inverse parameter of DATACTL command
enables to inverse the correspondence between the DDRAM column address and segment output. This arrangement
relaxes restrictions in the chip layout on the LCD module.
7.3.4 I/O Buffer Circuit
It is the bi-directional buffer used when MPU reads or writes the DDRAM. Since MPU’s read or write of DDRAM is
performed independently from data output to the display data latch circuit, asynchronous access to the DDRAM when the
LCD is turned on does not cause troubles such as flicking of the display images.
7.3.5 Block Address Circuit
The circuit associates pages on DDRAM with COM output. ST7636 processes signals for the liquid crystal display on
4-page basis. Thus, when specifying a specific area in the area scroll display or partial display, you must designate it in
block.
7.3.6 Display data Latch Circuit
This circuit is used to temporarily hold display data to be output from the DDRAM to the SEG decoder circuit. Since display
normal/inverse and display on/off commands are used to control data in the latch circuit alone, they do not modify data in
the DDRAM.
Ver 1.3
27/99
2006/08/15
ST7636
7.4 Area Scroll Display
Using area scroll set and scroll start set commands allows you to scroll the display screen partially. You can select any one
of the following four scroll patterns.
Fixed area
Scroll area
DDRAM
0
1
2
30 blocks
=128 line
27
28
Fixed area
30
Scroll area
31
32
Ver 1.3
Background area
28/99
2006/08/15
ST7636
7.5 Partial Display
Using partial in command allows you turn on the partial display (division by line) of the screen. This mode requires less
current consumption than the whole screen display, making it suitable for the equipment in the standby state.
: Display area (partial display area)
: Non-display area
If the partial display region is out of the Max. Display range, it would be no operation
-COM0
-COM1
-COM2
-COM3
-COM4
-COM5
-COM6
-COM7
-COM8
-COM9
-COM10
-COM11
-COM12
-COM13
-COM14
-COM15
-COM16
-COM17
-COM18
-COM19
-COM20
-COM21
-COM22
-COM23
Figure 7.5.1 Reference Example for Partial Display
Ver 1.3
29/99
2006/08/15
ST7636
-COM0
-COM1
-COM2
-COM3
-COM4
-COM5
-COM6
-COM7
-COM8
-COM9
-COM10
-COM11
-COM12
-COM13
-COM14
-COM15
-COM16
-COM17
-COM18
-COM19
-COM20
-COM21
-COM22
-COM23
Figure 7.5.2 Partial Display (Partial Display Duty=16,initial COM0=0)
-COM0
-COM1
-COM2
-COM3
-COM4
-COM5
-COM6
-COM7
-COM8
-COM9
-COM10
-COM11
-COM12
-COM13
-COM14
-COM15
-COM16
-COM17
-COM18
-COM19
-COM20
-COM21
-COM22
-COM23
Figure 7.5.3 Moving Display (Partial Display Duty=16,Initial COM0=8)
7.6 Gary-Scale Display
ST7636 incorporates a 4FRC & 31 PWM function circuit to display a 64 gray-scale display.
7.7 Oscillation circuit
This is on-chip Oscillator without external resistor. When the internal oscillator is used, CLS must connect to VDD; when
the external oscillator is used, CL could be input pin. This oscillator signal is used in the voltage converter and display
timing generation circuit.
Ver 1.3
30/99
2006/08/15
ST7636
7.8 Display Timing Generator Circuit
This circuit generates some signals to be used for displaying LCD. The display clock, CL (internal), generated by oscillation
clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is
generated in synchronization with the display clock and the display data latch circuit latches the 132-bit display data in
synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the
access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (M), which
enables the LCD driver to make an AC drive waveform, and also generates an internal common timing signal and start
signal to the common driver. The frame signal or the line signal changes the M by setting internal instruction. Driving
waveform and internal timing signal are shown in Figure 7.8.1.
131 132
1
2
3
4
5
6
7
8
9
10
11
12
124 125 126 127 128 129 130 131 132 1
2
3
4
5
CL(Internal)
FR(Internal)
M(Internal)
COM0
VLCD
V1
V2
V3
V4
VSS
COM1
VLCD
V1
V2
V3
V4
VSS
SEGn
VLCD
V1
V2
V3
V4
VSS
Figure 7.8.1 2-frame AC Driving Waveform (Duty Ratio: 1/132)
127
128
1
2
3
4
5
6
7
8
9
10
11
12
119
120
121
122
123
124
125
126
127
128
1
2
3
4
CL(Internal)
FR(Internal)
M(Internal)
VLCD
V1
V2
V3
V4
Vss
COM0
VLCD
V1
V2
V3
V4
Vss
COM1
VLCD
V1
V2
V3
V4
Vss
SEGn
Figure 7.8.2 N-Line Inversion Driving Waveform (N=5,Duty Ratio=1/128)
Ver 1.3
31/99
2006/08/15
ST7636
7.9 Liquid Crystal drive Circuit
This driver circuit is configured by 132-channel common drivers and 396-channel segment drivers. This LCD panel driver
voltage depends on the combination of display data and M signal.
VDD
VSS
VLCD
V1
V2
V3
V4
VSS
VLCD
V1
V2
V3
V4
VSS
VLCD
V1
V2
V3
V4
VSS
VLCD
V1
V2
V3
V4
VSS
VLCD
V1
V2
V3
V4
VSS
M
COM0
COM1
COM0
COM2
COM3
COM4
COM5
COM6
COM1
COM7
COM8
COM9
COM2
COM10
COM11
COM12
COM13
COM14
SEG0
SEG 0
1
2
3
4
SEG1
Ver 1.3
32/99
2006/08/15
ST7636
7.10 Liquid Crystal Driver Power Circuit
The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power
consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage
follower circuits. They are controlled by power control instruction. For details, refers to "Instruction Description". Table
7.10.1 shows the referenced combinations in using Power Supply circuits.
Table 7.10.1 Recommended Power Supply Combinations
Power
User setup
V/C
V/R
V/F
circuits
circuits
circuits
control
VOUT
V0
V1 to V4
(VC VR VF)
To series a
To series a
Only the internal power
To series a
capacitor and a
111
ON
ON
ON
capacitor
supply circuits are used
capacitor
resister in parallel
to GND
to GND
to GND
Only the voltage
To series a
To series a
regulator circuits and
External
011
OFF
ON
capacitor and a
ON
voltage follower circuits
capacitor
input
resister in parallel
to GND
are used
to GND
To series a
Only the voltage follower
001
OFF
OFF
ON
Open
External input
capacitor
circuits are used
to GND
Only the external power
External
000
OFF
OFF
supply circuits are used
Ver 1.3
OFF
Open
External input
input
33/99
2006/08/15
ST7636
7.10.1 Voltage Converter Circuits
The Step-up Voltage Circuits
Ver 1.3
34/99
2006/08/15
ST7636
7.10.2 Voltage Regulator Circuits
SET VOP (SETVOP)
The set VOP function is used to program the optimum LCD supply voltage V0.
SETVOP
Reset state of Vop[8:0] is 257DEC = 13.88V.
The VOP value is programmed via the Vop[8:0] register.
V0=a+( Vop[8:6]Vop[5:0]).b
Ex:Vop[5:0]=000001, Vop[8:6]=100
→ Vop [8:0]=100000001
→ 3.6+257x0.04=13.88
l
a is a fixed constant value (see table 7.10.2).
l
b is a fixed constant value (see table 7.10.2).
l
Vop[8:0] is the programmed VOP value. The programming range for Vop[8:0] is 5 to 410 (19Ahex).
l
Vop[5:0] is the set contrast value which can be set via the interface and is in two’s complement format.(See
command VOLUP & VOLDOWN)
l
Table 7.10.2
SYMBOL
VALUE
UNIT
a
3.6
V
b
0.04
V
The Vop[8:0] value must be in the VLCD programming range as given in Figure 7.10.2. Evaluating equation (1), values
outside the programming range indicated in Figure 7.10.2 may result. Calculated values below 4 will be mapped to
VOP[8:0] = 4, resulting VOP[8:0] values higher than 410 will be mapped to VOP[8:0] = 410.
Ver 1.3
35/99
2006/08/15
ST7636
VLCD
Programming range (05HEX to 19AHEX)
b
a
Vop
00
01
02
03
04
05
06
.....
410DEC
Vop[8:0] programming, (05hex to 19Ahex)
Figure 7.10.2 VLCD programming range
As the programming range for the internally generated V0 allows values above the max (18V). Allowed V0 (18V) the user
has to ensure while setting the VPR register and selecting the temperature compensation, that under all conditions and
including all tolerances the V0 remains below 18V.
Par no.
Equipment Type
Thermal Gradient
ST7636
Internal Power Supply
-0.136%(tolerance +/-10%)/0C@ V0=14V, 250C
or -19.6 mV/0C
Temperature Gradient Coefficient =
Vop(90 0 C)− Vop(−30 0 C)
Vop(25 0 C)*[90 0 C −(−30 0 C)]
Or =
Ver 1.3
Vop(900 C)− Vop(−300 C)
0
0
[90 C −(−30 C)]
36/99
0
(%/ C)
(mV/0C))
2006/08/15
ST7636
7.10.3 EEPROM Setting Flow
EEPROM Setting Flow
The ST7636 provide the Write and Read function to write the Electronic Control value and Built-in resistance
ratio into and read them from the built-in EEPROM. Using the Write and Read functions, you can store these
values appropriate to each LCD panel. This function is very convenient for user in setting from some different
panel’s voltage. But using this function must attention the setting procedure. Please see the following diagram.
Note1: This setting flow is used for LCM assembler.
Note2: When writing value to EEPROM, the voltage of VOUTIN must be more than 17V.
Note3: To avoid some errors during IC operation, EEPROM shouldn’t be written without preceding
loading correctly from EEPROM.
Display Quality Control Flow
Cut Off Power
Power On
Execute Initial Flow
( Execute “Load EEPROM”)
Test Pattern Display
EC Value
Adjustment
EC: +/- 1
End of EC Adjustment
and Write EC Value to
EEPROM
Display Quality Control
NG
Execute the
“Write EEPROM Flow”
QC ok
End of Display Quality Control
Figure 7.10.3.1 Flow of EC value adjustment for display quality control by writing EEPROM offset
Ver 1.3
37/99
2006/08/15
ST7636
Figure 7.10.3.2 EC value control for different modules by loading EEPROM offset
Example:EEPROM Read Operation
void ReadEEPROM( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x0007 );
Write( DATA, 0x0019 );
// Ext = 0
// EEPROM Function Start ( EEOK )
// EEPROM Function Parameter
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00d1 );
Write( COMMAND, 0x0020 );
Write( DATA, 0x000b );
// Ext = 0
// Internal OSC on
// Power Control
// B/F/R = On/On/On
Write( COMMAND, 0x0031 );
Write( COMMAND, 0x00cd );
Write( DATA, 0x0000 );
Delay( 100ms );
Write( COMMAND, 0x00fd );
Delay( 100ms );
Write( COMMAND, 0x00cc );
Write( COMMAND, 0x0030 );
// Ext = 1
// EEPROM ON
// Entry "Read Mode"
// Waite for EEPROM Operation ( 100ms )
// Start EEPROM Reading Operation
// Waite for EEPROM Operation ( 100ms )
// Exist EEPORM Mode step.1
// Exist EEPORM Mode step.2
}
Example:EEPROM Write Operation
void WriteEEPROM( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AE );
Write( COMMAND, 0x0007 );
Write( DATA, 0x0019 );
// Ext = 0
// Display off
// EEPROM Function Start ( EEOK )
// EEPROM Function Parameter
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00d1 );
Write( COMMAND, 0x0020 );
Write( DATA, 0x000b );
// Ext = 0
// Internal OSC on
// Power Control
// B/F/R = On/On/On
Write( COMMAND, 0x0031 );
Write( COMMAND, 0x00cd );
Write( DATA, 0x0020 );
Delay( 100ms );
Write( COMMAND, 0x00fc );
Delay( 100ms );
Write( COMMAND, 0x00cc );
Write( COMMAND, 0x0030 );
// Ext = 1
// EEPROM ON
// Entry "Write Mode"
// Waite for EEPROM Operation ( 100ms )
// Start EEPROM Writing Operation
// Waite for EEPROM Operation ( 100ms )
// Exist EEPORM Mode step.1
// Exist EEPORM Mode step.2
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AF );
// Ext = 0
// Display on
}
Example:EEPROM Load Operation
void LoadEEPROM( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x0007 );
Write( DATA, 0x0019 );
Write( COMMAND, 0x0031 );
Write( COMMAND, 0x00cd );
Write( DATA, 0x0000 );
Delay( 100ms );
Write( COMMAND, 0x00fd );
Delay( 100ms );
Write( COMMAND, 0x00cc );
Write( COMMAND, 0x0030 );
Ver 1.3
// Ext = 0
// EEPROM Function Start ( EEOK )
// EEPROM Function Parameter
// Ext = 1
// EEPROM ON
// Entry "Read Mode"
// Waite for EEPROM Operation ( 100ms )
// Start EEPROM Reading Operation
// Waite for EEPROM Operation ( 100ms )
// Exit EEPORM Mode step.1
// Exit EEPORM Mode step.2
38/99
2006/08/15
ST7636
}
RESET CIRCUIT
Setting normal radiation /
When Power is Turned On
inversion of column address :
Input power (VDD1~VDD5)
↓
Be sure to apply POWER-ON RESET (RESET=LOW)
↓
< Display Setting 1 >
Display control (DISCTL)
Setting clock dividing ratio :
<< State after reset >>
Duty setting :
Setting reverse rotation number of line :
2 divisions
Common scan direction (COMSCN)
1/4
Setting scan direction :
11H reverse rotations
Oscillation on (OSCON) :
↓
COM0àCOM65, COM66àCOM131
Sleep-out (SLIPOUT) :
Oscillation off
↓
< Power Supply Setting >
Sleep-in
Electronic volume control (VOLCTR)
Setting volume value :
<< State after reset >>
Setting built-in resistance value :
Power control (PWRCTR)
0
Setting operation of power supply circuit :
0 (3.76)
↓
< Display Setting 2 >
ALL OFF
Normal rotation of display (DISNOR) / inversion of display (DISINV) :
Partial-in (PTLIN) / Partial-out (PLOUT)
<< State after reset >>
Setting fix area :
Normal rotation of display
Area scroll set (ASCSET)
Setting area scroll region :
Partial-out
Setting area scroll type :
Scroll start set (SCSTART)
0
Setting scroll start address :
Full-screen scroll
↓
< Display Setting 3 >
0
Data control (DATCTL)
Setting normal radiation / inversion of page address :
Ver 1.3
39/99
<< State after reset >>
2006/08/15
ST7636
Normal rotation
Normal rotation
Column direction
Setting direction of address scanner :
RGB
Setting RGB arrangement :
65K
Setting gradation :
65K-color position set (RGBSET8)
All 0
Setting color position at 65K-color :
↓
<< State after reset >>
< RAM Setting >
Page address set (PASET)
0
Setting start page address :
0
Setting end page address :
Column address set (PASET)
0
Setting start column address :
0
Setting end column address :
↓
<< State after reset >>
< RAM Write >
Memory write command (RAMWR)
Writing displayed data : repeat as many as the number needed and
exit by entering other command.
