ST Sitronix ST7626 65K Color Dot Matrix LCD Controller/Driver 1. INTRODUCTION The ST7626 is a driver & controller LSI for 65K color graphic dot-matrix liquid crystal display systems. It generates 294 Segment and 68 Common driver circuits. This chip is connected directly to a microprocessor, accepts Serial Peripheral Interface (SPI) or 8-bit/16-bit parallel display data and stores in an on-chip display data RAM. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits necessary to drive liquid crystal, it is possible to make a display system with the fewest components. 2. FEATURES Driver Output Circuits ♦ 294 Segment Outputs / 68 Common Outputs Applicable Duty Ratios ♦ Various Partial Display ♦ Partial Window Moving & Data Scrolling ♦ On-chip Voltage Converter (x2, x3, x4, x5) with internal booster capacitors. ♦ Extremely Few Outsider Compoment. (Minimum required outsider compoments: One Capacitor). ♦ On-chip Voltage Regulator (Temperature gradient = -0.065%/°C) Gray-Scale Display ♦ On-chip Electronic Contrast Control Function (406 steps) ♦ 4FRC & 31 PWM function circuit to display ♦ Voltage Follower (LCD bias: 1/5 to 1/12) ♦ 64 gray-scale display. Operating Voltage Range On-chip Display Data RAM ♦ Supply Digital Voltage (VDD, VDD1): 1.8 to 3.3V ♦ Capacity: 98 x 68 x 16 =106,624 bits ♦ Supply Analog Voltage (VDD2, VDD3, VDD4, VDD5): 2.4 ♦ 4K colors (RGB)=(444) mode to 3.3V ♦ 65K colors (RGB)=(565) mode ♦ LCD Driving Voltage (VOP = V0 - VSS): 3.76V to 18V ♦ Truncated 262K colors (RGB)=(666) mode ♦ The suggested value of V0 is under 11 V with bias =1/9. ♦ Truncated 16M colors (RGB)=(888) mode LCD Driving Voltage (EEPROM) Microprocessor Interface ♦ Contrast Adjustment Value is stored in the Built-In ♦ 8/16-bit parallel bi-directional interface with 6800-series EEPROM for better display quility. LCM Performance Adjustment (EEPROM) or 8080-series ♦ 4-line serial interface (4-line-SIF) ♦ 3-line serial interface (3-line-SIF) ♦ Adjustment Value for best Display Performance is stored in the Built-In EEPROM. On-chip Low Power Analog Circuit Package Type ♦ On-chip Oscillator Circuit ♦ Application for COG ST7626 Ver 1.5 6800 , 8080 ,4-Line , 3-Line interface 1/94 2007/01/20 ST7626 3. ST7626 Pad Arrangement (COG) Chip Size : 9,717 um x 1,352.7 um Bump Pitch : PAD NO.1~328, 412~445 : 31 um (COM/SEG) PAD NO.329~341, 342~411, : 110 um (I/O) PAD NO.341~342 : 114.7 um (I/O) Bump Size : PAD NO.1~328, 412~445 : 16 um(x) X 118 um(y) PAD NO.329~411 : 95 um(x) X 50 um(y) Bump Height : 15 um Chip Thickness : 400 um x y 20 um 20 um 52 um (x , y) = (4762.7 um,580.35 um) 52 um 20 um (x , y) = (-4778.7 um,596.35 um) 52 um 20 um 52 um Ver 1.5 2/94 2007/01/20 ST7626 4. Pad Center Coordinates PIN Name PAD No. CSEL=0 CSEL=1 X Y PIN Name PAD No. CSEL=0 CSEL=1 X Y 001 SEG[293] 4541.5 545.35 034 SEG[260] 3518.5 545.35 002 SEG[292] 4510.5 545.35 035 SEG[259] 3487.5 545.35 003 SEG[291] 4479.5 545.35 036 SEG[258] 3456.5 545.35 004 SEG[290] 4448.5 545.35 037 SEG[257] 3425.5 545.35 005 SEG[289] 4417.5 545.35 038 SEG[256] 3394.5 545.35 006 SEG[288] 4386.5 545.35 039 SEG[255] 3363.5 545.35 007 SEG[287] 4355.5 545.35 040 SEG[254] 3332.5 545.35 008 SEG[286] 4324.5 545.35 041 SEG[253] 3301.5 545.35 009 SEG[285] 4293.5 545.35 042 SEG[252] 3270.5 545.35 010 SEG[284] 4262.5 545.35 043 SEG[251] 3239.5 545.35 011 SEG[283] 4231.5 545.35 044 SEG[250] 3208.5 545.35 012 SEG[282] 4200.5 545.35 045 SEG[249] 3177.5 545.35 013 SEG[281] 4169.5 545.35 046 SEG[248] 3146.5 545.35 014 SEG[280] 4138.5 545.35 047 SEG[247] 3115.5 545.35 015 SEG[279] 4107.5 545.35 048 SEG[246] 3084.5 545.35 016 SEG[278] 4076.5 545.35 049 SEG[245] 3053.5 545.35 017 SEG[277] 4045.5 545.35 050 SEG[244] 3022.5 545.35 018 SEG[276] 4014.5 545.35 051 SEG[243] 2991.5 545.35 019 SEG[275] 3983.5 545.35 052 SEG[242] 2960.5 545.35 020 SEG[274] 3952.5 545.35 053 SEG[241] 2929.5 545.35 021 SEG[273] 3921.5 545.35 054 SEG[240] 2898.5 545.35 022 SEG[272] 3890.5 545.35 055 SEG[239] 2867.5 545.35 023 SEG[271] 3859.5 545.35 056 SEG[238] 2836.5 545.35 024 SEG[270] 3828.5 545.35 057 SEG[237] 2805.5 545.35 025 SEG[269] 3797.5 545.35 058 SEG[236] 2774.5 545.35 026 SEG[268] 3766.5 545.35 059 SEG[235] 2743.5 545.35 027 SEG[267] 3735.5 545.35 060 SEG[234] 2712.5 545.35 028 SEG[266] 3704.5 545.35 061 SEG[233] 2681.5 545.35 029 SEG[265] 3673.5 545.35 062 SEG[232] 2650.5 545.35 030 SEG[264] 3642.5 545.35 063 SEG[231] 2619.5 545.35 031 SEG[263] 3611.5 545.35 064 SEG[230] 2588.5 545.35 032 SEG[262] 3580.5 545.35 065 SEG[229] 2557.5 545.35 033 SEG[261] 3549.5 545.35 066 SEG[228] 2526.5 545.35 Ver 1.5 3/94 2007/01/20 ST7626 PIN Name PAD No. CSEL=0 CSEL=1 X Y PIN Name PAD No. CSEL=0 CSEL=1 X Y 067 SEG[227] 2495.5 545.35 102 SEG[192] 1410.5 545.35 068 SEG[226] 2464.5 545.35 103 SEG[191] 1379.5 545.35 069 SEG[225] 2433.5 545.35 104 SEG[190] 1348.5 545.35 070 SEG[224] 2402.5 545.35 105 SEG[189] 1317.5 545.35 071 SEG[223] 2371.5 545.35 106 SEG[188] 1286.5 545.35 072 SEG[222] 2340.5 545.35 107 SEG[187] 1255.5 545.35 073 SEG[221] 2309.5 545.35 108 SEG[186] 1224.5 545.35 074 SEG[220] 2278.5 545.35 109 SEG[185] 1193.5 545.35 075 SEG[219] 2247.5 545.35 110 SEG[184] 1162.5 545.35 076 SEG[218] 2216.5 545.35 111 SEG[183] 1131.5 545.35 077 SEG[217] 2185.5 545.35 112 SEG[182] 1100.5 545.35 078 SEG[216] 2154.5 545.35 113 SEG[181] 1069.5 545.35 079 SEG[215] 2123.5 545.35 114 SEG[180] 1038.5 545.35 080 SEG[214] 2092.5 545.35 115 SEG[179] 1007.5 545.35 081 SEG[213] 2061.5 545.35 116 SEG[178] 976.5 545.35 082 SEG[212] 2030.5 545.35 117 SEG[177] 945.5 545.35 083 SEG[211] 1999.5 545.35 118 SEG[176] 914.5 545.35 084 SEG[210] 1968.5 545.35 119 SEG[175] 883.5 545.35 085 SEG[209] 1937.5 545.35 120 SEG[174] 852.5 545.35 086 SEG[208] 1906.5 545.35 121 SEG[173] 821.5 545.35 087 SEG[207] 1875.5 545.35 122 SEG[172] 790.5 545.35 088 SEG[206] 1844.5 545.35 123 SEG[171] 759.5 545.35 089 SEG[205] 1813.5 545.35 124 SEG[170] 728.5 545.35 090 SEG[204] 1782.5 545.35 125 SEG[169] 697.5 545.35 091 SEG[203] 1751.5 545.35 126 SEG[168] 666.5 545.35 092 SEG[202] 1720.5 545.35 127 SEG[167] 635.5 545.35 093 SEG[201] 1689.5 545.35 128 SEG[166] 604.5 545.35 094 SEG[200] 1658.5 545.35 129 SEG[165] 573.5 545.35 095 SEG[199] 1627.5 545.35 130 SEG[164] 542.5 545.35 096 SEG[198] 1596.5 545.35 131 SEG[163] 511.5 545.35 097 SEG[197] 1565.5 545.35 132 SEG[162] 480.5 545.35 098 SEG[196] 1534.5 545.35 133 SEG[161] 449.5 545.35 099 SEG[195] 1503.5 545.35 134 SEG[160] 418.5 545.35 100 SEG[194] 1472.5 545.35 135 SEG[159] 387.5 545.35 101 SEG[193] 1441.5 545.35 136 SEG[158] 356.5 545.35 Ver 1.5 4/94 2007/01/20 ST7626 PIN Name PAD No. CSEL=0 CSEL=1 X Y PIN Name PAD No. CSEL=0 CSEL=1 X Y 137 SEG[157] 325.5 545.35 172 SEG[122] -759.5 545.35 138 SEG[156] 294.5 545.35 173 SEG[121] -790.5 545.35 139 SEG[155] 263.5 545.35 174 SEG[120] -821.5 545.35 140 SEG[154] 232.5 545.35 175 SEG[119] -852.5 545.35 141 SEG[153] 201.5 545.35 176 SEG[118] -883.5 545.35 142 SEG[152] 170.5 545.35 177 SEG[117] -914.5 545.35 143 SEG[151] 139.5 545.35 178 SEG[116] -945.5 545.35 144 SEG[150] 108.5 545.35 179 SEG[115] -976.5 545.35 145 SEG[149] 77.5 545.35 180 SEG[114] -1007.5 545.35 146 SEG[148] 46.5 545.35 181 SEG[113] -1038.5 545.35 147 SEG[147] 15.5 545.35 182 SEG[112] -1069.5 545.35 148 SEG[146] -15.5 545.35 183 SEG[111] -1100.5 545.35 149 SEG[145] -46.5 545.35 184 SEG[110] -1131.5 545.35 150 SEG[144] -77.5 545.35 185 SEG[109] -1162.5 545.35 151 SEG[143] -108.5 545.35 186 SEG[108] -1193.5 545.35 152 SEG[142] -139.5 545.35 187 SEG[107] -1224.5 545.35 153 SEG[141] -170.5 545.35 188 SEG[106] -1255.5 545.35 154 SEG[140] -201.5 545.35 189 SEG[105] -1286.5 545.35 155 SEG[139] -232.5 545.35 190 SEG[104] -1317.5 545.35 156 SEG[138] -263.5 545.35 191 SEG[103] -1348.5 545.35 157 SEG[137] -294.5 545.35 192 SEG[102] -1379.5 545.35 158 SEG[136] -325.5 545.35 193 SEG[101] -1410.5 545.35 159 SEG[135] -356.5 545.35 194 SEG[100] -1441.5 545.35 160 SEG[134] -387.5 545.35 195 SEG[99] -1472.5 545.35 161 SEG[133] -418.5 545.35 196 SEG[98] -1503.5 545.35 162 SEG[132] -449.5 545.35 197 SEG[97] -1534.5 545.35 163 SEG[131] -480.5 545.35 198 SEG[96] -1565.5 545.35 164 SEG[130] -511.5 545.35 199 SEG[95] -1596.5 545.35 165 SEG[129] -542.5 545.35 200 SEG[94] -1627.5 545.35 166 SEG[128] -573.5 545.35 201 SEG[93] -1658.5 545.35 167 SEG[127] -604.5 545.35 202 SEG[92] -1689.5 545.35 168 SEG[126] -635.5 545.35 203 SEG[91] -1720.5 545.35 169 SEG[125] -666.5 545.35 204 SEG[90] -1751.5 545.35 170 SEG[124] -697.5 545.35 205 SEG[89] -1782.5 545.35 171 SEG[123] -728.5 545.35 206 SEG[88] -1813.5 545.35 Ver 1.5 5/94 2007/01/20 ST7626 PIN Name PAD No. CSEL=0 CSEL=1 X Y PIN Name PAD No. CSEL=0 CSEL=1 X Y 207 SEG[87] -1844.5 545.35 242 SEG[52] -2929.5 545.35 208 SEG[86] -1875.5 545.35 243 SEG[51] -2960.5 545.35 209 SEG[85] -1906.5 545.35 244 SEG[50] -2991.5 545.35 210 SEG[84] -1937.5 545.35 245 SEG[49] -3022.5 545.35 211 SEG[83] -1968.5 545.35 246 SEG[48] -3053.5 545.35 212 SEG[82] -1999.5 545.35 247 SEG[47] -3084.5 545.35 213 SEG[81] -2030.5 545.35 248 SEG[46] -3115.5 545.35 214 SEG[80] -2061.5 545.35 249 SEG[45] -3146.5 545.35 215 SEG[79] -2092.5 545.35 250 SEG[44] -3177.5 545.35 216 SEG[78] -2123.5 545.35 251 SEG[43] -3208.5 545.35 217 SEG[77] -2154.5 545.35 252 SEG[42] -3239.5 545.35 218 SEG[76] -2185.5 545.35 253 SEG[41] -3270.5 545.35 219 SEG[75] -2216.5 545.35 254 SEG[40] -3301.5 545.35 220 SEG[74] -2247.5 545.35 255 SEG[39] -3332.5 545.35 221 SEG[73] -2278.5 