ST Sitronix ST7636 65K Color Dot Matrix LCD Controller/Driver 1. INTRODUCTION The ST7636 is a driver & controller LSI for 65K color graphic dot-matrix liquid crystal display systems. It generates 396 Segment and 132 Common driver circuits. This chip is connected directly to a microprocessor, accepts Serial Peripheral Interface (SPI) or 8-bit/16-bit parallel display data and stores in an on-chip display data RAM. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits necessary to drive liquid crystal, it is possible to make a display system with the fewest components. 2. FEATURES Driver Output Circuits On-chip Low Power Analog Circuit ♦ 396 segment outputs / 132 common outputs ♦ On-chip oscillator circuit Applicable Duty Ratios ♦ Voltage converter (x2, x3, x4, x5, x6, x7, x8) ♦ Various partial display ♦ Voltage regulator ♦ Partial window moving & data scrolling ♦ On-chip electronic contrast control function (406 steps) Gray-Scale Display ♦ Voltage follower (LCD bias: 1/5 to 1/12) ♦ 4FRC & 31 PWM function circuit to display Operating Voltage Range ♦ 64 gray-scale display. ♦ Supply voltage (VDD, VDD1): 2.4 to 3.3V On-chip Display Data RAM (VDD2, VDD3, VDD4, VDD5): 2.4 to ♦ Capacity: 132 · 132 · 16 =278,784bits 3.3V ♦ 65K colors (RGB)=(565) mode ♦ LCD driving voltage (VOP = V0 - VSS): 3.76 to 18.0 V ♦ Dithered 262K colors (RGB)=(666) mode ♦ the suggested value of V0 is 12~15 V under bias =1/11. ♦ Dithered 16M colors (RGB)=(888) mode LCD Driving Voltage (EEPROM) Microprocessor Interface ♦ To store contrast adjustment value for better display ♦ 8/16-bit parallel bi-directional interface with 6800-series Package Type ♦ Application for COG or 8080-series ♦ 4-line serial interface (4-line-SIF) ♦ 3-line serial interface (3-line-SIF) ST7636 Ver 1.3 6800 , 8080 ,4-Line , 3-Line interface 1/99 2006/08/15 ST7636 3. ST7636 Pad Arrangement (COG) Chip Size: 20,050 um x1,650 um Bump Pitch: PAD NO 1 ~ 496, 661~692: 40 um (COM/SEG) PAD NO 497 ~ 660: 110 um (O) Bump size: PAD NO.1~464: 25(x)um X 96(y)um PAD No.465~ 496,661~692: 96(x)um X 25(y)um PAD N0. 497~660: 90(x)um X 40(y)um Bump Height: 17um Chip Thickness: 635um Ver 1.3 2/99 2006/08/15 ST7636 4. Pad Center Coordinates PAD PIN Name X Y PAD PIN Name X Y SEG[395] 8141.0 670.5 036 SEG[394] 8101.0 670.5 670.5 037 SEG[393] 8061.0 670.5 9482.0 670.5 038 SEG[392] 8021.0 670.5 COM[72] 9442.0 670.5 039 SEG[391] 7981.0 670.5 COM[37] COM[74] 9402.0 670.5 040 SEG[390] 7941.0 670.5 007 COM[38] COM[76] 9362.0 670.5 041 SEG[389] 7901.0 670.5 008 COM[39] COM[78] 9322.0 670.5 042 SEG[388] 7861.0 670.5 009 COM[40] COM[80] 9282.0 670.5 043 SEG[387] 7821.0 670.5 010 COM[41] COM[82] 9242.0 670.5 044 SEG[386] 7781.0 670.5 011 COM[42] COM[84] 9202.0 670.5 045 SEG[385] 7741.0 670.5 012 COM[43] COM[86] 9162.0 670.5 046 SEG[384] 7701.0 670.5 013 COM[44] COM[88] 9122.0 670.5 047 SEG[383] 7661.0 670.5 014 COM[45] COM[90] 9082.0 670.5 048 SEG[382] 7621.0 670.5 015 COM[46] COM[92] 9042.0 670.5 049 SEG[381] 7581.0 670.5 016 COM[47] COM[94] 9002.0 670.5 050 SEG[380] 7541.0 670.5 017 COM[48] COM[96] 8962.0 670.5 051 SEG[379] 7501.0 670.5 018 COM[49] COM[98] 8922.0 670.5 052 SEG[378] 7461.0 670.5 019 COM[50] COM[100] 8882.0 670.5 053 SEG[377] 7421.0 670.5 020 COM[51] COM[102] 8842.0 670.5 054 SEG[376] 7381.0 670.5 021 COM[52] COM[104] 8802.0 670.5 055 SEG[375] 7341.0 670.5 022 COM[53] COM[106] 8762.0 670.5 056 SEG[374] 7301.0 670.5 023 COM[54] COM[108] 8722.0 670.5 057 SEG[373] 7261.0 670.5 024 COM[55] COM[110] 8682.0 670.5 058 SEG[372] 7221.0 670.5 025 COM[56] COM[112] 8642.0 670.5 059 SEG[371] 7181.0 670.5 026 COM[57] COM[114] 8602.0 670.5 060 SEG[370] 7141.0 670.5 027 COM[58] COM[116] 8562.0 670.5 061 SEG[369] 7101.0 670.5 028 COM[59] COM[118] 8522.0 670.5 062 SEG[368] 7061.0 670.5 029 COM[60] COM[120] 8482.0 670.5 063 SEG[367] 7021.0 670.5 030 COM[61] COM[122] 8442.0 670.5 064 SEG[366] 6981.0 670.5 031 COM[62] COM[124] 8402.0 670.5 065 SEG[365] 6941.0 670.5 032 COM[63] COM[126] 8362.0 670.5 066 SEG[364] 6901.0 670.5 033 COM[64] COM[128] 8322.0 670.5 067 SEG[363] 6861.0 670.5 034 COM[65] COM[130] 8282.0 670.5 068 SEG[362] 6821.0 670.5 No. CSEL=0 CSEL=1 001 COM[32] COM[64] 9602.0 670.5 035 002 COM[33] COM[66] 9562.0 670.5 003 COM[34] COM[68] 9522.0 004 COM[35] COM[70] 005 COM[36] 006 Ver 1.3 No. 3/99 CSEL=0 CSEL=1 2006/08/15 ST7636 PAD No. PIN Name CSEL=0 X Y CSEL=1 PAD No. PIN Name CSEL=0 X Y CSEL=1 069 SEG[361] 6781.0 670.5 104 SEG[326] 5381.0 670.5 070 SEG[360] 6741.0 670.5 105 SEG[325] 5341.0 670.5 071 SEG[359] 6701.0 670.5 106 SEG[324] 5301.0 670.5 072 SEG[358] 6661.0 670.5 107 SEG[323] 5261.0 670.5 073 SEG[357] 6621.0 670.5 108 SEG[322] 5221.0 670.5 074 SEG[356] 6581.0 670.5 109 SEG[321] 5181.0 670.5 075 SEG[355] 6541.0 670.5 110 SEG[320] 5141.0 670.5 076 SEG[354] 6501.0 670.5 111 SEG[319] 5101.0 670.5 077 SEG[353] 6461.0 670.5 112 SEG[318] 5061.0 670.5 078 SEG[352] 6421.0 670.5 113 SEG[317] 5021.0 670.5 079 SEG[351] 6381.0 670.5 114 SEG[316] 4981.0 670.5 080 SEG[350] 6341.0 670.5 115 SEG[315] 4941.0 670.5 081 SEG[349] 6301.0 670.5 116 SEG[314] 4901.0 670.5 082 SEG[348] 6261.0 670.5 117 SEG[313] 4861.0 670.5 083 SEG[347] 6221.0 670.5 118 SEG[312] 4821.0 670.5 084 SEG[346] 6181.0 670.5 119 SEG[311] 4781.0 670.5 085 SEG[345] 6141.0 670.5 120 SEG[310] 4741.0 670.5 086 SEG[344] 6101.0 670.5 121 SEG[309] 4701.0 670.5 087 SEG[343] 6061.0 670.5 122 SEG[308] 4661.0 670.5 088 SEG[342] 6021.0 670.5 123 SEG[307] 4621.0 670.5 089 SEG[341] 5981.0 670.5 124 SEG[306] 4581.0 670.5 090 SEG[340] 5941.0 670.5 125 SEG[305] 4541.0 670.5 091 SEG[339] 5901.0 670.5 126 SEG[304] 4501.0 670.5 092 SEG[338] 5861.0 670.5 127 SEG[303] 4461.0 670.5 093 SEG[337] 5821.0 670.5 128 SEG[302] 4421.0 670.5 094 SEG[336] 5781.0 670.5 129 SEG[301] 4381.0 670.5 095 SEG[335] 5741.0 670.5 130 SEG[300] 4341.0 670.5 096 SEG[334] 5701.0 670.5 131 SEG[299] 4301.0 670.5 097 SEG[333] 5661.0 670.5 132 SEG[298] 4261.0 670.5 098 SEG[332] 5621.0 670.5 133 SEG[297] 4221.0 670.5 099 SEG[331] 5581.0 670.5 134 SEG[296] 4181.0 670.5 100 SEG[330] 5541.0 670.5 135 SEG[295] 4141.0 670.5 101 SEG[329] 5501.0 670.5 136 SEG[294] 4101.0 670.5 102 SEG[328] 5461.0 670.5 137 SEG[293] 4061.0 670.5 103 SEG[327] 5421.0 670.5 138 SEG[292] 4021.0 670.5 Ver 1.3 4/99 2006/08/15 ST7636 PAD No. PIN Name CSEL=0 X Y CSEL=1 PAD No. PIN Name CSEL=0 X Y CSEL=1 139 SEG[291] 3981.0 670.5 174 SEG[256] 2581.0 670.5 140 SEG[290] 3941.0 670.5 175 SEG[255] 2541.0 670.5 141 SEG[289] 3901.0 670.5 176 SEG[254] 2501.0 670.5 142 SEG[288] 3861.0 670.5 177 SEG[253] 2461.0 670.5 143 SEG[287] 3821.0 670.5 178 SEG[252] 2421.0 670.5 144 SEG[286] 3781.0 670.5 179 SEG[251] 2381.0 670.5 145 SEG[285] 3741.0 670.5 180 SEG[250] 2341.0 670.5 146 SEG[284] 3701.0 670.5 181 SEG[249] 2301.0 670.5 147 SEG[283] 3661.0 670.5 182 SEG[248] 2261.0 670.5 148 SEG[282] 3621.0 670.5 183 SEG[247] 2221.0 670.5 149 SEG[281] 3581.0 670.5 184 SEG[246] 2181.0 670.5 150 SEG[280] 3541.0 670.5 185 SEG[245] 2141.0 670.5 151 SEG[279] 3501.0 670.5 186 SEG[244] 2101.0 670.5 152 SEG[278] 3461.0 670.5 187 SEG[243] 2061.0 670.5 153 SEG[277] 3421.0 670.5 188 SEG[242] 2021.0 670.5 154 SEG[276] 3381.0 670.5 189 SEG[241] 1981.0 670.5 155 SEG[275] 3341.0 670.5 190 SEG[240] 1941.0 670.5 156 SEG[274] 3301.0 670.5 191 SEG[239] 1901.0 670.5 157 SEG[273] 3261.0 670.5 192 SEG[238] 1861.0 670.5 158 SEG[272] 3221.0 670.5 193 SEG[237] 1821.0 670.5 159 SEG[271] 3181.0 670.5 194 SEG[236] 1781.0 670.5 160 SEG[270] 3141.0 670.5 195 SEG[235] 1741.0 670.5 161 SEG[269] 3101.0 670.5 196 SEG[234] 1701.0 670.5 162 SEG[268] 3061.0 670.5 197 SEG[233] 1661.0 670.5 163 SEG[267] 3021.0 670.5 198 SEG[232] 1621.0 670.5 164 SEG[266] 2981.0 670.5 199 SEG[231] 1581.0 670.5 165 SEG[265] 2941.0 670.5 200 SEG[230] 1541.0 670.5 166 SEG[264] 2901.0 670.5 201 SEG[229] 1501.0 670.5 167 SEG[263] 2861.0 670.5 202 SEG[228] 1461.0 670.5 168 SEG[262] 2821.0 670.5 203 SEG[227] 1421.0 670.5 169 SEG[261] 2781.0 670.5 204 SEG[226] 1381.0 670.5 170 SEG[260] 2741.0 670.5 205 SEG[225] 1341.0 670.5 171 SEG[259] 2701.0 670.5 206 SEG[224] 1301.0 670.5 172 SEG[258] 2661.0 670.5 207 SEG[223] 1261.0 670.5 173 SEG[257] 2621.0 670.5 208 SEG[222] 1221.0 670.5 Ver 1.3 5/99 2006/08/15 ST7636 PAD No. PIN Name CSEL=0 X Y CSEL=1 PAD No. PIN Name CSEL=0 X Y CSEL=1 209 SEG[221] 1181.0 670.5 244 SEG[186] -219.0 670.5 210 SEG[220] 1141.0 670.5 245 SEG[185] -259.0 670.5 211 SEG[219] 1101.0 670.5 246 SEG[184] -299.0 670.5 212 SEG[218] 1061.0 670.5 247 SEG[183] -339.0 670.5 213 SEG[217] 1021.0 670.5 248 SEG[182] -379.0 670.5 214 SEG[216] 981.0 670.5 249 SEG[181] -419.0 670.5 215 SEG[215] 941.0 670.5 250 SEG[180] -459.0 670.5 216 SEG[214] 901.0 670.5 251 SEG[179] -499.0 670.5 217 SEG[213] 861.0 670.5 252 SEG[178] -539.0 670.5 218 SEG[212] 821.0 670.5 253 SEG[177] -579.0 670.5 219 SEG[211] 781.0 670.5 254 SEG[176] -619.0 670.5 220 SEG[210] 741.0 670.5 255 SEG[175] -659.0 670.5 221 SEG[209] 701.0 670.5 256 SEG[174] -699.0 670.5 222 SEG[208] 661.0 670.5 257 SEG[173] -739.0 670.5 223 SEG[207] 621.0 670.5 258 SEG[172] -779.0 670.5 224 SEG[206] 581.0 670.5 259 SEG[171] -819.0 670.5 225 SEG[205] 541.0 670.5 260 SEG[170] -859.0 670.5 226 SEG[204] 501.0 670.5 261 SEG[169] -899.0 670.5 227 SEG[203] 461.0 670.5 262 SEG[168] -939.0 670.5 228 SEG[202] 421.0 670.5 263 SEG[167] -979.0 670.5 229 SEG[201] 381.0 670.5 264 SEG[166] -1019.0 670.5 230 SEG[200] 341.0 670.5 265 SEG[165] -1059.0 670.5 231 SEG[199] 301.0 670.5 266 SEG[164] -1099.0 670.5 232 SEG[198] 261.0 670.5 267 SEG[163] -1139.0 670.5 233 SEG[197] 221.0 670.5 268 SEG[162] -1179.0 670.5 234 SEG[196] 181.0 670.5 269 SEG[161] -1219.0 670.5 235 SEG[195] 141.0 670.5 270 SEG[160] -1259.0 670.5 236 SEG[194] 101.0 670.5 271 SEG[159] -1299.0 670.5 237 SEG[193] 61.0 670.5 272 SEG[158] -1339.0 670.5 238 SEG[192] 21.0 670.5 273 SEG[157] -1379.0 670.5 239 SEG[191] -19.0 670.5 274 SEG[156] -1419.0 670.5 240 SEG[190] -59.0 670.5 275 SEG[155] -1459.0 670.5 241 SEG[189] -99.0 670.5 276 SEG[154] -1499.0 670.5 242 SEG[188] -139.0 670.5 277 SEG[153] -1539.0 670.5 243 SEG[187] -179.0 670.5 278 SEG[152] -1579.0 670.5 Ver 1.3 6/99 2006/08/15 ST7636 PAD No. PIN Name CSEL=0 X Y CSEL=1 PAD No. PIN Name CSEL=0 X Y CSEL=1 279 SEG[151] -1619.0 670.5 314 SEG[116] -3019.0 670.5 280 SEG[150] -1659.0 670.5 315 SEG[115] -3059.0 670.5 281 SEG[149] -1699.0 670.5 316 SEG[114] -3099.0 670.5 282 SEG[148] -1739.0 670.5 317 SEG[113] -3139.0 670.5 283 SEG[147] -1779.0 670.5 318 SEG[112] -3179.0 670.5 284 SEG[146] -1819.0 670.5 319 SEG[111] -3219.0 670.5 285 SEG[145] -1859.0 670.5 320 SEG[110] -3259.0 670.5 286 SEG[144] -1899.0 670.5 321 SEG[109] -3299.0 670.5 287 SEG[143] -1939.0 670.5 322 SEG[108] -3339.0 670.5 288 SEG[142] -1979.0 670.5 323 SEG[107] -3379.0 670.5 289 SEG[141] -2019.0 670.5 324 SEG[106] -3419.0 670.5 290 SEG[140] -2059.0 670.5 325 SEG[105] -3459.0 670.5 291 SEG[139] -2099.0 670.5 326 SEG[104] -3499.0 670.5 292 SEG[138] -2139.0 670.5 327 SEG[103] -3539.0 670.5 293 SEG[137] -2179.0 670.5 328 SEG[102] -3579.0 670.5 294 SEG[136] -2219.0 670.5 329 SEG[101] -3619.0 670.5 295 SEG[135] -2259.0 670.5 330 SEG[100] -3659.0 670.5 296 SEG[134] -2299.0 670.5 331 SEG[99] -3699.0 670.5 297 SEG[133] -2339.0 670.5 332 SEG[98] -3739.0 670.5 298 SEG[132] -2379.0 670.5 333 SEG[97] -3779.0 670.5 299 SEG[131] -2419.0 670.5 334 SEG[96] -3819.0 670.5 300 SEG[130] -2459.0 670.5 335 SEG[95] -3859.0 670.5 301 SEG[129] -2499.0 670.5 336 SEG[94] -3899.0 670.5 302 SEG[128] -2539.0 670.5 337 SEG[93] -3939.0 670.5 303 SEG[127] -2579.0 670.5 338 SEG[92] -3979.0 670.5 304 SEG[126] -2619.0 670.5 339 SEG[91] -4019.0 670.5 305 SEG[125] -2659.0 670.5 340 SEG[90] -4059.0 670.5 306 SEG[124] -2699.0 670.5 341 SEG[89] -4099.0 670.5 307 SEG[123] -2739.0 670.5 342 SEG[88] -4139.0 670.5 308 SEG[122] -2779.0 670.5 343 SEG[87] -4179.0 670.5 309 SEG[121] -2819.0 670.5 344 SEG[86] -4219.0 670.5 310 SEG[120] -2859.0 670.5 345 SEG[85] -4259.0 670.5 311 SEG[119] -2899.0 670.5 346 SEG[84] -4299.0 670.5 312 SEG[118] -2939.0 670.5 347 SEG[83] -4339.0 670.5 313 SEG[117] -2979.0 670.5 348 SEG[82] -4379.0 670.5 Ver 1.3 7/99 2006/08/15 ST7636 PAD No. PIN Name CSEL=0 X Y CSEL=1 PAD No. PIN Name CSEL=0 X Y CSEL=1 349 SEG[81] -4419.0 670.5 384 SEG[46] -5819.0 670.5 350 SEG[80] -4459.0 670.5 385 SEG[45] -5859.0 670.5 351 SEG[79] -4499.0 670.5 386 SEG[44] -5899.0 670.5 352 SEG[78] -4539.0 670.5 387 SEG[43] -5939.0 670.5 353 SEG[77] -4579.0 670.5 388 SEG[42] -5979.0 670.5 354 SEG[76] -4619.0 670.5 389 SEG[41] -6019.0 670.5 355 SEG[75] -4659.0 670.5 390 SEG[40] -6059.0 670.5 356 SEG[74] -4699.0 670.5 391 SEG[39] -6099.0 670.5 357 SEG[73] -4739.0 670.5 392 SEG[38] -6139.0 670.5 358 SEG[72] -4779.0 670.5 393 SEG[37] -6179.0 670.5 359 SEG[71] -4819.0 670.5 394 SEG[36] -6219.0 670.5 360 SEG[70] -4859.0 670.5 395 SEG[35] -6259.0 670.5 361 SEG[69] -4899.0 670.5 396 SEG[34] -6299.0 670.5 362 SEG[68] -4939.0 670.5 397 SEG[33] -6339.0 670.5 363 SEG[67] -4979.0 670.5 398 SEG[32] -6379.0 670.5 364 SEG[66] -5019.0 670.5 399 SEG[31] -6419.0 670.5 365 SEG[65] -5059.0 670.5 400 SEG[30] -6459.0 670.5 366 SEG[64] -5099.0 670.5 401 SEG[29] -6499.0 670.5 367 SEG[63] -5139.0 670.5 402 SEG[28] -6539.0 670.5 368 SEG[62] -5179.0 670.5 403 SEG[27] -6579.0 670.5 369 SEG[61] -5219.0 670.5 404 SEG[26] -6619.0 670.5 370 SEG[60] -5259.0 670.5 405 SEG[25] -6659.0 670.5 371 SEG[59] -5299.0 670.5 406 SEG[24] -6699.0 670.5 372 SEG[58] -5339.0 670.5 407 SEG[23] -6739.0 670.5 373 SEG[57] -5379.0 670.5 408 SEG[22] -6779.0 670.5 374 SEG[56] -5419.0 670.5 409 SEG[21] -6819.0 670.5 375 SEG[55] -5459.0 670.5 410 SEG[20] -6859.0 670.5 376 SEG[54] -5499.0 670.5 411 SEG[19] -6899.0 670.5 377 SEG[53] -5539.0 670.5 412 SEG[18] -6939.0 670.5 378 SEG[52] -5579.0 670.5 413 SEG[17] -6979.0 670.5 379 SEG[51] -5619.0 670.5 414 SEG[16] -7019.0 670.5 380 SEG[50] -5659.0 670.5 415 SEG[15] -7059.0 670.5 381 SEG[49] -5699.0 670.5 416 SEG[14] -7099.0 670.5 382 SEG[48] -5739.0 670.5 417 SEG[13] -7139.0 670.5 383 SEG[47] -5779.0 670.5 418 SEG[12] -7179.0 670.5 Ver 1.3 8/99 2006/08/15 ST7636 PAD No. PIN Name CSEL=0 X Y CSEL=1 PAD PIN Name No. CSEL=0 CSEL=1 X Y 419 SEG[11] -7219.0 670.5 454 COM[89] COM[85] -9202.0 670.5 420 SEG[10] -7259.0 670.5 455 COM[90] COM[83] -9242.0 670.5 421 SEG[9] -7299.0 670.5 456 COM[91] COM[81] -9282.0 670.5 422 SEG[8] -7339.0 670.5 457 COM[92] COM[79] -9322.0 670.5 423 SEG[7] -7379.0 670.5 458 COM[93] COM[77] -9362.0 670.5 424 SEG[6] -7419.0 670.5 459 COM[94] COM[75] -9402.0 670.5 425 SEG[5] -7459.0 670.5 460 COM[95] COM[73] -9442.0 670.5 426 SEG[4] -7499.0 670.5 461 COM[96] COM[71] -9482.0 670.5 427 SEG[3] -7539.0 670.5 462 COM[97] COM[69] -9522.0 670.5 428 SEG[2] -7579.0 670.5 463 COM[98] COM[67] -9562.0 670.5 429 SEG[1] -7619.0 670.5 464 COM[99] COM[65] -9602.0 670.5 430 SEG[0] -7659.0 670.5 465 COM[100] COM[63] -9870.5 650.0 431 COM[66] COM[131] -8282.0 670.5 466 COM[101] COM[61] -9870.5 610.0 432 COM[67] COM[129] -8322.0 670.5 467 COM[102] COM[59] -9870.5 570.0 433 COM[68] COM[127] -8362.0 670.5 468 COM[103] COM[57] -9870.5 530.0 434 COM[69] COM[125] -8402.0 670.5 469 COM[104] COM[55] -9870.5 490.0 435 COM[70] COM[123] -8442.0 670.5 470 COM[105] COM[53] -9870.5 450.0 436 COM[71] COM[121] -8482.0 670.5 471 COM[106] COM[51] -9870.5 410.0 437 COM[72] COM[119] -8522.0 670.5 472 COM[107] COM[49] -9870.5 370.0 438 COM[73] COM[117] -8562.0 670.5 473 COM[108] COM[47] -9870.5 330.0 439 COM[74] COM[115] -8602.0 670.5 474 COM[109] COM[45] -9870.5 290.0 440 COM[75] COM[113] -8642.0 670.5 475 COM[110] COM[43] -9870.5 250.0 441 COM[76] COM[111] -8682.0 670.5 476 COM[111] COM[41] -9870.5 210.0 442 COM[77] COM[109] -8722.0 670.5 477 COM[112] COM[39] -9870.5 170.0 443 COM[78] COM[107] -8762.0 670.5 478 COM[113] COM[37] -9870.5 130.0 444 COM[79] COM[105] -8802.0 