↓
< Waiting (approximately 100ms) >
Wait until the power supply voltage has stabilized.
Enter the power supply control command first, then wait at least
100ms before entering the Display ON command when the built-in
power supply circuit operates. If you do not wait, an unwanted
display may appear on the liquid crystal panel.
↓
Display off
Display on (DISON) :
(Note) If changes are unnecessary after reset, command input is unnecessary.
Ver 1.3
40/99
2006/08/15
ST7636
8. COMMANDS
8.1 Command table
Ext=0
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
DISON
0
1
0
1
0
1
0
1
1
1
1
Display On
AF
None
1
DISOFF
0
1
0
1
0
1
0
1
1
1
0
Display Off
AE
None
2
DISNOR
0
1
0
1
0
1
0
0
1
1
0
Normal Display
A6
None
3
DISINV
0
1
0
1
0
1
0
0
1
1
1
Inverse Display
A7
None
4
COMSCN
0
1
0
1
0
1
1
1
0
1
1
Com Scan Direction
BB
1 byte
5
DISCTR
0
1
0
1
1
0
0
1
0
1
0
Display Control
CA
3 byte
6
SLPP
0
1
0
0
0
0
0
0
1
0
0
Sleep In/Out Preparation
04
1 byte
7
SLPIN
0
1
0
1
0
0
1
0
1
0
1
Sleep In
95
None
8
SLPOUT
0
1
0
1
0
0
1
0
1
0
0
Sleep Out
94
None
9
PASET
0
1
0
0
1
1
1
0
1
0
1
Page Address Set
75
2 byte
10
CASET
0
1
0
0
0
0
1
0
1
0
1
Column Address Set
15
2 byte
11
DATCTL
0
1
0
1
0
1
1
1
1
0
0
Data Scan Direction
BC
3 byte
12
RAMWR
0
1
0
0
1
0
1
1
1
0
0
Writing to Memory
5C
Data
13
RAMRD
0
1
0
0
1
0
1
1
1
0
1
Reading from Memory
5D
Data
14
PLTIN
0
1
0
1
0
1
0
1
0
0
0
Partial display in
A8
2 byte
15
PLTOUT
0
1
0
1
0
1
0
1
0
0
1
Partial display out
A9
None
16
RMWIN
0
1
0
1
1
1
0
0
0
0
0
Read Modify Write In
E0
None
17
RMWOUT
0
1
0
1
1
1
0
1
1
1
0
Read Modify Write Out
EE
None
18
ASCSET
0
1
0
1
0
1
0
1
0
1
0
Area Scroll Set
AA
4 byte
19
SCSTART
0
1
0
1
0
1
0
1
0
1
1
Scroll Start Set
AB
1 byte
20
OSCON
0
1
0
1
1
0
1
0
0
0
1
Internal OSC on
D1
None
21
OSCOFF
0
1
0
1
1
0
1
0
0
1
0
Internal OSC off
D2
None
22
PWRCTL
0
1
0
0
0
1
0
0
0
0
0
Power Control
20
1 byte
23
VOLCTR
0
1
0
1
0
0
0
0
0
0
1
EC control
81
2 byte
24
VOLUP
0
1
0
1
1
0
1
0
1
1
0
EC increase 1
D6
None
25
VOLDOWN
0
1
0
1
1
0
1
0
1
1
1
EC decrease 1
D7
None
26
STREAD
0
0
1
EPSRRD1
0
1
0
0
1
1
1
1
1
0
0
READ Register1
7C
None
28
EPSRRD2
0
1
0
0
1
1
1
1
1
0
1
READ Register2
7D
None
29
NOP
0
1
0
0
0
1
0
0
1
0
1
NOP Instruction
25
None
30
EEOK
0
1
0
0
0
0
0
0
1
1
1
EEPROM Function Start
07
1 byte
31
RESERVED
0
1
0
1
0
0
0
0
0
1
0
Not Use
82
Ver 1.3
Status Read
Function
Hex Parameter Index
Status Read
41/99
27
32
2006/08/15
ST7636
Ext=1
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Hex Parameter Index
Red1 Set
0
1
0
0
0
1
0
0
0
0
0
FRAME 1 Red PWM Set 20
16 byte
1
Red2 Set
0
1
0
0
0
1
0
0
0
0
1
FRAME 2 Red PWM Set 21
16 byte
2
Red3 Set
0
1
0
0
0
1
0
0
0
1
0
FRAME 3 Red PWM Set 22
16 byte
3
Red4 Set
0
1
0
0
0
1
0
0
0
1
1
FRAME 4 Red PWM Set 23
16 byte
4
Grn1 Set
0
1
0
0
0
1
0
0
1
0
0
FRAME 1 Green PWM Set
24
16 byte
5
Grn2 Set
0
1
0
0
0
1
0
0
1
0
1
FRAME 2 Green PWM Set
25
16 byte
6
Grn3 Set
0
1
0
0
0
1
0
0
1
1
0
FRAME 3 Green PWM Set
26
16 byte
7
Grn4 Set
0
1
0
0
0
1
0
0
1
1
1
FRAME 4 Green PWM Set
27
16 byte
8
Blu1 Set
0
1
0
0
0
1
0
1
0
0
0
FRAME 1 Blue PWM Set 28
16 byte
9
Blu2 Set
0
1
0
0
0
1
0
1
0
0
1
FRAME 2 Blue PWM Set 29
16 byte
10
Blu3 Set
0
1
0
0
0
1
0
1
0
1
0
FRAME 3 Blue PWM Set 2A
16 byte
11
Blu4 Set
0
1
0
0
0
1
0
1
0
1
1
FRAME 4 Blue PWM Set 2B
16 byte
12
ANASET
0
1
0
0
0
1
1
0
0
1
0
Analog
32
3 byte
13
DITHOFF
0
1
0
0
0
1
1
0
1
0
0
Dithering Circuit Off
34
None
14
DITHON
0
1
0
0
0
1
1
0
1
0
1
Dithering Circuit On
35
None
15
EPCTIN
0
1
0
1
1
0
0
1
1
0
1
Control EEPROM
CD
1 byte
16
EPCOUT
0
1
0
1
1
0
0
1
1
0
0
Cancel EEPROM
CC
None
17
EPMWR
0
1
0
1
1
1
1
1
1
0
0
Write to EEPROM
FC
None
18
EPMRD
0
1
0
1
1
1
1
1
1
0
1
Read from EEPROM
FD
None
19
Ext=1 or Ext=0
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Ext In
0
1
0
0
0
1
1
0
0
0
0
Ext=0 Set
30
None
--
Ext Out
0
1
0
0
0
1
1
0
0
0
1
Ext=1 Set
31
None
--
Ver 1.3
42/99
Function
Hex Parameter Index
2006/08/15
ST7636
8.2 EXT=”0” Function Description
(1) Display ON (DISON) Command: 1; Parameter: None (AFH)
It is used to turn the display on. When the display is turned on, segment outputs and common outputs are generated at the
level corresponding to the display data and display timing. You can’t turn on the display as long as the sleep mode is
selected. Thus, whenever using this command, you must cancel the sleep mode first.
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
1
1
1
1
(2) Display OFF (DISOFF) Command: 1; Parameter: None (AEH)
It is used to forcibly turn the display off. As long as the display is turned off, every on segment and common outputs are
forced to VSS level.
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
1
1
1
0
(3) Normal display (DISNOR) Command: 1; Parameter: None (A6H)
It is used to normally highlight the display area without modifying contents of the display data RAM.
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
0
1
1
0
(4) Inverse display (DISINV) Command: 1; Parameter: None (A7)
It is used to inversely highlight the display area without modifying contents of the display data RAM. This command does
not invert non-display areas in case of using partial display.
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
0
1
1
1
(5) Common scan (COMSCAN) Command: 1; Parameter: 1 (BBH)
It is used to specify the common output direction in the pin of CSEL = L. This command helps increasing degrees of
freedom of wiring on the LCD panel.
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
1
0
1
1
1
0
1
1
-
Parameter1 (P1)
1
1
0
*
*
*
*
*
P12
P11
P10
Command Scan direction
When CSEL=0 configuration is selected, pins and common outputs are scanned in the order shown below.
Common scan direction
P12 P11 P10
COM0 pin
Ver 1.3
COM65 pin
COM66 pin
COM131 pin
0
0
0
0
à
65
66
à
131
0
0
1
0
à
65
131
à
66
0
1
0
65
à
0
66
à
131
0
1
1
65
à
0
131
à
66
43/99
2006/08/15
ST7636
Common scan direction
Original graphic :
Com0
P12:P11:P10:0:0:0
(0à65,66à131)
Com66
Com0
Com66
Com65
Com0
Com131
Com65
Com131
Com131
Com65
Com66
P12:P11:P10:0:0:1 (0à65, 131à66)
P12:P11:P10:0:1:0 (65à0, 66à131)
P12:P11:P10:0:1:1 (65à0, 131à66)
Com65
Com66
Com65
Com131
Com0
Com131
Com0
Com66
Figure 8.2.1 Common scan direction configuration when CSEL=0
Figure 8.2.2 Common scan direction configuration when CSEL=1
Note : under CSEL=1 configuration, command #BBH will have no effect upon IC operation.
Ver 1.3
44/99
2006/08/15
ST7636
The common scan direction is fixed.
(6) Display control (DISCTL) Command: 1; Parameter: 3 (CAH)
This command and succeeding parameters are used to perform the display timing-related setups. This command must be
selected before using SLPOUT. Don’t change this command while the display is turned on.
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
1
1
0
0
1
0
1
0
-
Parameter1(P1)
1
1
0
*
*
*
P14
P13
P12
*
*
CL dividing ratio, F1 and F2
drive pattern.
Parameter2(P2)
1
1
0
*
*
P25
P24
P23
P22
P21
P20 Drive duty
Parameter3(P3)
1
1
0
*
*
*
P34
P33
P32
P31
P30 FR inverse-set value
P1: it is used to specify the CL dividing ratio.
P14, P13, P12: CL dividing ratio. They are used to change number of dividing stages of external or internal clock.
P14
P13
P12
CL dividing ratio
0
0
0
Not divide
0
0
1
2 divisions
0
1
0
4 divisions
0
1
1
8 divisions
P2: It is used to specify the duty of the module on block basis.
Duty
*
*
P25
P24
P23
P22
P21
P20
(Numbers of display lines)/4-1
Example: 1/128 duty
0
0
0
1
1
1
1
1
128/4-1=31
This will output driving voltage waveforms from com0 to com127.
.
P3: It is used to specify number of lines to be inversely highlighted on LCD panel from P33 to P30 (lines can be inversely
highlighted in the range of 2 to 16)
Inversely highlighted line
*
*
*
P34
P33
P32
P31
P30
Inversely highlighted lines-1
Example: 0AH
0
0
0
0
1
0
1
0
11-1=10
Example: 1CH
0
0
0
1
1
1
0
0
13-1=12
In the default, 0 inverse highlight lines is selected.
P34=”0”: Inversion occurs every frame. P34=”1”: Independent from frames.
(7) Sleep In/Out Preparation (SLPP) Command: 1; Parameter: 1
Using this command to setup ready status for sleep-in or sleep out.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
0
0
0
1
0
0
-
Parameter(P1)
1
1
0
0
0
1
1
1
1
1
P10
Sleep in/out ready
P10 =” 1”: Ready for sleep in. P10 = “0”: Ready for sleep out.
Ver 1.3
45/99
2006/08/15
ST7636
Parameter 3FH is used to initialize sleep-in sequencing, and parameter 3EH is used to initialize sleep-out sequencing.
(8) Sleep in (SPLIN) Command: 1; Parameter: None (95H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
0
1
0
1
0
1
(9) Sleep out (SLPOUT) Command: 1;Parameter: None (94H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
0
1
0
1
0
0
(10) Page address set (PASET) Command: 1; Parameter: 2 (75H)
When MPU makes access to the display data RAM, this command and succeeding parameters are used to specify the
page address area. As the addresses are incremented from the start to the end page in the page-direction scan, the
column address is incremented by 1 and the page address is returned to the start page.
Note: that the start and end page must be specified as a pair. Also, the relation “start page < end page” must be
maintained.
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
1
1
1
0
1
0
1
-
Parameter1(P1)
1
1
0
P17
P16
P15
P14
P13
P12
P11
P10
Start page
Parameter2(P2)
1
1
0
P27
P26
P25
P24
P23
P22
P21
P20
End page
(11) Column address set (CASET) Command: 1; Parameter: 2 (15H)
When MPU makes access to the display data RAM, this command and succeeding parameters are used to specify the
column address area. As the addresses are incremented from the start to the end column in the column-direction scan, the
page address is incremented by 1 and the column address is returned to the start column.