545.35 256 SEG[38] -3363.5 545.35 222 SEG[72] -2309.5 545.35 257 SEG[37] -3394.5 545.35 223 SEG[71] -2340.5 545.35 258 SEG[36] -3425.5 545.35 224 SEG[70] -2371.5 545.35 259 SEG[35] -3456.5 545.35 225 SEG[69] -2402.5 545.35 260 SEG[34] -3487.5 545.35 226 SEG[68] -2433.5 545.35 261 SEG[33] -3518.5 545.35 227 SEG[67] -2464.5 545.35 262 SEG[32] -3549.5 545.35 228 SEG[66] -2495.5 545.35 263 SEG[31] -3580.5 545.35 229 SEG[65] -2526.5 545.35 264 SEG[30] -3611.5 545.35 230 SEG[64] -2557.5 545.35 265 SEG[29] -3642.5 545.35 231 SEG[63] -2588.5 545.35 266 SEG[28] -3673.5 545.35 232 SEG[62] -2619.5 545.35 267 SEG[27] -3704.5 545.35 233 SEG[61] -2650.5 545.35 268 SEG[26] -3735.5 545.35 234 SEG[60] -2681.5 545.35 269 SEG[25] -3766.5 545.35 235 SEG[59] -2712.5 545.35 270 SEG[24] -3797.5 545.35 236 SEG[58] -2743.5 545.35 271 SEG[23] -3828.5 545.35 237 SEG[57] -2774.5 545.35 272 SEG[22] -3859.5 545.35 238 SEG[56] -2805.5 545.35 273 SEG[21] -3890.5 545.35 239 SEG[55] -2836.5 545.35 274 SEG[20] -3921.5 545.35 240 SEG[54] -2867.5 545.35 275 SEG[19] -3952.5 545.35 241 SEG[53] -2898.5 545.35 276 SEG[18] -3983.5 545.35 Ver 1.5 6/94 2007/01/20 ST7626 PIN Name PAD No. CSEL=0 CSEL=1 X Y PIN Name PAD No. CSEL=0 CSEL=1 X Y 277 SEG[17] -4014.5 545.35 312 COM[51] COM[33] -4727.7 -57.35 278 SEG[16] -4045.5 545.35 313 COM[52] COM[31] -4727.7 -88.35 279 SEG[15] -4076.5 545.35 314 COM[53] COM[29] -4727.7 -119.35 280 SEG[14] -4107.5 545.35 315 COM[54] COM[27] -4727.7 -150.35 281 SEG[13] -4138.5 545.35 316 COM[55] COM[25] -4727.7 -181.35 282 SEG[12] -4169.5 545.35 317 COM[56] COM[23] -4727.7 -212.35 283 SEG[11] -4200.5 545.35 318 COM[57] COM[21] -4727.7 -243.35 284 SEG[10] -4231.5 545.35 319 COM[58] COM[19] -4727.7 -274.35 285 SEG[9] -4262.5 545.35 320 COM[59] COM[17] -4727.7 -305.35 286 SEG[8] -4293.5 545.35 321 COM[60] COM[15] -4727.7 -336.35 287 SEG[7] -4324.5 545.35 322 COM[61] COM[13] -4727.7 -367.35 288 SEG[6] -4355.5 545.35 323 COM[62] COM[11] -4727.7 -398.35 289 SEG[5] -4386.5 545.35 324 COM[63] COM[9] -4727.7 -429.35 290 SEG[4] -4417.5 545.35 325 COM[64] COM[7] -4727.7 -460.35 291 SEG[3] -4448.5 545.35 326 COM[65] COM[5] -4727.7 -491.35 292 SEG[2] -4479.5 545.35 327 COM[66] COM[3] -4727.7 -522.35 293 SEG[1] -4510.5 545.35 328 COM[67] COM[1] -4727.7 -553.35 294 SEG[0] -4541.5 545.35 329 V0IN -4510.0 -575.35 295 COM[34] COM[67] -4727.7 469.65 330 V0IN -4400.0 -575.35 296 COM[35] COM[65] -4727.7 438.65 331 V0IN -4290.0 -575.35 297 COM[36] COM[63] -4727.7 407.65 332 V0IN -4180.0 -575.35 298 COM[37] COM[61] -4727.7 376.65 333 V0IN -4070.0 -575.35 299 COM[38] COM[59] -4727.7 345.65 334 V0IN -3960.0 -575.35 300 COM[39] COM[57] -4727.7 314.65 335 V0OUT -3850.0 -575.35 301 COM[40] COM[55] -4727.7 283.65 336 V0OUT -3740.0 -575.35 302 COM[41] COM[53] -4727.7 252.65 337 V1 -3630.0 -575.35 303 COM[42] COM[51] -4727.7 221.65 338 V2 -3520.0 -575.35 304 COM[43] COM[49] -4727.7 190.65 339 V3 -3410.0 -575.35 305 COM[44] COM[47] -4727.7 159.65 340 V4 -3300.0 -575.35 306 COM[45] COM[45] -4727.7 128.65 341 VREF -3190.0 -575.35 307 COM[46] COM[43] -4727.7 97.65 342 CL -3075.3 -575.35 308 COM[47] COM[41] -4727.7 66.65 343 CLS -2965.3 -575.35 309 COM[48] COM[39] -4727.7 35.65 344 VSS -2855.3 -575.35 310 COM[49] COM[37] -4727.7 4.65 345 VDD -2745.3 -575.35 311 COM[50] COM[35] -4727.7 -26.35 346 A0 -2635.3 -575.35 Ver 1.5 7/94 2007/01/20 ST7626 PIN Name PAD No. CSEL=0 CSEL=1 X Y PIN Name PAD No. CSEL=0 CSEL=1 X Y 347 RW_WR -2525.3 -575.35 382 VSS 1324.7 -575.35 348 D0 -2415.3 -575.35 383 VSS 1434.7 -575.35 349 D1 -2305.3 -575.35 384 VSS2 1544.7 -575.35 350 D2 -2195.3 -575.35 385 VSS2 1654.7 -575.35 351 D3 -2085.3 -575.35 386 VSS2 1764.7 -575.35 352 D4 -1975.3 -575.35 387 VSS2 1874.7 -575.35 353 D5 -1865.3 -575.35 388 VSS2 1984.7 -575.35 354 D6 -1755.3 -575.35 389 VSS2 2094.7 -575.35 355 D7 -1645.3 -575.35 390 VSS2 2204.7 -575.35 356 D8 -1535.3 -575.35 391 VSS2 2314.7 -575.35 357 D9 -1425.3 -575.35 392 VSS4 2424.7 -575.35 358 D10 -1315.3 -575.35 393 VDD4 2534.7 -575.35 359 D11 -1205.3 -575.35 394 VDD3 2644.7 -575.35 360 D12 -1095.3 -575.35 395 VDD2 2754.7 -575.35 361 D13 -985.3 -575.35 396 VDD2 2864.7 -575.35 362 D14 -875.3 -575.35 397 VDD2 2974.7 -575.35 363 D15 -765.3 -575.35 398 VDD2 3084.7 -575.35 364 VSS -655.3 -575.35 399 VDD2 3194.7 -575.35 365 VDD -545.3 -575.35 400 VDD5 3304.7 -575.35 366 E_RD -435.3 -575.35 401 VDD5 3414.7 -575.35 367 RST -325.3 -575.35 402 VDD5 3524.7 -575.35 368 CSEL -215.3 -575.35 403 TCAP 3634.7 -575.35 369 IF1 -105.3 -575.35 404 VLCDIN 3744.7 -575.35 370 IF2 4.7 -575.35 405 VLCDIN 3854.7 -575.35 371 IF3 114.7 -575.35 406 VLCDIN 3964.7 -575.35 372 VSS 224.7 -575.35 407 VLCDIN 4074.7 -575.35 373 VDD 334.7 -575.35 408 VLCDIN 4184.7 -575.35 374 SI 444.7 -575.35 409 VLCDIN 4294.7 -575.35 375 SCL 554.7 -575.35 410 VLCDOUT 4404.7 -575.35 376 /CS 664.7 -575.35 411 VLCDOUT 4514.7 -575.35 377 VDD 774.7 -575.35 412 COM[0] COM[0] 4727.7 -553.35 378 VDD 884.7 -575.35 413 COM[1] COM[2] 4727.7 -522.35 379 VDD1 994.7 -575.35 414 COM[2] COM[4] 4727.7 -491.35 380 VSS1 1104.7 -575.35 415 COM[3] COM[6] 4727.7 -460.35 381 VSS 1214.7 -575.35 416 COM[4] COM[8] 4727.7 -429.35 Ver 1.5 8/94 2007/01/20 ST7626 PIN Name PAD No. CSEL=0 CSEL=1 X Y 417 COM[5] COM[10] 4727.7 -398.35 418 COM[6] COM[12] 4727.7 -367.35 419 COM[7] COM[14] 4727.7 -336.35 420 COM[8] COM[16] 4727.7 -305.35 421 COM[9] COM[18] 4727.7 -274.35 422 COM[10] COM[20] 4727.7 -243.35 423 COM[11] COM[22] 4727.7 -212.35 424 COM[12] COM[24] 4727.7 -181.35 425 COM[13] COM[26] 4727.7 -150.35 426 COM[14] COM[28] 4727.7 -119.35 427 COM[15] COM[30] 4727.7 -88.35 428 COM[16] COM[32] 4727.7 -57.35 429 COM[17] COM[34] 4727.7 -26.35 430 COM[18] COM[36] 4727.7 4.65 431 COM[19] COM[38] 4727.7 35.65 432 COM[20] COM[40] 4727.7 66.65 433 COM[21] COM[42] 4727.7 97.65 434 COM[22] COM[44] 4727.7 128.65 435 COM[23] COM[46] 4727.7 159.65 436 COM[24] COM[48] 4727.7 190.65 437 COM[25] COM[50] 4727.7 221.65 438 COM[26] COM[52] 4727.7 252.65 439 COM[27] COM[54] 4727.7 283.65 440 COM[28] COM[56] 4727.7 314.65 441 COM[29] COM[58] 4727.7 345.65 442 COM[30] COM[60] 4727.7 376.65 443 COM[31] COM[62] 4727.7 407.65 444 COM[32] COM[64] 4727.7 438.65 445 COM[33] COM[66] 4727.7 469.65 Ver 1.5 9/94 2007/01/20 ST7626 5. BLOCK DIAGRAM SEG0 TO SEG293 COM0 TO COM67 VDD1 VDD V0IN V1 V2 V3 V4 VSS SEGMENT DRIVERS DATA LATCHES V/F Circuit FRC/PWM FUNCTION CIRCUIT V0OUT V/R Circuit DISPLAY DATA RAM (DDRAM) [98 X 68 X 16] CSEL COMMON OUTPUT CONTROLLER CIRCUIT CL RESET OSCILLATOR VLCDIN VLCDOUT VDD2 VDD3 VDD4 VDD5 VSS2 VSS4 COMMON DRIVERS CLS TIMING GENERATOR DISPLAY ADDRESS COUNTER V/C Circuit VSS ADDRESS COUNTER EEPROM DATA REGISTER INSTRUCTION REGISTER BUS HOLDER INSTRUCTION DECODER MPU INTERFACE(PARALLEL & SERIAL) VSS1 10/94 TCAP D0 to D15 SI SCL E_RD RW_WR A0 /CS /RST IF3 IF2 IF1 Ver 1.5 2007/01/20 ST7626 6. PIN DESCRIPTION 6.1 POWER SUPPLY Name I/O Description VDD Supply Power supply for logic circuit VDD1 Supply Power supply for OSC circuit VDD2 Supply Power supply for Booster Circuit VDD3 Supply Power supply for LCD. VDD4 Supply Power supply for LCD. VDD5 Supply Power supply for LCD. VSS Supply Ground for logic circuit. Ground system should be connected together. VSS1 Supply Ground for OSC circuit. Ground system should be connected together. VSS2 Supply Ground for Booster Circuit. Ground system should be connected together. VSS4 Supply Ground for LCD. Ground system should be connected together. 6.2 LCD Power Supply Pins VLCDOUT O VLCDIN I If the internal voltage generator is used, the VLCDIN & VLCDOUT must be connected together. If an external supply is used, this pin must be left open. An external LCD supply voltage can be supplied using the VLCDIN pin. In this case, VLCDOUT has to be left open, and the internal voltage generator has to be programmed to zero. (SET register VC=0) LCD driver supply voltages V0in & V0out should be connected together. V0IN Voltages should have the following relationship; V0OUT V1 V2 V0 ( V0in ) ≧ V1 ≧ V2 ≧ V3 ≧ V4 ≧ VSS. I/O When the internal power circuit is active, these voltages are generated as following table according to the state of LCD bias. V3 V4 LCD bias V1 V2 V3 V4 1/N bias (N-1) / N x V0 (N-2) / N x V0 (2/N) x V0 (1/N) x V0 NOTE: N = 5 to 12 6.3 SYSTEM CONTROL Name I/O CLS I CL I/O Description When using internal clock oscillator, connect CLS to VDD. When using external clock oscillator, connect CLS to VSS. When using internal clock oscillator, it’s oscillator output. When using external clock oscillator, it’s clock input. Select Common output direction. CSEL I CSEL=”L”, COM0~COM33 is in one side, COM34~COM67 is in the opposite side. CSEL=”H”, COM2n(even number) is in the one side, COM2n+1 (odd number) is in the opposite side. TCAP I/O Test pin. Left it opens. VREF O Reference voltage output for monitor only. Left it opened. Do NOT connect this PAD. Ver 1.5 11/94 2007/01/20 ST7626 6.4 MICROPROCESSOR INTERFACE Name I/O RST I Description Reset input pin. When RESETB is “L”, initialization is executed. Parallel / Serial data input select input IF[3:1] I IF1 IF2 IF3 MPU interface type H H H 80 series 16-bit parallel H H L 80 series 8-bit parallel H L L 68 series 16-bit parallel L H H 68 series 8-bit parallel L L H 9-bit serial (3 line) L L L 8-bit serial (4 line) Chip select input pins /CS I Data / Instruction I/O is enabled only when /CS is "L". When chip select is non-active, D0 to D15 become high impedance. Register select input pin A0 I A0 = "H": D0 to D15 or SI are display data A0 = "L": D0 to D15 or SI are control data In 3-line interface not let it floating, connect it to ”H” level. Read / Write execution control pin MPU type RW_WR Description Read / Write control input pin 6800-series RW_WR RW RW = “H” : read I RW = “L” : write Write enable clock input pin 8080-series /WR The data on D0 to D15 are latched at the rising edge of the /WR signal. When in the serial interface, connect it to ”H” level. Read / Write execution control pin MPU Type E_RD Description Read / Write control input pin RW = “H”: When E is “H”, D0 to D15 are in an output E_RD I 6800-series E status. RW = “L”: The data on D0 to D15 are latched at the falling edge of the E signal. 