670.5 479 COM[114] COM[35] -9870.5 90.0 445 COM[80] COM[103] -8842.0 670.5 480 COM[115] COM[33] -9870.5 50.0 446 COM[81] COM[101] -8882.0 670.5 481 COM[116] COM[31] -9870.5 10.0 447 COM[82] COM[99] -8922.0 670.5 482 COM[117] COM[29] -9870.5 -30.0 448 COM[83] COM[97] -8962.0 670.5 483 COM[118] COM[27] -9870.5 -70.0 449 COM[84] COM[95] -9002.0 670.5 484 COM[119] COM[25] -9870.5 -110.0 450 COM[85] COM[93] -9042.0 670.5 485 COM[120] COM[23] -9870.5 -150.0 451 COM[86] COM[91] -9082.0 670.5 486 COM[121] COM[21] -9870.5 -190.0 452 COM[87] COM[89] -9122.0 670.5 487 COM[122] COM[19] -9870.5 -230.0 453 COM[88] COM[87] -9162.0 670.5 488 COM[123] COM[17] -9870.5 -270.0 Ver 1.3 9/99 2006/08/15 ST7636 PAD PIN Name X Y PAD PIN Name X Y NC -5385.0 -699.0 525 NC -5275.0 -699.0 -390.0 526 NC -5165.0 -699.0 -9870.5 -430.0 527 NC -5055.0 -699.0 COM[7] -9870.5 -470.0 528 NC -4945.0 -699.0 COM[129] COM[5] -9870.5 -510.0 529 NC -4835.0 -699.0 495 COM[130] COM[3] -9870.5 -550.0 530 NC -4725.0 -699.0 496 COM[131] COM[1] -9870.5 -590.0 531 NC -4615.0 -699.0 No. CSEL=0 CSEL=1 No. 489 COM[124] COM[15] -9870.5 -310.0 524 490 COM[125] COM[13] -9870.5 -350.0 491 COM[126] COM[11] -9870.5 492 COM[127] COM[9] 493 COM[128] 494 CSEL=0 CSEL=1 497 NC -8355.0 -699.0 532 NC -4505.0 -699.0 498 NC -8245.0 -699.0 533 VDD -4395.0 -699.0 499 NC -8135.0 -699.0 534 CL -4285.0 -699.0 500 NC -8025.0 -699.0 535 CLS -4175.0 -699.0 501 NC -7915.0 -699.0 536 VSS -4065.0 -699.0 502 NC -7805.0 -699.0 537 VDD -3955.0 -699.0 503 NC -7695.0 -699.0 538 A0 -3845.0 -699.0 504 NC -7585.0 -699.0 539 RW_WR -3735.0 -699.0 505 NC -7475.0 -699.0 540 VSS -3625.0 -699.0 506 NC -7365.0 -699.0 541 VDD -3515.0 -699.0 507 NC -7255.0 -699.0 542 D0 -3405.0 -699.0 508 NC -7145.0 -699.0 543 D1 -3295.0 -699.0 509 NC -7035.0 -699.0 544 D2 -3185.0 -699.0 510 NC -6925.0 -699.0 545 D3 -3075.0 -699.0 511 NC -6815.0 -699.0 546 D4 -2965.0 -699.0 512 NC -6705.0 -699.0 547 D5 -2855.0 -699.0 513 NC -6595.0 -699.0 548 D6 -2745.0 -699.0 514 NC -6485.0 -699.0 549 D7 -2635.0 -699.0 515 NC -6375.0 -699.0 550 VSS -2525.0 -699.0 516 NC -6265.0 -699.0 551 VDD -2415.0 -699.0 517 NC -6155.0 -699.0 552 D8 -2305.0 -699.0 518 NC -6045.0 -699.0 553 D9 -2195.0 -699.0 519 NC -5935.0 -699.0 554 D10 -2085.0 -699.0 520 NC -5825.0 -699.0 555 D11 -1975.0 -699.0 521 NC -5715.0 -699.0 556 D12 -1865.0 -699.0 522 NC -5605.0 -699.0 557 D13 -1755.0 -699.0 523 NC -5495.0 -699.0 558 D14 -1645.0 -699.0 Ver 1.3 10/99 2006/08/15 ST7636 PAD No. PIN Name CSEL=0 X Y CSEL=1 PAD No. PIN Name CSEL=0 X Y CSEL=1 559 D15 -1535.0 -699.0 594 VSS 2315.0 -699.0 560 VSS -1425.0 -699.0 595 VSS 2425.0 -699.0 561 VDD -1315.0 -699.0 596 VSS 2535.0 -699.0 562 E_RD -1205.0 -699.0 597 VSS 2645.0 -699.0 563 RST -1095.0 -699.0 598 VSS 2755.0 -699.0 564 VSS -985.0 -699.0 599 VSS 2865.0 -699.0 565 VDD -875.0 -699.0 600 VSS 2975.0 -699.0 566 CSEL -765.0 -699.0 601 VSS 3085.0 -699.0 567 INTRS -655.0 -699.0 602 VSS 3195.0 -699.0 568 IF1 -545.0 -699.0 603 VSS 3305.0 -699.0 569 IF2 -435.0 -699.0 604 VSS 3415.0 -699.0 570 IF3 -325.0 -699.0 605 VDD4 3525.0 -699.0 571 VSS -215.0 -699.0 606 VDD4 3635.0 -699.0 572 VDD -105.0 -699.0 607 VDD3 3745.0 -699.0 573 SI 5.0 -699.0 608 VDD3 3855.0 -699.0 574 SCL 115.0 -699.0 609 VDD2 3965.0 -699.0 575 /CS 225.0 -699.0 610 VDD2 4075.0 -699.0 576 VDD 335.0 -699.0 611 VDD2 4185.0 -699.0 577 VDD 445.0 -699.0 612 VDD2 4295.0 -699.0 578 VDD 555.0 -699.0 613 VDD2 4405.0 -699.0 579 VDD 665.0 -699.0 614 VDD2 4515.0 -699.0 580 VDD 775.0 -699.0 615 VDD2 4625.0 -699.0 581 VDD 885.0 -699.0 616 VDD2 4735.0 -699.0 582 VDD1 995.0 -699.0 617 VDD2 4845.0 -699.0 583 VDD1 1105.0 -699.0 618 VDD2 4955.0 -699.0 584 VSS 1215.0 -699.0 619 VDD5 5065.0 -699.0 585 VSS 1325.0 -699.0 620 VDD5 5175.0 -699.0 586 VSS 1435.0 -699.0 621 VDD5 5285.0 -699.0 587 VSS 1545.0 -699.0 622 VDD5 5395.0 -699.0 588 VSS 1655.0 -699.0 623 TCAP 5505.0 -699.0 589 VSS 1765.0 -699.0 624 CAP2P 5615.0 -699.0 590 VSS 1875.0 -699.0 625 CAP2N 5725.0 -699.0 591 VSS 1985.0 -699.0 626 CAP6P 5835.0 -699.0 592 VSS 2095.0 -699.0 627 CAP2N 5945.0 -699.0 593 VSS 2205.0 -699.0 628 CAP4P 6055.0 -699.0 Ver 1.3 11/99 2006/08/15 ST7636 PAD No. PIN Name CSEL=0 X Y CSEL=1 PAD PIN Name No. CSEL=0 CSEL=1 X Y 629 CAP7P 6165.0 -699.0 661 COM[0] COM[0] 9870.5 -590.0 630 CAP1N 6275.0 -699.0 662 COM[1] COM[2] 9870.5 -550.0 631 CAP5P 6385.0 -699.0 663 COM[2] COM[4] 9870.5 -510.0 632 CAP3P 6495.0 -699.0 664 COM[3] COM[6] 9870.5 -470.0 633 CAP1N 6605.0 -699.0 665 COM[4] COM[8] 9870.5 -430.0 634 CAP1P 6715.0 -699.0 666 COM[5] COM[10] 9870.5 -390.0 635 VOUTIN 6825.0 -699.0 667 COM[6] COM[12] 9870.5 -350.0 636 VOUTIN 6935.0 -699.0 668 COM[7] COM[14] 9870.5 -310.0 637 VOUTIN 7045.0 -699.0 669 COM[8] COM[16] 9870.5 -270.0 638 VOUTIN 7155.0 -699.0 670 COM[9] COM[18] 9870.5 -230.0 639 VOUTIN 7265.0 -699.0 671 COM[10] COM[20] 9870.5 -190.0 640 VOUTIN 7375.0 -699.0 672 COM[11] COM[22] 9870.5 -150.0 641 VOUTOUT 7485.0 -699.0 673 COM[12] COM[24] 9870.5 -110.0 642 VOUTOUT 7595.0 -699.0 674 COM[13] COM[26] 9870.5 -70.0 643 VOUTOUT 7705.0 -699.0 675 COM[14] COM[28] 9870.5 -30.0 644 VOUTOUT 7815.0 -699.0 676 COM[15] COM[30] 9870.5 10.0 645 VOUTOUT 7925.0 -699.0 677 COM[16] COM[32] 9870.5 50.0 646 VOUTOUT 8035.0 -699.0 678 COM[17] COM[34] 9870.5 90.0 647 VREF 8145.0 -699.0 679 COM[18] COM[36] 9870.5 130.0 648 VR 8255.0 -699.0 680 COM[19] COM[38] 9870.5 170.0 649 V4 8365.0 -699.0 681 COM[20] COM[40] 9870.5 210.0 650 V3 8475.0 -699.0 682 COM[21] COM[42] 9870.5 250.0 651 V2 8585.0 -699.0 683 COM[22] COM[44] 9870.5 290.0 652 V1 8695.0 -699.0 684 COM[23] COM[46] 9870.5 330.0 653 V0OUT 8805.0 -699.0 685 COM[24] COM[48] 9870.5 370.0 654 V0OUT 8915.0 -699.0 686 COM[25] COM[50] 9870.5 410.0 655 V0OUT 9025.0 -699.0 687 COM[26] COM[52] 9870.5 450.0 656 V0OUT 9135.0 -699.0 688 COM[27] COM[54] 9870.5 490.0 657 V0IN 9245.0 -699.0 689 COM[28] COM[56] 9870.5 530.0 658 V0IN 9355.0 -699.0 690 COM[29] COM[58] 9870.5 570.0 659 V0IN 9465.0 -699.0 691 COM[30] COM[60] 9870.5 610.0 660 V0IN 9575.0 -699.0 692 COM[31] COM[62] 9870.5 650.0 Ver 1.3 12/99 2006/08/15 ST7636 5. BLOCK DIAGRAM SEG0 TO SEG395 COM0 TO COM131 VDD1 VDD V0 In V1 V2 V3 V4 SEGMENT DRIVERS COMMON DRIVERS CSEL VSS DATA LATCHES COMMON OUTPUT CONTROLLER CIRCUIT V/F Circuit FRC/PWM FUNCTION CIRCUIT V0 out RESET VREF VR V/R Circuit INTRS CL OSCILLATOR DISPLAY DATA RAM (DDRAM) [132X132X16] VOUTin VOUTout Cap1N Cap2P Cap2N Cap3P Cap4P Cap5P Cap6P Cap7P DISPLAY ADDRESS COUNTER V/C Circuit VDD2 VDD3 VDD4 VDD5 ADDRESS COUNTER OTP DATA REGISTER INSTRUCTION REGISTER BUS HOLDER INSTRUCTION DECODER MPU INTERFACE(PARALLEL & SERIAL) VSS TCAP D0 to D15 SI 13/99 SCL RW_WR E_RD A0 /CS /RST IF3 IF2 IF1 Ver 1.3 CLS TIMING GENERATOR 2006/08/15 ST7636 6. PIN DESCRIPTION 6.1 POWER SUPPLY Name I/O Description VDD Supply Power supply for logic circuit VDD1 Supply Power supply for OSC circuit VDD2 Supply Power supply for Booster Circuit VDD3 Supply Power supply for LCD. VDD4 Supply Power supply for LCD. VDD5 Supply Power supply for LCD. VSS Supply Ground. Ground system should be connected together. VOUTOUT Supply VOUTIN Supply If the internal voltage generator is used, the VOUTIN & VOUTOUT must be connected together. If an external supply is used, this pin must be left open. An external LCD supply voltage can be supplied using the VOUTIN pad. In this case, VOUTOUT has to be left open, and the internal voltage generator has to be programmed to zero. (SET register VC=0) LCD driver supply voltages V0in & V0out should be connected together. V0in Voltages should have the following relationship; V0out V0 ( V0in ) ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ VSS. V1 I/O V2 When the internal power circuit is active, these voltages are generated as following table according to the state of LCD bias. V3 LCD bias V1 V2 V3 V4 1/N bias (N-1) / N x V0 (N-2) / N x V0 (2/N) x V0 (1/N) x V0 V4 NOTE: N = 5 to 12 6.2 LCD Power Supply Pins Pin Name I/O CAP1N O Function DC/DC voltage converter. Connect capacitors between this terminal and the CAP1P, CAP3P, CAP5P, CAP7P terminal. DC/DC voltage converter. Connect capacitors between this terminal and the CAP2P, CAP4P, CAP6P CAP2N O terminal. CAP1P O DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal. CAP2P O DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal. CAP3P O DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal. CAP4P O DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal. CAP5P O DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal. CAP6P O DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal. Ver 1.3 14/99 2006/08/15 ST7636 CAP7P O DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal. VREF O Reference voltage output for monitor only. Left it opened. VR I Reference voltage output for monitor only. Left it opened. 6.3 SYSTEM CONTROL Name I/O CLS I Description When using internal clock oscillator, connect CLS to VDD. When using external clock oscillator, connect CLS to VSS. When using internal clock oscillator, it’s oscillator output. CL I/O When using external clock oscillator, it’s clock input. This terminal selects the resistors for the V0 voltage level adjustment. INTRS I This pin should be fixed to High. Select Common output direction. CSEL I CSEL=”L”, COM0~COM65 is in one side, COM66~COM131 is in the opposite side. CSEL=”H”, COM2n(even number) is in the one side, COM2n+1 (odd number) is in the opposite side. TCAP I/O Test pin. Left it opened. 6.4 MICROPROCESSOR INTERFACE Name I/O RST I Description Reset input pin When RESETB is “L”, initialization is executed. Parallel / Serial data input select input IF[3:1] IF1 IF2 IF3 MPU interface type H H H 80 series 16-bit parallel H H L 80 series 8-bit parallel H L L 68 series 16-bit parallel L H H 68 series 8-bit parallel L L H 9-bit serial (3 line) L L L 8-bit serial (4 line) I Chip select input pins /CS I Data / Instruction I/O is enabled only when /CS is "L". When chip select is non-active, D0 to D15 become high impedance. Ver 1.3 15/99 2006/08/15 ST7636 Register select input pin A0 = "H": D0 to D15 or SI are display data A0 I A0 = "L": D0 to D15 or SI are control data In 3-line interface not let it floating, contact it to VSS or VDD. Read / Write execution control pin MPU type RW_WR Description Read / Write control input pin 6800-series RW_WR RW = “H” : read RW RW = “L” : write I Write enable clock input pin 8080-series /WR The data on D0 to D15 are latched at the rising edge of the /WR signal. When in the serial interface, contact it to VSS or VDD. Read / Write execution control pin MPU Type E_RD Description Read / Write control input pin RW = “H”: When E is “H”, D0 to D15 are in an output 6800-series E_RD E I status. RW = “L”: The data on D0 to D15 are latched at the falling edge of the E signal. Read enable clock input pin 8080-series /RD When /RD is “L”, D0 to D15 are in an output status. When in the serial interface, contact it to VSS or VDD. They connect to the standard 8-bit or 16 bit MPU bus via the 8/16 –bit bi-directional bus. When the following interface is selected and the /CS pin is high, the following pins become high impedance. 1. D15 to D0 I/O In 8-bit parallel: D15-D8 are in the state of high impedance, should contact to “H” level or “L” level. 2. In Serial interface: D15-D0 are in the state of high impedance, should contact to “H” level or “L” level. This pin is used to input serial data when the serial interface is selected.(3 line and 4 line) SI I When not use contact it to VSS. This pin is used to input serial clock when the serial interface is selected. SCL I The data is converted in the rising edge. (3 line and 4 line) When not use contact it to VSS. NOTE: Microprocessor interface pins should not be floating in any operation mode. Ver 1.3 16/99 2006/08/15 ST7636 6.5 LCD DRIVER OUTPUTS Name I/O Description LCD segment driver outputs The display data and the M signal control the output voltage of segment driver. Segment driver output voltage Display data M (Internal) SEG0 to O SEG395 Normal display Reverse display H H V0 V2 H L VSS V3 L H V2 V0 L L V3 VSS VSS VSS Sleep in mode LCD common driver outputs The internal scanning data and M signal control the output voltage of common driver. Scan data M (Internal) Common driver output voltage H H VSS H L V0 L H V1 L L V4 COM0 to O COM131 Sleep in mode VSS ST7636 I/O PIN ITO Resister Limitation Pin Name ITO Resister VREF, TCAP, CL, VR Floating IF[3:1],CLS,CSEL,INTRS No Limitation VDD, VDD1~VDD5, VSS, CAP1N, CAP2N, VOUTIN, VOUTOUT <100Ω V0in, V0out, V1, V2, V3, V4, CAP1P~7P <100Ω A0, E_RD, RW_WR, /CS, D0 …D15, SCL, SI <1KΩ RST <10KΩ NOTE: Make sure the ITO resistance of COM0 ~ COM131 is equal, and so is it of SEG0 ~ SEG395. Ver 1.3 17/99 2006/08/15 ST7636 7. FUNCTIONAL DESCRIPTION 7.1 MICROPROCESSOR INTERFACE Chip Select Input /CS pin is for chip selection. The ST7636 can function with an MPU when /CS is "L". In case of serial interface, the internal shift register and the counter are reset. 7.1.1 Selecting Parallel / Serial Interface ST7636 has six types of interface with an MPU, which are two serial and four parallel interfaces. This parallel or serial interface is determined by IF pin as shown in table 7.1.1. Table 7.1.1 Parallel / Serial Interface Mode I/F Mode IF1 IF2 IF3 H H H H H L H L L L H H L L L L L H I/F Description 80 serial 16-bit parallel 80 serial 8-bit parallel 68 serial 16-bit parallel 68 serial 8-bit parallel 8-bit SPI mode (4 line) 9-bit SPI mode (3 line) /CS /CS /CS /CS /CS /CS /CS A0 A0 A0 A0 A0 A0 -- E_RD /RD /RD E E --- Pin Assignment RW_WR D15 to D8 /WR D15 ~ D8 /WR -R/W D15 ~ D8 R/W ------ D7 to D0 D7 ~ D0 D7 ~ D0 D7 ~ D0 D7 ~ D0 --- SI ----SI SI SCL ----SCL SCL NOTE: When these pins are set to any other combination, A0, E_RD and RW_WR inputs are disabled and D0 to D15 are to be high impedance. 7.1.2 8-bit or 16-bit Parallel Interface The ST7636 identifies the type of the data bus signals according to the combination of A0, /RD (E) and /WR (W/R) signals, as shown in table 7.1.2. Table 7.1.2 Parallel Data Transfer Common 6800-series 8080-series Description A0 R/W E /RD /WR H H H L H Display data read out H L H H L Display data write L H H L H Register status read L L H H L Writes to internal register (instruction) Relation between Data Bus and Gradation Data ST7636 offers the 65K color display, dithered 262K color, and dithered 16M color. When using 65K, 262K, and 16M color, you can specify color for each of R, G, B using the palette function. Ver 1.3 18/99 2006/08/15 ST7636 Use the command for switching between these modes. (1) 65K color input mode 1. 8-bit mode D7, D6, D5, D4, D3, D2, D1, D0: RRRRRGGG 1st write D7, D6, D5, D4, D3, D2, D1, D0: GGGBBBBB 2nd write A single pixel of data is read after the second write operation as shown, and it is written in the display RAM. 2. 16-bit mode D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRGGGGGGBBBBB (16 bits) Data is acquired through signal write operation and then written to the display RAM. (2) 262K color input mode 1. 8-bit mode D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRXX 1st write D7, D6, D5, D4, D3, D2, D1, D0: GGGGGGXX 2nd write D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBXX 3rd write A single pixel of data is read after the third write operation as shown, and it is written in the display RAM. “X” is dummy bit, and it is ignored for display. 2. 16 bit mode D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRXXGGGGGGXX 1st write D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBXXXXXXXXXXXX 2nd write A single pixel of data is read after the second write operation as shown, and it is written in the display RAM. (3) 16M color input mode 1. 