Note: that the start and end column must be specified as a pair. Also, the relation “start column < end column” must be
maintained.
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
0
1
0
1
0
1
-
Parameter1(P1)
1
1
0
P17
P16
P15
P14
P13
P12
P11
P10
Start address
Parameter2(P2)
1
1
0
P27
P26
P25
P24
P23
P22
P21
P20
End address
(12) Data control (DATCTL) Command: 1;Parameter: 3 (BCH)
This command and succeeding parameters are used to perform various setups needed when MPU operates display data
stored on the built-in RAM.
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
1
0
1
1
1
1
0
0
-
Parameter1(P1)
1
1
0
*
*
*
*
*
P12
P11
P10
Normal/inverse display of
page / column address and
Ver 1.3
46/99
2006/08/15
ST7636
address scan direction.
Parameter2(P2)
1
1
0
*
*
*
*
*
*
*
P20 RGB arrangement
Parameter3(P3)
1
1
0
*
*
*
*
*
P32
P31
P30 Gray-scale setup
P1: It is used to specify the normal or inverse display of the page / column address and also to specify the address
scanning direction.
P10: Normal/inverse display of the page address. P10=0: Normal and P10=1: Inverse
P11: Normal/reverse turn of column address. P11=0: Normal rotation and P11=1: Reverse rotation.
P12: Address-scan direction. P12=0: In the column direction and P12=1: In the page direction.
Page address and page-address scan direction
P12=0 Column direction
P11=0
P11=1
P10=0
0
1
2
P10=1
131
130
129
129
130
131
2
1
0
0
131
1
130
2
129
129
2
130
1
131
0
0
131
1
130
2
129
129
2
130
1
131
0
P12=1 Page direction
Ver 1.3
P11=0
P11=1
P10=0
0
1
2
P10=1
131
130
129
129
130
131
2
1
0
47/99
2006/08/15
ST7636
(a) COMMAND #BCH, DATA #00H
(b) COMMAND #BCH, DATA #01H
(c) COMMAND #BCH, DATA #02H
(d) COMMAND #BCH, DATA #03H
Figure 8.2.3 Different RAM accessing setup when CSEL=0 under COMMAND #BBH, DATA #00H
(a) COMMAND #BCH, DATA #00H
(b) COMMAND #BCH, DATA #01H
(c) COMMAND #BCH, DATA #02H
(d) COMMAND #BCH, DATA #03H
Ver 1.3
48/99
2006/08/15
ST7636
(e) COMMAND #BCH, DATA #04H
(f) COMMAND #BCH, DATA #05H
(g) COMMAND #BCH, DATA #06H
(h) COMMAND #BCH, DATA #07H
Figure 8.2.3 Different RAM accessing setup when CSEL=0 under COMMAND #BBH, DATA #00H (continue)
(e) COMMAND #BCH, DATA #04H
(f) COMMAND #BCH, DATA #05H
(g) COMMAND #BCH, DATA #06H
(h) COMMAND #BCH, DATA #07H
P2: RGB arrangement. This parameter allows you to change RGB arrangement of data which is going to be written into
RAM, and therefore causes the inverse RGB rotation of the segment output of ST7636. You can fit RGB arrangement
on the LCD panel according to this parameter setting.
P20
SEG0
SEG1
SEG2
SEG3
SEG4
SEG5
SEG6
SEG7
…
SEG395
0
R
G
B
R
G
B
R
G
…
B
1
B
G
R
B
G
R
B
G
…
R
P3: Gray scale setup. Using this parameter, 64 gray-scale display, you can select the 65K, 262K, and 16M display mode
depending on the difference in RGB data arrangement.
P32
P31
P30
Numbers of gray-scale
0
0
1
64-gray 65K
0
1
0
64-gray 262K
1
0
0
64-gray 16M
Ver 1.3
49/99
2006/08/15
ST7636
(13) Memory write (RAMWR) Command: 1; Parameter: Numbers of data written (5CH)
When MPU writes data to the display memory, this command turns on the data entry mode. Entering this command always
sets the page and column address at the start address. You can rewrite contents of the display data RAM by entering data
succeeding to this command. At the same time, this operation increments the page or column address as applicable. The
write mode is automatically cancelled if any other command is entered.
1. 8-bit bus
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
1
0
1
1
1
0
0
-
Parameter
1
1
0
A0
RD
RW
D15
D14
…
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
*
*
…
*
*
0
1
0
1
1
1
0
0
Memory write
parameter
1
1
0
Data to be written
Data to be written
2. 16-bit bus
Data to be written
Write data
(14) Memory read (RAMRD) Command: 1; Parameter: Numbers of data read (5DH)
When MPU read data from the display memory, this command turns on the data read mode. Entering this command
always sets the page and column address at the start address. After entering this command, you can read contents of the
display data RAM. At the same time, this operation increments the page or column address as applicable. The data read
mode is automatically cancelled if any other command is entered.
1. 8-bit bus
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
1
0
1
1
1
0
1
-
Parameter
1
0
1
Ver 1.3
Data to be read
50/99
Data to be read
2006/08/15
ST7636
2. 16-bit bus
A0
RD
RW
D15
Command
0
1
0
*
parameter
1
0
1
D14
….
D9
D8
*
*
*
*
D7
D6
D5
D4
D3
D2
D1
D0
Function
0
1
0
1
1
1
0
1
Memory read
Data to be read
Read data
(15) Partial in (PTLIN) Command: 1; Parameter: 2 (A8H)
This command and succeeding parameters specify the partial display area. This command is used to turn on partial display
of the screen (dividing screen by lines) in order to save power. Since ST7636 processes the liquid crystal display signal on
4-line basis (block basis), the display and non-display areas are also specified on 4-bit line (block basis).
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
1
0
1
0
1
0
0
0
-
Parameter(P1)
1
1
0
*
*
P15
P14
P13
P12
P11
P10
Start block address
Parameter(P2)
1
1
0
*
*
P25
P24
P23
P22
P21
P20
End block address
A block address that can be specified for the partial display must be the display one (don’t try to specify an address not to
be displayed when scrolled).
(16) Partial out (PTLOUT) Command: 1; Parameter: 0 (A9H)
This command is used to exit from the partial display mode.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
1
0
0
1
(17) Read modify write in (RMWIN) Command: 1; Parameter: 0 (E0H)
This command is used along with the column address set command, page address set command and read modify write out
command. This function is used when frequently modifying data to specify a specific display area such as blinking cursor.
First set a specific display area using the column and page address commands. Then, enter this command to set the
column and page addresses at the start address of the specific area. When this operation is complete, the column (page)
address won’t be modified by the display data read command. It is incremented only when the display data write command
is used. You can cancel this mode by entering the read modify write out or any other command.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
1
0
0
0
0
0
(18) Read modify write out (RMWOUT) Command: 1; Parameter: 0 (EEH)
Enter this command cancels the read modify write mode
Command
Ver 1.3
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
1
0
1
1
1
0
51/99
2006/08/15
ST7636
(19) Area scroll set (ASCSET) Command: 1; Parameter: 4 (AAH)
It is used when scrolling only the specified portion of the screen (dividing the screen by lines). This command and
succeeding parameters specify the type of area scroll, fix area and scroll area.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
1
0
1
0
1
0
1
0
-
Parameter(P1)
1
1
0
*
*
P15
P14
P13
P12
P11
P10
Top block address
Parameter(P2)
1
1
0
*
*
P25
P24
P23
P22
P21
P20
Bottom block address
Parameter(P3)
1
1
0
*
*
P35
P34
P33
P32
P31
P30
Number of specified blocks
Parameter(P4)
1
1
0
*
*
*
*
*
*
P41
P40
Area scroll mode
P4: It is used to specify an area scroll mode.
P41
P40
Type of area scroll
0
0
Center screen scroll
0
1
Top screen scroll
1
0
Bottom screen scroll
1
1
Whole screen scroll
Center screen scroll
Fixed area
Top screen scroll
Bottom screen scroll
Whole screen scroll
Scroll area
Since ST7636 processes the liquid crystal display signals on the four-line basis (block basis), FIX and scroll areas are also
specified on the four-line basis (block basis).
DDRAM address corresponding to the top FIX area is set in the block address incrementing direction starting with 0 block.
DDRAM address corresponding to the bottom FIX area is set in the block address decreasing direction starting with 32st
block. Other DDRAM blocks excluding the top and bottom FIX areas are assigned to the scroll + background areas.
P1: It is used to specify the top block address of the scroll + background areas. Specify the 0th block for the top screen
scroll or whole screen scroll.
Ver 1.3
52/99
2006/08/15
ST7636
P2: It specifies the bottom address of the scroll+ background areas. Specify the 32th block for the bottom or whole screen
scroll.
Required relation between the start and end blocks (top block address<bottom block address) must be maintained.
P3: It specifies a specific number of blocks {Numbers of (Top FIX area +Scroll area) block-1}. When the bottom scroll or
whole screen scroll, the value is identical with P2.
You can turn on the area scroll function by executing the area scroll set command first and then specifying the display start
block of the scroll area with the scroll start set command.
[Area Scroll Setup Example]
In the center screen scroll of 1/120 duty (display range: 120 lines=30 blocks), if 8 lines=2 blocks and 8 lines=2 blocks are
specified for the top and bottom FIX areas, 104 lines =26 blocks is specified for the scroll areas, respectively, 12 lines = 3
blocks on the DDRAM are usable as the background area. Value of each parameter at this time is as shown below.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
P1
1
1
0
*
*
0
0
0
0
1
0
Top block address = 2
P2
1
1
0
*
*
0
1
1
1
1
0
Bottom block address = 30
P3
1
1
0
*
*
0
1
1
1
1
0
Number of specific blocks = 30
P4
1
1
0
*
*
*
*
*
*
0
0
Area scroll mode = center
(20) Scroll start address set (SCSTART) Command:1 Parameter: 1 (ABH)
This command and succeeding parameters are used to specify the start block address of the scroll area.
Note: that you must execute this command after executing the area scroll set command. Scroll becomes available by
dynamically changing the start block address.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
1
0
1
0
1
0
1
1
-
Parameter(P1)
1
1
0
*
*
P15
P14
P13
P12
P11
P10
Start block address
(21) Internal oscillation on (OSCON) Command: 1; Parameter: 0 (D1H)
This command turns on the internal oscillation circuit. It is valid only when the internal oscillation circuit of CLS = HIGH is
used.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
1
0
0
0
1
(22) Internal oscillation off (OSOFF) Command: 1; Parameter: 0 (D2H)
It turns off the internal oscillation circuit. This circuit is turned off in the reset mode.
Command
Ver 1.3
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
1
0
0
1
0
53/99
2006/08/15
ST7636
(23) Power control set (PWRCTR) Command: 1; Parameter: 1 (20H)
This command is used to turn on or off the Booster circuit, follower voltage, and voltage regulator circuit.
D7
D6
D5
D4
D3
D2
D1
D0
1
0
0
0
1
0
0
0
0
0
*
*
*
0
P13
0
P11
P10
A0
RD
RW
Command
0
1
Parameter(P1)
1
1
Function
-
LCD drive power
P10: It turns on or off the voltage regulator voltage.
P10 = “1”: ON. P10 =” 0”: OFF
P11: It turns on or off the follower circuit.
P11 = “1”: ON. P11 =” 0”: OFF
P13:It turns on or off the Booster.
P13 = “1”: ON. P13 =” 0”: OFF
(24) Electronic volume control (VOLCTR) Command: 1; Parameter: 2 (81H)
The command is used to program the optimum LCD supply voltage VLCD. Reference to 7.10.2
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
1
0
0
0
0
0
0
1
-
Parameter(P1)
1
1
0
*
*
P15
P14
P13
P12
P11
P10
Set Vop[5:0]
Parameter(P2)
1
1
0
*
*
*
*
*
P18
P17
P16
Set Vop[8:6]
(25) Increment electronic control (VOLUP) Command: 1; Parameter: 0 (D6H)
With the VOLUP and VOLDOWN command the VLCD voltage and therewith the contrast of the LCD can be adjusted.
This command increments electronic control value Vop[5:0] of voltage regulator circuit by 1.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
1
0
1
1
0
If you set the electronic control value to 111111, the control value is set to 000000 after this command has been executed.
(26) Decrement electronic control (VOLDOWN) Command: 1; Parameter: 0 (D7H)
With the VOLUP and VOLDOWN command the VLCD voltage and therewith the contrast of the LCD can be adjusted.
This command decrements electronic control value Vop[5:0] of voltage regulator circuit by 1.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
1
0
1
1
1
If you set the electronic control value to 000000, the control value is set to 111111 after this command has been executed.
Ver 1.3
54/99
2006/08/15
ST7636
Table 8.1.1 Possible Vop[5:0] values
Electronic Control Value
Decimal Equivalent
VLCD Offset
111111
31
+1240 mV
111110
30
+1200 mV
111101
29
+1160 mV
…
…
…
000010
2
+80 mV
000001
1
+40 mV
000000
0
0 mV
111111
-1
-40 mV
111110
-2
-80 mV
…
…
…
100010
-30
-1200 mV
100001
-31
-1240 mV
100000
-32
-1280mV
(27) Status read (STREAD) Command: 1; Parameter: None
It is the command for reading the internal condition of the IC.
A0
RD
RW
0
0
1
Command
D7
D6
D5
D4
D3
D2
D1
D0
(8) Status data
Issue STREAD (Status Read) command only to read the internal condition of the IC. One status data can be displayed
depending on the setting. Issue the NOP command after the STREAD (Status Read) command.