8080-series /RD Read enable clock input pin When /RD is “L”, D0 to D15 are in an output status. When in the serial interface, connect it to ”H” level .Signals Explaination Chart:see page 17 Ver 1.5 12/94 2007/01/20 ST7626 They connect to the standard 8-bit or 16 bit MPU bus via the 8/16 –bit bi-directional bus. When the following interface is selected and the /CS pin is high, the following pins become high D15 to D0 I/O impedance. 1. In 8-bit parallel: D15-D8 pins are in the state of high impedance should connect to ”H” level. 2. In Serial interface: D15-D0 pins are in the state of high impedance should connect to ”H” level. SI I This pin is used to input serial data when the serial interface is selected.(3 line and 4 line) When not use connect it to ”H” level. This pin is used to input serial clock when the serial interface is selected. SCL I The data is converted in the rising edge. (3 line and 4 line) When not use connect it to ”H” level. NOTE: Microprocessor interfece pins should not be floating in any operation mode. 6.5 LCD DRIVER OUTPUTS Name I/O Description LCD segment driver outputs The display data and the M signal control the output voltage of segment driver. SEG0 to O SEG293 Display data M (Internal) H Segment driver output voltage Normal display Reverse display H V0 V2 H L VSS V3 L H V2 V0 L L V3 VSS VSS VSS Sleep-In mode LCD common driver outputs The internal scanning data and M signal control the output voltage of common driver. COM0 to COM67 O Scan data M (Internal) Common driver output voltage H H VSS H L V0 L H V1 L L V4 Sleep-In mode Ver 1.5 VSS 13/94 2007/01/20 ST7626 ST7626 I/O PIN ITO Resister Limitation Pin Name ITO Resister TCAP, CL Floating IF[3:1],CLS,CSEL No Limitation VDD, VDD1~VDD5, VSS,VSS1,VSS2,VSS4,VLCDIN, VLCDOUT <100Ω V0IN, V0OUT, V1, V2, V3, V4 <100Ω A0, E_RD, RW_WR, /CS, D0 …D15, SCL, SI <1KΩ RST <10KΩ NOTE: Make sure that the ITO resistance of COM0 ~ COM67 is equal, and so is it of SEG0 ~ SEG293. Vref sould not connect to external. Therefore, no ITO resistance value listed. Ver 1.5 14/94 2007/01/20 ST7626 7. FUNCTIONAL DESCRIPTION 7.1 MICROPROCESSOR INTERFACE Chip Select Input /CS pin is for chip selection. The ST7626 can function with an MPU when /CS is "L". In case of serial interface, the internal shift register and the counter are reset. 7.1.1 Selecting Parallel / Serial Interface ST7626 has six types of interface with an MPU, which are two serial and four parallel interfaces. This parallel or serial interface is determined by IF pin as shown in table 7.1.1. Table 7.1.1 Parallel / Serial Interface Mode I/F Mode IF1 IF2 IF3 H H H H H L H L L L H H L L L L L H I/F Description 80 serial 16-bit parallel 80 serial 8-bit parallel 68 serial 16-bit parallel 68 serial 8-bit parallel 8-bit SPI mode (4 line) 9-bit SPI mode (3 line) /CS /CS /CS /CS /CS /CS /CS A0 A0 A0 A0 A0 A0 -- E_RD /RD /RD E E --- Pin Assignment RW_WR D15 to D8 /WR D15 ~ D8 /WR -R/W D15 ~ D8 R/W ------ D7 to D0 D7 ~ D0 D7 ~ D0 D7 ~ D0 D7 ~ D0 --- SI ----SI SI SCL ----SCL SCL NOTE: When these pins are set to any other combination, A0, E_RD and RW_WR inputs are disabled and D0 to D15 are to be high impedance. 7.1.2 8-bit or 16-bit Parallel Interface The ST7626 identifies the type of the data bus signals according to the combination of A0, /RD (E) and /WR (W/R) signals, as shown in table 7.1.2. Table 7.1.2 Parallel Data Transfer Common 6800-series 8080-series Description A0 R/W E /RD /WR H H H L H Display data read out H L H H L Display data write L H H L H Register status read L L H H L Writes to internal register (instruction) Ver 1.5 15/94 2007/01/20 ST7626 Figure 7.1.2 Parallel Data Transfer Example Chart Relation between Data Bus and Gradation Data ST7626 offers 4096 color display, 65K color display, truncated 262K color display, and truncated 16M color display. When using 4096, 65K, 262K, and 16M color display; you can specify color for each of R, G, B using the palette function. Use the command for switching between these modes. (1) 4096-color display (1-1) Type A 4096 color display 1. 8-bit mode D7, D6, D5, D4, D3, D2, D1, D0: RRRRGGGG 1st write D7, D6, D5, D4, D3, D2, D1, D0: BBBBRRRR 2nd write D7, D6, D5, D4, D3, D2, D1, D0: GGGGBBBB 3rd write 2 pixels of data are read after the third write operation as shown, and it is written in the display RAM. Ver 1.5 16/94 2007/01/20 ST7626 2. 16-bit mode D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRGGGGBBBBXXXX Data is acquired through signal write operation and then written to the display RAM. “XXXX” are dummy bits, and they are ignored for display. (1-2) Type B 4096 color display 1. 8-bit mode D7, D6, D5, D4, D3, D2, D1, D0: XXXXRRRR 1st write D7, D6, D5, D4, D3, D2, D1, D0: GGGGBBBB 2nd write A single pixel of data is read after the second write operation as shown, and it is written in the display RAM. 2. 16-bit mode D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: XXXXRRRRGGGGBBBB A single pixel of data is read and written in the display RAM in a single write operation. “XXXX” are dummy bits, and they are ignored for display. (2) 65K color input mode 1. 8-bit mode D7, D6, D5, D4, D3, D2, D1, D0: RRRRRGGG 1st write D7, D6, D5, D4, D3, D2, D1, D0: GGGBBBBB 2nd write A single pixel of data is read after the second write operation as shown, and it is written in the display RAM. 2. 16-bit mode D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRGGGGGGBBBBB (16 bits) Data is acquired through signal write operation and then written to the display RAM. (3) Truncated 262K color input mode 1. 8-bit mode D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRXX 1st write D7, D6, D5, D4, D3, D2, D1, D0: GGGGGGXX 2nd write D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBXX 3rd write A single pixel of data is read after the third write operation as shown, and it is written in the display RAM. “X” is dummy bit, and it is ignored for display. 2. 16 bit mode D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRXXGGGGGGXX 1st write D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBXXXXXXXXXXXX 2nd write A single pixel of data is read after the second write operation as shown, and it is written in the display RAM. Ver 1.5 17/94 2007/01/20 ST7626 (4) Truncated 16M color input mode 1. 8-bit mode D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRRR 1st write D7, D6, D5, D4, D3, D2, D1, D0: GGGGGGGG 2nd write D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBBB 3rd write A single pixel of data is read after the third write operation as shown, and it is written in the display RAM. 2. 16 bit mode D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: RRRRRRRRGGGGGGGG 1st write D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0: BBBBBBBBXXXXXXXX 2nd write A single pixel of data is read after the second write operation as shown, and it is written in the display RAM. 7.1.3 8- and 9-bit Serial Interface The 8-bit serial interface uses four pins /CS, SI, SCL, and A0 to enter commands and data. Meanwhile, the 9-bit serial interface uses three pins /CS, SI and SCL for the same purpose. Data read is not available in the serial interface. Data entered must be 8 bits. Refer to the following chart for entering commands, parameters or gray-scale data. The relation between gray-scale data and data bus in the serial input is the same as that in the 8-bit parallel interface mode at every gradation. (1) 8-bit serial interface (4-line) th When entering data (parameters): A0= HIGH at the rising edge of the 8 SCL. Figure 7.1.3 4-line explaination chart when entering data Ver 1.5 18/94 2007/01/20 ST7626 th When entering command: A0= LOW at the rising edge of the 8 SCL Figure 7.1.4 4-line explaination chart when entering command (2) 9-bit serial interface (3-line) st When entering data (parameters): SI= HIGH at the rising edge of the 1 SCL. Figure 7.1.5 3-line explaination chart when entering data st When entering command: SI= LOW at the rising edge of the 1 SCL. Figure 7.1.6 3-line explaination chart when entering command z If /CS is set to HIGH while the 8 bits from D7 to D0 are entered, the data concerned is invalidated. Before entering succeeding sets of data, you must correctly input the data concerned again. z In order to avoid data transfer error due to incoming noise, it is recommended to set /CS at HIGH on byte basis to initialize the serial-to-parallel conversion counter and the register. z th When executing the command RAMWR, set /CS to HIGH after writing the last address (after starting the 9 pulse in th case of 9-bit serial input or after starting the 8 pulse in case of 8-bit serial input). Ver 1.5 