8-bit mode D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRRR 1st write D7, D6, D5, D4, D3, D2, D1, D0: GGGGGGGG 2nd write D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBBB 3rd write A single pixel of data is read after the third write operation as shown, and it is written in the display RAM. 2. 16 bit mode D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRRRGGGGGGGG 1st write D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBBBXXXXXXXX 2nd write A single pixel of data is read after the second write operation as shown, and it is written in the display RAM. Ver 1.3 19/99 2006/08/15 ST7636 7.1.3 8- and 9-bit Serial Interface The 8-bit serial interface uses four pins /CS, SI, SCL, and A0 to enter commands and data. Meanwhile, the 9-bit serial interface uses three pins /CS, SI and SCL for the same purpose. Data read is not available in the serial interface. Data entered must be 8 bits. Refer to the following chart for entering commands, parameters or gray-scale data. The relation between gray-scale data and data bus in the serial input is the same as that in the 8-bit parallel interface mode at every gradation. (1) 8-bit serial interface (4 line ) When entering data (parameters): A0= HIGH at the rising edge of the 8th SCL. When entering command: A0= LOW at the rising edge of the 8th SCL (2) 9-bit serial interface (3 line ) When entering data (parameters): SI= HIGH at the rising edge of the 1st SCL. Ver 1.3 20/99 2006/08/15 ST7636 When entering command: SI= LOW at the rising edge of the 1st SCL. l If /CS is set to HIGH while the 8 bits from D7 to D0 are entered, the data concerned is invalidated. Before entering succeeding sets of data, you must correctly input the data concerned again. l In order to avoid data transfer error due to incoming noise, it is recommended to set /CS at HIGH on byte basis to initialize the serial-to-parallel conversion counter and the register. l When executing the command RAMWR, set /CS to HIGH after writing the last address (after starting the 9th pulse in case of 9-bit serial input or after starting the 8th pulse in case of 8-bit serial input). 7.2 ACCESS TO DDRAM AND INTERNAL REGISTERS ST7636 realizes high-speed data transfer because the access from MPU is a sort of pipeline processing done via the bus holder attached to the internal, requiring the cycle time alone without needing the wait time. For example, when MPU writes data to the DDRAM, the data is once held by the bus holder and then written to the DDRAM before the succeeding write cycle is started. When MPU reads data from the DDRAM, the first read cycle is dummy and the bus holder holds the data read in the dummy cycle, and then it read from the bus holder to the system bus in the succeeding read cycle. Figure 7.2.1 illustrates these relations. In 80-series interface mode: MPU signal Write Operation A0 /WR DATA N D(N) D(N+1) D(N+2) D(N+3) Internal signals /WR BUS HOLDER ADDRESS COUNTER Ver 1.3 N D(N) N 21/99 N+1 D(N+1) N+2 D(N+2) D(N+3) N+3 2006/08/15 ST7636 MPU signal Read Operation A0 /WR /RD DATA N Dummy D(N) D(N+1) Internal signals /WR /RD BUS HOLDER ADDRESS COUNTER N D(N) D(N) D(N+1) D(N+2) D(N+1) D(N+2) D(N+3) Figure 7.2.1 7.3 DISPLAY DATA RAM (DDRAM) 7.3.1 DDRAM It is 132 X 132 X 16 bits capacity RAM prepared for storing dot data. You can access a desired bit by specifying the page address and column address. Since display data from MCU D7 to D0 and D15 to D8 correspond to one or two pixels of RGB, data transfer related restrictions are reduced, realizing the display flexing. The RAM on ST7636 is separated to a block per 4 lines to allow the display system to process data on the block basis. MPU’s read and write operations to and from the RAM are performed via the I/O buffer circuit; Reading of the RAM for the liquid crystal drive is controlled from another separate circuit. Refer to the following memory map for the RAM configuration. Ver 1.3 22/99 2006/08/15 ST7636 Memory Map (When using the 65Kcolor. 8-bit mode,) RGB alignment ( Command of Data Control Parameter2 = 000 ) Column scan direction P11:0 P11:1 Color Example: Data/Scan format BLOCK 0 1 31 32 0 1 131 131 130 0 R D0_7 G D0_2 B D1_4 R D2_7 G D2_2 B D3_4 R G B D262_7 D262_2 D263_4 D0_6 D0_5 D0_4 D0_1 D0_0 D1_7 D1_3 D1_2 D1_1 D2_6 D2_5 D2_4 D2_1 D2_0 D3_7 D3_3 D3_2 D3_1 D262_6 D262_1 D263_3 D262_5 D262_0 D263_2 D262_4 D263_7 D263_1 D0_3 D1_6 D1_5 D1_0 D2_3 D3_6 D3_5 D3_0 D262_3 D263_6 D263_0 D263_5 Page scan P10:0 Memory Map P10:1 0 1 2 131 130 129 3 4 5 6 128 127 126 125 7 124 124 7 125 126 127 6 5 4 128 129 130 3 2 1 131 SEGout 0 0 1 2 3 4 5 393 394 395 You can change position of R and B with DATACTL command. Ver 1.3 23/99 2006/08/15 ST7636 Memory Map (When using the 65K color. 16-bit mode) RGB alignment ( Command of Data Control Parameter2 = 000 ) Column scan direction P11:0 P11:1 Color Example: Data/Scan format BLOCK 0 1 31 32 0 1 131 131 130 0 R D0_15 G D0_10 B D0_4 R D1_15 G D1_10 B D1_4 R G B D131_15 D131_10 D131_4 D0_14 D0_13 D0_12 D0_9 D0_8 D0_7 D0_3 D0_2 D0_1 D1_14 D1_13 D1_12 D1_9 D1_8 D1_7 D1_3 D1_2 D1_1 D131_14 D131_9 D131_3 D131_13 D131_8 D131_2 D131_12 D131_7 D131_1 D0_11 D0_6 D0_5 D0_0 D1_11 D1_6 D1_5 D1_0 D131_11 D131_6 D131_0 D131_5 Page scan P10:0 Memory Map P10:1 0 1 2 131 130 129 3 4 5 6 128 127 126 125 7 124 124 7 125 126 127 6 5 4 128 129 130 3 2 1 131 SEGout 0 0 1 2 3 4 5 393 394 395 You can change position of R and B with DATACTL command. Ver 1.3 24/99 2006/08/15 ST7636 Memory Map (When using the 262K/16Mcolor. 8-bit mode,) RGB alignment ( Command of Data Control Parameter2 = 000 ) Column scan direction P11:0 P11:1 Color Example: Data/Scan format BLOCK 0 1 31 32 0 1 131 131 130 0 R D0_7 G D1_7 B D2_7 R D3_7 G D4_7 B D5_7 R G B D393_7 D394_7 D395_7 D0_6 D0_5 D0_4 D0_3 D1_6 D1_5 D1_4 D1_3 D2_6 D2_5 D2_4 D2_3 D3_6 D3_5 D3_4 D3_3 D4_6 D4_5 D4_4 D4_3 D5_6 D5_5 D5_4 D5_3 D393_6 D393_5 D393_4 D393_3 D0_2 D0_1 D0_0 D1_2 D1_1 D1_0 D2_2 D2_1 D2_0 D3_2 D3_1 D3_0 D4_2 D4_1 D4_0 D5_2 D5_1 D5_0 D393_2 D394_2 D395_2 D393_1 D394_1 D395_1 D393_0 D394_0 D395_0 Page scan P10:0 131 130 2 3 4 5 129 128 127 126 6 7 125 124 124 125 126 127 7 6 5 4 128 129 130 3 2 1 131 SEGout 0 D395_6 D395_5 D395_4 D395_3 Memory Map P10:1 0 1 D394_6 D394_5 D394_4 D394_3 0 1 2 3 4 5 393 394 395 You can change position of R and B with DATACTL command. Ver 1.3 25/99 2006/08/15 ST7636 Memory Map (When using the 16 gray-scale, 262K/16M color. 16-bit mode) RGB alignment ( Command of Data Control Parameter2 = 000 ) Column scan direction P11:0 P11:1 Color Example: Data/Scan format BLOCK 0 1 31 32 0 1 131 131 130 0 R D0_15 G D0_7 B D1_15 R D1_ G D2_7 B D2_7 R G B D176_7 D177_7 D177_7 D0_14 D0_13 D0_12 D0_11 D0_6 D0_5 D0_4 D0_3 D1_14 D1_13 D1_12 D1_11 D1_6 D1_5 D1_4 D1_3 D2_6 D2_5 D2_4 D2_3 D2_6 D2_5 D2_4 D2_3 D176_6 D176_5 D176_4 D176_3 D0_10 D0_9 D0_8 D0_2 D0_1 D0_0 D1_10 D1_9 D1_8 D1_2 D1_1 D1_0 D2_2 D2_1 D2_0 D2_2 D2_1 D2_0 D176_2 D177_2 D177_2 D176_1 D177_1 D177_1 D176_0 D177_0 D177_0 Page scan P10:0 131 130 2 3 4 5 129 128 127 126 6 7 125 124 124 125 126 127 7 6 5 4 128 129 130 3 2 1 131 SEGout 0 D177_6 D177_5 D177_4 D177_3 Memory Map P10:1 0 1 D177_6 D177_5 D177_4 D177_3 0 1 2 3 4 5 393 394 395 You can change position of R and B with DATACTL command. Ver 1.3 26/99 2006/08/15 ST7636 7.3.2 Page Address Control Circuit This circuit is used to control the address in the page direction when MPU accesses the DDRAM or when reading the DDRAM to display image on the LCD. You can specify a scope of the page address with page address set command. When the page-direction scan is specified with DATACTL command and the address are incremented from the start up to the end page, the column address is incremented by 1 and the page address returns to start page. The DDRAM supports up to 132 lines, and thus the total page becomes 132. In the read operation, as the end page is reached, the column address is automatically incremented by 1 and the page address is returned to start page. Using the address normal/inverse parameter of DATACTL command allows you to inverse the correspondence between the DDRAM address and command output. 7.3.3 Column Address Control Circuit This circuit is used to control the address in the column direction when MPU accesses the DDRAM. You can specify a scope of the column address using column address set command. When the column-direction scan is specified with DATACTL command and the address are incremented from the start up to the end page, the page address is incremented by 1 and the column address returns to start column. In the read operation, too, the column address is automatically incremented by 1 and returned to start page as the end column is reached. Just like the page address control circuit, using the column address normal/inverse parameter of DATACTL command enables to inverse the correspondence between the DDRAM column address and segment output. This arrangement relaxes restrictions in the chip layout on the LCD module. 7.3.4 I/O Buffer Circuit It is the bi-directional buffer used when MPU reads or writes the DDRAM. Since MPU’s read or write of DDRAM is performed independently from data output to the display data latch circuit, asynchronous access to the DDRAM when the LCD is turned on does not cause troubles such as flicking of the display images. 7.3.5 Block Address Circuit The circuit associates pages on DDRAM with COM output. ST7636 processes signals for the liquid crystal display on 4-page basis. Thus, when specifying a specific area in the area scroll display or partial display, you must designate it in block. 7.3.6 Display data Latch Circuit This circuit is used to temporarily hold display data to be output from the DDRAM to the SEG decoder circuit. Since display normal/inverse and display on/off commands are used to control data in the latch circuit alone, they do not modify data in the DDRAM. Ver 1.3 27/99 2006/08/15 ST7636 7.4 Area Scroll Display Using area scroll set and scroll start set commands allows you to scroll the display screen partially. You can select any one of the following four scroll patterns. Fixed area Scroll area DDRAM 0 1 2 30 blocks =128 line 27 28 Fixed area 30 Scroll area 31 32 Ver 1.3 Background area 28/99 2006/08/15 ST7636 7.5 Partial Display Using partial in command allows you turn on the partial display (division by line) of the screen. This mode requires less current consumption than the whole screen display, making it suitable for the equipment in the standby state. : Display area (partial display area) : Non-display area If the partial display region is out of the Max. Display range, it would be no operation -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 7.5.1 Reference Example for Partial Display Ver 1.3 29/99 2006/08/15 ST7636 -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 7.5.2 Partial Display (Partial Display Duty=16,initial COM0=0) -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 7.5.3 Moving Display (Partial Display Duty=16,Initial COM0=8) 7.6 Gary-Scale Display ST7636 incorporates a 4FRC & 31 PWM function circuit to display a 64 gray-scale display. 7.7 Oscillation circuit This is on-chip Oscillator without external resistor. When the internal oscillator is used, CLS must connect to VDD; when the external oscillator is used, CL could be input pin. This oscillator signal is used in the voltage converter and display timing generation circuit. Ver 1.3 30/99 2006/08/15 ST7636 7.8 Display Timing Generator Circuit This circuit generates some signals to be used for displaying LCD. The display clock, CL (internal), generated by oscillation clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is generated in synchronization with the display clock and the display data latch circuit latches the 132-bit display data in synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (M), which enables the LCD driver to make an AC drive waveform, and also generates an internal common timing signal and start signal to the common driver. The frame signal or the line signal changes the M by setting internal instruction. Driving waveform and internal timing signal are shown in Figure 7.8.1. 131 132 1 2 3 4 5 6 7 8 9 10 11 12 124 125 126 127 128 129 130 131 132 1 2 3 4 5 CL(Internal) FR(Internal) M(Internal) COM0 VLCD V1 V2 V3 V4 VSS COM1 VLCD V1 V2 V3 V4 VSS SEGn VLCD V1 V2 V3 V4 VSS Figure 7.8.1 2-frame AC Driving Waveform (Duty Ratio: 1/132) 127 128 1 2 3 4 5 6 7 8 9 10 11 12 119 120 121 122 123 124 125 126 127 128 1 2 3 4 CL(Internal) FR(Internal) M(Internal) VLCD V1 V2 V3 V4 Vss COM0 VLCD V1 V2 V3 V4 Vss COM1 VLCD V1 V2 V3 V4 Vss SEGn Figure 7.8.2 N-Line Inversion Driving Waveform (N=5,Duty Ratio=1/128) Ver 1.3 31/99 2006/08/15 ST7636 7.9 Liquid Crystal drive Circuit This driver circuit is configured by 132-channel common drivers and 396-channel segment drivers. This LCD panel driver voltage depends on the combination of display data and M signal. VDD VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS M COM0 COM1 COM0 COM2 COM3 COM4 COM5 COM6 COM1 COM7 COM8 COM9 COM2 COM10 COM11 COM12 COM13 COM14 SEG0 SEG 0 1 2 3 4 SEG1 Ver 1.3 32/99 2006/08/15 ST7636 7.10 Liquid Crystal Driver Power Circuit The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are controlled by power control instruction. For details, refers to "Instruction Description". Table 7.10.1 shows the referenced combinations in using Power Supply circuits. Table 7.10.1 Recommended Power Supply Combinations Power User setup V/C V/R V/F circuits circuits circuits control VOUT V0 V1 to V4 (VC VR VF) To series a To series a Only the internal power To series a capacitor and a 111 ON ON ON capacitor supply circuits are used capacitor resister in parallel to GND to GND to GND Only the voltage To series a To series a regulator circuits and External 011 OFF ON capacitor and a ON voltage follower circuits capacitor input resister in parallel to GND are used to GND To series a Only the voltage follower 001 OFF OFF ON Open External input capacitor circuits are used to GND Only the external power External 000 OFF OFF supply circuits are used Ver 1.3 OFF Open External input input 33/99 2006/08/15 ST7636 7.10.1 Voltage Converter Circuits The Step-up Voltage Circuits Ver 1.3 34/99 2006/08/15 ST7636 7.10.2 Voltage Regulator Circuits SET VOP (SETVOP) The set VOP function is used to program the optimum LCD supply voltage V0. SETVOP Reset state of Vop[8:0] is 257DEC = 13.88V. The VOP value is programmed via the Vop[8:0] register. V0=a+( Vop[8:6]Vop[5:0]).b Ex:Vop[5:0]=000001, Vop[8:6]=100 → Vop [8:0]=100000001 → 3.6+257x0.04=13.88 l a is a fixed constant value (see table 7.10.2). l b is a fixed constant value (see table 7.10.2). l Vop[8:0] is the programmed VOP value. The programming range for Vop[8:0] is 5 to 410 (19Ahex). l Vop[5:0] is the set contrast value which can be set via the interface and is in two’s complement format.(See command VOLUP & VOLDOWN) l Table 7.10.2 SYMBOL VALUE UNIT a 3.6 V b 0.04 V The Vop[8:0] value must be in the VLCD programming range as given in Figure 7.10.2. Evaluating equation (1), values outside the programming range indicated in Figure 7.10.2 may result. Calculated values below 4 will be mapped to VOP[8:0] = 4, resulting VOP[8:0] values higher than 410 will be mapped to VOP[8:0] = 410. Ver 1.3 35/99 2006/08/15 ST7636 VLCD Programming range (05HEX to 19AHEX) b a Vop 00 01 02 03 04 05 06 ..... 