The Status data will be composed of 8 bits below:
D7: Area scroll mode
Refer to P41 (ASCSET)
D6: Area scroll mode
Refer to P40 (ASCSET)
D5: RMW on/off
0 : Out
1 : In
D4: Scan direction
0 : Column
1 : Page
D3: Display ON/OFF
0 : OFF
1 : ON
D2: EEPROM access
0: OutAccess
1: InAccess
D1: Display normal/inverse
0 : Normal
1 : Inverse
D0: Partial display
0 : OFF
1 : ON
(28) Read Register 1 (EPSRRD1) Command: 1; Parameter: 0 (7CH)
It is the command for reading the Electronic Control values.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
1
1
1
0
0
Issue the EPSRRD1 and then STREAD (Status Read) commands in succession to read the Electronic Control values. One
Ver 1.3
55/99
2006/08/15
ST7636
status data can be displayed depending on the setting. Also, always issue the NOP command after the STREAD (Status
Read) command.
The Status data will be composed of 8 bits below:
D7: 0
D6: 0
D[5:0]: Vop[5:0]
Refer to electronic volume control values Vop[5:0]
(29) Read Register 2 (EPSRRD2) Command: 1 ;Parameter: 0 (7DH)
It is the command for reading ID codes of the ST7636 and the built-in resistance ratio.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
1
1
1
0
1
Command
Issue the EPSRRD2 and then STREAD (Status Read) commands in succession to read IC’s ID and the built-in resistance
ratio. One status data can be displayed depending on the setting. Also, always issue the NOP command after the STREAD
(Status Read) command.
The Status data will be composed of 8 bits below:
D[7:3]: ST7636 ID codes
00001
D[2:0]: Vop[8:6]
Refer to the built-in resistance ratio Vop[8:6]
(30) Non-operating (NOP) Command: 1; Parameter: 0 (25H)
This command does not affect the operation.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
1
0
0
1
0
1
Command
This command, however, has the function of canceling the IC test mode. Thus, it is recommended to enter it periodically to
prevent malfunctioning due to noise and such.
(31) EEPROM Function Start (EEOK) Command:1;Parameter:1(07H)
In the OTP read/write flow, EEPROM is ready after issuing this command. Its parameter is set to 19H.
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
0
0
0
1
1
1
-
Parameter(P1)
1
1
0
0
0
0
1
1
0
0
1
19H
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
0
0
0
0
1
0
(32) Reserved (82H)
Do not use this command
Command
Ver 1.3
56/99
2006/08/15
ST7636
8.3 EXT=”1” Function Description
(1) Set Red1 value (Red1 set) Command: 1; Parameter: 16 (20H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Red1 Set
0
1
0
0
0
1
0
0
0
0
0
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
1
0
0
0
0
0
-
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set red level 0 and 1st frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set red level 1 and 1st frame
Parameter14(P14)
1
1
0
*
*
*
P144 P143 P142 P141 P140 Set red level 13 and 1st frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set red level 15 and 1st frame
Function
FRAME 1 Red PWM Set
(2)Set Red2 value (Red2 set) Command: 1; Parameter: 16 (21H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Red2 Set
0
1
0
0
0
1
0
0
0
0
1
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
1
0
0
0
0
0
-
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set red level 0 and 2nd frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set red level 1 and 2nd frame
Parameter14(P14)
1
1
0
*
*
*
P144 P143 P142 P141 P140 Set red level 13 and 2nd frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set red level 15 and 2nd frame
Function
FRAME 2 Red PWM Set
(3) Set Red3 value (Red3 set) Command: 1; Parameter: 16 (22H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Red3 Set
0
1
0
0
0
1
0
0
0
1
0
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
1
0
0
0
0
0
-
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set red level 0 and 3rd frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set red level 1 and 3rdframe
Parameter14(P14)
1
1
0
*
*
*
P144 P143 P142 P141 P140 Set red level 13 and 3rd frame
Ver 1.3
57/99
Function
FRAME 3 Red PWM Set
2006/08/15
ST7636
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set red level 15 and 3rd frame
(4) Set Red4 value (Red4 set) Command: 1; Parameter: 16 (23H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Red4 Set
0
1
0
0
0
1
0
0
0
1
1
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
1
0
0
0
0
0
-
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set red level 0 and 4th frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set red level 1 and 4thframe
Parameter14(P14)
1
1
0
*
*
*
P144 P143 P142 P141 P140 Set red level 13 and 4th frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set red level 15 and 4th frame
FRAME 4 Red PWM Set
The default value of Red level set
Red1 SET
Red2 SET
Red3 SET
Red4 SET
FRAM1
FRAM2
FRAM3
FRAME4
red level0
00
00
00
00
red level1
02
02
02
02
red level2
05
05
05
05
red level3
07
07
07
08
red level4
0A
0A
0A
0B
red level5
0D
0D
0D
0C
red level6
0F
10
0F
10
red level7
11
12
11
12
red level8
13
14
13
14
red level9
16
16
16
15
red level10
18
18
18
17
red level11
19
19
19
1A
red level12
1B
1B
1B
1A
red level13
1C
1C
1C
1D
red level14
1D
1D
1D
1E
red level15
1E
1E
1E
1E
Ver 1.3
58/99
2006/08/15
ST7636
The modulation range of Red level set
Red1 SET
Red2 SET
Red3 SET
Red4 SET
FRAM1
FRAM2
FRAM3
FRAME4
red level0
0
0
0
0
red level1
0-7
0-7
0-7
0-7
red level2
0-F
0-F
0-F
0-F
red level3
0-F
0-F
0-F
0-F
red level4
8-F
8-F
8-F
8-F
red level5
0-1F
0-1F
0-1F
0-1F
red level6
0-1F
0-1F
0-1F
0-1F
red level7
0-1F
0-1F
0-1F
0-1F
red level8
10-17
10-17
10-17
10-17
red level9
10-1F
10-1F
10-1F
10-1F
red level10
10-1F
10-1F
10-1F
10-1F
red level11
10-1F
10-1F
10-1F
10-1F
red level12
10-1F
10-1F
10-1F
10-1F
red level13
10-1F
10-1F
10-1F
10-1F
red level14
10-1F
10-1F
10-1F
10-1F
red level15
18-1F
18-1F
18-1F
18-1F
(5) Set Green1 value (Green1 set) Command: 1; Parameter: 16 (24H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Green1 Set
0
1
0
0
0
1
0
0
1
0
0
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
1
0
0
0
0
0
-
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set green level 0 and 1st frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set green level 1 and 1st frame
Parameter14(P14)
1
1
0
*
*
*
P144 P143 P142 P141 P140 Set green level 13 and 1st frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set green level 15 and 1st frame
FRAME 1 Green PWM Set
(6) Set Green2 value (Green1 set) Command: 1; Parameter: 16 (25H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Green2 Set
0
1
0
0
0
1
0
0
1
0
1
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Ver 1.3
59/99
Function
FRAME 2 Green PWM Set
Function
2006/08/15
ST7636
0
0
0
0
-
Command
0
1
0
0
0
1
0
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set green level 0 and 1st frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set green level 1 and 1st frame
Parameter14(P14)
1
1
0
*
*
*
P144 P143 P142 P141 P140 Set green level 13 and 1st frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set green level 15 and 1st frame
(7) Set Green3 value (Green1 set) Command: 1; Parameter: 16 (26H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Green3 Set
0
1
0
0
0
1
0
0
1
1
0
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
1
0
0
0
0
0
-
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set green level 0 and 1st frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set green level 1 and 1st frame
Parameter14(P14)
1
1
0
*
*
*
P144 P143 P142 P141 P140 Set green level 13 and 1st frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set green level 15 and 1st frame
FRAME 3 Green PWM Set
(8) Set Green4 value (Green1 set) Command: 1; Parameter: 16 (27H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Green4 Set
0
1
0
0
0
1
0
0
1
1
1
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
1
0
0
0
0
0
-
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set green level 0 and 1st frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set green level 1 and 1st frame
Parameter14(P14)
1
1
0
*
*
*
P144 P143 P142 P141 P140 Set green level 13 and 1st frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set green level 15 and 1st frame
FRAME 4 Green PWM Set
The default value of Green level set
Ver 1.3
Green1 SET
Green2 SET
Green3 SET
Green4 SET
FRAM1
FRAM2
FRAM3
FRAME4
60/99
2006/08/15
ST7636
green level0
00
00
00
00
green level1
02
02
02
02
green level2
05
05
05
05
green level3
07
07
07
08
green level4
0A
0A
0A
0B
green level5
0D
0D
0D
0C
green level6
0F
10
0F
10
green level7
11
12
11
12
green level8
13
14
13
14
green level9
16
16
16
15
green level10
18
18
18
17
green level11
19
19
19
1A
green level12
1B
1B
1B
1A
green level13
1C
1C
1C
1D
green level14
1D
1D
1D
1E
green level15
1E
1E
1E
1E
Green1 SET
Green2 SET
Green3 SET
Green4 SET
FRAM1
FRAM2
FRAM3
FRAME4
green level0
0
0
0
0
green level1
0-7
0-7
0-7
0-7
green level2
0-F
0-F
0-F
0-F
green level3
0-F
0-F
0-F
0-F
green level4
8-F
8-F
8-F
8-F
green level5
0-1F
0-1F
0-1F
0-1F
green level6
0-1F
0-1F
0-1F
0-1F
green level7
0-1F
0-1F
0-1F
0-1F
green level8
10-17
10-17
10-17
10-17
green level9
10-1F
10-1F
10-1F
10-1F
green level10
10-1F
10-1F
10-1F
10-1F
green level11
10-1F
10-1F
10-1F
10-1F
green level12
10-1F
10-1F
10-1F
10-1F
green level13
10-1F
10-1F
10-1F
10-1F
green level14
10-1F
10-1F
10-1F
10-1F
green level15
18-1F
18-1F
18-1F
18-1F
The modulation range of Green level set
Ver 1.3
61/99
2006/08/15
ST7636
(9) Set Blue1 value (Blue1 set) Command: 1; Parameter: 16 (28H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Blue1 Set
0
1
0
0
0
1
0
1
0
0
0
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
1
0
0
0
0
0
-
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set blue level 0 and 1st frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set blue level 1 and 1st frame
Parameter14(P14)
1
1
0
*
*
*
P144 P143 P142 P141 P140 Set blue level 13 and 1st frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set blue level 15 and 1st frame
FRAME 1 Blue PWM Set
(10) Set Blue2 value (Blue2 set) Command: 1; Parameter: 16 (29H)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Blue2 Set
0
1
0
0
0
1
0
1
0
0
1
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
1
0
0
0
0
0
-
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set blue level 0 and 1st frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set blue level 1 and 1st frame
Parameter14(P14)
1
1
0
*
*
*
P144 P143 P142 P141 P140 Set blue level 13 and 1st frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set blue level 15 and 1st frame
Function
FRAME 2 Blue PWM Set
(11) Set Blue3 value (Blue3 set) Command: 1; Parameter: 16 (2AH)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Blue3 Set
0
1
0
0
0
1
0
1
0
1
0
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
1
0
0
0
0
0
-
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set blue level 0 and 1st frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set blue level 1 and 1st frame
Parameter14(P14)
1
1
0
*
*
*
P144 P143 P142 P141 P140 Set blue level 13 and 1st frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set blue level 15 and 1st frame
Ver 1.3
62/99
Function
FRAME 3 Blue PWM Set
2006/08/15
ST7636
(12) Set Blue4 value (Blue4 set) Command: 1; Parameter: 16 (2BH)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Blue4 Set
0
1
0
0
0
1
0
1
0
1
1
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
1
0
0
0
0
0
-
Parameter1(P1)
1
1
0
*
*
*
P14 P13 P12 P11 P10 Set blue level 0 and 1st frame
Parameter2(P2)
1
1
0
*
*
*
P24 P23 P22 P21 P20 Set blue level 1 and 1st frame
Parameter14(P14)
1
1
0
*
*
*
P144 P143 P142 P141 P140 Set blue level 13 and 1st frame
Parameter16(P16)
1
1
0
*
*
*
P164 P163 P162 P161 P160 Set blue level 15 and 1st frame
FRAME 4 Blue PWM Set
The default value of Blue level set
Blue1 SET
Blue2 SET
Blue3 SET
Blue4 SET
FRAM1
FRAM2
FRAM3
FRAME4
blue level0
00
00
00
00
blue level1
02
02
02
02
blue level2
05
05
05
05
blue level3
07
07
07
08
blue level4
0A
0A
0A
0B
blue level5
0D
0D
0D
0C
blue level6
0F
10
0F
10
blue level7
11
12
11
12
blue level8
13
14
13
14
blue level9
16
16
16
15
blue level10
18
18
18
17
blue level11
19
19
19
1A
blue level12
1B
1B
1B
1A
blue level13
1C
1C
1C
1D
blue level14
1D
1D
1D
1E
blue level15
1E
1E
1E
1E
Ver 1.3
63/99
2006/08/15
ST7636
The modulation range of Blue level set
Blue1 SET
Blue2 SET
Blue3 SET
Blue4 SET
FRAM1
FRAM2
FRAM3
FRAME4
blue level0
0
0
0
0
blue level1
0-7
0-7
0-7
0-7
blue level2
0-F
0-F
0-F
0-F
blue level3
0-F
0-F
0-F
0-F
blue level4
8-F
8-F
8-F
8-F
blue level5
0-1F
0-1F
0-1F
0-1F
blue level6
0-1F
0-1F
0-1F
0-1F
blue level7
0-1F
0-1F
0-1F
0-1F
blue level8
10-17
10-17
10-17
10-17
blue level9
10-1F
10-1F
10-1F
10-1F
blue level10
10-1F
10-1F
10-1F
10-1F
blue level11
10-1F
10-1F
10-1F
10-1F
blue level12
10-1F
10-1F
10-1F
10-1F
blue level13
10-1F
10-1F
10-1F
10-1F
blue level14
10-1F
10-1F
10-1F
10-1F
blue level15
18-1F
18-1F
18-1F
18-1F
Example:Paint setup
void LoadPaint( void )
{
Write( COMMAND, 0x0031 );
Ver 1.3
// Ext = 1
Write( COMMAND, 0x0020 );
Write( DATA, 0x0000 );
Write( DATA, 0x0002 );
Write( DATA, 0x0005 );
…….