19/94 2007/01/20 ST7626 7.2 ACCESS TO DDRAM AND INTERNAL REGISTERS ST7626 realizes high-speed data transfer because the access from MPU is a sort of pipeline processing done via the bus holder attached to the internal, requiring the cycle time alone without needing the wait time. For example, when MPU writes data to the DDRAM, the data is once held by the bus holder and then written to the DDRAM before the succeeding write cycle is started. When MPU reads data from the DDRAM, the first read cycle is dummy and the bus holder holds the data read in the dummy cycle, and then it read from the bus holder to the system bus in the succeeding read cycle. Figure 7.2.1 illustrates these relations. In 80-series interface mode: M P U sig nal W rite O peratio n A0 /W R N DATA D (N ) D (N + 1) D (N + 2) D (N + 3) Interna l signals /W R B U S H O LD E R N AD DRESS CO U NTER D (N ) N D (N + 2) D (N + 1) N+1 N+2 D (N + 3) N+3 M PU signal Read O peration A0 /W R /R D N D ATA D um m y D (N ) D (N +1) Internal signals /W R /R D BU S H O LD ER AD D R ESS C O U N TE R N D (N ) D (N ) D (N +1) D (N +2) D (N +1) D (N +2) D (N +3) Figure 7.2.1 Access DDRAM chart Ver 1.5 20/94 2007/01/20 ST7626 7.3 DISPLAY DATA RAM (DDRAM) 7.3.1 DDRAM It is 98 X 68 X 16 bits capacity RAM prepared for storing dot data. You can access a desired bit by specifying the page address and column address. Since display data from MCU D7 to D0 and D15 to D8 correspond to one or two pixels of RGB, data transfer related restrictions are reduced, realizing the display flexing. The RAM on ST7626 is separated to a block per 4 lines to allow the display system to process data on the block basis. MPU’s read and write operations to and from the RAM are performed via the I/O buffer circuit; Reading of the RAM for the liquid crystal drive is controlled from another separate circuit. Refer to the following memory map for the RAM configuration. Memory Map (When using the Type A 4096 color. 8-bit mode) RGB alignment (Command of data control parameter2=000) Data control command (BCH) Column P11:0(DATCTL) LCD read P11:1(DATCTL) direction Color Data Page Block 0 1 15 16 SEGout Ver 1.5 P10:0 P10:1 (DATCTL) (DATCTL) 0 67 1 66 2 65 3 64 4 63 5 62 6 61 7 60 60 7 61 6 62 5 63 4 64 3 65 2 66 1 67 0 0 1 97 97 96 0 R G B R G B R G B D0_7 D0_3 D1_7 D1_3 D2_7 D2_3 D146_3 D147_7 D147_3 D0_6 D0_2 D1_6 D1_2 D2_6 D2_2 D146_2 D147_6 D147_2 D0_5 D0_1 D1_5 D1_1 D2_5 D2_1 D146_1 D147_5 D147_1 D0_4 D0_0 D1_4 D1_0 D2_4 D2_0 D146_0- D147_4 D147_0 0 1 2 3 4 5 291 292 293 21/94 2007/01/20 ST7626 Memory Map (When using the Type A 4096 color. 16-bit mode) RGB alignment (Command of data control parameter2=000) Data control command (BCH) Column P11:0(DATCTL) LCD read P11:1(DATCTL) direction Color Data Page Block 0 1 15 16 SEGout Ver 1.5 P10:0 P10:1 (DATCTL) (DATCTL) 0 67 1 66 2 65 3 64 4 63 5 62 6 61 7 60 60 7 61 6 62 5 63 4 64 3 65 2 66 1 67 0 0 1 97 97 96 0 R G B R G B R G B D0_15 D0_11 D0_7 D1_15 D1_11 D1_7 D97_15 D97_11 D97_7 D0_14 D0_10 D0_6 D1_14 D1_10 D1_6 D97_14 D97_10 D97_6 D0_13 D0_9 D0_5 D1_13 D1_9 D1_5 D97_13 D97_9 D97_5 D0_12 D0_8 D0_4 D1_12 D1_8 D1_4 D97_12 D97_8 D97_4 0 1 2 3 4 5 291 292 293 22/94 2007/01/20 ST7626 Memory Map (When using the Type B 4096 color. 8-bit mode) RGB alignment (Command of data control parameter2=000) Data control command (BCH) Column P11:0(DATCTL) LCD read P11:1(DATCTL) direction Color Data Page Block 0 1 15 16 SEGout P10:0 P10:1 (DATCTL) (DATCTL) 0 67 1 66 2 65 3 64 4 63 5 62 6 61 7 60 60 7 61 6 62 5 63 4 64 3 65 2 66 1 67 0 0 1 97 97 96 0 R G B R G B R G B D0_3 D1_7 D1_3 D2_3 D3_7 D3_3 D146_3 D147_7 D147_3 D0_2 D1_6 D1_2 D2_2 D3_6 D3_2 D146_2 D147_6 D147_2 D0_1 D1_5 D1_1 D2_1 D3_5 D3_1 D146_1 D147_5 D147_1 D0_0 D1_4 D1_0 D2_0 D3_4 D3_0 D146_0 D147_4 D147_0 0 1 2 3 4 5 291 292 293 Note: You can change position of R and B with DATACTL command. Ver 1.5 23/94 2007/01/20 ST7626 Memory Map (When using the Type B 4096 color. 16-bit mode) RGB alignment (Command of data control parameter2=000) Data control command (BCH) Column P11:0(DATCTL) LCD read P11:1(DATCTL) direction Color Data Page Block 0 1 15 16 SEGout P10:0 P10:1 (DATCTL) (DATCTL) 0 67 1 66 2 65 3 64 4 63 5 62 6 61 7 60 60 7 61 6 62 5 63 4 64 3 65 2 66 1 67 0 0 1 97 97 96 0 R G B R G B R G B D0_11 D0_7 D0_3 D1_11 D1_7 D1_3 D97_11 D97_7 D97_3 D0_10 D0_6 D0_2 D1_10 D1_6 D1_2 D97_10 D97_6 D97_2 D0_9 D0_5 D0_1 D1_9 D1_5 D1_1 D97_9 D97_5 D97_1 D0_8 D0_4 D0_0 D1_8 D1_4 D1_0 D97_8 D97_4 D97_0 0 1 2 3 4 5 291 292 293 Note: You can change position of R and B with DATACTL command. Ver 1.5 24/94 2007/01/20 ST7626 Memory Map (When using the 65Kcolor. 8-bit mode) RGB alignment (Command of data control parameter2=000) Data control command (BCH) Column P11:0(DATCTL) LCD read P11:1(DATCTL) direction Color Data Page Block 0 1 97 97 96 0 R G B R G B R G B D0_7 D0_2 D1_4 D2_7 D2_2 D3_4 D146_7 D146_2 D147_4 D0_6 D0_1 D1_3 D2_6 D2_1 D3_3 D146_6 D146_1 D147_3 D0_5 D0_0 D1_2 D2_5 D2_0 D3_2 D146_5 D146_0 D147_2 D1_7 D1_1 D2_4 D3_7 D3_1 D146_4 D147_7 D147_1 D1_6 D1_0 D2_3 D3_6 D3_0 D146_3 D147_6 D147_0 P10:0 P10:1 D0_4 (DATCTL) (DATCTL) D0_3 D1_5 0 1 15 16 SEGout 0 67 1 66 2 65 3 64 4 63 5 62 6 61 7 60 60 7 61 6 62 5 63 4 64 3 65 2 66 1 67 0 0 1 D3_5 2 3 4 D147_5 5 291 292 293 Note: You can change position of R and B with DATACTL command. Ver 1.5 25/94 2007/01/20 ST7626 Memory Map (When using the 65K color. 16-bit mode) RGB alignment (Command of data control parameter2=000) Data control command (BCH) Column P11:0(DATCTL) LCD read P11:1(DATCTL) direction Color Data Page Block 0 1 97 97 96 0 R G B R G B R G B D0_15 D0_10 D0_4 D1_15 D1_10 D1_4 D97_15 D97_10 D97_4 D0_14 D0_9 D0_3 D1_14 D1_9 D1_3 D97_14 D97_9 D97_3 D0_13 D0_8 D0_2 D1_13 D1_8 D1_2 D97_13 D97_8 D97_2 D0_7 D0_1 D1_12 D1_7 D1_1 D97_12 D97_7 D97_1 D0_6 D0_0 D1_11 D1_6 D1_0 D97_11 D97_6 D97_0 P10:0 P10:1 D0_12 (DATCTL) (DATCTL) D0_11 D0_5 0 1 15 16 SEGout 0 67 1 66 2 65 3 64 4 63 5 62 6 61 7 60 60 7 61 6 62 5 63 4 64 3 65 2 66 1 67 0 0 1 D1_5 2 3 4 D97_5 5 291 292 293 Note: You can change position of R and B with DATACTL command. Ver 1.5 26/94 2007/01/20 ST7626 Memory Map (When using the 262K/16Mcolor. 8-bit mode) RGB alignment (Command of data control parameter2=000) Data control command (BCH) Column P11:0(DATCTL) LCD read P11:1(DATCTL) direction Color Data Page Block 0 1 15 16 SEGout P10:0 P10:1 (DATCTL) (DATCTL) 0 67 1 66 2 65 3 64 4 63 5 62 6 61 7 60 60 7 61 6 62 5 63 4 64 3 65 2 66 1 67 0 0 1 97 97 96 0 R G B R G B R G B D0_7 D1_7 D2_7 D3_7 D4_7 D5_7 D291_7 D292_7 D293_7 D0_6 D1_6 D2_6 D3_6 D4_6 D5_6 D291_6 D292_6 D293_6 D0_5 D1_5 D2_5 D3_5 D4_5 D5_5 D291_5 D292_5 D293_5 D0_4 D1_4 D2_4 D3_4 D4_4 D5_4 D291_4 D292_4 D293_4 D0_3 D1_3 D2_3 D3_3 D4_3 D5_3 D291_3 D292_3 D293_3 D0_2 D1_2 D2_2 D3_2 D4_2 D5_2 D291_2 D292_2 D293_2 D0_1 D1_1 D2_1 D3_1 D4_1 D5_1 D291_1 D292_1 D293_1 D0_0 D1_0 D2_0 D3_0 D4_0 D5_0 D291_0 D292_0 D293_0 0 1 2 3 4 5 291 292 293 Note: You can change position of R and B with DATACTL command. Ver 1.5 27/94 2007/01/20 ST7626 Memory Map (When using the 16 gray-scale, 262K/16M color. 16-bit mode) RGB alignment (Command of data control parameter2=000) Data control command (BCH) Column P11:0(DATCTL) LCD read P11:1(DATCTL) direction Color Data Page Block 0 1 15 16 SEGout P10:0 P10:1 (DATCTL) (DATCTL) 0 67 1 66 2 65 3 64 4 63 5 62 6 61 7 60 60 7 61 6 62 5 63 4 64 3 65 2 66 1 67 0 0 1 97 97 96 0 R G B R G B R G B D0_15 D0_7 D1_15 D1_7 D2_15 D2_7 D146_7 D147_15 D147_7 D0_14 D0_6 D1_14 D1_6 D2_14 D2_6 D146_6 D147_14 D147_6 D0_13 D0_5 D1_13 D1_5 D2_13 D2_5 D146_5 D147_13 D147_5 D0_12 D0_4 D1_12 D1_4 D2_12 D2_4 D146_4 D147_12 D147_4 D0_11 D0_3 D1_11 D1_3 D2_11 D2_3 D146_3 D147_11 D147_3 D0_10 D0_2 D1_10 D1_2 D2_10 D2_2 D146_2 D147_10 D147_2 D0_9 D0_1 D1_9 D1_1 D2_9 D2_1 D146_1 D147_9 D147_1 D0_8 D0_0 D1_8 D1_0 D2_8 D2_0 D146_0 D147_8 D147_0 0 1 2 3 4 5 291 292 293 Note: You can change position of R and B with DATACTL command. Ver 1.5 28/94 2007/01/20 ST7626 7.3.2 Page Address Control Circuit This circuit is used to control the address in the page direction when MPU accesses the DDRAM or when reading the DDRAM to display image on the LCD. You can specify a scope of the page address with page address set command. When the page-direction scan is specified with DATACTL command and the address are incremented from the start up to the end page, the column address is incremented by 1 and the page address returns to start page. The DDRAM supports up to 68 lines, and thus the total page becomes 68. In the read operation, as the end page is reached, the column address is automatically incremented by 1 and the page address is returned to start page. Using the address normal/inverse parameter of DATACTL command allows you to inverse the correspondence between the DDRAM address and command output. 7.3.3 Column Address Control Circuit This circuit is used to control the address in the column direction when MPU accesses the DDRAM. You can specify a scope of the column address using column address set command. When the column-direction scan is specified with DATACTL command and the address are incremented from the start up to the end page, the page address is incremented by 1 and the column address returns to start column. In the read operation, too, the column address is automatically incremented by 1 and returned to start page as the end column is reached. Just like the page address control circuit, using the column address normal/inverse parameter of DATACTL command enables to inverse the correspondence between the DDRAM column address and segment output. This arrangement relaxes restrictions in the chip layout on the LCD module. 