410DEC Vop[8:0] programming, (05hex to 19Ahex) Figure 7.10.2 VLCD programming range As the programming range for the internally generated V0 allows values above the max (18V). Allowed V0 (18V) the user has to ensure while setting the VPR register and selecting the temperature compensation, that under all conditions and including all tolerances the V0 remains below 18V. Par no. Equipment Type Thermal Gradient ST7636 Internal Power Supply -0.136%(tolerance +/-10%)/0C@ V0=14V, 250C or -19.6 mV/0C Temperature Gradient Coefficient = Vop(90 0 C)− Vop(−30 0 C) Vop(25 0 C)*[90 0 C −(−30 0 C)] Or = Ver 1.3 Vop(900 C)− Vop(−300 C) 0 0 [90 C −(−30 C)] 36/99 0 (%/ C) (mV/0C)) 2006/08/15 ST7636 7.10.3 EEPROM Setting Flow EEPROM Setting Flow The ST7636 provide the Write and Read function to write the Electronic Control value and Built-in resistance ratio into and read them from the built-in EEPROM. Using the Write and Read functions, you can store these values appropriate to each LCD panel. This function is very convenient for user in setting from some different panel’s voltage. But using this function must attention the setting procedure. Please see the following diagram. Note1: This setting flow is used for LCM assembler. Note2: When writing value to EEPROM, the voltage of VOUTIN must be more than 17V. Note3: To avoid some errors during IC operation, EEPROM shouldn’t be written without preceding loading correctly from EEPROM. Display Quality Control Flow Cut Off Power Power On Execute Initial Flow ( Execute “Load EEPROM”) Test Pattern Display EC Value Adjustment EC: +/- 1 End of EC Adjustment and Write EC Value to EEPROM Display Quality Control NG Execute the “Write EEPROM Flow” QC ok End of Display Quality Control Figure 7.10.3.1 Flow of EC value adjustment for display quality control by writing EEPROM offset Ver 1.3 37/99 2006/08/15 ST7636 Figure 7.10.3.2 EC value control for different modules by loading EEPROM offset Example:EEPROM Read Operation void ReadEEPROM( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x0007 ); Write( DATA, 0x0019 ); // Ext = 0 // EEPROM Function Start ( EEOK ) // EEPROM Function Parameter Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00d1 ); Write( COMMAND, 0x0020 ); Write( DATA, 0x000b ); // Ext = 0 // Internal OSC on // Power Control // B/F/R = On/On/On Write( COMMAND, 0x0031 ); Write( COMMAND, 0x00cd ); Write( DATA, 0x0000 ); Delay( 100ms ); Write( COMMAND, 0x00fd ); Delay( 100ms ); Write( COMMAND, 0x00cc ); Write( COMMAND, 0x0030 ); // Ext = 1 // EEPROM ON // Entry "Read Mode" // Waite for EEPROM Operation ( 100ms ) // Start EEPROM Reading Operation // Waite for EEPROM Operation ( 100ms ) // Exist EEPORM Mode step.1 // Exist EEPORM Mode step.2 } Example:EEPROM Write Operation void WriteEEPROM( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AE ); Write( COMMAND, 0x0007 ); Write( DATA, 0x0019 ); // Ext = 0 // Display off // EEPROM Function Start ( EEOK ) // EEPROM Function Parameter Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00d1 ); Write( COMMAND, 0x0020 ); Write( DATA, 0x000b ); // Ext = 0 // Internal OSC on // Power Control // B/F/R = On/On/On Write( COMMAND, 0x0031 ); Write( COMMAND, 0x00cd ); Write( DATA, 0x0020 ); Delay( 100ms ); Write( COMMAND, 0x00fc ); Delay( 100ms ); Write( COMMAND, 0x00cc ); Write( COMMAND, 0x0030 ); // Ext = 1 // EEPROM ON // Entry "Write Mode" // Waite for EEPROM Operation ( 100ms ) // Start EEPROM Writing Operation // Waite for EEPROM Operation ( 100ms ) // Exist EEPORM Mode step.1 // Exist EEPORM Mode step.2 Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AF ); // Ext = 0 // Display on } Example:EEPROM Load Operation void LoadEEPROM( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x0007 ); Write( DATA, 0x0019 ); Write( COMMAND, 0x0031 ); Write( COMMAND, 0x00cd ); Write( DATA, 0x0000 ); Delay( 100ms ); Write( COMMAND, 0x00fd ); Delay( 100ms ); Write( COMMAND, 0x00cc ); Write( COMMAND, 0x0030 ); Ver 1.3 // Ext = 0 // EEPROM Function Start ( EEOK ) // EEPROM Function Parameter // Ext = 1 // EEPROM ON // Entry "Read Mode" // Waite for EEPROM Operation ( 100ms ) // Start EEPROM Reading Operation // Waite for EEPROM Operation ( 100ms ) // Exit EEPORM Mode step.1 // Exit EEPORM Mode step.2 38/99 2006/08/15 ST7636 } RESET CIRCUIT Setting normal radiation / When Power is Turned On inversion of column address : Input power (VDD1~VDD5) ↓ Be sure to apply POWER-ON RESET (RESET=LOW) ↓ < Display Setting 1 > Display control (DISCTL) Setting clock dividing ratio : << State after reset >> Duty setting : Setting reverse rotation number of line : 2 divisions Common scan direction (COMSCN) 1/4 Setting scan direction : 11H reverse rotations Oscillation on (OSCON) : ↓ COM0àCOM65, COM66àCOM131 Sleep-out (SLIPOUT) : Oscillation off ↓ < Power Supply Setting > Sleep-in Electronic volume control (VOLCTR) Setting volume value : << State after reset >> Setting built-in resistance value : Power control (PWRCTR) 0 Setting operation of power supply circuit : 0 (3.76) ↓ < Display Setting 2 > ALL OFF Normal rotation of display (DISNOR) / inversion of display (DISINV) : Partial-in (PTLIN) / Partial-out (PLOUT) << State after reset >> Setting fix area : Normal rotation of display Area scroll set (ASCSET) Setting area scroll region : Partial-out Setting area scroll type : Scroll start set (SCSTART) 0 Setting scroll start address : Full-screen scroll ↓ < Display Setting 3 > 0 Data control (DATCTL) Setting normal radiation / inversion of page address : Ver 1.3 39/99 << State after reset >> 2006/08/15 ST7636 Normal rotation Normal rotation Column direction Setting direction of address scanner : RGB Setting RGB arrangement : 65K Setting gradation : 65K-color position set (RGBSET8) All 0 Setting color position at 65K-color : ↓ << State after reset >> < RAM Setting > Page address set (PASET) 0 Setting start page address : 0 Setting end page address : Column address set (PASET) 0 Setting start column address : 0 Setting end column address : ↓ << State after reset >> < RAM Write > Memory write command (RAMWR) Writing displayed data : repeat as many as the number needed and exit by entering other command. ↓ < Waiting (approximately 100ms) > Wait until the power supply voltage has stabilized. Enter the power supply control command first, then wait at least 100ms before entering the Display ON command when the built-in power supply circuit operates. If you do not wait, an unwanted display may appear on the liquid crystal panel. ↓ Display off Display on (DISON) : (Note) If changes are unnecessary after reset, command input is unnecessary. Ver 1.3 40/99 2006/08/15 ST7636 8. COMMANDS 8.1 Command table Ext=0 Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 DISON 0 1 0 1 0 1 0 1 1 1 1 Display On AF None 1 DISOFF 0 1 0 1 0 1 0 1 1 1 0 Display Off AE None 2 DISNOR 0 1 0 1 0 1 0 0 1 1 0 Normal Display A6 None 3 DISINV 0 1 0 1 0 1 0 0 1 1 1 Inverse Display A7 None 4 COMSCN 0 1 0 1 0 1 1 1 0 1 1 Com Scan Direction BB 1 byte 5 DISCTR 0 1 0 1 1 0 0 1 0 1 0 Display Control CA 3 byte 6 SLPP 0 1 0 0 0 0 0 0 1 0 0 Sleep In/Out Preparation 04 1 byte 7 SLPIN 0 1 0 1 0 0 1 0 1 0 1 Sleep In 95 None 8 SLPOUT 0 1 0 1 0 0 1 0 1 0 0 Sleep Out 94 None 9 PASET 0 1 0 0 1 1 1 0 1 0 1 Page Address Set 75 2 byte 10 CASET 0 1 0 0 0 0 1 0 1 0 1 Column Address Set 15 2 byte 11 DATCTL 0 1 0 1 0 1 1 1 1 0 0 Data Scan Direction BC 3 byte 12 RAMWR 0 1 0 0 1 0 1 1 1 0 0 Writing to Memory 5C Data 13 RAMRD 0 1 0 0 1 0 1 1 1 0 1 Reading from Memory 5D Data 14 PLTIN 0 1 0 1 0 1 0 1 0 0 0 Partial display in A8 2 byte 15 PLTOUT 0 1 0 1 0 1 0 1 0 0 1 Partial display out A9 None 16 RMWIN 0 1 0 1 1 1 0 0 0 0 0 Read Modify Write In E0 None 17 RMWOUT 0 1 0 1 1 1 0 1 1 1 0 Read Modify Write Out EE None 18 ASCSET 0 1 0 1 0 1 0 1 0 1 0 Area Scroll Set AA 4 byte 19 SCSTART 0 1 0 1 0 1 0 1 0 1 1 Scroll Start Set AB 1 byte 20 OSCON 0 1 0 1 1 0 1 0 0 0 1 Internal OSC on D1 None 21 OSCOFF 0 1 0 1 1 0 1 0 0 1 0 Internal OSC off D2 None 22 PWRCTL 0 1 0 0 0 1 0 0 0 0 0 Power Control 20 1 byte 23 VOLCTR 0 1 0 1 0 0 0 0 0 0 1 EC control 81 2 byte 24 VOLUP 0 1 0 1 1 0 1 0 1 1 0 EC increase 1 D6 None 25 VOLDOWN 0 1 0 1 1 0 1 0 1 1 1 EC decrease 1 D7 None 26 STREAD 0 0 1 EPSRRD1 0 1 0 0 1 1 1 1 1 0 0 READ Register1 7C None 28 EPSRRD2 0 1 0 0 1 1 1 1 1 0 1 READ Register2 7D None 29 NOP 0 1 0 0 0 1 0 0 1 0 1 NOP Instruction 25 None 30 EEOK 0 1 0 0 0 0 0 0 1 1 1 EEPROM Function Start 07 1 byte 31 RESERVED 0 1 0 1 0 0 0 0 0 1 0 Not Use 82 Ver 1.3 Status Read Function Hex Parameter Index Status Read 41/99 27 32 2006/08/15 ST7636 Ext=1 Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Hex Parameter Index Red1 Set 0 1 0 0 0 1 0 0 0 0 0 FRAME 1 Red PWM Set 20 16 byte 1 Red2 Set 0 1 0 0 0 1 0 0 0 0 1 FRAME 2 Red PWM Set 21 16 byte 2 Red3 Set 0 1 0 0 0 1 0 0 0 1 0 FRAME 3 Red PWM Set 22 16 byte 3 Red4 Set 0 1 0 0 0 1 0 0 0 1 1 FRAME 4 Red PWM Set 23 16 byte 4 Grn1 Set 0 1 0 0 0 1 0 0 1 0 0 FRAME 1 Green PWM Set 24 16 byte 5 Grn2 Set 0 1 0 0 0 1 0 0 1 0 1 FRAME 2 Green PWM Set 25 16 byte 6 Grn3 Set 0 1 0 0 0 1 0 0 1 1 0 FRAME 3 Green PWM Set 26 16 byte 7 Grn4 Set 0 1 0 0 0 1 0 0 1 1 1 FRAME 4 Green PWM Set 27 16 byte 8 Blu1 Set 0 1 0 0 0 1 0 1 0 0 0 FRAME 1 Blue PWM Set 28 16 byte 9 Blu2 Set 0 1 0 0 0 1 0 1 0 0 1 FRAME 2 Blue PWM Set 29 16 byte 10 Blu3 Set 0 1 0 0 0 1 0 1 0 1 0 FRAME 3 Blue PWM Set 2A 16 byte 11 Blu4 Set 0 1 0 0 0 1 0 1 0 1 1 FRAME 4 Blue PWM Set 2B 16 byte 12 ANASET 0 1 0 0 0 1 1 0 0 1 0 Analog 32 3 byte 13 DITHOFF 0 1 0 0 0 1 1 0 1 0 0 Dithering Circuit Off 34 None 14 DITHON 0 1 0 0 0 1 1 0 1 0 1 Dithering Circuit On 35 None 15 EPCTIN 0 1 0 1 1 0 0 1 1 0 1 Control EEPROM CD 1 byte 16 EPCOUT 0 1 0 1 1 0 0 1 1 0 0 Cancel EEPROM CC None 17 EPMWR 0 1 0 1 1 1 1 1 1 0 0 Write to EEPROM FC None 18 EPMRD 0 1 0 1 1 1 1 1 1 0 1 Read from EEPROM FD None 19 Ext=1 or Ext=0 Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Ext In 0 1 0 0 0 1 1 0 0 0 0 Ext=0 Set 30 None -- Ext Out 0 1 0 0 0 1 1 0 0 0 1 Ext=1 Set 31 None -- Ver 1.3 42/99 Function Hex Parameter Index 2006/08/15 ST7636 8.2 EXT=”0” Function Description (1) Display ON (DISON) Command: 1; Parameter: None (AFH) It is used to turn the display on. When the display is turned on, segment outputs and common outputs are generated at the level corresponding to the display data and display timing. You can’t turn on the display as long as the sleep mode is selected. Thus, whenever using this command, you must cancel the sleep mode first. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 1 1 1 1 (2) Display OFF (DISOFF) Command: 1; Parameter: None (AEH) It is used to forcibly turn the display off. As long as the display is turned off, every on segment and common outputs are forced to VSS level. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 1 1 1 0 (3) Normal display (DISNOR) Command: 1; Parameter: None (A6H) It is used to normally highlight the display area without modifying contents of the display data RAM. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 0 1 1 0 (4) Inverse display (DISINV) Command: 1; Parameter: None (A7) It is used to inversely highlight the display area without modifying contents of the display data RAM. This command does not invert non-display areas in case of using partial display. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 0 1 1 1 (5) Common scan (COMSCAN) Command: 1; Parameter: 1 (BBH) It is used to specify the common output direction in the pin of CSEL = L. This command helps increasing degrees of freedom of wiring on the LCD panel. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 0 1 1 1 0 1 1 - Parameter1 (P1) 1 1 0 * * * * * P12 P11 P10 Command Scan direction When CSEL=0 configuration is selected, pins and common outputs are scanned in the order shown below. Common scan direction P12 P11 P10 COM0 pin Ver 1.3 COM65 pin COM66 pin COM131 pin 0 0 0 0 à 65 66 à 131 0 0 1 0 à 65 131 à 66 0 1 0 65 à 0 66 à 131 0 1 1 65 à 0 131 à 66 43/99 2006/08/15 ST7636 Common scan direction Original graphic : Com0 P12:P11:P10:0:0:0 (0à65,66à131) Com66 Com0 Com66 Com65 Com0 Com131 Com65 Com131 Com131 Com65 Com66 P12:P11:P10:0:0:1 (0à65, 131à66) P12:P11:P10:0:1:0 (65à0, 66à131) P12:P11:P10:0:1:1 (65à0, 131à66) Com65 Com66 Com65 Com131 Com0 Com131 Com0 Com66 Figure 8.2.1 Common scan direction configuration when CSEL=0 Figure 8.2.2 Common scan direction configuration when CSEL=1 Note : under CSEL=1 configuration, command #BBH will have no effect upon IC operation. Ver 1.3 44/99 2006/08/15 ST7636 The common scan direction is fixed. (6) Display control (DISCTL) Command: 1; Parameter: 3 (CAH) This command and succeeding parameters are used to perform the display timing-related setups. This command must be selected before using SLPOUT. Don’t change this command while the display is turned on. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 1 0 0 1 0 1 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 * * CL dividing ratio, F1 and F2 drive pattern. Parameter2(P2) 1 1 0 * * P25 P24 P23 P22 P21 P20 Drive duty Parameter3(P3) 1 1 0 * * * P34 P33 P32 P31 P30 FR inverse-set value P1: it is used to specify the CL dividing ratio. P14, P13, P12: CL dividing ratio. They are used to change number of dividing stages of external or internal clock. P14 P13 P12 CL dividing ratio 0 0 0 Not divide 0 0 1 2 divisions 0 1 0 4 divisions 0 1 1 8 divisions P2: It is used to specify the duty of the module on block basis. Duty * * P25 P24 P23 P22 P21 P20 (Numbers of display lines)/4-1 Example: 1/128 duty 0 0 0 1 1 1 1 1 128/4-1=31 This will output driving voltage waveforms from com0 to com127. . P3: It is used to specify number of lines to be inversely highlighted on LCD panel from P33 to P30 (lines can be inversely highlighted in the range of 2 to 16) Inversely highlighted line * * * P34 P33 P32 P31 P30 Inversely highlighted lines-1 Example: 0AH 0 0 0 0 1 0 1 0 11-1=10 Example: 1CH 0 0 0 1 1 1 0 0 13-1=12 In the default, 0 inverse highlight lines is selected. P34=”0”: Inversion occurs every frame. P34=”1”: Independent from frames. (7) Sleep In/Out Preparation (SLPP) Command: 1; Parameter: 1 Using this command to setup ready status for sleep-in or sleep out. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 0 0 0 1 0 0 - Parameter(P1) 1 1 0 0 0 1 1 1 1 1 P10 Sleep in/out ready P10 =” 1”: Ready for sleep in. P10 = “0”: Ready for sleep out. Ver 1.3 45/99 2006/08/15 ST7636 Parameter 3FH is used to initialize sleep-in sequencing, and parameter 3EH is used to initialize sleep-out sequencing. (8) Sleep in (SPLIN) Command: 1; Parameter: None (95H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 0 1 0 1 0 1 (9) Sleep out (SLPOUT) Command: 1;Parameter: None (94H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 0 1 0 1 0 0 (10) Page address set (PASET) Command: 1; Parameter: 2 (75H) When MPU makes access to the display data RAM, this command and succeeding parameters are used to specify the page address area. As the addresses are incremented from the start to the end page in the page-direction scan, the column address is incremented by 1 and the page address is returned to the start page. Note: that the start and end page must be specified as a pair. Also, the relation “start page < end page” must be maintained. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 1 1 1 0 1 0 1 - Parameter1(P1) 1 1 0 P17 P16 P15 P14 P13 P12 P11 P10 Start page Parameter2(P2) 1 1 0 P27 P26 P25 P24 P23 P22 P21 P20 End page (11) Column address set (CASET) Command: 1; Parameter: 2 (15H) When MPU makes access to the display data RAM, this command and succeeding parameters are used to specify the column address area. As the addresses are incremented from the start to the end column in the column-direction scan, the page address is incremented by 1 and the column address is returned to the start column. Note: that the start and end column must be specified as a pair. Also, the relation “start column < end column” must be maintained. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 0 1 0 1 0 1 - Parameter1(P1) 1 1 0 P17 P16 P15 P14 P13 P12 P11 P10 Start address Parameter2(P2) 1 1 0 P27 P26 P25 P24 P23 P22 P21 P20 End address (12) Data control (DATCTL) Command: 1;Parameter: 3 (BCH) This command and succeeding parameters are used to perform various setups needed when MPU operates display data stored on the built-in RAM. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 0 1 1 1 1 0 0 - Parameter1(P1) 1 1 0 * * * * * P12 P11 P10 Normal/inverse display of page / column address and Ver 1.3 46/99 2006/08/15 ST7636 address scan direction. Parameter2(P2) 1 1 0 * * * * * * * P20 RGB arrangement Parameter3(P3) 1 1 0 * * * * * P32 P31 P30 Gray-scale setup P1: It is used to specify the normal or inverse display of the page / column address and also to specify the address scanning direction. P10: Normal/inverse display of the page address. P10=0: Normal and P10=1: Inverse P11: Normal/reverse turn of column address. P11=0: Normal rotation and P11=1: Reverse rotation. P12: Address-scan direction. P12=0: In the column direction and P12=1: In the page direction. Page address and page-address scan direction P12=0 Column direction P11=0 P11=1 P10=0 0 1 2 P10=1 131 130 129 129 130 131 2 1 0 0 131 1 130 2 129 129 2 130 1 131 0 0 131 1 130 2 129 129 2 130 1 131 0 P12=1 Page direction Ver 1.3 P11=0 P11=1 P10=0 0 1 2 P10=1 131 130 129 129 130 131 2 1 0 47/99 2006/08/15 ST7636 (a) COMMAND #BCH, DATA #00H (b) COMMAND #BCH, DATA #01H (c) COMMAND #BCH, DATA #02H (d) COMMAND #BCH, DATA #03H Figure 8.2.3 Different RAM accessing setup when CSEL=0 under COMMAND #BBH, DATA #00H (a) COMMAND #BCH, DATA #00H (b) COMMAND #BCH, DATA #01H (c) COMMAND #BCH, DATA #02H (d) COMMAND #BCH, DATA #03H Ver 1.3 48/99 2006/08/15 ST7636 (e) COMMAND #BCH, DATA #04H (f) COMMAND #BCH, DATA #05H (g) COMMAND #BCH, DATA #06H (h) COMMAND #BCH, DATA #07H Figure 8.2.3 Different RAM accessing setup when CSEL=0 under COMMAND #BBH, DATA #00H (continue) (e) COMMAND #BCH, DATA #04H (f) COMMAND #BCH, DATA #05H (g) COMMAND #BCH, DATA #06H (h) COMMAND #BCH, DATA #07H P2: RGB arrangement. This parameter allows you to change RGB arrangement of data which is going to be written into RAM, and therefore causes the inverse RGB rotation of the segment output of ST7636. You can fit RGB arrangement on the LCD panel according to this parameter setting. P20 SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 … SEG395 0 R G B R G B R G … B 1 B G R B G R B G … R P3: Gray scale setup. Using this parameter, 64 gray-scale display, you can select the 65K, 262K, and 16M display mode depending on the difference in RGB data arrangement. P32 P31 P30 Numbers of gray-scale 0 0 1 64-gray 65K 0 1 0 64-gray 262K 1 0 0 64-gray 16M Ver 1.3 49/99 2006/08/15 ST7636 (13) Memory write (RAMWR) Command: 1; Parameter: Numbers of data written (5CH) When MPU writes data to the display memory, this command turns on the data entry mode. Entering this command always sets the page and column address at the start address. You can rewrite contents of the display data RAM by entering data succeeding to this command. At the same time, this operation increments the page or column address as applicable. The write mode is automatically cancelled if any other command is entered. 1. 8-bit bus A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 1 0 1 1 1 0 0 - Parameter 1 1 0 A0 RD RW D15 D14 … D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 * * … * * 0 1 0 1 1 1 0 0 Memory write parameter 1 1 0 Data to be written Data to be written 2. 16-bit bus Data to be written Write data (14) Memory read (RAMRD) Command: 1; Parameter: Numbers of data read (5DH) When MPU read data from the display memory, this command turns on the data read mode. Entering this command always sets the page and column address at the start address. After entering this command, you can read contents of the display data RAM. At the same time, this operation increments the page or column address as applicable. The data read mode is automatically cancelled if any other command is entered. 1. 8-bit bus A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 1 0 1 1 1 0 1 - Parameter 1 0 1 Ver 1.3 Data to be read 50/99 Data to be read 2006/08/15 ST7636 2. 16-bit bus A0 RD RW D15 Command 0 1 0 * parameter 1 0 1 D14 …. D9 D8 * * * * D7 D6 D5 D4 D3 D2 D1 D0 Function 0 1 0 1 1 1 0 1 Memory read Data to be read Read data (15) Partial in (PTLIN) Command: 1; Parameter: 2 (A8H) This command and succeeding parameters specify the partial display area. This command is used to turn on partial display of the screen (dividing screen by lines) in order to save power. Since ST7636 processes the liquid crystal display signal on 4-line basis (block basis), the display and non-display areas are also specified on 4-bit line (block basis). A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 0 1 0 1 0 0 0 - Parameter(P1) 1 1 0 * * P15 P14 P13 P12 P11 P10 Start block address Parameter(P2) 1 1 0 * * P25 P24 P23 P22 P21 P20 End block address A block address that can be specified for the partial display must be the display one (don’t try to specify an address not to be displayed when scrolled). (16) Partial out (PTLOUT) Command: 1; Parameter: 0 (A9H) This command is used to exit from the partial display mode. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 1 0 0 1 (17) Read modify write in (RMWIN) Command: 1; Parameter: 0 (E0H) This command is used along with the column address set command, page address set command and read modify write out command. This function is used when frequently modifying data to specify a specific display area such as blinking cursor. First set a specific display area using the column and page address commands. Then, enter this command to set the column and page addresses at the start address of the specific area. When this operation is complete, the column (page) address won’t be modified by the display data read command. It is incremented only when the display data write command is used. You can cancel this mode by entering the read modify write out or any other command. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 0 0 0 0 0 (18) Read modify write out (RMWOUT) Command: 1; Parameter: 0 (EEH) Enter this command cancels the read modify write mode Command Ver 1.3 A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 0 1 1 1 0 51/99 2006/08/15 ST7636 (19) Area scroll set (ASCSET) Command: 1; Parameter: 4 (AAH) It is used when scrolling only the specified portion of the screen (dividing the screen by lines). This command and succeeding parameters specify the type of area scroll, fix area and scroll area. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 0 1 0 1 0 1 0 - Parameter(P1) 1 1 0 * * P15 P14 P13 P12 P11 P10 Top block address Parameter(P2) 1 1 0 * * P25 P24 P23 P22 P21 P20 Bottom block address Parameter(P3) 1 1 0 * * P35 P34 P33 P32 P31 P30 Number of specified blocks Parameter(P4) 1 1 0 * * * * * * P41 P40 Area scroll mode P4: It is used to specify an area scroll mode. P41 P40 Type of area scroll 0 0 Center screen scroll 0 1 Top screen scroll 1 0 Bottom screen scroll 1 1 Whole screen scroll Center screen scroll Fixed area Top screen scroll Bottom screen scroll Whole screen scroll Scroll area Since ST7636 processes the liquid crystal display signals on the four-line basis (block basis), FIX and scroll areas are also specified on the four-line basis (block basis). DDRAM address corresponding to the top FIX area is set in the block address incrementing direction starting with 0 block. DDRAM address corresponding to the bottom FIX area is set in the block address decreasing direction starting with 32st block. Other DDRAM blocks excluding the top and bottom FIX areas are assigned to the scroll + background areas. P1: It is used to specify the top block address of the scroll + background areas. Specify the 0th block for the top screen scroll or whole screen scroll. Ver 1.3 52/99 2006/08/15 ST7636 P2: It specifies the bottom address of the scroll+ background areas. Specify the 32th block for the bottom or whole screen scroll. Required relation between the start and end blocks (top block address<bottom block address) must be maintained. P3: It specifies a specific number of blocks {Numbers of (Top FIX area +Scroll area) block-1}. When the bottom scroll or whole screen scroll, the value is identical with P2. You can turn on the area scroll function by executing the area scroll set command first and then specifying the display start block of the scroll area with the scroll start set command. [Area Scroll Setup Example] In the center screen scroll of 1/120 duty (display range: 120 lines=30 blocks), if 8 lines=2 blocks and 8 lines=2 blocks are specified for the top and bottom FIX areas, 104 lines =26 blocks is specified for the scroll areas, respectively, 12 lines = 3 blocks on the DDRAM are usable as the background area. Value of each parameter at this time is as shown below. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 P1 1 1 0 * * 0 0 0 0 1 0 Top block address = 2 P2 1 1 0 * * 0 1 1 1 1 0 Bottom block address = 30 P3 1 1 0 * * 0 1 1 1 1 0 Number of specific blocks = 30 P4 1 1 0 * * * * * * 0 0 Area scroll mode = center (20) Scroll start address set (SCSTART) Command:1 Parameter: 1 (ABH) This command and succeeding parameters are used to specify the start block address of the scroll area. Note: that you must execute this command after executing the area scroll set command. Scroll becomes available by dynamically changing the start block address. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 0 1 0 1 0 1 1 - Parameter(P1) 1 1 0 * * P15 P14 P13 P12 P11 P10 Start block address (21) Internal oscillation on (OSCON) Command: 1; Parameter: 0 (D1H) This command turns on the internal oscillation circuit. It is valid only when the internal oscillation circuit of CLS = HIGH is used. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 0 0 0 1 (22) Internal oscillation off (OSOFF) Command: 1; Parameter: 0 (D2H) It turns off the internal oscillation circuit. This circuit is turned off in the reset mode. Command Ver 1.3 A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 0 0 1 0 53/99 2006/08/15 ST7636 (23) Power control set (PWRCTR) Command: 1; Parameter: 1 (20H) This command is used to turn on or off the Booster circuit, follower voltage, and voltage regulator circuit. D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 1 0 0 0 0 0 * * * 0 P13 0 P11 P10 A0 RD RW Command 0 1 Parameter(P1) 1 1 Function - LCD drive power P10: It turns on or off the voltage regulator voltage. P10 = “1”: ON. P10 =” 0”: OFF P11: It turns on or off the follower circuit. P11 = “1”: ON. P11 =” 0”: OFF P13:It turns on or off the Booster. P13 = “1”: ON. P13 =” 0”: OFF (24) Electronic volume control (VOLCTR) Command: 1; Parameter: 2 (81H) The command is used to program the optimum LCD supply voltage VLCD. Reference to 7.10.2 A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 0 0 0 0 0 0 1 - Parameter(P1) 1 1 0 * * P15 P14 P13 P12 P11 P10 Set Vop[5:0] Parameter(P2) 1 1 0 * * * * * P18 P17 P16 Set Vop[8:6] (25) Increment electronic control (VOLUP) Command: 1; Parameter: 0 (D6H) With the VOLUP and VOLDOWN command the VLCD voltage and therewith the contrast of the LCD can be adjusted. This command increments electronic control value Vop[5:0] of voltage regulator circuit by 1. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 0 1 1 0 If you set the electronic control value to 111111, the control value is set to 000000 after this command has been executed. (26) Decrement electronic control (VOLDOWN) Command: 1; Parameter: 0 (D7H) With the VOLUP and VOLDOWN command the VLCD voltage and therewith the contrast of the LCD can be adjusted. This command decrements electronic control value Vop[5:0] of voltage regulator circuit by 1. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 0 1 1 1 If you set the electronic control value to 000000, the control value is set to 111111 after this command has been executed. Ver 1.3 54/99 2006/08/15 ST7636 Table 8.1.1 Possible Vop[5:0] values Electronic Control Value Decimal Equivalent VLCD Offset 111111 31 +1240 mV 111110 30 +1200 mV 111101 29 +1160 mV … … … 000010 2 +80 mV 000001 1 +40 mV 000000 0 0 mV 111111 -1 -40 mV 111110 -2 -80 mV … … … 100010 -30 -1200 mV 100001 -31 -1240 mV 100000 -32 -1280mV (27) Status read (STREAD) Command: 1; Parameter: None It is the command for reading the internal condition of the IC. A0 RD RW 0 0 1 Command D7 D6 D5 D4 D3 D2 D1 D0 (8) Status data Issue STREAD (Status Read) command only to read the internal condition of the IC. One status data can be displayed depending on the setting. Issue the NOP command after the STREAD (Status Read) command. The Status data will be composed of 8 bits below: D7: Area scroll mode Refer to P41 (ASCSET) D6: Area scroll mode Refer to P40 (ASCSET) D5: RMW on/off 0 : Out 1 : In D4: Scan direction 0 : Column 1 : Page D3: Display ON/OFF 0 : OFF 1 : ON D2: EEPROM access 0: OutAccess 1: InAccess D1: Display normal/inverse 0 : Normal 1 : Inverse D0: Partial display 0 : OFF 1 : ON (28) Read Register 1 (EPSRRD1) Command: 1; Parameter: 0 (7CH) It is the command for reading the Electronic Control values. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 1 1 1 1 0 0 Issue the EPSRRD1 and then STREAD (Status Read) commands in succession to read the Electronic Control values. One Ver 1.3 55/99 2006/08/15 ST7636 status data can be displayed depending on the setting. Also, always issue the NOP command after the STREAD (Status Read) command. The Status data will be composed of 8 bits below: D7: 0 D6: 0 D[5:0]: Vop[5:0] Refer to electronic volume control values Vop[5:0] (29) Read Register 2 (EPSRRD2) Command: 1 ;Parameter: 0 (7DH) It is the command for reading ID codes of the ST7636 and the built-in resistance ratio. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 1 1 1 1 0 1 Command Issue the EPSRRD2 and then STREAD (Status Read) commands in succession to read IC’s ID and the built-in resistance ratio. One status data can be displayed depending on the setting. Also, always issue the NOP command after the STREAD (Status Read) command. The Status data will be composed of 8 bits below: D[7:3]: ST7636 ID codes 00001 D[2:0]: Vop[8:6] Refer to the built-in resistance ratio Vop[8:6] (30) Non-operating (NOP) Command: 1; Parameter: 0 (25H) This command does not affect the operation. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 0 0 1 0 1 Command This command, however, has the function of canceling the IC test mode. Thus, it is recommended to enter it periodically to prevent malfunctioning due to noise and such. (31) EEPROM Function Start (EEOK) Command:1;Parameter:1(07H) In the OTP read/write flow, EEPROM is ready after issuing this command. Its parameter is set to 19H. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 0 0 0 1 1 1 - Parameter(P1) 1 1 0 0 0 0 1 1 0 0 1 19H A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 0 0 0 0 1 0 (32) Reserved (82H) Do not use this command Command Ver 1.3 56/99 2006/08/15 ST7636 8.3 EXT=”1” Function Description (1) Set Red1 value (Red1 set) Command: 1; Parameter: 16 (20H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Red1 Set 0 1 0 0 0 1 0 0 0 0 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 0 0 0 0 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set red level 0 and 1st frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set red level 1 and 1st frame Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set red level 13 and 1st frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set red level 15 and 1st frame Function FRAME 1 Red PWM Set (2)Set Red2 value (Red2 set) Command: 1; Parameter: 16 (21H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Red2 Set 0 1 0 0 0 1 0 0 0 0 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 0 0 0 0 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set red level 0 and 2nd frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set red level 1 and 2nd frame Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set red level 13 and 2nd frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set red level 15 and 2nd frame Function FRAME 2 Red PWM Set (3) Set Red3 value (Red3 set) Command: 1; Parameter: 16 (22H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Red3 Set 0 1 0 0 0 1 0 0 0 1 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 0 0 0 0 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set red level 0 and 3rd frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set red level 1 and 3rdframe Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set red level 13 and 3rd frame Ver 1.3 57/99 Function FRAME 3 Red PWM Set 2006/08/15 ST7636 Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set red level 15 and 3rd frame (4) Set Red4 value (Red4 set) Command: 1; Parameter: 16 (23H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Red4 Set 0 1 0 0 0 1 0 0 0 1 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 0 0 0 0 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set red level 0 and 4th frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set red level 1 and 4thframe Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set red level 13 and 4th frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set red level 15 and 4th frame FRAME 4 Red PWM Set The default value of Red level set Red1 SET Red2 SET Red3 SET Red4 SET FRAM1 FRAM2 FRAM3 FRAME4 red level0 00 00 00 00 red level1 02 02 02 02 red level2 05 05 05 05 red level3 07 07 07 08 red level4 0A 0A 0A 0B red level5 0D 0D 0D 0C red level6 0F 10 0F 10 red level7 11 12 11 12 red level8 13 14 13 14 red level9 16 16 16 15 red level10 18 18 18 17 red level11 19 19 19 1A red level12 1B 1B 1B 1A red level13 1C 1C 1C 1D red level14 1D 1D 1D 1E red level15 1E 1E 1E 1E Ver 1.3 58/99 2006/08/15 ST7636 The modulation range of Red level set Red1 SET Red2 SET Red3 SET Red4 SET FRAM1 FRAM2 FRAM3 FRAME4 red level0 0 0 0 0 red level1 0-7 0-7 0-7 0-7 red level2 0-F 0-F 0-F 0-F red level3 0-F 0-F 0-F 0-F red level4 8-F 8-F 8-F 8-F red level5 0-1F 0-1F 0-1F 0-1F red level6 0-1F 0-1F 0-1F 0-1F red level7 0-1F 0-1F 0-1F 0-1F red level8 10-17 10-17 10-17 10-17 red level9 10-1F 10-1F 10-1F 10-1F red level10 10-1F 10-1F 10-1F 10-1F red level11 10-1F 10-1F 10-1F 10-1F red level12 10-1F 10-1F 10-1F 10-1F red level13 10-1F 10-1F 10-1F 10-1F red level14 10-1F 10-1F 10-1F 10-1F red level15 18-1F 18-1F 18-1F 18-1F (5) Set Green1 value (Green1 set) Command: 1; Parameter: 16 (24H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Green1 Set 0 1 0 0 0 1 0 0 1 0 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 0 0 0 0 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set green level 0 and 1st frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set green level 1 and 1st frame Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set green level 13 and 1st frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set green level 15 and 1st frame FRAME 1 Green PWM Set (6) Set Green2 value (Green1 set) Command: 1; Parameter: 16 (25H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Green2 Set 0 1 0 0 0 1 0 0 1 0 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Ver 1.3 59/99 Function FRAME 2 Green PWM Set Function 2006/08/15 ST7636 0 0 0 0 - Command 0 1 0 0 0 1 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set green level 0 and 1st frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set green level 1 and 1st frame Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set green level 13 and 1st frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set green level 15 and 1st frame (7) Set Green3 value (Green1 set) Command: 1; Parameter: 16 (26H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Green3 Set 0 1 0 0 0 1 0 0 1 1 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 0 0 0 0 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set green level 0 and 1st frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set green level 1 and 1st frame Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set green level 13 and 1st frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set green level 15 and 1st frame FRAME 3 Green PWM Set (8) Set Green4 value (Green1 set) Command: 1; Parameter: 16 (27H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Green4 Set 0 1 0 0 0 1 0 0 1 1 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 0 0 0 0 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set green level 0 and 1st frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set green level 1 and 1st frame Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set green level 13 and 1st frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set green level 15 and 1st frame FRAME 4 Green PWM Set The default value of Green level set Ver 1.3 Green1 SET Green2 SET Green3 SET Green4 SET FRAM1 FRAM2 FRAM3 FRAME4 60/99 2006/08/15 ST7636 green level0 00 00 00 00 green level1 02 02 02 02 green level2 05 05 05 05 green level3 07 07 07 08 green level4 0A 0A 0A 0B green level5 0D 0D 0D 0C green level6 0F 10 0F 10 green level7 11 12 11 12 green level8 13 14 13 14 green level9 16 16 16 15 green level10 18 18 18 17 green level11 19 19 19 1A green level12 1B 1B 1B 1A green level13 1C 1C 1C 1D green level14 1D 1D 1D 1E green level15 1E 1E 1E 1E Green1 SET Green2 SET Green3 SET Green4 SET FRAM1 FRAM2 FRAM3 FRAME4 green level0 0 0 0 0 green level1 0-7 0-7 0-7 0-7 green level2 0-F 0-F 0-F 0-F green level3 0-F 0-F 0-F 0-F green level4 8-F 8-F 8-F 8-F green level5 0-1F 0-1F 0-1F 0-1F green level6 0-1F 0-1F 0-1F 0-1F green level7 0-1F 0-1F 0-1F 0-1F green level8 10-17 10-17 10-17 10-17 green level9 10-1F 10-1F 10-1F 10-1F green level10 10-1F 10-1F 10-1F 10-1F green level11 10-1F 10-1F 10-1F 10-1F green level12 10-1F 10-1F 10-1F 10-1F green level13 10-1F 10-1F 10-1F 10-1F green level14 10-1F 10-1F 10-1F 10-1F green level15 18-1F 18-1F 18-1F 18-1F The modulation range of Green level set Ver 1.3 61/99 2006/08/15 ST7636 (9) Set Blue1 value (Blue1 set) Command: 1; Parameter: 16 (28H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Blue1 Set 0 1 0 0 0 1 0 1 0 0 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 0 0 0 0 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set blue level 0 and 1st frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set blue level 1 and 1st frame Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set blue level 13 and 1st frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set blue level 15 and 1st frame FRAME 1 Blue PWM Set (10) Set Blue2 value (Blue2 set) Command: 1; Parameter: 16 (29H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Blue2 Set 0 1 0 0 0 1 0 1 0 0 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 0 0 0 0 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set blue level 0 and 1st frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set blue level 1 and 1st frame Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set blue level 13 and 1st frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set blue level 15 and 1st frame Function FRAME 2 Blue PWM Set (11) Set Blue3 value (Blue3 set) Command: 1; Parameter: 16 (2AH) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Blue3 Set 0 1 0 0 0 1 0 1 0 1 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 0 0 0 0 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set blue level 0 and 1st frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set blue level 1 and 1st frame Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set blue level 13 and 1st frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set blue level 15 and 1st frame Ver 1.3 62/99 Function FRAME 3 Blue PWM Set 2006/08/15 ST7636 (12) Set Blue4 value (Blue4 set) Command: 1; Parameter: 16 (2BH) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Blue4 Set 0 1 0 0 0 1 0 1 0 1 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 0 0 0 0 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set blue level 0 and 1st frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set blue level 1 and 1st frame Parameter14(P14) 1 1 0 * * * P144 P143 P142 P141 P140 Set blue level 13 and 1st frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set blue level 15 and 1st frame FRAME 4 Blue PWM Set The default value of Blue level set Blue1 SET Blue2 SET Blue3 SET Blue4 SET FRAM1 FRAM2 FRAM3 FRAME4 blue level0 00 00 00 00 blue level1 02 02 02 02 blue level2 05 05 05 05 blue level3 07 07 07 08 blue level4 0A 0A 0A 0B blue level5 0D 0D 0D 0C blue level6 0F 10 0F 10 blue level7 11 12 11 12 blue level8 13 14 13 14 blue level9 16 16 16 15 blue level10 18 18 18 17 blue level11 19 19 19 1A blue level12 1B 1B 1B 1A blue level13 1C 1C 1C 1D blue level14 1D 1D 1D 1E blue level15 1E 1E 1E 1E Ver 1.3 63/99 2006/08/15 ST7636 The modulation range of Blue level set Blue1 SET Blue2 SET Blue3 SET Blue4 SET FRAM1 FRAM2 FRAM3 FRAME4 blue level0 0 0 0 0 blue level1 0-7 0-7 0-7 0-7 blue level2 0-F 0-F 0-F 0-F blue level3 0-F 0-F 0-F 0-F blue level4 8-F 8-F 8-F 8-F blue level5 0-1F 0-1F 0-1F 0-1F blue level6 0-1F 0-1F 0-1F 0-1F blue level7 0-1F 0-1F 0-1F 0-1F blue level8 10-17 10-17 10-17 10-17 blue level9 10-1F 10-1F 10-1F 10-1F blue level10 10-1F 10-1F 10-1F 10-1F blue level11 10-1F 10-1F 10-1F 10-1F blue level12 10-1F 10-1F 10-1F 10-1F blue level13 10-1F 10-1F 10-1F 10-1F blue level14 10-1F 10-1F 10-1F 10-1F blue level15 18-1F 18-1F 18-1F 18-1F Example:Paint setup void LoadPaint( void ) { Write( COMMAND, 0x0031 ); Ver 1.3 // Ext = 1 Write( COMMAND, 0x0020 ); Write( DATA, 0x0000 ); Write( DATA, 0x0002 ); Write( DATA, 0x0005 ); ……. ……. Write( DATA, 0x001E ); // Red Palette FRC1 Setup // Red1 Level0 Setup // Red1 Level1 Setup // Red1 Level2 Setup ……. ……. // Red1 Level15 Setup Write( COMMAND, 0x0021 ); Write( DATA, 0x0000 ); Write( DATA, 0x0002 ); Write( DATA, 0x0005 ); ……. ……. Write( DATA, 0x001E ); // Red Palette FRC2 Setup // Red2 Level0 Setup // Red2 Level1 Setup // Red2 Level2 Setup ……. ……. // Red2 Level15 Setup Write( COMMAND, 0x0022 ); Write( DATA, 0x0000 ); Write( DATA, 0x0002 ); Write( DATA, 0x0005 ); ……. ……. // Red Palette FRC3 Setup // Red3 Level0 Setup // Red3 Level1 Setup // Red3 Level2 Setup ……. ……. 64/99 2006/08/15 ST7636 Ver 1.3 Write( DATA, 0x001E ); // Red3 Level15 Setup Write( COMMAND, 0x0023 ); Write( DATA, 0x0000 ); Write( DATA, 0x0002 ); Write( DATA, 0x0005 ); ……. ……. Write( DATA, 0x001E ); // R Palette FRC4 Setup // Red4 Level0 Setup // Red4 Level1 Setup // Red4 Level2 Setup ……. ……. // Red4 Level15 Setup Write( COMMAND, 0x0024 ); Write( DATA, 0x0000 ); Write( DATA, 0x0002 ); Write( DATA, 0x0005 ); ……. ……. Write( DATA, 0x001E ); // Green Palette FRC1 Setup // Green 1 Level0 Setup // Green 1 Level1 Setup // Green 1 Level2 Setup ……. ……. // Green 1 Level15 Setup Write( COMMAND, 0x0025 ); Write( DATA, 0x0000 ); Write( DATA, 0x0002 ); Write( DATA, 0x0005 ); ……. ……. Write( DATA, 0x001E ); // Green Palette FRC2 Setup // Green 2 Level0 Setup // Green 2 Level1 Setup // Green 2 Level2 Setup ……. ……. // Green 2 Level15 Setup Write( COMMAND, 0x0026 ); Write( DATA, 0x0000 ); Write( DATA, 0x0002 ); Write( DATA, 0x0005 ); ……. ……. Write( DATA, 0x001E ); // Green Palette FRC3 Setup // Green 3 Level0 Setup // Green 3 Level1 Setup // Green 3 Level2 Setup ……. ……. // Green 3 Level15 Setup Write( COMMAND, 0x0027 ); Write( DATA, 0x0000 ); Write( DATA, 0x0002 ); Write( DATA, 0x0005 ); ……. ……. Write( DATA, 0x001E ); // Green Palette FRC4 Setup // Green 4 Level0 Setup // Green 4 Level1 Setup // Green 4 Level2 Setup ……. ……. // Green 4 Level15 Setup Write( COMMAND, 0x0028 ); Write( DATA, 0x0000 ); Write( DATA, 0x0002 ); Write( DATA, 0x0005 ); ……. ……. Write( DATA, 0x001E ); // Green Palette FRC1 Setup // Green 1 Level0 Setup // Green 1 Level1 Setup // Green 1 Level2 Setup ……. ……. // Green 1 Level15 Setup Write( COMMAND, 0x0029 ); Write( DATA, 0x0000 ); Write( DATA, 0x0002 ); Write( DATA, 0x0005 ); ……. ……. Write( DATA, 0x001E ); // Green Palette FRC2 Setup // Green 2 Level0 Setup // Green 2 Level1 Setup // Green 2 Level2 Setup ……. ……. // Green 2 Level15 Setup 65/99 2006/08/15 ST7636 Write( COMMAND, 0x002A ); Write( DATA, 0x0000 ); Write( DATA, 0x0002 ); Write( DATA, 0x0005 ); ……. ……. Write( DATA, 0x001E ); // Green Palette FRC3 Setup // Green 3 Level0 Setup // Green 3 Level1 Setup // Green 3 Level2 Setup ……. ……. // Green 3 Level15 Setup Write( COMMAND, 0x002B ); Write( DATA, 0x0000 ); Write( DATA, 0x0002 ); Write( DATA, 0x0005 ); ……. ……. Write( DATA, 0x001E ); // Green Palette FRC4 Setup // Green 4 Level0 Setup // Green 4 Level1 Setup // Green 4 Level2 Setup ……. ……. // Green 4 Level15 Setup } (13) ANASET Command 1; Parameter: 3 (32H) A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 1 0 0 1 0 - Parameter1(P1) 1 1 0 * * * * * P12 P11 P10 OSC frequency Adjustment Parameter2(P2) 1 1 0 * * * * * * P21 P20 Booster Efficiency Set Parameter3(P3) 1 1 0 * * * * * P32 P31 P30 Bias setting P1: OSC frequency adjustment P10 P11 P12 CL pin frequency ( KHz ) : CL pin frequency ( KHz ) : CL dividing ratio setting = 00H CL dividing ratio setting = 04H (No division) (Divided by 2) 0 0 0 10.46 5.23 0 0 1 10.82 5.41 0 1 0 11.67 5.84 0 1 1 12.74 6.37 1 0 0 14.03 7.02 1 0 1 15.63 7.82 1 1 0 17.61 8.81 1 1 1 20.32 10.16 OSC frequency can be adjusted by P1 setting and command CAH, see page 49. The default OSC frequency (CL pin frequency) is 10.46KHz. And the frame frequency is from OSC frequency and duty setting, as the formula shown below: Frame frequency = OSC frequency/(Duty+1) Ver 1.3 66/99 2006/08/15 ST7636 Example: 1. duty=132, P1 setting=[000], frame frequency=10.46KHz/133~78.64Hz 2. duty=128, P1 setting=[101], frame frequency=15.63KHz/129~121.16Hz P2: Booster Efficiency set P21 P20 Frequency ( Hz ) 0 0 Level 1 0 1 Level 2 1 0 Level 3 1 1 Level 4 By Booster Stages (2X, 3X, 4X, 5X, 6X, 7X, 8X) and Booster Efficiency (Level1~4) commands, we could easily set the best Booster performance with suitable current consumption. If the Booster Efficiency is set to higher level (level4 is higher than level1). The Boost Efficiency is better than lower level, and it just need few more power consumption current. P3: Select LCD bias ratio of the voltage required for driving the LCD. P32 P31 P30 LCD bias 0 0 0 1/12 0 0 1 1/11 0 1 0 1/10 0 1 1 1/9 1 0 0 1/8 1 0 1 1/7 1 1 0 1/6 1 1 1 1/5 (14) Color Dither OFF (DITHOFF) Command: 1; Parameter: None (34H) Turn off the dithering circuit. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 0 1 0 0 (15) Color Dither ON (DITHON) Command: 1; Parameter: None (35H) Turn on the dithering circuit. Command Ver 1.3 A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 0 1 0 1 67/99 2006/08/15 ST7636 (16) Control EEPROM: 1; Parameter: 1 (CDH) A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 1 1 0 0 1 1 0 1 Parameter (P1) 1 1 0 * * P15 * * * * * P15: when setting “1” è The Write Enable of EEPROM will be opened. P15: when setting “0” è The Read Enable of EEPROM will be opened. (17) Cancel EEPROM Command: 1;Parameter: None (CCH) Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 0 1 1 0 0 (18) Write data to EEPROM (EPMWR) Command: 1; Parameter: None (FCH) Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 1 1 1 0 0 (19) Read data from EEPROM (EPMWR) Command: 1; Parameter: None (FDH) Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 1 1 1 0 1 8.4 EXT=”0” or ”1” Function Description (1) Extension instruction disable (EXT IN) Command:1 Parameter: None (30H) Use the “Ext=0” command table Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 0 0 0 0 (2) Extension instruction enable (EXT OUT) Command:1 Parameter: None (31H) Use the extended command table (EXT=”1”) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 0 0 0 1 8.5 Referential Instruction Setup Flow 8.5.1 Initializing with the Built-in Power Supply Circuits Ver 1.3 68/99 2006/08/15 ST7636 Power On Keeping the /RES Pin = "L" and waiting for stabilizing the Power /RES Pin="H" and wait a minute ( t > 1.8 us ) User Application Setup by Internal Instructions [Sleep Out Preparation: 04H^3EH] [Sleep Out: 94H] [Internal OSC On: D1H] [Display Control: CAH] [COM Scan Direction: BBH] User LCD Power Setup by Internal Instructions [Analog Control - LCD Bias Select … : 32H] [Electronic Volume Control: 81H] [DC-DC Step-up Register Select: 20H] Execute the “Load EEPROM Flow” Execute the “Load Paint Flow” ( Adjust for Panel Characteristics ) [Normal / Inverse Display: A6H/A7H] [Data Display Setting: BCH] [Display On: AFH] [Column Address Setting: 15H] [Page Address Setting: 75H] [Entry Data Write Mode: 5CH] End of Initialization Figure 8.5.1.1 Initializing with the Built-in Power Supply Circuits Ver 1.3 69/99 2006/08/15 ST7636 Example:Initial code for 128X128 void ST7636_Init( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x0004 ); Write( DATA, 0x003e ); Write( COMMAND, 0x0094 ); // Ext = 0 // Sleep Preparation // Sleep Out Ready // Sleep Out Write( COMMAND, 0x00d1 ); Write( COMMAND, 0x00ca ); Write( DATA, 0x0000 ); Write( DATA, 0x001f ); Write( DATA, 0x0000 ); Write( COMMAND, 0x00bb ); Write( DATA, 0x0001 ); // Internal OSC on // Display Control // CL divisions // Duty Setting = 128 // Fr Inverse-set value // Com Scan Direct. Write( COMMAND, 0x0031 ); Write( COMMAND, 0x0032 ); Write( DATA, 0x0000 ); Write( DATA, 0x0001 ); Write( DATA, 0x0000 ); // Ext = 1 // Analog Setting // OSC adjustment // Booster Efficiency Setting // Bias Setting Write( COMMAND, 0x0030 ); Write( COMMAND, 0x0081 ); Write( DATA, 0x003f ); Write( DATA, 0x0004 ); Write( COMMAND, 0x0020 ); Write( DATA, 0x00b ); // Ext = 0 // Electronic Volume Control // EV:Vop[5:0]_6bit // EV:Vop[8:6]_3bit // Power Control // B/F/R = On/On/On LoadEEPROM(); LoadPaint(); // Load EEPROM, see page 42 // Load Paint Setup, see page 68 Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00a6 ); Write( COMMAND, 0x00bc ); Write( DATA, 0x0000 ); Write( DATA, 0x0000 ); Write( DATA, 0x0001 ); Write( COMMAND, 0x00af ); // Ext = 0 // Normal Display // Data Scan Direction // Page / Column Address Setting // RGB arrangement // Gray-scale setup ( 64-gray: 01H) // Display On Write( COMMAND, 0x0015 ); Write( DATA, 0 ); Write( DATA, 127 ); Write( COMMAND, 0x0075 ); Write( DATA, 0 ); Write( DATA, 127 ); // Column address set // From column address 0 to 127 // Page address set // From page address 0 to 127 } Ver 1.3 70/99 2006/08/15 ST7636 8.5.2 Sleep In/Out Fig 8.5.2.1 Sleep In/Out Example:Sleep In Operation void SleepIn( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00ae ); Write( COMMAND, 0x0020); Write( DATA, 0x0003 ); Write( COMMAND, 0x0004 ); Write( DATA, 0x003f ); Delay( 500ms); Write( COMMAND, 0x0095 ); // Ext = 0 // Display Off // Power Control // B/F/R = Off/On/On // Sleep Preparation // Sleep In Ready // Sleep In } Example:Sleep Out Operation void SleepOut( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x0004 ); Write( DATA, 0x003e ); Write( COMMAND, 0x0020 ); Write( DATA, 0x000b ); Write( COMMAND, 0x0094 ); Delay( 100ms ); Write( COMMAND, 0x00af ); // Ext = 0 // Sleep Preparation // Sleep Out Ready // Power Control // B/F/R = On/On/On // Sleep Out // Display On } Ver 1.3 71/99 2006/08/15 ST7636 8.5.3 Data Displaying Normal State Display Data RAM Addressing by Instruction [Data Control: BCH] [Set Page Address: 75H] [Set Column Address: 15H] [Entry Memory Write Mode: 5CH] Display Data Write [Display Data Write] No End of Display Data Write ? Yes End of Data Display Figure 8.5.3.1 Data Displaying Example:Display for 128X128 void Display( char *pattern ) { unsigned char i, j; Write( COMMAND, 0x0030 ); Write( COMMAND, 0x0015 ); Write( DATA, 0 ); Write( DATA, 127 ); Write( COMMAND, 0x0075 ); Write( DATA, 0 ); Write( DATA, 127 ); Write( COMMAND, 0x005c ) for( j = 0; j < 127 ; j++ ) for( i = 0 ; i < 127 ; i++ ) Write( DATA, pattern[j*128+i] ); // Ext = 0 // Column address set // From column address 0 to 127 // Page address set // From page address 0 to 127 // Entry Memory Write Mode // Display Data Write } Ver 1.3 72/99 2006/08/15 ST7636 8.5.4 Partial Display In/Out Figure 8.5.4.1 Partial Display In/Out Example:Partial Display In Operation void PartailIn( unsigned char start_block, unsigned char end_block ) { Write( COMMAND, 0x0030 ); // Ext = 0 Write( COMMAND, 0x00A8); // Partial Display In Function Write( DATA, start_block ); // Start Block Write( DATA, end_block ); // End Block } void PartailOut( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00A9 ); // Ext = 0 // Partial Display Out Function } Ver 1.3 73/99 2006/08/15 ST7636 extern unsigned char *display_pattern; void main() { PartialIn( 11, 18 ); // entry partial display mode Windowing( 0, 11*4, 131, 18*4 ); PartialDisplay( display_pattern ); . . . PartialOut(); // set the page and column range // Fill the data into partial display area // Out of partial display mode } 8.5.5 Scroll Display Figure 8.5.5.1 Scroll Display Ver 1.3 74/99 2006/08/15 ST7636 Example:Screen Scroll Operation void CenterScreenScroll( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AA); Write( DATA, 0x000a ); Write( DATA, 0x0014 ); Write( DATA, 0x0014 ); Write( DATA, 0x0000 ); // Ext = 0 // Partial Display In Function // Top_Block=10 // Bottom_Block=20 // Number of Specified Blocks=Bottom_Block=20 // Area Scroll Type=Center Screen Scroll ScrollUp() or ScrollDown(); // Scroll Up or Scroll Down } void TopScreenScroll( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AA); Write( DATA, 0x0000 ); Write( DATA, 0x0014 ); Write( DATA, 0x0014 ); Write( DATA, 0x0001 ); // Ext = 0 // Partial Display In Function // Top_Block=0 // Bottom_Block=20 // Number of Specified Blocks=Bottom_Block=20 // Area Scroll Type=Top Screen Scroll ScrollUp() or ScrollDown(); // Scroll Up or Scroll Down } void BottomScreenScroll( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AA); Write( DATA, 0x000a ); Write( DATA, 0x0020 ); Write( DATA, 0x0020 ); Write( DATA, 0x0002 ); // Ext = 0 // Partial Display In Function // Top_Block=10 // Bottom_Block=32 // Number of Specified Blocks=Bottom_Block=32 // Area Scroll Type=Bottom Screen Scroll ScrollUp() or ScrollDown(); // Scroll Up or Scroll Down } void WholeScreenScroll( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AA); Write( DATA, 0x0000 ); Write( DATA, 0x0020 ); Write( DATA, 0x0020 ); Write( DATA, 0x0003 ); // Ext = 0 // Partial Display In Function // Top_Block=0 // Bottom_Block=32 // Number of Specified Blocks=Bottom_Block=32 // Area Scroll Type=Whole Screen Scroll ScrollUp() or ScrollDown(); // Scroll Up or Scroll Down } Ver 1.3 75/99 2006/08/15 ST7636 void ScrollUp( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AB); Write( DATA, Top_Block); Delay(); // Ext = 0 // Scroll Start Set // Start Block Address=Top_Block // Delay Write( COMMAND, 0x00AB); Write( DATA, Top_Block +1 ); Delay(); // Scroll Start Set // Start Block Address= Top_Block+1 // Delay Write( COMMAND, 0x00AB); Write( DATA, Top_Block +2 ); Delay(); …… …… Write( COMMAND, 0x00AB); Write( DATA, Bottom_Block ); Delay(); // Scroll Start Set // Start Block Address= Top_Block +2 // Delay // Scroll Start Set // Start Block Address= Bottom_Block // Delay } void ScrollDown( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00AB); Write( DATA, Bottom_Block); Delay(); // Ext = 0 // Scroll Start Set // Start Block Address= Bottom_Block // Delay Write( COMMAND, 0x00AB); Write( DATA, Bottom_Block -1 ); Delay(); // Scroll Start Set // Start Block Address= Bottom_Block -1 // Delay Write( COMMAND, 0x00AB); Write( DATA, Bottom_Block -2 ); Delay(); …… …… Write( COMMAND, 0x00AB); Write( DATA, Top _Block ); Delay(); // Scroll Start Set // Start Block Address= Bottom_Block -2 // Delay // Scroll Start Set // Start Block Address= Top_Block // Delay } Ver 1.3 76/99 2006/08/15 ST7636 8.5.6 Read-Modify-Write Cycle Figure 8.5.6.1 Read-Write-Modify Cycle Example:Read-Write-Modify Cycle void ReadModifyWriteIn( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00E0 ); } void ReadModifyWriteOut( void ) { Write( COMMAND, 0x0030 ); Write( COMMAND, 0x00EE ); } // Ext = 0 // Entry the Read-Modify-Write mode // Ext = 0 // Out of partial display mode extern unsigned char *display_pattern; void main() { unsigned pixel, i; Windowing( 11, 31, 80, 50 ); Ver 1.3 // set the page and column range 77/99 2006/08/15 ST7636 ReadModifyWriteIn(); // entry the Read-Modify-Write mode for( i = 0 ; i < 1400 ; i++ ) { Read( DATA ); pixel = Read( DATA ); pixel = pixel & 0x07ff; Write( DATA, pixel ); } // For dummy read // Pixel read // Pixel modify: red filter ReadModifyWriteOut(); // Out of Read-Modify-Write mode } 8.5.7 Power OFF Power OFF Normal State Execute the “Sleep In Flow” Keeping /RES Pin =“L” Power Off (VDD-VSS) End of Power OFF VDD /RES tR Internal State Normal State Execute “Sleep In Flow” Reset tR > 12 ms Power Off After Sleep In Flow, keep the /RES = Low Figure 8.5.7.1 Power off Ver 1.3 78/99 2006/08/15 ST7636 9. LIMITING VALUES In accordance with the Absolute Maximum Rating System; see notes 1 and 2. Parameter Symbol Conditions Unit Power supply voltage VDD, VDD1~VDD5 –0.5 ~ +4.0 V Power supply voltage (VDD standard) VOUTIN –0.5 ~ +20 V Power supply voltage (VDD standard) V1, V2, V3, V4 0.3 to VOUTIN V Input voltage VIN –0.5 to VDD+0.5 V Output voltage VO –0.5 to VDD+0.5 V Operating temperature(Die) TOPR –30 to +85 °C Storage temperature(Die) TSTR –40 to +125 °C VLCD V1 to V4 VDD VDD VSS VSS System (MPU) side VSS ST7636chip side Notes 1. Stresses above those listed under Limiting Values may cause permanent damage to the device. 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. 3. Insure that the voltage levels of V1, V2, V3, and V4 are always such that VOUTIN ≧ V0 ≧ V1 ≧ V2 ≧ V3 ≧ V4 ≧ VSS Ver 1.3 79/99 2006/08/15 ST7636 10. HANDLING Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS devices”). 11. DC CHARACTERISTICS VDD = 2.4 V to 3.3V; VSS = 0 V; VLCD = 3.76 to 18.0V; Tamb = -30℃ to +85℃; unless otherwise specified. Rating Item Symbol Applicable Condition Units Min. Typ. Max. Pin High-level Input Voltage VIHC 0.8 x VDD — VDD V *1 Low-level Input Voltage VILC VSS — 0.2 x VDD V *1 High-level Output Voltage VOHC 0.8 x VDD — VDD V *2 Low-level Output Voltage VOLC VSS — 0.2 x VDD V *2 Input leakage current ILI VIN = VDD or VSS –1.0 — 1.0 μA *3 Output leakage current ILO VIN = VDD or VSS –3.0 — 3.0 μA *4 — 1 10 VOUTIN = Ta = 25°C Liquid Crystal Driver ON 15.0 V RON SEGn KΩ (Relative Resistance To VSS) COMn *5 VOUTIN = — 2 15 — 10.46 20.32 kHz *6 — 324.26 629.92 kHz OSC 8.0 V Internal Oscillator fOSC External Input fCL Oscillator 1/132 duty Frequency Ta = 25°C Internal OSC: 31 PWM fFRAME = fOSC /(Duty+1) Frame frequency fFRAME Hz External OSC: fFRAME = fCL /[31*(Duty+1)] Rating Item Symbol Condition Units Applicable Pin Min. Typ. Max. (Relative to VSS) 2.4 — 3.3 V VSS*7 (Relative to VSS) 2.4 — 3.3 V VSS (Relative To VSS) — — 20 V VOUTOUT VDD Operating Voltage (1) Internal Power VDD1 VDD2 VDD3 Operating Voltage (2) VDD4 VDD5 Supply Step-up output VOUTOUT voltage Circuit Ver 1.3 80/99 2006/08/15 ST7636 Voltage regulator Circuit Operating VOUTIN (Relative To VSS) — — 20 V VOUTIN Voltage Dynamic Consumption Current : During Display, with the Internal Power Supply OFF Current consumed by total ICs when an external power supply is used . Rating Test pattern Symbol Condition Units Notes — μA *8 10 μA die Min. Typ. Max. — 500(Die) — — VDD = 2.8 V, Booster x 6 Display Pattern ISS V0 – VSS = 13.8 V Normal @ 1/12 bias,1/128 duty Power Down ISS Ta = 25°C Notes to the DC characteristics 1. The maximum possible VLCD voltage that may be generated is dependent on voltage, temperature and (display) load Internal clock. 2. Power-down mode. During power down all static currents are switched off. 3. If external VLCD, the display load current is not transmitted to IDD. 4. VLCD external voltage applied to VOUTIN pin; VOUTIN disconnected from VOUTOUT References for items market with * *1 The A0, D0 to D5, D6 (SI), D7 (SCL), /RD (E), /WR ,/(R/W), /CS, IMS, OSC, P/S, /DOF, RESB terminals. *2 The D0 to D7. *3 The A0,/RD (E), /WR ,/(R/W), /CS, and RES terminals. *4 Applies when the D0 to D5, D6 (SI), D7 (SCL) terminals are in a high impedance state. *5 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range. RON = 0.1 V /ΔI (Where ΔI is the current that flows when 0.1 V is applied while the power supply is ON.) *6 The relationship between the oscillator frequency and the frame rate frequency under CL dividing ratio setting = 00H. *7 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden fluctuations to the voltage while the MPU is being accessed. *8 It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on. Ver 1.3 81/99 2006/08/15 ST7636 12. TIMING CHARACTERISTICS System Bus Read/Write Characteristics 1 (For the 8080 Series MPU) A0 tAW8 tAH8 /CS tCYC8 tCCLR,tCCLW WR,RD tCCHR,tCCHW tDS8 tDH8 D0 to D7 (Write) tACC8 tOH8 D0 to D7 (Read) Figure 12.1 (VDD=3.3V, Ta= –30 to 85°C, die) Rating Item Signal Symbol Condition Units Min. Max. tAH8 30 — Address setup time tAW8 30 — System cycle time (WRITE) tCYC8 340 — fCYC8 2.94 — /WR L pulse width (WRITE) tCCLW 60 — /WR H pulse width (WRITE) tCCHW 280 — System cycle time (READ) tCYC8 500 — tCCLR 150 — /RD H pulse width (READ) tCCHR 350 — WRITE data setup time tDS8 110 — tDH8 30 — Address hold time A0 System frequency (WRITE) WR /RD L pulse width (READ) RD WRITE data hold time D0 to D7 READ access time tACC8 CL = 100 pF — 70 READ Output disable time tOH8 CL = 100 pF — 50 Ver 1.3 82/99 ns MHz ns 2006/08/15 ST7636 (VDD=2.8V,Ta= –30 to 85°C, die) Rating Item Signal Symbol Condition Units Min. Max. tAH8 40 — Address setup time tAW8 40 — System cycle time (WRITE) tCYC8 400 — fCYC8 2.5 — /WR L pulse width (WRITE) tCCLW 70 — /WR H pulse width (WRITE) tCCHW 330 — System cycle time (READ) tCYC8 600 — tCCLR 190 — /RD H pulse width (READ) tCCHR 410 — WRITE data setup time tDS8 120 — tDH8 30 — Address hold time A0 System frequency (WRITE) WR RD /RD L pulse width (READ) WRITE data hold time D0 to D7 READ access time tACC8 CL = 100 pF — 140 READ Output disable time tOH8 CL = 100 pF — 100 ns MHz ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tCCLW and tCCLR are specified as the overlap between /CS being “L” and WR and RD being at the “L” level. System Bus Read/Write Characteristics 1 (For the 6800 Series MPU) A0 R/W tAW6 tAH6 CS1 (CS2="1") tCYC6 tCCLR,tCCLW E tCCHR,tCCHW tDS6 tDH6 D0 to D7 (Write) tACC6 tOH6 D0 to D7 (Read) Figure 12.2 Ver 1.3 83/99 2006/08/15 ST7636 (VDD=3.3V, Ta= –30 to 85°C, die) Rating Item Signal Symbol Condition Units Min. Max. tAH8 30 — Address setup time tAW8 30 — System cycle time (WRITE) tCYC8 340 — fCYC8 2.94 — Enable L pulse width (WRITE) tCCLW 280 — Enable H pulse width (WRITE) tCCHW 60 — System cycle time (READ) tCYC8 500 — tCCLR 350 — Enable H pulse width (READ) tCCHR 150 — WRITE data setup time tDS8 110 — tDH8 30 — Address hold time A0 System frequency (WRITE) WR Enable L pulse width (READ) RD WRITE data hold time D0 to D7 READ access time tACC8 CL = 