…….
Write( DATA, 0x001E );
// Red Palette FRC1 Setup
// Red1 Level0 Setup
// Red1 Level1 Setup
// Red1 Level2 Setup
…….
…….
// Red1 Level15 Setup
Write( COMMAND, 0x0021 );
Write( DATA, 0x0000 );
Write( DATA, 0x0002 );
Write( DATA, 0x0005 );
…….
…….
Write( DATA, 0x001E );
// Red Palette FRC2 Setup
// Red2 Level0 Setup
// Red2 Level1 Setup
// Red2 Level2 Setup
…….
…….
// Red2 Level15 Setup
Write( COMMAND, 0x0022 );
Write( DATA, 0x0000 );
Write( DATA, 0x0002 );
Write( DATA, 0x0005 );
…….
…….
// Red Palette FRC3 Setup
// Red3 Level0 Setup
// Red3 Level1 Setup
// Red3 Level2 Setup
…….
…….
64/99
2006/08/15
ST7636
Ver 1.3
Write( DATA, 0x001E );
// Red3 Level15 Setup
Write( COMMAND, 0x0023 );
Write( DATA, 0x0000 );
Write( DATA, 0x0002 );
Write( DATA, 0x0005 );
…….
…….
Write( DATA, 0x001E );
// R Palette FRC4 Setup
// Red4 Level0 Setup
// Red4 Level1 Setup
// Red4 Level2 Setup
…….
…….
// Red4 Level15 Setup
Write( COMMAND, 0x0024 );
Write( DATA, 0x0000 );
Write( DATA, 0x0002 );
Write( DATA, 0x0005 );
…….
…….
Write( DATA, 0x001E );
// Green Palette FRC1 Setup
// Green 1 Level0 Setup
// Green 1 Level1 Setup
// Green 1 Level2 Setup
…….
…….
// Green 1 Level15 Setup
Write( COMMAND, 0x0025 );
Write( DATA, 0x0000 );
Write( DATA, 0x0002 );
Write( DATA, 0x0005 );
…….
…….
Write( DATA, 0x001E );
// Green Palette FRC2 Setup
// Green 2 Level0 Setup
// Green 2 Level1 Setup
// Green 2 Level2 Setup
…….
…….
// Green 2 Level15 Setup
Write( COMMAND, 0x0026 );
Write( DATA, 0x0000 );
Write( DATA, 0x0002 );
Write( DATA, 0x0005 );
…….
…….
Write( DATA, 0x001E );
// Green Palette FRC3 Setup
// Green 3 Level0 Setup
// Green 3 Level1 Setup
// Green 3 Level2 Setup
…….
…….
// Green 3 Level15 Setup
Write( COMMAND, 0x0027 );
Write( DATA, 0x0000 );
Write( DATA, 0x0002 );
Write( DATA, 0x0005 );
…….
…….
Write( DATA, 0x001E );
// Green Palette FRC4 Setup
// Green 4 Level0 Setup
// Green 4 Level1 Setup
// Green 4 Level2 Setup
…….
…….
// Green 4 Level15 Setup
Write( COMMAND, 0x0028 );
Write( DATA, 0x0000 );
Write( DATA, 0x0002 );
Write( DATA, 0x0005 );
…….
…….
Write( DATA, 0x001E );
// Green Palette FRC1 Setup
// Green 1 Level0 Setup
// Green 1 Level1 Setup
// Green 1 Level2 Setup
…….
…….
// Green 1 Level15 Setup
Write( COMMAND, 0x0029 );
Write( DATA, 0x0000 );
Write( DATA, 0x0002 );
Write( DATA, 0x0005 );
…….
…….
Write( DATA, 0x001E );
// Green Palette FRC2 Setup
// Green 2 Level0 Setup
// Green 2 Level1 Setup
// Green 2 Level2 Setup
…….
…….
// Green 2 Level15 Setup
65/99
2006/08/15
ST7636
Write( COMMAND, 0x002A );
Write( DATA, 0x0000 );
Write( DATA, 0x0002 );
Write( DATA, 0x0005 );
…….
…….
Write( DATA, 0x001E );
// Green Palette FRC3 Setup
// Green 3 Level0 Setup
// Green 3 Level1 Setup
// Green 3 Level2 Setup
…….
…….
// Green 3 Level15 Setup
Write( COMMAND, 0x002B );
Write( DATA, 0x0000 );
Write( DATA, 0x0002 );
Write( DATA, 0x0005 );
…….
…….
Write( DATA, 0x001E );
// Green Palette FRC4 Setup
// Green 4 Level0 Setup
// Green 4 Level1 Setup
// Green 4 Level2 Setup
…….
…….
// Green 4 Level15 Setup
}
(13) ANASET Command 1; Parameter: 3 (32H)
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
Function
Command
0
1
0
0
0
1
1
0
0
1
0
-
Parameter1(P1)
1
1
0
*
*
*
*
*
P12
P11
P10 OSC frequency Adjustment
Parameter2(P2)
1
1
0
*
*
*
*
*
*
P21
P20 Booster Efficiency Set
Parameter3(P3)
1
1
0
*
*
*
*
*
P32
P31
P30 Bias setting
P1: OSC frequency adjustment
P10
P11
P12
CL pin frequency ( KHz ) :
CL pin frequency ( KHz ) :
CL dividing ratio setting = 00H
CL dividing ratio setting = 04H
(No division)
(Divided by 2)
0
0
0
10.46
5.23
0
0
1
10.82
5.41
0
1
0
11.67
5.84
0
1
1
12.74
6.37
1
0
0
14.03
7.02
1
0
1
15.63
7.82
1
1
0
17.61
8.81
1
1
1
20.32
10.16
OSC frequency can be adjusted by P1 setting and command CAH, see page 49.
The default OSC frequency (CL pin frequency) is 10.46KHz.
And the frame frequency is from OSC frequency and duty setting, as the formula shown below:
Frame frequency = OSC frequency/(Duty+1)
Ver 1.3
66/99
2006/08/15
ST7636
Example:
1.
duty=132, P1 setting=[000], frame frequency=10.46KHz/133~78.64Hz
2.
duty=128, P1 setting=[101], frame frequency=15.63KHz/129~121.16Hz
P2: Booster Efficiency set
P21
P20
Frequency ( Hz )
0
0
Level 1
0
1
Level 2
1
0
Level 3
1
1
Level 4
By Booster Stages (2X, 3X, 4X, 5X, 6X, 7X, 8X) and Booster Efficiency (Level1~4) commands, we could easily set the best
Booster performance with suitable current consumption. If the Booster Efficiency is set to higher level (level4 is higher than
level1). The Boost Efficiency is better than lower level, and it just need few more power consumption current.
P3: Select LCD bias ratio of the voltage required for driving the LCD.
P32
P31
P30
LCD bias
0
0
0
1/12
0
0
1
1/11
0
1
0
1/10
0
1
1
1/9
1
0
0
1/8
1
0
1
1/7
1
1
0
1/6
1
1
1
1/5
(14) Color Dither OFF (DITHOFF) Command: 1; Parameter: None (34H)
Turn off the dithering circuit.
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
1
1
0
1
0
0
(15) Color Dither ON (DITHON) Command: 1; Parameter: None (35H)
Turn on the dithering circuit.
Command
Ver 1.3
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
1
1
0
1
0
1
67/99
2006/08/15
ST7636
(16) Control EEPROM: 1; Parameter: 1 (CDH)
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
Command
0
1
0
1
1
0
0
1
1
0
1
Parameter (P1)
1
1
0
*
*
P15
*
*
*
*
*
P15: when setting “1” è The Write Enable of EEPROM will be opened.
P15: when setting “0” è The Read Enable of EEPROM will be opened.
(17) Cancel EEPROM Command: 1;Parameter: None (CCH)
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
0
1
1
0
0
(18) Write data to EEPROM (EPMWR) Command: 1; Parameter: None (FCH)
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
1
1
1
1
0
0
(19) Read data from EEPROM (EPMWR) Command: 1; Parameter: None (FDH)
Command
A0
RD
RW
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
1
1
1
1
0
1
8.4 EXT=”0” or ”1” Function Description
(1) Extension instruction disable (EXT IN) Command:1 Parameter: None (30H)
Use the “Ext=0” command table
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
1
1
0
0
0
0
(2) Extension instruction enable (EXT OUT) Command:1 Parameter: None (31H)
Use the extended command table (EXT=”1”)
Command
A0
RD
WR
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
1
1
0
0
0
1
8.5 Referential Instruction Setup Flow
8.5.1 Initializing with the Built-in Power Supply Circuits
Ver 1.3
68/99
2006/08/15
ST7636
Power On
Keeping the /RES Pin = "L" and
waiting for stabilizing the Power
/RES Pin="H" and wait a minute ( t > 1.8 us )
User Application Setup by Internal Instructions
[Sleep Out Preparation: 04H^3EH]
[Sleep Out: 94H]
[Internal OSC On: D1H]
[Display Control: CAH]
[COM Scan Direction: BBH]
User LCD Power Setup by Internal Instructions
[Analog Control - LCD Bias Select … : 32H]
[Electronic Volume Control: 81H]
[DC-DC Step-up Register Select: 20H]
Execute the “Load EEPROM Flow”
Execute the “Load Paint Flow”
( Adjust for Panel Characteristics )
[Normal / Inverse Display: A6H/A7H]
[Data Display Setting: BCH]
[Display On: AFH]
[Column Address Setting: 15H]
[Page Address Setting: 75H]
[Entry Data Write Mode: 5CH]
End of Initialization
Figure 8.5.1.1 Initializing with the Built-in Power Supply Circuits
Ver 1.3
69/99
2006/08/15
ST7636
Example:Initial code for 128X128
void ST7636_Init( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x0004 );
Write( DATA, 0x003e );
Write( COMMAND, 0x0094 );
// Ext = 0
// Sleep Preparation
// Sleep Out Ready
// Sleep Out
Write( COMMAND, 0x00d1 );
Write( COMMAND, 0x00ca );
Write( DATA, 0x0000 );
Write( DATA, 0x001f );
Write( DATA, 0x0000 );
Write( COMMAND, 0x00bb );
Write( DATA, 0x0001 );
// Internal OSC on
// Display Control
// CL divisions
// Duty Setting = 128
// Fr Inverse-set value
// Com Scan Direct.
Write( COMMAND, 0x0031 );
Write( COMMAND, 0x0032 );
Write( DATA, 0x0000 );
Write( DATA, 0x0001 );
Write( DATA, 0x0000 );
// Ext = 1
// Analog Setting
// OSC adjustment
// Booster Efficiency Setting
// Bias Setting
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x0081 );
Write( DATA, 0x003f );
Write( DATA, 0x0004 );
Write( COMMAND, 0x0020 );
Write( DATA, 0x00b );
// Ext = 0
// Electronic Volume Control
// EV:Vop[5:0]_6bit
// EV:Vop[8:6]_3bit
// Power Control
// B/F/R = On/On/On
LoadEEPROM();
LoadPaint();
// Load EEPROM, see page 42
// Load Paint Setup, see page 68
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00a6 );
Write( COMMAND, 0x00bc );
Write( DATA, 0x0000 );
Write( DATA, 0x0000 );
Write( DATA, 0x0001 );
Write( COMMAND, 0x00af );
// Ext = 0
// Normal Display
// Data Scan Direction
// Page / Column Address Setting
// RGB arrangement
// Gray-scale setup ( 64-gray: 01H)
// Display On
Write( COMMAND, 0x0015 );
Write( DATA, 0 );
Write( DATA, 127 );
Write( COMMAND, 0x0075 );
Write( DATA, 0 );
Write( DATA, 127 );
// Column address set
// From column address 0 to 127
// Page address set
// From page address 0 to 127
}
Ver 1.3
70/99
2006/08/15
ST7636
8.5.2 Sleep In/Out
Fig 8.5.2.1 Sleep In/Out
Example:Sleep In Operation
void SleepIn( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00ae );
Write( COMMAND, 0x0020);
Write( DATA, 0x0003 );
Write( COMMAND, 0x0004 );
Write( DATA, 0x003f );
Delay( 500ms);
Write( COMMAND, 0x0095 );
// Ext = 0
// Display Off
// Power Control
// B/F/R = Off/On/On
// Sleep Preparation
// Sleep In Ready
// Sleep In
}
Example:Sleep Out Operation
void SleepOut( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x0004 );
Write( DATA, 0x003e );
Write( COMMAND, 0x0020 );
Write( DATA, 0x000b );
Write( COMMAND, 0x0094 );
Delay( 100ms );
Write( COMMAND, 0x00af );
// Ext = 0
// Sleep Preparation
// Sleep Out Ready
// Power Control
// B/F/R = On/On/On
// Sleep Out
// Display On
}
Ver 1.3
71/99
2006/08/15
ST7636
8.5.3 Data Displaying
Normal State
Display Data RAM Addressing by Instruction
[Data Control: BCH]
[Set Page Address: 75H]
[Set Column Address: 15H]
[Entry Memory Write Mode: 5CH]
Display Data Write
[Display Data Write]
No
End of Display Data Write ?