7.3.4 I/O Buffer Circuit It is the bi-directional buffer used when MPU reads or writes the DDRAM. Since MPU’s read or write of DDRAM is performed independently from data output to the display data latch circuit, asynchronous access to the DDRAM when the LCD is turned on does not cause troubles such as flicking of the display images. 7.3.5 Block Address Circuit The circuit associates pages on DDRAM with COM output. ST7626 processes signals for the liquid crystal display on 4-page basis. Thus, when specifying a specific area in the area scroll display or partial display, you must designate it in block. 7.3.6 Display data Latch Circuit This circuit is used to temporarily hold display data to be output from the DDRAM to the SEG decoder circuit. Since display normal/inverse and display on/off commands are used to control data in the latch circuit alone, they do not modify data in the DDRAM. Ver 1.5 29/94 2007/01/20 ST7626 7.4 Area Scroll Display Using area scroll set and scroll start set commands allows you to scroll the display screen partially. You can select any one of the following four scroll patterns. Fixed area Scroll area Figure 7.4.1 Scroll Mode explaination chart Example:In the center screen scroll of 1/48 duty (display range: 48 lines = 12 blocks) z Set Area Scroll command (0x00AA) z Block 0 and block 1 (8-lines) are specified for the top fixed area. Top Block Address = Number of the top fixed area = 8 / 4 = 2 (0x0002) parameter (0x0002) z Block 15 & block 16 (8-lines) are specified for the bottom fixed area. z Block 10 to block 14 (20-lines) are specified for the background area. Bottom Block Address = Number of Background area + Bottom Block Address = (20 / 4) + 9 = 14 (0x000E) z parameter (0x000E) Block 2 to Block 9 (32-lines) are specified for the scroll area Number of Specified Blocks = ((Top Fix Area + Scroll Area) – 1) = (2 + (12 - 2 - 2)) - 1 = 9 (0x000E) z Set area acroll mode – Center Screen Mode Ver 1.5 parameter (0x0009) parameter (0x0000) 30/94 2007/01/20 ST7626 98 x 68 DDRAM Top Fix (2 Blocks) Scroll Area (7 Blocks) Background Area (5 Blocks) Bottom Fix (2 Blocks) 98 x 48(Lines) LCD Panel Time 0 1 : : : : 9 10 : 15 16 DDRAM LCD Panel 0 1 2 12 blocks =48 lines 9 10 Fixed area 14 Scroll area 15 16 Background area Figure 7.4.2 Reference Example for Scroll Display Ver 1.5 31/94 2007/01/20 ST7626 7.5 Partial Display Using partial in command allows you turn on the partial display (division by line) of the screen. This mode requires less current consumption than the whole screen display, making it suitable for the equipment in the standby state. : Display area (partial display area) : Non-display area Figure 7.5.1 Partial Mode explaination chart If the partial display region is out of the Max. Display range, it would be no operation -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 7.5.2 Reference Example for Partial Display Ver 1.5 32/94 2007/01/20 ST7626 -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 7.5.3 Partial Display (Partial Display Duty=16, initial COM0=0) -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 7.5.4 Moving Display (Partial Display Duty=16, initial COM0=8) 7.6 Gary-Scale Display ST7626 incorporates a 4FRC & 31 PWM function circuit to display a 64 gray-scale display. 7.7 Oscillation circuit This is on-chip Oscillator without external resistor. When the internal oscillator is used, CLS must connect to VDD; when the external oscillator is used, CL could be input pin. This oscillator signal is used in the voltage converter and display timing generation circuit. Ver 1.5 33/94 2007/01/20 ST7626 7.8 Display Timing Generator Circuit This circuit generates some signals to be used for displaying LCD. The display clock, CL (internal), generated by oscillation clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is generated in synchronization with the display clock and the display data latch circuit latches the 68-bits display data in synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (M), which enables the LCD driver to make an AC drive waveform, and also generates an internal common timing signal and start signal to the common driver. The frame signal or the line signal changes the M by setting internal instruction. Driving waveform and internal timing signal are shown in Figure 7.8.1. Figure 7.8.1 2-frame AC Driving Waveform (Duty Ratio: 1/68) 63 64 1 2 3 4 5 6 7 8 9 10 11 12 55 56 57 58 59 60 61 62 63 64 1 2 3 4 CL(Internal) FR(Internal) M(Internal) VLCD V1 V2 V3 V4 Vss COM0 VLCD V1 V2 V3 V4 Vss COM1 VLCD V1 V2 V3 V4 Vss SEGn Figure 7.8.2 N-Line Inversion Driving Waveform (N=5, Duty Ratio=1/64) Ver 1.5 34/94 2007/01/20 ST7626 7.9 Liquid Crystal drive Circuit This driver circuit is configured by 68-channel common drivers and 294-channel segment drivers. This LCD panel driver voltage depends on the combination of display data and M signal. VDD VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS M COM0 COM1 COM0 COM2 COM3 COM4 COM5 COM6 COM1 COM7 COM8 COM9 COM2 COM10 COM11 COM12 COM13 COM14 SEG0 SEG 0 1 2 3 4 SEG1 Figure 7.9.1 LCD Driving Waveform Ver 1.5 35/94 2007/01/20 ST7626 7.10 Liquid Crystal Driver Power Circuit The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are controlled by power control instruction. For details, refers to "Instruction Description". Table 7.10.1 shows the referenced combinations in using Power Supply circuits. Table 7.10.1 Recommended Power Supply Combinations Power User setup control (VC VR VF) Only the internal power supply circuits are used V/C V/R V/F circuits circuits circuits VLCD V0 V1 to V4 a capacitor 111 ON ON ON is series to Open*1 Open*1 Open*1 Open*1 GND Only the voltage regulator circuits and voltage follower circuits External 011 OFF ON ON 001 OFF OFF ON Open External input Open*1 000 OFF OFF OFF Open External input External input input are used Only the voltage follower circuits are used Only the external power supply circuits are used *1 : ST7626 only needs one capacitor series VLCD to GND in normal situation. Add series-capacitors from V0~V4 to GND will improve display performance. 7.10.1 Voltage Converter Circuits There is a built-in DC-DC voltage converter circuits in ST7626 for generating VLCDOUT. Multiple of voltage converter is 2、 3、4、5 times of Vdd2 toward positive side, and it can be controlled by software(Command ANASET). Please make sure that VLCDOUT must below 20V after turn on voltage converter circuit. 7.10.2 Voltage Regulator Circuits There is a built-in voltage regulaor circuits in ST7626 for generating V0OUT. After VLCDOUT is regulated by voltage regulator circuit, V0OUT is generated. Users also can use VOP function to program the optimum LCD supply voltage V0 by software (Command SETVOP). Detail explaination of VOP-set is listed below: SETVOP Reset state of Vop[8:0] is 160DEC = 10.00V. The VOP value is programmed via the Vop[8:0] register. V0=a+( Vop[8:6]Vop[5:0]).b Ver 1.5 36/94 2007/01/20 ST7626 Ex:VOP[5:0]=100000, VOP[8:6]=010 → Vop [8:0]=010100000 → 3.6+210x0.04=10.00 z a is a fixed constant value (see table 7.10.2). z b is a fixed constant value (see table 7.10.2). z VOP[8:0] is the programmed VOP value. The programming range for VOP[8:0] is 5 to 410 (19Ahex). z VOP[5:0] is the set-contrast value which can be set via the command SETVOP and EEPROM.(See command VOLUP & VOLDOWN) z The suggested value of V0 is under 11 V with bias =1/9. Table 7.10.2 SYMBOL VALUE UNIT a 3.6 V b 0.04 V The VOP[8:0] value must be in the VOP programming range as given in Figure 7.10.2. Evaluating equation (1), values outside the programming range indicated in Figure 7.10.2 may result. Calculated values below 4 will be mapped to VOP[8:0] = 4, resulting VOP[8:0] values higher than 410 will be mapped to VOP[8:0] = 410. Sitronix suggestes Vop range equals 4.5V to 18V. Figure 7.10.2 VOP programming range Ver 1.5 37/94 2007/01/20 ST7626 As the programming range for the internally generated V0 voltage is above the limited V0 (18V), users has to ensure while setting the VOP register that under all conditions and including all tolerances that the V0 voltage remains below 18V. Table 7.10.3 Par no. Equipment Type Thermal Gradient ST7626 Internal Power Supply -0.065%/ C @ V0=10.52V, 25 C 0 0 7.10.3 Voltage Follower Circuits There is a built-in voltage follower circuits in ST7626 for generating V1、V2、V3 and V4. These voltages are decided by bias ratio selection circuitry which is set by users with software to control 1/5 to 1/12 bias ratios to match the optimum display performance of LCD panel. Bias driving rule is listed below: Table 7.10.4 LCD bias V1 V2 V3 V4 1/N bias (N-1) / N x V0 (N-2) / N x V0 (2/N) x V0 (1/N) x V0 N=5 to 12 7.10.4 The Set-up Power Circuits The ST7626 series has two modes of power circuit. One is 1 CAP with VLCDout, the other is 6 CAP with VLCDout/V0/V1/V2/V3/V4 (depend on panel loading). The detail circuit is as below. ST7626 Figure 7.10.3 (a) 1 CAP power circuit (b) 6 CAP power circuit Notes: 1. VLCDout: 1.0~2.2uF/25V 2. V0~V4:0.1~1.0uF/25V Ver 1.5 38/94 2007/01/20 ST7626 7.10.5 EEPROM Setting Flow ♦ EEPROM Setting Flow ST7626 provide the Write and Read function to