100 pF — 70 READ Output disable time tOH8 CL = 100 pF — 50 ns MHz ns (VDD=2.8V, Ta= –30 to 85°C, die) Rating Item Signal Symbol Condition Units Min. Max. tAH8 40 — Address setup time tAW8 40 — System cycle time (WRITE) tCYC8 400 — fCYC8 2.44 — Enable L pulse width (WRITE) tCCLW 330 — Enable H pulse width (WRITE) tCCHW 70 — System cycle time (READ) tCYC8 600 — tCCLR 410 — Enable H pulse width (READ) tCCHR 190 — WRITE data setup time tDS8 120 — tDH8 30 — Address hold time A0 System frequency (WRITE) WR Enable L pulse width (READ) RD WRITE data hold time D0 to D7 READ access time tACC8 CL = 100 pF — 140 READ Output disable time tOH8 CL = 100 pF — 100 ns MHz ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tEWLW and tEWLR are specified as the overlap between /CS being “L” and E. Ver 1.3 84/99 2006/08/15 ST7636 Serial Interface Characteristics (For 4-Line Interface) tCCSS tCSH /CS1 (CS2="1") tSAS tSAH A0 tSCYC tSLW SCL tSHW tf tr tSDS tSDH SI Fig 12.3 (VDD=3.3V, Ta= –30 to 85°C, die) Rating Item Signal Symbol Condition Units Min. Max. tSCYC 100 — ns fSCYC 10 — MHz tSHW 70 — tSLW 30 — tSAS 30 — Address hold time tSAH 50 — Data setup time tSDS 20 — tSDH 50 — tCSS 40 — tCSH 80 — Serial clock period Serial clock frequency SCL “H” pulse width SCL SCL “L” pulse width Address setup time A0 SI Data hold time CS-SCL time /CS CS-SCL time Ver 1.3 85/99 ns 2006/08/15 ST7636 (VDD=2.8V,Ta= –30 to 85°C, die) Rating Item Signal Symbol Condition Units Min. Max. tSCYC 110 — ns fSCYC 9.09 — MHz tSHW 80 — tSLW 30 — tSAS 30 — Address hold time tSAH 50 — Data setup time tSDS 20 — tSDH 50 — tCSS 40 — tCSH 80 — Serial clock period Serial clock frequency SCL SCL “H” pulse width SCL “L” pulse width Address setup time A0 SI Data hold time CS-SCL time /CS CS-SCL time ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard. Serial Interface Characteristics (For 3-Line Interface) tCCSS tCSH /CS1 (CS2="1") tSCYC tSLW SCL tSHW tf tr tSDS tSDH SI Fig 12.4 Ver 1.3 86/99 2006/08/15 ST7636 (VDD=3.3V,Ta= –30 to 85°C, die) Rating Item Signal Serial clock period Serial clock frequency SCL “H” pulse width Symbol Condition Units Min. Max. tSCYC 100 — ns fSCYC 10 — MHz tSHW 70 — tSLW 30 — tSDS 20 — tSDH 50 — tCSS 40 — tCSH 80 — SCL SCL “L” pulse width Data setup time SI Data hold time CS-SCL time /CS CS-SCL time ns (VDD=2.8V,Ta= –30 to 85°C,die ) Rating Item Signal Serial clock period Serial clock frequency SCL “H” pulse width Symbol Condition Units Min. Max. tSCYC 110 — ns fSCYC 9.09 — MHz tSHW 80 — tSLW 30 — tSDS 20 — tSDH 50 — tCSS 40 — tCSH 80 — SCL SCL “L” pulse width Data setup time SI Data hold time CS-SCL time /CS CS-SCL time ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard. Ver 1.3 87/99 2006/08/15 ST7636 (VDD=2.8/3.3V, Ta= –30 to 85°C, die) Rating Item Signal Symbol Condition Units Min. Max. SCL clock frequency SCL FSCLK — 400 SCL clock low period SCL TLOW 1.3 — SCL clock high period SCL THIGH 0.6 — Data set-up time SI TSU;Data 100 — Data hold time SI THD;Data 0 0.9 SCL,SDA rise time SCL TR 20+0.1Cb 300 SCL,SDA fall time SCL TF 20+0.1Cb 400 Cb — 400 Capacitive load represented by each bus line Setup time for a repeated START condition SI TSU;SUA 0.6 — Start condition hold time SI THD;STA 0.6 — Setup time for STOP condition TSU;STO 0.6 — Tolerable spike width on bus TSW — 50 BUS free time between a STOP and START condition SCL TBUF 1.3 — kHZ us ns us 13. RESET TIMING tRW /RES tR Internal status During reset Reset complete Fig 13.1 (VDD = 3.3V , Ta = –30 to 85°C, die) Rating Item Signal Reset time Symbol Condition tR Reset “L” pulse width RESB tRW Units Min. Typ. Max. 1 — — us 1.2 — — us (VDD = 2.7V , Ta = –30 to 85°C, die) Rating Item Signal Reset time Reset “L” pulse width Ver 1.3 Symbol Condition tR RESB tRW 88/99 Units Min. Typ. Max. 1 — — us 1.3 — — us 2006/08/15 ST7636 14. Display Application Examples between ST7636 and Panel 14.1 128 X 128 panel and CSEL=0 configuration Figure 14.1 128 X 128 panel and CSEL=0 configuration Initialize Setting: Application Suggestion VDD, VDD1 = 2.4 ~ 3.3 ( V ) VDD2 ~ VDD5 = 2.4 ~ 3.3 ( V ) Bias = 1 / 12 Duty = 128 Option Pin Setting: CSEL = 0 COMMAND BBH CAH 75H 15H BCH BCH Register Setting: PARAMETER DESCRIPTION P1 = 01H Common scan direction P2 = 31H Duty = 128 P1 = 0, P2 = 127 Page = 0 ~ 127 P1 = 0, P2 = 127 Column = 0 ~ 127 P1 = 00H Address scan direction P2 = 00H RGB arrangement 9. Display Application Examples between ST7636 and9. Display Application Examples between ST7636 and Panel Ver 1.3 89/99 2006/08/15 ST7636 14.2 128 X 128 panel and CSEL=0 configuration Figure 14.2 128 X 128 panel and CSEL=0 configuration Initialize Setting: Application Suggestion VDD, VDD1 = 2.4 ~ 3.3 ( V ) VDD2 ~ VDD5 = 2.4 ~ 3.3 ( V ) Bias = 1 / 12 Duty = 128 Option Pin Setting: CSEL = 0 COMMAND BBH CAH 75H 15H BCH BCH Register Setting: PARAMETER DESCRIPTION P1 = 01H Common scan direction P2 = 31H Duty = 128 P1 = 0, P2 = 127 Page = 0 ~ 127 P1 = 4, P2 = 131 Column = 4 ~ 131 P1 = 02H Address scan direction P2 = 01H RGB arrangement 9 9. Display Application Examples between ST7636 and Panel Ver 1.3 90/99 2006/08/15 ST7636 14.3 128 X 128 panel and CSEL=1 configuration Figure 14.3 128 X 128 panel and CSEL=1 configuration Initialize Setting: Application Suggestion VDD, VDD1 = 2.4 ~ 3.3 ( V ) VDD2 ~ VDD5 = 2.4 ~ 3.3 ( V ) Bias = 1/12 Duty = 128 COMMAND CAH 75H 15H BCH BCH Register Setting: PARAMETER DESCRIPTION P2 = 31H Duty = 128 P1 = 0, P2 = 127 Page = 0 ~ 127 P1 = 0, P2 = 127 Column = 0 ~ 127 P1 = 00H Address scan direction P2 = 00H RGB arrangement Option Pin Setting: CSEL = 1 9. Display Application Examples between ST7636 and Panel Ver 1.3 91/99 2006/08/15 ST7636 14.4 128 X 128 panel and CSEL=1 configuration Figure 14.4 128 X 128 panel and CSEL=1 configuration Initialize Setting: Application Suggestion VDD, VDD1 = 2.4 ~ 3.3 ( V ) VDD2 ~ VDD5 = 2.4 ~ 3.3 ( V ) Bias = 1/12 Duty = 128 COMMAND CAH 75H 15H BCH BCH Register Setting: PARAMETER DESCRIPTION P2 = 31H Duty = 128 P1 = 0, P2 = 127 Page = 0 ~ 127 P1 = 0, P2 = 127 Column = 0 ~ 127 P1 = 03H Address scan direction P2 = 00H RGB arrangement Option Pin Setting: CSEL = 1 15. THE MPU INTERFACE (REFERENCE EXAMPLES) The ST7636 Series can be connected to either 8080 Series MPUs or to 6800 Series MPUs. Moreover, using the serial interface it is possible to operate the ST7636 series chips with fewer signal lines. The display area can be enlarged by using multiple ST7636 Series chips. When this is done, the chip select signal can be used to select the individual Ics to access. Ver 1.3 92/99 2006/08/15 ST7636 (1) 8080 Series MPUs VDD VCC VDD A0 A0 CS1 DO to D7 RD WR RES GND ST7636 MPU CS1 IF1 IF2 IF3 D0 to D7 /RD (E) /WR (R/W) /RES VSS RESET VSS (2) 6800 Series MPUs VD D V DD A0 A0 CS1 CS1 DO to D7 RD WR RES GND IF1 IF2 IF3 ST7636 MPU V CC D0 to D7 E(/RD) R/W (/W R) /RES V SS RESET V SS (3) Using the Serial Interface (4-line interface) V DD V CC V DD A0 C S1 C S1 IF1 IF2 IF3 Port 1 Port 2 RES G ND ST7636 MPU A0 SI SC L /R E S V SS R E SE T V SS (4) Using the Serial Interface (3-line interface) V DD or V SS V CC V DD IF1 IF2 IF3 CS1 Port 1 Port 2 RES GND ST7636 MPU CS1 SI SCL /RES V SS RESET V SS Ver 1.3 93/99 2006/08/15 ST7636 Application Circuits ( A ) 80 Series 16-bit Parallel Interface: 4 65 COM1 00 COM1 31 .. .. .... A0 WR D0 D1 D2 D3 D4 D5 D6 D7 VCC GND NC VDD CL CLS VSS VDD A0 RW_WR VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 VSS VDD E_ RD RST VSS VDD CSEL I NTRS I F1 I F2 I F3 VSS VDD SI SCL /CS VDD SEG0 .. ... . VDD 5 81 5 82 5 83 5 84 VDD VDD1 VDD1 VSS ..... . 6 04 6 05 6 06 6 07 6 08 6 09 VDD1 VSS VDD4 VDD4 VDD3 VDD3 VDD2 ...... 6 18 6 19 VDD2 VDD5 ...... C2 1 .0 uF C6 1 .0 uF C4 1 .0 uF C5 1 .0 uF C1 C3 1 .0 uF 1 .0 uF 6 22 6 23 6 24 6 25 6 26 6 27 6 28 6 29 6 30 6 31 6 32 6 33 6 34 6 35 432 431 COM6 7 COM6 6 430 S0 35 S395 ST7636 ( BUMP SIDE ) D8 D9 D10 D11 D12 D13 D14 D15 RD RES CS 464 463 COM9 9 COM9 8 5 32 5 33 5 34 5 35 5 36 5 37 5 38 5 39 5 40 5 41 5 42 5 43 5 44 5 45 5 46 5 47 5 48 5 49 5 50 5 51 5 52 5 53 5 54 5 55 5 56 5 57 5 58 5 59 5 60 5 61 5 62 5 63 5 64 5 65 5 66 5 67 5 68 5 69 5 70 5 71 5 72 5 73 5 74 5 75 5 76 C131 C130 C97 4 96 NC C99 C98 C66 4 97 VDD5 TCAP CA P2P CA P2N CA P6P CA P2N CA P4P CA P7P CA P1N CA P5P CA P3P CA P1N CA P1P VOUTIN ...... Cout 1 .0 uF 6 40 6 41 VOUTIN VOUTOUT ..... . 1 .0 uF 1 .0 uF 1 .0 uF VOUTOUT VREF VR V4 V3 V2 V1 V0OUT SEG 39 5 34 33 COM6 5 COM6 4 6 56 6 57 V0OUT V0IN .... RV0 1M~3M Oh m 6 46 6 47 6 48 6 49 6 50 6 51 6 52 6 53 ...... 1 .0 uF CV4 CV3 CV2 CV1 CV0 1 .0 uF 6 60 2 1 COM3 3 COM3 2 V0IN COM31 COM0 JP? ST7636-CA C31 C65 C64 6 92 C0 C33 C32 6 61 Interface: 80 series 16-bit Interface Booster: 7x Use Internal Resistors Capacitor: 1.0 uF / 25V Resistor: 1M ~ 3M Ohm Ver 1.3 94/99 2006/08/15 ST7636 Application Circuits (Continue) ( B ) 80 Series 8-bit Parallel Interface: 4 65 COM1 00 COM1 31 .. .. .... A0 WR D0 D1 D2 D3 D4 D5 D6 D7 VCC GND NC VDD CL CLS VSS VDD A0 RW_WR VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 VSS VDD E_ RD RST VSS VDD CSEL I NTRS I F1 I F2 I F3 VSS VDD SI SCL /CS VDD SEG0 .. ... . VDD 5 81 5 82 5 83 5 84 VDD VDD1 VDD1 VSS ..... . 6 04 6 05 6 06 6 07 6 08 6 09 VDD1 VSS VDD4 VDD4 VDD3 VDD3 VDD2 ...... 6 18 6 19 VDD2 VDD5 ...... C2 1 .0 uF C6 1 .0 uF C4 1 .0 uF C5 1 .0 uF C1 C3 1 .0 uF 1 .0 uF 6 22 6 23 6 24 6 25 6 26 6 27 6 28 6 29 6 30 6 31 6 32 6 33 6 34 6 35 432 431 COM6 7 COM6 6 430 S0 35 S395 ST7636 ( BUMP SIDE ) RD RES CS 464 463 COM9 9 COM9 8 5 32 5 33 5 34 5 35 5 36 5 37 5 38 5 39 5 40 5 41 5 42 5 43 5 44 5 45 5 46 5 47 5 48 5 49 5 50 5 51 5 52 5 53 5 54 5 55 5 56 5 57 5 58 5 59 5 60 5 61 5 62 5 63 5 64 5 65 5 66 5 67 5 68 5 69 5 70 5 71 5 72 5 73 5 74 5 75 5 76 C131 C130 C97 4 96 NC C99 C98 C66 4 97 VDD5 TCAP CA P2P CA P2N CA P6P CA P2N CA P4P CA P7P CA P1N CA P5P CA P3P CA P1N CA P1P VOUTIN ...... Cout 1 .0 uF 6 40 6 41 VOUTIN VOUTOUT ..... . 1 .0 uF 1 .0 uF 1 .0 uF VOUTOUT VREF VR V4 V3 V2 V1 V0OUT SEG 39 5 34 33 COM6 5 COM6 4 6 56 6 57 V0OUT V0IN .... RV0 1M~3M Oh m 6 46 6 47 6 48 6 49 6 50 6 51 6 52 6 53 ...... 1 .0 uF CV4 CV3 CV2 CV1 CV0 1 .0 uF 6 60 2 1 COM3 3 COM3 2 V0IN COM31 COM0 JP? ST7636-CA C31 C65 C64 6 92 C0 C33 C32 6 61 Interface: 80 series 8-bit Interface Booster: 7x Use Internal Resistors Capacitor: 1.0 uF / 25V Resistor: 1M ~ 3M Ohm Ver 1.3 95/99 2006/08/15 ST7636 Application Circuits (Continue) ( C ) 68 Series 16-bit Parallel Interface ( with external power supply to VLCD ): 4 65 COM1 00 COM1 31 .. .. .... A0 R_W D0 D1 D2 D3 D4 D5 D6 D7 VCC GND VOUT NC VDD CL CLS VSS VDD A0 RW_WR VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 VSS VDD E_ RD RST VSS VDD CSEL I NTRS I F1 I F2 I F3 VSS VDD SI SCL /CS VDD SEG0 .. ... . VDD 5 81 5 82 5 83 5 84 VDD VDD1 VDD1 VSS ..... . 6 04 6 05 6 06 6 07 6 08 6 09 VDD1 VSS VDD4 VDD4 VDD3 VDD3 VDD2 ...... 6 18 6 19 VDD2 VDD5 ...... 6 22 6 23 6 24 6 25 6 26 6 27 6 28 6 29 6 30 6 31 6 32 6 33 6 34 6 35 432 431 COM6 7 COM6 6 430 S0 35 S395 ST7636 ( BUMP SIDE ) D8 D9 D10 D11 D12 D13 D14 D15 E RES CS 464 463 COM9 9 COM9 8 5 32 5 33 5 34 5 35 5 36 5 37 5 38 5 39 5 40 5 41 5 42 5 43 5 44 5 45 5 46 5 47 5 48 5 49 5 50 5 51 5 52 5 53 5 54 5 55 5 56 5 57 5 58 5 59 5 60 5 61 5 62 5 63 5 64 5 65 5 66 5 67 5 68 5 69 5 70 5 71 5 72 5 73 5 74 5 75 5 76 C131 C130 C97 4 96 NC C99 C98 C66 4 97 VDD5 TCAP CA P2P CA P2N CA P6P CA P2N CA P4P CA P7P CA P1N CA P5P CA P3P CA P1N CA P1P VOUTIN ...... Cout 1 .0 uF 6 40 6 41 VOUTIN VOUTOUT ..... . 1 .0 uF 1 .0 uF 1 .0 uF VOUTOUT VREF VR V4 V3 V2 V1 V0OUT SEG 39 5 34 33 COM6 5 COM6 4 6 56 6 57 V0OUT V0IN .... RV0 1M~3M Oh m 6 46 6 47 6 48 6 49 6 50 6 51 6 52 6 53 ...... 1 .0 uF CV4 CV3 CV2 CV1 CV0 1 .0 uF 6 60 2 1 COM3 3 COM3 2 V0IN COM31 COM0 JP? ST7636-CA C31 C65 C64 6 92 C0 C33 C32 6 61 Interface: 68 series 16-bit Interface Booster: register VC = 0 Use External Power Supply to VLCD Capacitor: 1.0 uF / 25V Resistor: 1M ~ 3M Ohm Ver 1.3 96/99 2006/08/15 ST7636 Application Circuits (Continue) ( D ) 3 Line Serial Peripheral Interface: 465 COM100 COM131 .... . ... V CC G ND NC V DD CL CLS V SS V DD A0 RW_WR V SS V DD D0 D1 D2 D3 D4 D5 D6 D7 V SS V DD D8 D9 D 10 D 11 D 12 D 13 D 14 D 15 V SS V DD E_RD RST V SS V DD CSEL IN TRS IF1 IF2 IF3 V SS V DD SI SCL /CS V DD SEG 0 ...... V DD 581 582 583 584 V DD V DD 1 V DD 1 V SS ...... 604 605 606 607 608 609 VD D 1 V SS V DD 4 V DD 4 V DD 3 V DD 3 V DD 2 ...... 618 619 V DD 2 V DD 5 .. .... C2 1.0 uF C6 1.0 uF C4 1.0 uF C5 1.0 uF C1 C3 1.0 uF 1.0 uF 622 623 624 625 626 627 628 629 630 631 632 633 634 635 432 431 CO M67 CO M66 430 S0 35 S395 ST7636 ( BUMP SIDE ) RE S SI SCL CS 464 463 CO M99 CO M98 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 C131 C130 C97 496 NC C99 C98 C66 497 V DD 5 TCA P CA P2P CA P2N CA P6P CA P2N CA P4P CA P7P CA P1N CA P5P CA P3P CA P1N CA P1P V OU TIN ...... Cout 1.0 uF 640 641 V OU TIN V OU TOU T ...... 1.0 uF 1.0 uF 1.0 uF SEG395 656 657 34 33 CO M65 CO M64 V 0O UT V 0IN .... RV0 1M~3M O hm V OU TOU T V REF VR V4 V3 V2 V1 V 0O UT ...... 1.0 uF CV4 CV3 CV2 CV1 CV0 1.0 uF 646 647 648 649 650 651 652 653 660 2 1 CO M33 CO M32 V 0IN COM31 COM0 J P? ST7636-CA C31 C65 C64 692 C0 C33 C32 661 Interface: 3 Line Serial Peripheral Interface Booster: 7x Use Internal Resistors Capacitor: 1.0 uF / 25V Resistor: 1M ~ 3M Ohm Ver 1.3 97/99 2006/08/15 ST7636 Application Circuits (Continue) ( E ) 4 Line Serial Peripheral Interface: 4 65 COM100 COM131 .. .. .... VCC GND NC VDD CL CLS VSS VDD A0 RW_WR VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 VSS VDD E_ RD RST VSS VDD CSEL I NTRS I F1 I F2 I F3 VSS VDD SI SCL /CS VDD SEG0 ..... . VDD 5 81 5 82 5 83 5 84 VDD VDD1 VDD1 VSS ..... . 6 04 6 05 6 06 6 07 6 08 6 09 VDD1 VSS VDD4 VDD4 VDD3 VDD3 VDD2 ...... 6 18 6 19 VDD2 VDD5 ...... C2 1 .0 uF C6 1 .0 uF C4 1 .0 uF C5 1 .0 uF C1 C3 1 .0 uF 1 .0 uF 6 22 6 23 6 24 6 25 6 26 6 27 6 28 6 29 6 30 6 31 6 32 6 33 6 34 6 35 432 431 COM6 7 COM6 6 430 S0 35 S395 ST7636 ( BUMP SIDE ) A0 RES SI SCL CS 464 463 COM9 9 COM9 8 5 32 5 33 5 34 5 35 5 36 5 37 5 38 5 39 5 40 5 41 5 42 5 43 5 44 5 45 5 46 5 47 5 48 5 49 5 50 5 51 5 52 5 53 5 54 5 55 5 56 5 57 5 58 5 59 5 60 5 61 5 62 5 63 5 64 5 65 5 66 5 67 5 68 5 69 5 70 5 71 5 72 5 73 5 74 5 75 5 76 C131 C130 C97 4 96 NC C99 C98 C66 4 97 VDD5 TCAP CA P2P CA P2N CA P6P CA P2N CA P4P CA P7P CA P1N CA P5P CA P3P CA P1N CA P1P VOUTIN ...... Cout 1 .0 uF 6 40 6 41 VOUTIN VOUTOUT ..... . 1 .0 uF 1 .0 uF 1 .0 uF VOUTOUT VREF VR V4 V3 V2 V1 V0OUT SEG39 5 34 33 COM6 5 COM6 4 6 56 6 57 V0OUT V0IN .... RV0 1M~3M O hm 6 46 6 47 6 48 6 49 6 50 6 51 6 52 6 53 ...... 1 .0 uF CV4 CV3 CV2 CV1 CV0 1 .0 uF 6 60 2 1 COM3 3 COM3 2 V0IN COM31 COM0 JP? ST7636-CA C31 C65 C64 6 92 C0 C33 C32 6 61 Interface: 4 Line Serial Peripheral Interface Booster: 7x Use Internal Resistors Capacitor: 1.0 uF / 25V Resistor: 1M ~ 3M Ohm Microprocessor interface pins should not be floating in any operation mode. Ver 1.3 98/99 2006/08/15 ST7636 ST7636 Serial Specification Revision History Version Date Description 1.0 2004/12/8 1.1 To change bump size, height and chip thickness To change some indications in 7.10 section, including voltage converter, thermal gradient, EEPROM setting flow and demo 2005/05/13 program WriteEEPROM() To add demo program LoadPaint() To correct some typographic errors Remove preliminary and correct some typographic errors 1. Modify Limiting Value and DC Characteristic a. Temperature gradient (Add tolerance) b. Supply voltage (no tolerance). Ver 1.3 1.2 2005/9/15 c. Bump height d. Operating and storage temperature. 2. Add die note. 3. Modify EEPROM VOUTIN must be more than 17V. 4. Delete about IIC function and 2-line. 1.3 2006/8/15 Add microprocessor notice item(p.16, p.98). 99/99 2006/08/15