Yes
End of Data Display
Figure 8.5.3.1 Data Displaying
Example:Display for 128X128
void Display( char *pattern )
{
unsigned char i, j;
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x0015 );
Write( DATA, 0 );
Write( DATA, 127 );
Write( COMMAND, 0x0075 );
Write( DATA, 0 );
Write( DATA, 127 );
Write( COMMAND, 0x005c )
for( j = 0; j < 127 ; j++ )
for( i = 0 ; i < 127 ; i++ )
Write( DATA, pattern[j*128+i] );
// Ext = 0
// Column address set
// From column address 0 to 127
// Page address set
// From page address 0 to 127
// Entry Memory Write Mode
// Display Data Write
}
Ver 1.3
72/99
2006/08/15
ST7636
8.5.4 Partial Display In/Out
Figure 8.5.4.1 Partial Display In/Out
Example:Partial Display In Operation
void PartailIn( unsigned char start_block, unsigned char end_block )
{
Write( COMMAND, 0x0030 );
// Ext = 0
Write( COMMAND, 0x00A8);
// Partial Display In Function
Write( DATA, start_block );
// Start Block
Write( DATA, end_block );
// End Block
}
void PartailOut( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00A9 );
// Ext = 0
// Partial Display Out Function
}
Ver 1.3
73/99
2006/08/15
ST7636
extern unsigned char *display_pattern;
void main()
{
PartialIn( 11, 18 );
// entry partial display mode
Windowing( 0, 11*4, 131, 18*4 );
PartialDisplay( display_pattern );
.
.
.
PartialOut();
// set the page and column range
// Fill the data into partial display area
// Out of partial display mode
}
8.5.5 Scroll Display
Figure 8.5.5.1 Scroll Display
Ver 1.3
74/99
2006/08/15
ST7636
Example:Screen Scroll Operation
void CenterScreenScroll( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AA);
Write( DATA, 0x000a );
Write( DATA, 0x0014 );
Write( DATA, 0x0014 );
Write( DATA, 0x0000 );
// Ext = 0
// Partial Display In Function
// Top_Block=10
// Bottom_Block=20
// Number of Specified Blocks=Bottom_Block=20
// Area Scroll Type=Center Screen Scroll
ScrollUp() or ScrollDown();
// Scroll Up or Scroll Down
}
void TopScreenScroll( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AA);
Write( DATA, 0x0000 );
Write( DATA, 0x0014 );
Write( DATA, 0x0014 );
Write( DATA, 0x0001 );
// Ext = 0
// Partial Display In Function
// Top_Block=0
// Bottom_Block=20
// Number of Specified Blocks=Bottom_Block=20
// Area Scroll Type=Top Screen Scroll
ScrollUp() or ScrollDown();
// Scroll Up or Scroll Down
}
void BottomScreenScroll( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AA);
Write( DATA, 0x000a );
Write( DATA, 0x0020 );
Write( DATA, 0x0020 );
Write( DATA, 0x0002 );
// Ext = 0
// Partial Display In Function
// Top_Block=10
// Bottom_Block=32
// Number of Specified Blocks=Bottom_Block=32
// Area Scroll Type=Bottom Screen Scroll
ScrollUp() or ScrollDown();
// Scroll Up or Scroll Down
}
void WholeScreenScroll( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AA);
Write( DATA, 0x0000 );
Write( DATA, 0x0020 );
Write( DATA, 0x0020 );
Write( DATA, 0x0003 );
// Ext = 0
// Partial Display In Function
// Top_Block=0
// Bottom_Block=32
// Number of Specified Blocks=Bottom_Block=32
// Area Scroll Type=Whole Screen Scroll
ScrollUp() or ScrollDown();
// Scroll Up or Scroll Down
}
Ver 1.3
75/99
2006/08/15
ST7636
void ScrollUp( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AB);
Write( DATA, Top_Block);
Delay();
// Ext = 0
// Scroll Start Set
// Start Block Address=Top_Block
// Delay
Write( COMMAND, 0x00AB);
Write( DATA, Top_Block +1 );
Delay();
// Scroll Start Set
// Start Block Address= Top_Block+1
// Delay
Write( COMMAND, 0x00AB);
Write( DATA, Top_Block +2 );
Delay();
……
……
Write( COMMAND, 0x00AB);
Write( DATA, Bottom_Block );
Delay();
// Scroll Start Set
// Start Block Address= Top_Block +2
// Delay
// Scroll Start Set
// Start Block Address= Bottom_Block
// Delay
}
void ScrollDown( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00AB);
Write( DATA, Bottom_Block);
Delay();
// Ext = 0
// Scroll Start Set
// Start Block Address= Bottom_Block
// Delay
Write( COMMAND, 0x00AB);
Write( DATA, Bottom_Block -1 );
Delay();
// Scroll Start Set
// Start Block Address= Bottom_Block -1
// Delay
Write( COMMAND, 0x00AB);
Write( DATA, Bottom_Block -2 );
Delay();
……
……
Write( COMMAND, 0x00AB);
Write( DATA, Top _Block );
Delay();
// Scroll Start Set
// Start Block Address= Bottom_Block -2
// Delay
// Scroll Start Set
// Start Block Address= Top_Block
// Delay
}
Ver 1.3
76/99
2006/08/15
ST7636
8.5.6 Read-Modify-Write Cycle
Figure 8.5.6.1 Read-Write-Modify Cycle
Example:Read-Write-Modify Cycle
void ReadModifyWriteIn( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00E0 );
}
void ReadModifyWriteOut( void )
{
Write( COMMAND, 0x0030 );
Write( COMMAND, 0x00EE );
}
// Ext = 0
// Entry the Read-Modify-Write mode
// Ext = 0
// Out of partial display mode
extern unsigned char *display_pattern;
void main()
{
unsigned pixel, i;
Windowing( 11, 31, 80, 50 );
Ver 1.3
// set the page and column range
77/99
2006/08/15
ST7636
ReadModifyWriteIn();
// entry the Read-Modify-Write mode
for( i = 0 ; i < 1400 ; i++ )
{
Read( DATA );
pixel = Read( DATA );
pixel = pixel & 0x07ff;
Write( DATA, pixel );
}
// For dummy read
// Pixel read
// Pixel modify: red filter
ReadModifyWriteOut();
// Out of Read-Modify-Write mode
}
8.5.7 Power OFF
Power OFF
Normal State
Execute the “Sleep In Flow”
Keeping /RES Pin =“L”
Power Off (VDD-VSS)
End of Power OFF
VDD
/RES
tR
Internal
State
Normal State
Execute “Sleep In Flow”
Reset
tR > 12 ms
Power Off
After Sleep In Flow, keep the /RES = Low
Figure 8.5.7.1 Power off
Ver 1.3
78/99
2006/08/15
ST7636
9. LIMITING VALUES
In accordance with the Absolute Maximum Rating System; see notes 1 and 2.
Parameter
Symbol
Conditions
Unit
Power supply voltage
VDD, VDD1~VDD5
–0.5 ~ +4.0
V
Power supply voltage (VDD standard)
VOUTIN
–0.5 ~ +20
V
Power supply voltage (VDD standard)
V1, V2, V3, V4
0.3 to VOUTIN
V
Input voltage
VIN
–0.5 to VDD+0.5
V
Output voltage
VO
–0.5 to VDD+0.5
V
Operating temperature(Die)
TOPR
–30 to +85
°C
Storage temperature(Die)
TSTR
–40 to +125
°C
VLCD
V1 to V4
VDD
VDD
VSS
VSS
System (MPU) side
VSS
ST7636chip side
Notes
1. Stresses above those listed under Limiting Values may cause permanent damage to the device.
2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to
VSS unless otherwise noted.
3. Insure that the voltage levels of V1, V2, V3, and V4 are always such that
VOUTIN ≧ V0 ≧ V1 ≧ V2 ≧ V3 ≧ V4 ≧ VSS
Ver 1.3
79/99
2006/08/15
ST7636
10. HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS devices”).
11. DC CHARACTERISTICS
VDD = 2.4 V to 3.3V; VSS = 0 V; VLCD = 3.76 to 18.0V; Tamb = -30℃ to +85℃; unless otherwise specified.
Rating
Item
Symbol
Applicable
Condition
Units
Min.
Typ.
Max.
Pin
High-level Input Voltage
VIHC
0.8 x VDD
—
VDD
V
*1
Low-level Input Voltage
VILC
VSS
—
0.2 x VDD
V
*1
High-level Output Voltage
VOHC
0.8 x VDD
—
VDD
V
*2
Low-level Output Voltage
VOLC
VSS
—
0.2 x VDD
V
*2
Input leakage current
ILI
VIN = VDD or VSS
–1.0
—
1.0
μA
*3
Output leakage current
ILO
VIN = VDD or VSS
–3.0
—
3.0
μA
*4
—
1
10
VOUTIN =
Ta = 25°C
Liquid Crystal Driver ON
15.0 V
RON
SEGn
KΩ
(Relative
Resistance
To VSS)
COMn *5
VOUTIN =
—
2
15
—
10.46
20.32
kHz
*6
—
324.26
629.92
kHz
OSC
8.0 V
Internal Oscillator fOSC
External Input
fCL
Oscillator
1/132 duty
Frequency
Ta = 25°C Internal OSC:
31 PWM
fFRAME = fOSC /(Duty+1)
Frame frequency fFRAME
Hz
External OSC:
fFRAME = fCL /[31*(Duty+1)]
Rating
Item
Symbol
Condition
Units Applicable Pin
Min.
Typ.
Max.
(Relative to VSS)
2.4
—
3.3
V
VSS*7
(Relative to VSS)
2.4
—
3.3
V
VSS
(Relative To VSS)
—
—
20
V
VOUTOUT
VDD
Operating Voltage (1)
Internal Power
VDD1
VDD2
VDD3
Operating Voltage (2)
VDD4
VDD5
Supply Step-up output
VOUTOUT
voltage Circuit
Ver 1.3
80/99
2006/08/15
ST7636
Voltage regulator
Circuit Operating
VOUTIN
(Relative To VSS)
—
—
20
V
VOUTIN
Voltage
Dynamic Consumption Current : During Display, with the Internal Power Supply OFF Current consumed by total ICs when
an external power supply is used .
Rating
Test pattern
Symbol
Condition
Units
Notes
—
μA
*8
10
μA
die
Min.
Typ.
Max.
—
500(Die)
—
—
VDD = 2.8 V, Booster x 6
Display Pattern
ISS
V0 – VSS = 13.8 V
Normal
@ 1/12 bias,1/128 duty
Power Down
ISS
Ta = 25°C
Notes to the DC characteristics
1. The maximum possible VLCD voltage that may be generated is dependent on voltage, temperature and (display) load
Internal clock.
2. Power-down mode. During power down all static currents are switched off.
3. If external VLCD, the display load current is not transmitted to IDD.
4. VLCD external voltage applied to VOUTIN pin; VOUTIN disconnected from VOUTOUT
References for items market with *
*1 The A0, D0 to D5, D6 (SI), D7 (SCL), /RD (E), /WR ,/(R/W), /CS, IMS, OSC, P/S, /DOF, RESB terminals.
*2 The D0 to D7.
*3 The A0,/RD (E), /WR ,/(R/W), /CS, and RES terminals.
*4 Applies when the D0 to D5, D6 (SI), D7 (SCL) terminals are in a high impedance state.
*5 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the
various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range.
RON = 0.1 V /ΔI (Where ΔI is the current that flows when 0.1 V is applied while the power supply is ON.)
*6 The relationship between the oscillator frequency and the frame rate frequency under CL dividing ratio setting = 00H.
*7 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden
fluctuations to the voltage while the MPU is being accessed.
*8 It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on.
Ver 1.3
81/99
2006/08/15
ST7636
12. TIMING CHARACTERISTICS
System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)
A0
tAW8
tAH8
/CS
tCYC8
tCCLR,tCCLW
WR,RD
tCCHR,tCCHW
tDS8
tDH8
D0 to D7
(Write)
tACC8
tOH8
D0 to D7
(Read)
Figure 12.1
(VDD=3.3V, Ta= –30 to 85°C, die)
Rating
Item
Signal
Symbol
Condition
Units
Min.
Max.
tAH8
30
—
Address setup time
tAW8
30
—
System cycle time (WRITE)
tCYC8
340
—
fCYC8
2.94
—
/WR L pulse width (WRITE)
tCCLW
60
—
/WR H pulse width (WRITE)
tCCHW
280
—
System cycle time (READ)
tCYC8
500
—
tCCLR
150
—
/RD H pulse width (READ)
tCCHR
350
—
WRITE data setup time
tDS8
110
—
tDH8
30
—
Address hold time
A0
System frequency (WRITE)
WR
/RD L pulse width (READ)
RD
WRITE data hold time
D0 to D7
READ access time
tACC8
CL = 100 pF
—
70
READ Output disable time
tOH8
CL = 100 pF
—
50
Ver 1.3
82/99
ns
MHz
ns
2006/08/15
ST7636
(VDD=2.8V,Ta= –30 to 85°C, die)
Rating
Item
Signal
Symbol
Condition
Units
Min.
Max.
tAH8
40
—
Address setup time
tAW8
40
—
System cycle time (WRITE)
tCYC8
400
—
fCYC8
2.5
—
/WR L pulse width (WRITE)
tCCLW
70
—
/WR H pulse width (WRITE)
tCCHW
330
—
System cycle time (READ)
tCYC8
600
—
tCCLR
190
—
/RD H pulse width (READ)
tCCHR
410
—
WRITE data setup time
tDS8
120
—
tDH8
30
—
Address hold time
A0
System frequency (WRITE)
WR
RD
/RD L pulse width (READ)
WRITE data hold time
D0 to D7
READ access time
tACC8
CL = 100 pF
—
140
READ Output disable time
tOH8
CL = 100 pF
—
100
ns
MHz
ns
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,
(tr +tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified.
*2 All timing is specified using 20% and 80% of VDD as the reference.
*3 tCCLW and tCCLR are specified as the overlap between /CS being “L” and WR and RD being at the “L” level.
System Bus Read/Write Characteristics 1 (For the 6800 Series MPU)
A0
R/W
tAW6
tAH6
CS1
(CS2="1")
tCYC6
tCCLR,tCCLW
E
tCCHR,tCCHW
tDS6
tDH6
D0 to D7
(Write)
tACC6
tOH6
D0 to D7
(Read)
Figure 12.2
Ver 1.3
83/99
2006/08/15
ST7636
(VDD=3.3V, Ta= –30 to 85°C, die)
Rating
Item
Signal
Symbol
Condition
Units
Min.