write the Electronic Control value and Built-in resistance ratio into and read them from the built-in EEPROM. Using the Write and Read functions, you can store these values appropriate to each LCD panel. This function is very convenient for user in setting from some different panel’s voltage. Figure 7.10.5 EC value control for different modules by loading EEPROM offset Note1: This setting flow is used for LCM assembler. Note2: EEPROM shouldn’t be written without preceding loading correctly from EEPROM to avoid some errors during IC operation. Note3: When writing value to EEPROM, the voltage of VLCDin must be more than 18V. Note4: When writing value to EEPROM, the voltage of VDD2~VDD5 must be 2.8~3.3V. Note5: When writing value to EEPROM, the Regulator and Follower must turn OFF, and Display also must turn OFF. Note6: If the EEPROM is exposed to a high temperature for hours, data in the memory cell may probably be lost before the data retention guarantee period. To retain data in the memory cell, keep the mamory cell below 90℃. The data retention guarantee period is specified including the retention period. Ver 1.5 39/94 2007/01/20 ST7626 ♦ EEPROM Flow Chart RESET Internal Initialize Write( COMMAND , 0x31); Write( COMMAND , 0xF4); A:Initial Flow Write( DATA , 0x58); Show Test Pattern B:Adjust Vop Offset C:Write EEPROM EEPROM Operation and Booster : ON, Regulator: OFF, Follower: OFF, Display OFF Load EEPROM RESET NG Internal Initialize Write( COMMAND , 0x31); Write( COMMAND , 0xF4); A:Initial Flow Write( DATA , 0x58); Show Test Pattern Check If Write Successfully? OK Finish Ver 1.5 40/94 2007/01/20 ST7626 ♦ Software Program A. Initial Flow void ST7626_Init( void ) { Write( COMMAND, 0x30 ); Write( COMMAND, 0x04 ); Write( DATA, 0x3e ); Ver 1.5 // Ext = 0 // Sleep In/Out Preparation // Sleep In/Out Sequencing Write( COMMAND, 0x31 ); Write( COMMAND, 0xf4 ); Write( DATA, 0x58 ); // Ext = 1 // Internal Initialize Preparation // Internal Initialize Sequencing Write( COMMAND, 0x30 ); Write( COMMAND, 0x94 ); Write( COMMAND, 0xd1 ); Write( COMMAND, 0xca ); Write( DATA, 0x00 ); Write( DATA, 0x10 ); Write( DATA, 0x00 ); // Ext = 0 // Sleep Out // Internal OSC on // Display Control // CL divisions Ratio // Duty Setting (= 68) // N-Line Inverse-set value Write( COMMAND, 0x31 ); Write( COMMAND, 0x32 ); Write( DATA, 0x00 ); Write( DATA, 0x02 ); Write( DATA, 0x03 ); Write( DATA, 0x04 ); // Ext = 1 // Analog Setting // OSC Freqency adjustment // Booster Efficiency Setting = Level 3 // Bias Setting (=1/9) // Booster X 5 Write( COMMAND, 0x30 ); Write( COMMAND, 0x81 ); Write( DATA, 0x2d ); Write( DATA, 0x02 ); Write( COMMAND, 0x20 ); Write( DATA, 0x0b ); // Ext = 0 // Electronic Volume Control // EV:Vop[5:0]_6bit // EV:Vop[8:6]_3bit // Vop is 10.52V under this condition for example // Power Control // B/F/R = On/On/On delay(50000); LoadEEPROM(); LoadPaint(); // Delay 50ms // Load EEPROM (refer page 68) // Load Gamma Table Parameter (refer page 64) Write( COMMAND, 0x30 ); Write( COMMAND, 0xa7 ); Write( COMMAND, 0xbb ); Write( DATA, 0x01 ); Write( COMMAND, 0xbc ); Write( DATA, 0x00 ); Write( DATA, 0x00 ); Write( DATA, 0x01 ); // Ext = 0 // Inverse Display // Com Scan Direction // 0~33 / 67~34 // Data Scan Direction // Page / Column Address Setting // RGB arrangement (0:RGB 1:BGR) // Gray-scale setup ( 64-gray: 01H) Write( COMMAND, 0x75 ); Write( DATA, 0x00 ); Write( DATA, 0x43 ); Write( COMMAND, 0x15 ); Write( DATA, 0x00 ); Write( DATA, 0x5f ); // Page address set // From page address 0 // to page address 67 // Column address set // From column address 0 // to column address 97 41/94 2007/01/20 ST7626 Write( COMMAND, 0xaf ); Write( COMMAND, 0x30 ); // Display On // Ext = 0 } B. Adjust Vop Offset void adj_Vop_offset(void) { int i,j=1; while(j) { if (KeyScan1==0)i=1; if (KeyScan2==0)i=2; if (KeyScan3==0)i=3; if (KeyScan1==1 & KeyScan2==1 & KeyScan3==1)i=4; switch (i) { Case 1: Write( COMMAND, 0xd6 ); break; case 2: Write( COMMAND, 0xd7 ); break; case 3: write_7626eeprom(); j=0; break; default: break; } } } // Define KeyScan1 for “D6” use // Define KeyScan2 for “D7” use // Define KeyScan3 for “write” use // Jump to break // Vop Offset +1 step // Vop Offset -1 step // Write EEPROM Flow C. Write EEPROM void write_7626eeprom(void) { Write( COMMAND, 0x30 ); Ver 1.5 // EXT=0 Write( COMMAND, 0xae ); Write( COMMAND, 0x20 ); Write( DATA, 0x08 ); // Display Off // Power Control // B/F/R = ON/OFF/OFF Write( COMMAND, 0x31 ); Write( COMMAND, 0xCD ); Write( DATA, 0x20 ); delay(50000); // EXT=1 // Enable EEPORM Write Mode // //Delay 50 ms, the range is delay≥50ms Write( COMMAND, 0xeb ); Write( DATA, 0x00 ); Write( COMMAND, 0xfc ); delay(50000); // Select EEPROM // EEPROM 1st byte // Write Data to EEPROM // Delay 50ms, the range is 10ms < delay < 80ms Write( COMMAND, 0xeb ); Write( DATA, 0x01 ); // Select EEPROM // EEPROM 2nd byte 42/94 2007/01/20 ST7626 Write( COMMAND, 0xfc ); delay(50000); // Write Data to EEPROM Write( COMMAND, 0xeb ); Write( DATA, 0x02 ); Write( COMMAND, 0xfc ); delay(50000); // Select EEPROM // EEPROM 3rd byte // Write Data to EEPROM // Delay 50ms, the range is 10ms < delay < 80ms Write( COMMAND, 0xeb ); Write( DATA, 0x03 ); Write( COMMAND, 0xfc ); delay(50000); // Select EEPROM // EEPROM 4th byte // Write Data to EEPROM // Delay 50ms, the range is 10ms < delay < 80ms Write( COMMAND, 0xeb ); Write( DATA, 0x04 ); Write( COMMAND, 0xfc ); delay(50000); // Select EEPROM // EEPROM 5th byte // Write Data to EEPROM // Delay 50ms, the range is 10ms < delay < 80ms Write( COMMAND, 0xcc ); delay(50000); // Cancel EEPROM // Delay 50ms Write( COMMAND, 0x30 ); Write( COMMAND, 0x20 ); Write( DATA, 0x0b ); Write( COMMAND, 0xaf ); // EXT=0 // Power Control // B/F/R = On/On/On // Display On //Delay 50 ms, the range is delay≥50ms } Ver 1.5 43/94 2007/01/20 ST7626 7.11 RESET CIRCUIT When the RST pin reveives a negative reset pulse all internal circuitry will start to initialize. The minimum pulse width for completing the reset sequence is 3 us at Vdd=1.8V. The ststus of ST7626 after reset flow is listed below: When Power is turned on Input power (VDD1~VDD5) ↓ Be sure to apply POWER-ON RESET (RESET=LOW) ↓ < Display Setting 1 > << State after reset >> Display control (DISCTL) Setting clock dividing ratio: 2 divisions Duty setting: 1/4 Setting reverse rotation number of line: 11H reverse rotations Common scan direction (COMSCN) Setting scan direction: COM0ÆCOM33, COM34ÆCOM67 Oscillation on (OSCON): Oscillation off ↓ Sleep-in Sleep-out (SLIPOUT): ↓ < Power Supply Setting > << State after reset >> Electronic volume control (VOLCTR) Setting volume value: 0 Setting built-in resistance value: 0 (3.76) Power control (PWRCTR) Setting operation of power supply circuit: ALL OFF ↓ < Display Setting 2 > << State after reset >> Normal rotation of display (DISNOR) / inversion of display (DISINV): Normal rotation of display Partial-in (PTLIN) / Partial-out (PLOUT): Partial-out Setting fix area: 0 Area scroll set (ASCSET) Setting area scroll region: 0 Setting area scroll type: Full-screen scroll Scroll start set (SCSTART) Setting scroll start address: 0 ↓ < Display Setting 3 > << State after reset >> Data control (DATCTL) Ver 1.5 44/94 2007/01/20 ST7626 Setting normal radiation / inversion of page address: Normal rotation Setting normal radiation / inversion of column address: Normal rotation Setting direction of address scanner: Column direction Setting RGB arrangement: RGB Setting gradation: 65K 65K-color position set (RGBSET8) All 0 Setting color position at 65K-color: ↓ << State after reset >> < RAM Setting > Page address set (PASET) Setting start page address: 0 Setting end page address: 0 Column address set (PASET) Setting start column address: 0 Setting end column address: 0 ↓ << State after reset >> < RAM Write > Memory write command (RAMWR) Writing displayed data: repeat as many as the number needed and exit by entering other command. ↓ < Waiting (approximately 100ms) > Wait until the power supply voltage has stabilized. Enter the power supply control command first, then wait at least 100ms before entering the Display ON command when the built-in power supply circuit operates. If you do not wait, an unwanted display may appear on the liquid crystal panel. ↓ Display off Display on (DISON): Note: If changes are unnecessary after reset, command input is unnecessary. Ver 1.5 45/94 2007/01/20 ST7626 8. COMMANDS 8.1 Command table Ext=0 Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 DISON 0 1 0 1 0 1 0 1 1 1 1 Display On AF None 1 DISOFF 0 1 0 1 0 1 0 1 1 1 0 Display Off AE None 2 DISNOR 0 1 0 1 0 1 0 0 1 1 0 Normal Display A6 None 3 DISINV 0 1 0 1 0 1 0 0 1 1 1 Inverse Display A7 None 4 COMSCN 0 1 0 1 0 1 1 1 0 1 1 Com Scan Direction BB 1 byte 5 DISCTR 0 1 0 1 1 0 0 1 0 1 0 Display Control CA 3 byte 6 SLPP 0 1 0 0 0 0 0 0 1 0 0 Sleep In/Out Preparation 04 1 byte 7 SLPIN 0 1 0 1 0 0 1 0 1 0 1 Sleep In 95 None 8 SLPOUT 0 1 0 1 0 0 1 0 1 0 0 Sleep Out 94 None 9 PASET 0 1 0 0 1 1 1 0 1 0 1 Page Address Set 75 2 byte 10 CASET 0 1 0 0 0 0 1 0 1 0 1 Column Address Set 15 2 byte 11 DATCTL 0 1 0 1 0 1 1 1 1 0 0 Data Scan Direction BC 3 byte 12 RAMWR 0 1 0 0 1 0 1 1 1 0 0 Writing to Memory 5C Data 13 RAMRD 0 1 0 0 1 0 1 1 1 0 1 Reading from Memory 5D Data 14 PLTIN 0 1 0 1 0 1 0 1 0 0 0 Partial display in A8 2 byte 15 PLTOUT 0 1 0 1 0 1 0 1 0 0 1 Partial display out A9 None 