Max.
tAH8
30
—
Address setup time
tAW8
30
—
System cycle time (WRITE)
tCYC8
340
—
fCYC8
2.94
—
Enable L pulse width (WRITE)
tCCLW
280
—
Enable H pulse width (WRITE)
tCCHW
60
—
System cycle time (READ)
tCYC8
500
—
tCCLR
350
—
Enable H pulse width (READ)
tCCHR
150
—
WRITE data setup time
tDS8
110
—
tDH8
30
—
Address hold time
A0
System frequency (WRITE)
WR
Enable L pulse width (READ)
RD
WRITE data hold time
D0 to D7
READ access time
tACC8
CL = 100 pF
—
70
READ Output disable time
tOH8
CL = 100 pF
—
50
ns
MHz
ns
(VDD=2.8V, Ta= –30 to 85°C, die)
Rating
Item
Signal
Symbol
Condition
Units
Min.
Max.
tAH8
40
—
Address setup time
tAW8
40
—
System cycle time (WRITE)
tCYC8
400
—
fCYC8
2.44
—
Enable L pulse width (WRITE)
tCCLW
330
—
Enable H pulse width (WRITE)
tCCHW
70
—
System cycle time (READ)
tCYC8
600
—
tCCLR
410
—
Enable H pulse width (READ)
tCCHR
190
—
WRITE data setup time
tDS8
120
—
tDH8
30
—
Address hold time
A0
System frequency (WRITE)
WR
Enable L pulse width (READ)
RD
WRITE data hold time
D0 to D7
READ access time
tACC8
CL = 100 pF
—
140
READ Output disable time
tOH8
CL = 100 pF
—
100
ns
MHz
ns
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,
(tr +tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified.
*2 All timing is specified using 20% and 80% of VDD as the reference.
*3 tEWLW and tEWLR are specified as the overlap between /CS being “L” and E.
Ver 1.3
84/99
2006/08/15
ST7636
Serial Interface Characteristics (For 4-Line Interface)
tCCSS
tCSH
/CS1
(CS2="1")
tSAS
tSAH
A0
tSCYC
tSLW
SCL
tSHW
tf
tr
tSDS
tSDH
SI
Fig 12.3
(VDD=3.3V, Ta= –30 to 85°C, die)
Rating
Item
Signal
Symbol
Condition
Units
Min.
Max.
tSCYC
100
—
ns
fSCYC
10
—
MHz
tSHW
70
—
tSLW
30
—
tSAS
30
—
Address hold time
tSAH
50
—
Data setup time
tSDS
20
—
tSDH
50
—
tCSS
40
—
tCSH
80
—
Serial clock period
Serial clock frequency
SCL “H” pulse width
SCL
SCL “L” pulse width
Address setup time
A0
SI
Data hold time
CS-SCL time
/CS
CS-SCL time
Ver 1.3
85/99
ns
2006/08/15
ST7636
(VDD=2.8V,Ta= –30 to 85°C, die)
Rating
Item
Signal
Symbol
Condition
Units
Min.
Max.
tSCYC
110
—
ns
fSCYC
9.09
—
MHz
tSHW
80
—
tSLW
30
—
tSAS
30
—
Address hold time
tSAH
50
—
Data setup time
tSDS
20
—
tSDH
50
—
tCSS
40
—
tCSH
80
—
Serial clock period
Serial clock frequency
SCL
SCL “H” pulse width
SCL “L” pulse width
Address setup time
A0
SI
Data hold time
CS-SCL time
/CS
CS-SCL time
ns
*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
*2 All timing is specified using 20% and 80% of VDD as the standard.
Serial Interface Characteristics (For 3-Line Interface)
tCCSS
tCSH
/CS1
(CS2="1")
tSCYC
tSLW
SCL
tSHW
tf
tr
tSDS
tSDH
SI
Fig 12.4
Ver 1.3
86/99
2006/08/15
ST7636
(VDD=3.3V,Ta= –30 to 85°C, die)
Rating
Item
Signal
Serial clock period
Serial clock frequency
SCL “H” pulse width
Symbol
Condition
Units
Min.
Max.
tSCYC
100
—
ns
fSCYC
10
—
MHz
tSHW
70
—
tSLW
30
—
tSDS
20
—
tSDH
50
—
tCSS
40
—
tCSH
80
—
SCL
SCL “L” pulse width
Data setup time
SI
Data hold time
CS-SCL time
/CS
CS-SCL time
ns
(VDD=2.8V,Ta= –30 to 85°C,die )
Rating
Item
Signal
Serial clock period
Serial clock frequency
SCL “H” pulse width
Symbol
Condition
Units
Min.
Max.
tSCYC
110
—
ns
fSCYC
9.09
—
MHz
tSHW
80
—
tSLW
30
—
tSDS
20
—
tSDH
50
—
tCSS
40
—
tCSH
80
—
SCL
SCL “L” pulse width
Data setup time
SI
Data hold time
CS-SCL time
/CS
CS-SCL time
ns
*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
*2 All timing is specified using 20% and 80% of VDD as the standard.
Ver 1.3
87/99
2006/08/15
ST7636
(VDD=2.8/3.3V, Ta= –30 to 85°C, die)
Rating
Item
Signal Symbol
Condition
Units
Min.
Max.
SCL clock frequency
SCL
FSCLK
—
400
SCL clock low period
SCL
TLOW
1.3
—
SCL clock high period
SCL
THIGH
0.6
—
Data set-up time
SI
TSU;Data
100
—
Data hold time
SI
THD;Data
0
0.9
SCL,SDA rise time
SCL
TR
20+0.1Cb
300
SCL,SDA fall time
SCL
TF
20+0.1Cb
400
Cb
—
400
Capacitive load represented by each bus line
Setup time for a repeated START condition
SI
TSU;SUA
0.6
—
Start condition hold time
SI
THD;STA
0.6
—
Setup time for STOP condition
TSU;STO
0.6
—
Tolerable spike width on bus
TSW
—
50
BUS free time between a STOP and START condition SCL
TBUF
1.3
—
kHZ
us
ns
us
13. RESET TIMING
tRW
/RES
tR
Internal
status
During reset
Reset complete
Fig 13.1
(VDD = 3.3V , Ta = –30 to 85°C, die)
Rating
Item
Signal
Reset time
Symbol
Condition
tR
Reset “L” pulse width
RESB
tRW
Units
Min.
Typ.
Max.
1
—
—
us
1.2
—
—
us
(VDD = 2.7V , Ta = –30 to 85°C, die)
Rating
Item
Signal
Reset time
Reset “L” pulse width
Ver 1.3
Symbol
Condition
tR
RESB
tRW
88/99
Units
Min.
Typ.
Max.
1
—
—
us
1.3
—
—
us
2006/08/15
ST7636
14. Display Application Examples between ST7636 and Panel
14.1 128 X 128 panel and CSEL=0 configuration
Figure 14.1 128 X 128 panel and CSEL=0 configuration
Initialize Setting:
Application Suggestion
VDD, VDD1 = 2.4 ~ 3.3 ( V )
VDD2 ~ VDD5 = 2.4 ~ 3.3 ( V )
Bias = 1 / 12
Duty = 128
Option Pin Setting:
CSEL = 0
COMMAND
BBH
CAH
75H
15H
BCH
BCH
Register Setting:
PARAMETER
DESCRIPTION
P1 = 01H
Common scan direction
P2 = 31H
Duty = 128
P1 = 0, P2 = 127
Page = 0 ~ 127
P1 = 0, P2 = 127
Column = 0 ~ 127
P1 = 00H
Address scan direction
P2 = 00H
RGB arrangement
9. Display Application Examples between ST7636 and9. Display
Application Examples between ST7636 and Panel
Ver 1.3
89/99
2006/08/15
ST7636
14.2 128 X 128 panel and CSEL=0 configuration
Figure 14.2 128 X 128 panel and CSEL=0 configuration
Initialize Setting:
Application Suggestion
VDD, VDD1 = 2.4 ~ 3.3 ( V )
VDD2 ~ VDD5 = 2.4 ~ 3.3 ( V )
Bias = 1 / 12
Duty = 128
Option Pin Setting:
CSEL = 0
COMMAND
BBH
CAH
75H
15H
BCH
BCH
Register Setting:
PARAMETER
DESCRIPTION
P1 = 01H
Common scan direction
P2 = 31H
Duty = 128
P1 = 0, P2 = 127
Page = 0 ~ 127
P1 = 4, P2 = 131
Column = 4 ~ 131
P1 = 02H
Address scan direction
P2 = 01H
RGB arrangement
9
9. Display Application Examples between ST7636 and Panel
Ver 1.3
90/99
2006/08/15
ST7636
14.3 128 X 128 panel and CSEL=1 configuration
Figure 14.3 128 X 128 panel and CSEL=1 configuration
Initialize Setting:
Application Suggestion
VDD, VDD1 = 2.4 ~ 3.3 ( V )
VDD2 ~ VDD5 = 2.4 ~ 3.3 ( V )
Bias = 1/12
Duty = 128
COMMAND
CAH
75H
15H
BCH
BCH
Register Setting:
PARAMETER
DESCRIPTION
P2 = 31H
Duty = 128
P1 = 0, P2 = 127
Page = 0 ~ 127
P1 = 0, P2 = 127
Column = 0 ~ 127
P1 = 00H
Address scan direction
P2 = 00H
RGB arrangement
Option Pin Setting:
CSEL = 1
9. Display Application Examples between ST7636 and Panel
Ver 1.3
91/99
2006/08/15
ST7636
14.4 128 X 128 panel and CSEL=1 configuration
Figure 14.4 128 X 128 panel and CSEL=1 configuration
Initialize Setting:
Application Suggestion
VDD, VDD1 = 2.4 ~ 3.3 ( V )
VDD2 ~ VDD5 = 2.4 ~ 3.3 ( V )
Bias = 1/12
Duty = 128
COMMAND
CAH
75H
15H
BCH
BCH
Register Setting:
PARAMETER
DESCRIPTION
P2 = 31H
Duty = 128
P1 = 0, P2 = 127
Page = 0 ~ 127
P1 = 0, P2 = 127
Column = 0 ~ 127
P1 = 03H
Address scan direction
P2 = 00H
RGB arrangement
Option Pin Setting:
CSEL = 1
15. THE MPU INTERFACE (REFERENCE EXAMPLES)
The ST7636 Series can be connected to either 8080 Series MPUs or to 6800 Series MPUs. Moreover, using the serial
interface it is possible to operate the ST7636 series chips with fewer signal lines.
The display area can be enlarged by using multiple ST7636 Series chips. When this is done, the chip select signal can be
used to select the individual Ics to access.
Ver 1.3
92/99
2006/08/15
ST7636
(1) 8080 Series MPUs
VDD
VCC
VDD
A0
A0
CS1
DO to D7
RD
WR
RES
GND
ST7636
MPU
CS1
IF1
IF2
IF3
D0 to D7
/RD (E)
/WR (R/W)
/RES
VSS
RESET
VSS
(2) 6800 Series MPUs
VD D
V DD
A0
A0
CS1
CS1
DO to D7
RD
WR
RES
GND
IF1
IF2
IF3
ST7636
MPU
V CC
D0 to D7
E(/RD)
R/W (/W R)
/RES
V SS
RESET
V SS
(3) Using the Serial Interface (4-line interface)
V DD
V CC
V DD
A0
C S1
C S1
IF1
IF2
IF3
Port 1
Port 2
RES
G ND
ST7636
MPU
A0
SI
SC L
/R E S
V SS
R E SE T
V SS
(4) Using the Serial Interface (3-line interface)
V DD or V SS
V CC
V DD
IF1
IF2
IF3
CS1
Port 1
Port 2
RES
GND
ST7636
MPU
CS1
SI
SCL
/RES
V SS
RESET
V SS
Ver 1.3
93/99
2006/08/15
ST7636
Application Circuits
( A ) 80 Series 16-bit Parallel Interface:
4 65
COM1 00
COM1 31
.. ..
....
A0
WR
D0
D1
D2
D3
D4
D5
D6
D7
VCC
GND
NC
VDD
CL
CLS
VSS
VDD
A0
RW_WR
VSS
VDD
D0
D1
D2
D3
D4
D5
D6
D7
VSS
VDD
D8
D9
D10
D11
D12
D13
D14
D15
VSS
VDD
E_ RD
RST
VSS
VDD
CSEL
I NTRS
I F1
I F2
I F3
VSS
VDD
SI
SCL
/CS
VDD
SEG0
.. ... .
VDD
5 81
5 82
5 83
5 84
VDD
VDD1
VDD1
VSS
..... .
6 04
6 05
6 06
6 07
6 08
6 09
VDD1
VSS
VDD4
VDD4
VDD3
VDD3
VDD2
......
6 18
6 19
VDD2
VDD5
......
C2
1 .0 uF
C6
1 .0 uF
C4
1 .0 uF
C5
1 .0 uF
C1
C3
1 .0 uF
1 .0 uF
6 22
6 23
6 24
6 25
6 26
6 27
6 28
6 29
6 30
6 31
6 32
6 33
6 34
6 35
432
431
COM6 7
COM6 6
430
S0
35
S395
ST7636 ( BUMP SIDE )
D8
D9
D10
D11
D12
D13
D14
D15
RD
RES
CS
464
463
COM9 9
COM9 8
5 32
5 33
5 34
5 35
5 36
5 37
5 38
5 39
5 40
5 41
5 42
5 43
5 44
5 45
5 46
5 47
5 48
5 49
5 50
5 51
5 52
5 53
5 54
5 55
5 56
5 57
5 58
5 59
5 60
5 61
5 62
5 63
5 64
5 65
5 66
5 67
5 68
5 69
5 70
5 71
5 72
5 73
5 74
5 75
5 76
C131
C130
C97
4 96
NC
C99
C98
C66
4 97
VDD5
TCAP
CA P2P
CA P2N
CA P6P
CA P2N
CA P4P
CA P7P
CA P1N
CA P5P
CA P3P
CA P1N
CA P1P
VOUTIN
......