16 RMWIN 0 1 0 1 1 1 0 0 0 0 0 Read Modify Write In E0 None 17 RMWOUT 0 1 0 1 1 1 0 1 1 1 0 Read Modify Write Out EE None 18 ASCSET 0 1 0 1 0 1 0 1 0 1 0 Area Scroll Set AA 4 byte 19 SCSTART 0 1 0 1 0 1 0 1 0 1 1 Scroll Start Set AB 1 byte 20 OSCON 0 1 0 1 1 0 1 0 0 0 1 Internal OSC on D1 None 21 OSCOFF 0 1 0 1 1 0 1 0 0 1 0 Internal OSC off D2 None 22 PWRCTL 0 1 0 0 0 1 0 0 0 0 0 Power Control 20 1 byte 23 VOLCTR 0 1 0 1 0 0 0 0 0 0 1 EC control 81 2 byte 24 VOLUP 0 1 0 1 1 0 1 0 1 1 0 EC increase 1 D6 None 25 VOLDOWN 0 1 0 1 1 0 1 0 1 1 1 EC decrease 1 D7 None 26 STREAD 0 0 1 EPSRRD1 0 1 0 0 1 1 1 1 1 0 0 READ Register1 7C None 28 EPSRRD2 0 1 0 0 1 1 1 1 1 0 1 READ Register2 7D None 29 NOP 0 1 0 0 0 1 0 0 1 0 1 NOP Instruction 25 None 30 EEOK 0 1 0 0 0 0 0 0 1 1 1 EEPROM Function Start 07 1 byte 31 RESERVED 0 1 0 1 0 0 0 0 0 1 0 Not Use 82 Ver 1.5 Status Read Function Hex Parameter Index Status Read 46/94 32 2007/01/20 ST7626 Ext=1 Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Frame1 Set 0 1 0 0 0 1 0 0 0 0 0 FRAME 1 PWM Set 20 16 byte 1 Frame2 Set 0 1 0 0 0 1 0 0 0 0 1 FRAME 2 PWM Set 21 16 byte 2 Frame3 Set 0 1 0 0 0 1 0 0 0 1 0 FRAME 3 PWM Set 22 16 byte 3 Frame4 Set 0 1 0 0 0 1 0 0 0 1 1 FRAME 4 PWM Set 23 16 byte 4 ANASET 0 1 0 0 0 1 1 0 0 1 0 Analog Set 32 3 byte 5 EPCTIN 0 1 0 1 1 0 0 1 1 0 1 Control EEPROM CD 1 byte 6 EPCOUT 0 1 0 1 1 0 0 1 1 0 0 Cancel EEPROM CC None 7 EPMWR 0 1 0 1 1 1 1 1 1 0 0 Write to EEPROM FC None 8 EPMRD 0 1 0 1 1 1 1 1 1 0 1 Read from EEPROM FD None 9 DISPADJ 0 1 0 1 1 1 1 1 0 1 0 FA 1 byte 10 IIPP 0 1 0 1 1 1 1 0 1 0 0 F4 1 byte 11 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Ext In 0 1 0 0 0 1 1 0 0 0 0 Ext=0 Set 30 None -- Ext Out 0 1 0 0 0 1 1 0 0 0 1 Ext=1 Set 31 None -- Display Performance Adjustment Internal Initialize Preparation Hex Parameter Index Ext=1 or Ext=0 Command Ver 1.5 47/94 Function Hex Parameter Index 2007/01/20 ST7626 8.2 EXT=”0” Function Description (1) Display ON (DISON) Command: 1; Parameter: None (AFH) It is used to turn the display on. When the display is turned on, segment outputs and common outputs are generated at the level corresponding to the display data and display timing. You can’t turn on the display as long as the sleep mode is selected. Thus, whenever using this command, you must cancel the sleep mode first. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 1 1 1 1 (2) Display OFF (DISOFF) Command: 1; Parameter: None (AEH) It is used to forcibly turn the display off. As long as the display is turned off, every on segment and common outputs are forced to VSS level. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 1 1 1 0 (3) Normal display (DISNOR) Command: 1; Parameter: None (A6H) It is used to normally highlight the display area without modifying contents of the display data RAM. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 0 1 1 0 (4) Inverse display (DISINV) Command: 1; Parameter: None (A7) It is used to inversely highlight the display area without modifying contents of the display data RAM. This command does not invert non-display areas in case of using partial display. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 0 1 1 1 (5) Common scan (COMSCAN) Command: 1; Parameter: 1 (BBH) It is used to specify the common output direction in the pin of CSEL = L. This command helps increasing degrees of freedom of wiring on the LCD panel. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 0 1 1 1 0 1 1 - Parameter1 (P1) 1 1 0 * * * * * P12 P11 P10 Command Scan direction When CSEL=0 configuration is selected, pins and common outputs are scanned in the order shown below. Ver 1.5 Common scan direction P12 P11 P10 0 0 0 0 Æ 33 34 Æ 67 0 0 1 0 Æ 33 67 Æ 34 0 1 0 33 Æ 0 34 Æ 67 0 1 1 33 Æ 0 67 Æ 34 COM0 pin COM33 pin 48/94 COM34 pin COM67 pin 2007/01/20 ST7626 Common scan direction Original graphic: Com0 Com34 Com33 Com67 P12:P11:P10:0:0:0 (0Æ33, 34Æ67) P12:P11:P10:0:0:1 (0Æ33, 67Æ34) Com0 Com34 Com0 Com33 Com67 Com67 Com33 Com34 P12:P11:P10:0:1:0 (33Æ0, 34Æ67) P12:P11:P10:0:1:1 (33Æ0, 67Æ34) Com33 Com34 Com33 Com67 Com0 Com67 Com0 Com34 (6) Display control (DISCTL) Command: 1; Parameter: 3 (CAH) This command and succeeding parameters are used to perform the display timing-related setups. This command must be selected before using SLPOUT. Don’t change this command while the display is turned on. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 1 0 0 1 0 1 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 * * Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Drive duty Parameter3(P3) 1 1 0 0 P36 P35 P34 P33 P32 P31 P30 FR inverse-set value Ver 1.5 49/94 CL dividing ratio, F1 and F2 drive pattern. 2007/01/20 ST7626 P1: it is used to specify the CL dividing ratio. P14, P13, P12: CL dividing ratio. They are used to change number of dividing stages of external or internal clock. P14 P13 P12 CL dividing ratio 0 0 0 Not divide 0 0 1 2 divisions 0 1 0 4 divisions 0 1 1 8 divisions P2: It is used to specify the duty of the module on block basis. Duty * * * P24 P23 P22 P21 P20 (Numbers of display lines)/4-1 Example: 1/68 duty 0 0 0 0 1 1 1 1 64/4-1=15 This will output driving voltage waveforms from com0 to com63. P3: It is used to specify number of lines to be inversely highlighted on LCD panel from P36 to P30 (lines can be inversely highlighted in the range of 2 to 64) Inversely highlighted line P37 P36 P35 P34 P33 P32 P31 P30 Inversely highlighted lines-1 Example: 0AH 0 0 0 0 1 0 1 0 11 (lines)-1 = 10 (lines) Example: 7CH 0 1 1 1 1 1 0 0 61 (lines)-1 = 60 (lines) P34=”0”: Frame inversion occurs every frame; P34=”1”: Independent from frames. In the default, 0 inverse highlighted line is selected. (7) Sleep In/Out Preparation (SLPP) Command: 1; Parameter: 1 Using this command to setup ready status for sleep-in or sleep out. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 0 0 0 1 0 0 - Parameter(P1) 1 1 0 0 0 1 1 1 1 1 P10 Sleep in/out ready P10 =” 1”: Ready for sleep in. P10 = “0”: Ready for sleep out. Parameter 3FH is used to initialize sleep-in sequencing, and parameter 3EH is used to initialize sleep-out sequencing. (8) Sleep in (SPLIN) Command: 1; Parameter: None (95H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 0 1 0 1 0 1 (9) Sleep out (SLPOUT) Command: 1; Parameter: None (94H) Command Ver 1.5 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 0 1 0 1 0 0 50/94 2007/01/20 ST7626 (10) Page address set (PASET) Command: 1; Parameter: 2 (75H) When MPU makes access to the display data RAM, this command and succeeding parameters are used to specify the page address area. As the addresses are incremented from the start to the end page in the page-direction scan, the column address is incremented by 1 and the page address is returned to the start page. Note: that the start and end page must be specified as a pair. Also, the relation “start page < end page” must be maintained. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 1 1 1 0 1 0 1 - Parameter1(P1) 1 1 0 * P16 P15 P14 P13 P12 P11 P10 Start page Parameter2(P2) 1 1 0 * P26 P25 P24 P23 P22 P21 P20 End page (11) Column address set (CASET) Command: 1; Parameter: 2 (15H) When MPU makes access to the display data RAM, this command and succeeding parameters are used to specify the column address area. As the addresses are incremented from the start to the end column in the column-direction scan, the page address is incremented by 1 and the column address is returned to the start column. Note: that the start and end column must be specified as a pair. Also, the relation “start column < end column” must be maintained. A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 0 1 0 1 0 1 - Parameter1(P1) 1 1 0 * P16 P15 P14 P13 P12 P11 P10 Start address Parameter2(P2) 1 1 0 * P26 P25 P24 P23 P22 P21 P20 End address (12) Data control (DATCTL) Command: 1; Parameter: 3 (BCH) This command and succeeding parameters are used to perform various setups needed when MPU operates display data stored on the built-in RAM. Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function 0 1 0 1 0 1 1 1 1 0 0 - Normal/inverse display of Parameter1(P1) 1 1 0 * * * * * P12 P11 P10 page/column address and address scan direction. Parameter2(P2) 1 1 0 * * * * * * * P20 RGB arrangement Parameter3(P3) 1 1 0 * * * * * P32 P31 P30 Gray-scale setup P1: It is used to specify the normal or inverse display of the page / column address and also to specify the address scanning direction. P10: Normal/inverse display of the page address. P10=0: Normal and P10=1: Inverse P11: Normal/reverse turn of column address. P11=0: Normal rotation and P11=1: Reverse rotation. P12: Address-scan direction. P12=0: In the column direction and P12=1: In the page direction. Ver 1.5 51/94 2007/01/20 ST7626 Page address and page-address scan direction P12=0 Column direction P11=0 P11=1 P10=0 0 1 2 P10=1 67 66 65 65 66 67 2 1 0 0 97 1 96 2 95 95 2 96 1 97 0 0 97 1 96 2 95 95 2 96 1 97 0 P12=1 Page direction P11=0 P11=1 P10=0 0 1 2 P10=1 67 66 65 65 66 67 2 1 0 P2: RGB arrangement. This parameter allows you to change RGB arrangement of data which is going to be written into RAM, and therefore causes the inverse RGB rotation of the segment output of ST7626. You can fit RGB arrangement on the LCD panel according to this parameter setting. P20 SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 … SEG293 0 R G B R G B R G … B 1 B G R B G R B G … R P3: Gray scale setup. Using this parameter, you can select the 4K, 65K, 262K, and 16M display mode depending on the difference in RGB data arrangement. P32 P31 P30 Numbers of gray-scale 0 0 1 64-gray 65K 0 1 0 64-gray 262K 1 0 0 64-gray 16M 1 0 1 16-gray 4K Type A 1 1 0 16-gray 4K Type B Ver 1.5 52/94 2007/01/20 ST7626 (13) Memory write (RAMWR) Command: 1; Parameter: Numbers of data written (5CH) When MPU writes data to the display memory, this command turns on the data entry mode. Entering this command always sets the page and column address at the start address. You can rewrite contents of the display data RAM by entering data succeeding to this command. At the same time, this operation increments the page or column address as applicable. The write mode is automatically cancelled if any other command is entered. 