Cout
1 .0 uF
6 40
6 41
VOUTIN
VOUTOUT
..... .
1 .0 uF
1 .0 uF
1 .0 uF
VOUTOUT
VREF
VR
V4
V3
V2
V1
V0OUT
SEG 39 5
34
33
COM6 5
COM6 4
6 56
6 57
V0OUT
V0IN
....
RV0
1M~3M Oh m
6 46
6 47
6 48
6 49
6 50
6 51
6 52
6 53
......
1 .0 uF
CV4 CV3 CV2 CV1 CV0
1 .0 uF
6 60
2
1
COM3 3
COM3 2
V0IN
COM31
COM0
JP?
ST7636-CA
C31
C65
C64
6 92
C0
C33
C32
6 61
Interface: 80 series 16-bit Interface
Booster: 7x
Use Internal Resistors
Capacitor: 1.0 uF / 25V
Resistor: 1M ~ 3M Ohm
Ver 1.3
94/99
2006/08/15
ST7636
Application Circuits (Continue)
( B ) 80 Series 8-bit Parallel Interface:
4 65
COM1 00
COM1 31
.. ..
....
A0
WR
D0
D1
D2
D3
D4
D5
D6
D7
VCC
GND
NC
VDD
CL
CLS
VSS
VDD
A0
RW_WR
VSS
VDD
D0
D1
D2
D3
D4
D5
D6
D7
VSS
VDD
D8
D9
D10
D11
D12
D13
D14
D15
VSS
VDD
E_ RD
RST
VSS
VDD
CSEL
I NTRS
I F1
I F2
I F3
VSS
VDD
SI
SCL
/CS
VDD
SEG0
.. ... .
VDD
5 81
5 82
5 83
5 84
VDD
VDD1
VDD1
VSS
..... .
6 04
6 05
6 06
6 07
6 08
6 09
VDD1
VSS
VDD4
VDD4
VDD3
VDD3
VDD2
......
6 18
6 19
VDD2
VDD5
......
C2
1 .0 uF
C6
1 .0 uF
C4
1 .0 uF
C5
1 .0 uF
C1
C3
1 .0 uF
1 .0 uF
6 22
6 23
6 24
6 25
6 26
6 27
6 28
6 29
6 30
6 31
6 32
6 33
6 34
6 35
432
431
COM6 7
COM6 6
430
S0
35
S395
ST7636 ( BUMP SIDE )
RD
RES
CS
464
463
COM9 9
COM9 8
5 32
5 33
5 34
5 35
5 36
5 37
5 38
5 39
5 40
5 41
5 42
5 43
5 44
5 45
5 46
5 47
5 48
5 49
5 50
5 51
5 52
5 53
5 54
5 55
5 56
5 57
5 58
5 59
5 60
5 61
5 62
5 63
5 64
5 65
5 66
5 67
5 68
5 69
5 70
5 71
5 72
5 73
5 74
5 75
5 76
C131
C130
C97
4 96
NC
C99
C98
C66
4 97
VDD5
TCAP
CA P2P
CA P2N
CA P6P
CA P2N
CA P4P
CA P7P
CA P1N
CA P5P
CA P3P
CA P1N
CA P1P
VOUTIN
......
Cout
1 .0 uF
6 40
6 41
VOUTIN
VOUTOUT
..... .
1 .0 uF
1 .0 uF
1 .0 uF
VOUTOUT
VREF
VR
V4
V3
V2
V1
V0OUT
SEG 39 5
34
33
COM6 5
COM6 4
6 56
6 57
V0OUT
V0IN
....
RV0
1M~3M Oh m
6 46
6 47
6 48
6 49
6 50
6 51
6 52
6 53
......
1 .0 uF
CV4 CV3 CV2 CV1 CV0
1 .0 uF
6 60
2
1
COM3 3
COM3 2
V0IN
COM31
COM0
JP?
ST7636-CA
C31
C65
C64
6 92
C0
C33
C32
6 61
Interface: 80 series 8-bit Interface
Booster: 7x
Use Internal Resistors
Capacitor: 1.0 uF / 25V
Resistor: 1M ~ 3M Ohm
Ver 1.3
95/99
2006/08/15
ST7636
Application Circuits (Continue)
( C ) 68 Series 16-bit Parallel Interface ( with external power supply to VLCD ):
4 65
COM1 00
COM1 31
.. ..
....
A0
R_W
D0
D1
D2
D3
D4
D5
D6
D7
VCC
GND
VOUT
NC
VDD
CL
CLS
VSS
VDD
A0
RW_WR
VSS
VDD
D0
D1
D2
D3
D4
D5
D6
D7
VSS
VDD
D8
D9
D10
D11
D12
D13
D14
D15
VSS
VDD
E_ RD
RST
VSS
VDD
CSEL
I NTRS
I F1
I F2
I F3
VSS
VDD
SI
SCL
/CS
VDD
SEG0
.. ... .
VDD
5 81
5 82
5 83
5 84
VDD
VDD1
VDD1
VSS
..... .
6 04
6 05
6 06
6 07
6 08
6 09
VDD1
VSS
VDD4
VDD4
VDD3
VDD3
VDD2
......
6 18
6 19
VDD2
VDD5
......
6 22
6 23
6 24
6 25
6 26
6 27
6 28
6 29
6 30
6 31
6 32
6 33
6 34
6 35
432
431
COM6 7
COM6 6
430
S0
35
S395
ST7636 ( BUMP SIDE )
D8
D9
D10
D11
D12
D13
D14
D15
E
RES
CS
464
463
COM9 9
COM9 8
5 32
5 33
5 34
5 35
5 36
5 37
5 38
5 39
5 40
5 41
5 42
5 43
5 44
5 45
5 46
5 47
5 48
5 49
5 50
5 51
5 52
5 53
5 54
5 55
5 56
5 57
5 58
5 59
5 60
5 61
5 62
5 63
5 64
5 65
5 66
5 67
5 68
5 69
5 70
5 71
5 72
5 73
5 74
5 75
5 76
C131
C130
C97
4 96
NC
C99
C98
C66
4 97
VDD5
TCAP
CA P2P
CA P2N
CA P6P
CA P2N
CA P4P
CA P7P
CA P1N
CA P5P
CA P3P
CA P1N
CA P1P
VOUTIN
......
Cout
1 .0 uF
6 40
6 41
VOUTIN
VOUTOUT
..... .
1 .0 uF
1 .0 uF
1 .0 uF
VOUTOUT
VREF
VR
V4
V3
V2
V1
V0OUT
SEG 39 5
34
33
COM6 5
COM6 4
6 56
6 57
V0OUT
V0IN
....
RV0
1M~3M Oh m
6 46
6 47
6 48
6 49
6 50
6 51
6 52
6 53
......
1 .0 uF
CV4 CV3 CV2 CV1 CV0
1 .0 uF
6 60
2
1
COM3 3
COM3 2
V0IN
COM31
COM0
JP?
ST7636-CA
C31
C65
C64
6 92
C0
C33
C32
6 61
Interface: 68 series 16-bit Interface
Booster: register VC = 0
Use External Power Supply to VLCD
Capacitor: 1.0 uF / 25V
Resistor: 1M ~ 3M Ohm
Ver 1.3
96/99
2006/08/15
ST7636
Application Circuits (Continue)
( D ) 3 Line Serial Peripheral Interface:
465
COM100
COM131
....
. ...
V CC
G ND
NC
V DD
CL
CLS
V SS
V DD
A0
RW_WR
V SS
V DD
D0
D1
D2
D3
D4
D5
D6
D7
V SS
V DD
D8
D9
D 10
D 11
D 12
D 13
D 14
D 15
V SS
V DD
E_RD
RST
V SS
V DD
CSEL
IN TRS
IF1
IF2
IF3
V SS
V DD
SI
SCL
/CS
V DD
SEG 0
......
V DD
581
582
583
584
V DD
V DD 1
V DD 1
V SS
......
604
605
606
607
608
609
VD D 1
V SS
V DD 4
V DD 4
V DD 3
V DD 3
V DD 2
......
618
619
V DD 2
V DD 5
.. ....
C2
1.0 uF
C6
1.0 uF
C4
1.0 uF
C5
1.0 uF
C1
C3
1.0 uF
1.0 uF
622
623
624
625
626
627
628
629
630
631
632
633
634
635
432
431
CO M67
CO M66
430
S0
35
S395
ST7636 ( BUMP SIDE )
RE S
SI
SCL
CS
464
463
CO M99
CO M98
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
C131
C130
C97
496
NC
C99
C98
C66
497
V DD 5
TCA P
CA P2P
CA P2N
CA P6P
CA P2N
CA P4P
CA P7P
CA P1N
CA P5P
CA P3P
CA P1N
CA P1P
V OU TIN
......
Cout
1.0 uF
640
641
V OU TIN
V OU TOU T
......
1.0 uF
1.0 uF
1.0 uF
SEG395
656
657
34
33
CO M65
CO M64
V 0O UT
V 0IN
....
RV0
1M~3M O hm
V OU TOU T
V REF
VR
V4
V3
V2
V1
V 0O UT
......
1.0 uF
CV4 CV3 CV2 CV1 CV0
1.0 uF
646
647
648
649
650
651
652
653
660
2
1
CO M33
CO M32
V 0IN
COM31
COM0
J P?
ST7636-CA
C31
C65
C64
692
C0
C33
C32
661
Interface: 3 Line Serial Peripheral Interface
Booster: 7x
Use Internal Resistors
Capacitor: 1.0 uF / 25V
Resistor: 1M ~ 3M Ohm
Ver 1.3
97/99
2006/08/15
ST7636
Application Circuits (Continue)
( E ) 4 Line Serial Peripheral Interface:
4 65
COM100
COM131
.. ..
....
VCC
GND
NC
VDD
CL
CLS
VSS
VDD
A0
RW_WR
VSS
VDD
D0
D1
D2
D3
D4
D5
D6
D7
VSS
VDD
D8
D9
D10
D11
D12
D13
D14
D15
VSS
VDD
E_ RD
RST
VSS
VDD
CSEL
I NTRS
I F1
I F2
I F3
VSS
VDD
SI
SCL
/CS
VDD
SEG0
..... .
VDD
5 81
5 82
5 83
5 84
VDD
VDD1
VDD1
VSS
..... .
6 04
6 05
6 06
6 07
6 08
6 09
VDD1
VSS
VDD4
VDD4
VDD3
VDD3
VDD2
......
6 18
6 19
VDD2
VDD5
......
C2
1 .0 uF
C6
1 .0 uF
C4
1 .0 uF
C5
1 .0 uF
C1
C3
1 .0 uF
1 .0 uF
6 22
6 23
6 24
6 25
6 26
6 27
6 28
6 29
6 30
6 31
6 32
6 33
6 34
6 35
432
431
COM6 7
COM6 6
430
S0
35
S395
ST7636 ( BUMP SIDE )
A0
RES
SI
SCL
CS
464
463
COM9 9
COM9 8
5 32
5 33
5 34
5 35
5 36
5 37
5 38
5 39
5 40
5 41
5 42
5 43
5 44
5 45
5 46
5 47
5 48
5 49
5 50
5 51
5 52
5 53
5 54
5 55
5 56
5 57
5 58
5 59
5 60
5 61
5 62
5 63
5 64
5 65
5 66
5 67
5 68
5 69
5 70
5 71
5 72
5 73
5 74
5 75
5 76
C131
C130
C97
4 96
NC
C99
C98
C66
4 97
VDD5
TCAP
CA P2P
CA P2N
CA P6P
CA P2N
CA P4P
CA P7P
CA P1N
CA P5P
CA P3P
CA P1N
CA P1P
VOUTIN
......
Cout
1 .0 uF
6 40
6 41
VOUTIN
VOUTOUT
..... .
1 .0 uF
1 .0 uF
1 .0 uF
VOUTOUT
VREF
VR
V4
V3
V2
V1
V0OUT
SEG39 5
34
33
COM6 5
COM6 4
6 56
6 57
V0OUT
V0IN
....
RV0
1M~3M O hm
6 46
6 47
6 48
6 49
6 50
6 51
6 52
6 53
......
1 .0 uF
CV4 CV3 CV2 CV1 CV0
1 .0 uF
6 60
2
1
COM3 3
COM3 2
V0IN
COM31
COM0
JP?
ST7636-CA
C31
C65
C64
6 92
C0
C33
C32
6 61
Interface: 4 Line Serial Peripheral Interface
Booster: 7x
Use Internal Resistors
Capacitor: 1.0 uF / 25V
Resistor: 1M ~ 3M Ohm
Microprocessor interface pins should not be floating in any operation mode.
Ver 1.3
98/99
2006/08/15
ST7636
ST7636 Serial Specification Revision History
Version
Date
Description
1.0
2004/12/8
1.1
To change bump size, height and chip thickness
To change some indications in 7.10 section, including voltage
converter, thermal gradient, EEPROM setting flow and demo
2005/05/13
program WriteEEPROM()
To add demo program LoadPaint()
To correct some typographic errors
Remove preliminary and correct some typographic errors
1. Modify Limiting Value and DC Characteristic
a. Temperature gradient (Add tolerance)
b. Supply voltage (no tolerance).
Ver 1.3
1.2
2005/9/15
c. Bump height
d. Operating and storage temperature.
2. Add die note.
3. Modify EEPROM VOUTIN must be more than 17V.
4. Delete about IIC function and 2-line.
1.3
2006/8/15
Add microprocessor notice item(p.16, p.98).
99/99
2006/08/15