1. 8-bit bus A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 1 0 1 1 1 0 0 - Parameter 1 1 0 A0 RD RW D15 D14 … D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 * * … * * 0 1 0 1 1 1 0 0 Memory write parameter 1 1 0 Data to be written Data to be written 2. 16-bit bus Data to be written Write data (14) Memory read (RAMRD) Command: 1; Parameter: Numbers of data read (5DH) When MPU read data from the display memory, this command turns on the data read mode. Entering this command always sets the page and column address at the start address. After entering this command, you can read contents of the display data RAM. At the same time, this operation increments the page or column address as applicable. The data read mode is automatically cancelled if any other command is entered. 1. 8-bit bus A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 1 0 1 1 1 0 1 - Parameter 1 0 1 A0 RD RW D15 Command 0 1 0 * parameter 1 0 1 Data to be read Data to be read 2. 16-bit bus D14 …. D9 D8 * * * * D7 D6 D5 D4 D3 D2 D1 D0 Function 0 1 0 1 1 1 0 1 Memory read Data to be read Read data (15) Partial in (PTLIN) Command: 1; Parameter: 2 (A8H) This command and succeeding parameters specify the partial display area. This command is used to turn on partial display of the screen (dividing screen by lines) in order to save power. Since ST7626 processes the liquid crystal display signal on 4-line basis (block basis), the display and non-display areas are also specified on 4-bit line (block basis). A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 0 1 0 1 0 0 0 - Parameter(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Start block address Parameter(P2) 1 1 0 * * * P24 P23 P22 P21 P20 End block address A block address that can be specified for the partial display must be the display one (don’t try to specify an address not to be displayed when scrolled). Ver 1.5 53/94 2007/01/20 ST7626 (16) Partial out (PTLOUT) Command: 1; Parameter: 0 (A9H) This command is used to exit from the partial display mode. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 1 0 0 1 (17) Read modify write in (RMWIN) Command: 1; Parameter: 0 (E0H) This command is used along with the column address set command, page address set command and read modify write out command. This function is used when frequently modifying data to specify a specific display area such as blinking cursor. First set a specific display area using the column and page address commands. Then, enter this command to set the column and page addresses at the start address of the specific area. When this operation is complete, the column (page) address won’t be modified by the display data read command. It is incremented only when the display data write command is used. You can cancel this mode by entering the read modify write out or any other command. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 0 0 0 0 0 (18) Read modify write out (RMWOUT) Command: 1; Parameter: 0 (EEH) Enter this command cancels the read modify write mode Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 0 1 1 1 0 (19) Area scroll set (ASCSET) Command: 1; Parameter: 4 (AAH) It is used when scrolling only the specified portion of the screen (dividing the screen by lines). This command and succeeding parameters specify the type of area scroll, fix area and scroll area. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 0 1 0 1 0 1 0 - Parameter(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Top block address Parameter(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Bottom block address Parameter(P3) 1 1 0 * * * P34 P33 P32 P31 P30 Number of specified blocks Parameter(P4) 1 1 0 * * * * * * P41 P40 Area scroll mode P4: It is used to specify an area scroll mode. P41 P40 Type of area scroll 0 0 Center screen scroll 0 1 Top screen scroll 1 0 Bottom screen scroll 1 1 Whole screen scroll Ver 1.5 54/94 2007/01/20 ST7626 Center screen scroll Fixed area Top screen scroll Bottom screen scroll Whole screen scroll Scroll area Since ST7626 processes the liquid crystal display signals on the four-line basis (block basis), FIX and scroll areas are also specified on the four-line basis (block basis). DDRAM address corresponding to the top FIX area is set in the block address incrementing direction starting with 0 block. DDRAM address corresponding to the bottom FIX area is set in the block address decreasing direction starting with 16 st block. Other DDRAM blocks excluding the top and bottom FIX areas are assigned to the scroll + background areas. th P1: It is used to specify the top block address of the scroll + background areas. Specify the 0 block for the top screen scroll or whole screen scroll. th P2: It specifies the bottom address of the scroll+ background areas. Specify the 16 block for the bottom or whole screen scroll. Required relation between the start and end blocks (top block address<bottom block address) must be maintained. P3: It specifies a specific number of blocks {Numbers of (Top FIX area +Scroll area) block-1}. When the bottom scroll or whole screens scroll, the value is identical with P2. You can turn on the area scroll function by executing the area scroll set command first and then specifying the display start block of the scroll area with the scroll start set command. [Area Scroll Setup Example] In the center screen scroll of 1/48 duty (display range: 48 lines = 12 blocks), if 8 lines = 2 blocks and 8 lines = 2 blocks are specified for the top and bottom FIX areas, 36 lines = 9 blocks is specified for the scroll areas, respectively, 16 lines = 4 blocks on the DDRAM are usable as the background area. Value of each parameter at this time is as shown below. Ver 1.5 55/94 2007/01/20 ST7626 A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 P1 1 1 0 * * * 0 0 0 1 0 Top block address = 02 H P2 1 1 0 * * * 0 1 1 1 0 Bottom block address = 0E H P3 1 1 0 * * * 0 1 1 0 0 Number of specific blocks = 09 H P4 1 1 0 * * * * * * 0 0 Area scroll mode = center (20) Scroll start address set (SCSTART) Command:1 Parameter: 1 (ABH) This command and succeeding parameters are used to specify the start block address of the scroll area. Note: that you must execute this command after executing the area scroll set command. Scroll becomes available by dynamically changing the start block address. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 0 1 0 1 0 1 1 - Parameter(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Start block address (21) Internal oscillation on (OSCON) Command: 1; Parameter: 0 (D1H) This command turns on the internal oscillation circuit. It is valid only when the internal oscillation circuit of CLS = HIGH is used. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 0 0 0 1 (22) Internal oscillation off (OSOFF) Command: 1; Parameter: 0 (D2H) It turns off the internal oscillation circuit. This circuit is turned off in the reset mode. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 0 0 1 0 (23) Power control set (PWRCTR) Command: 1; Parameter: 1 (20H) This command is used to turn on or off the Booster circuit, follower voltage, and voltage regulator circuit. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 1 0 0 1 0 0 0 0 0 Parameter(P1) 1 1 0 * * * 0 P13 0 P11 P10 Function - LCD drive power P10: It turns on or off the voltage regulator voltage. P10 = “1”: ON. P10 =” 0”: OFF P11: It turns on or off the follower circuit. P11 = “1”: ON. P11 =” 0”: OFF P13:It turns on or off the Booster. P13 = “1”: ON. P13 =” 0”: OFF Ver 1.5 56/94 2007/01/20 ST7626 (24) Electronic volume control (VOLCTR) Command: 1; Parameter: 2 (81H) The command is used to program the optimum LCD supply voltage VOP. Reference to 7.10.2 A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 1 0 0 0 0 0 0 1 - Parameter(P1) 1 1 0 * * P15 P14 P13 P12 P11 P10 Set Vop[5:0] Parameter(P2) 1 1 0 * * * * * P18 P17 P16 Set Vop[8:6] (25) Increment electronic control (VOLUP) Command: 1; Parameter: 0 (D6H) With the VOLUP and VOLDOWN command the VOP voltage and therewith the contrast of the LCD can be adjusted. This command increments electronic control value Vop[5:0] of voltage regulator circuit by 1. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 0 1 1 0 If you set the electronic control value to 111111, the control value is set to 000000 after this command has been executed. (26) Decrement electronic control (VOLDOWN) Command: 1; Parameter: 0 (D7H) With the VOLUP and VOLDOWN command the VOP voltage and therewith the contrast of the LCD can be adjusted. This command decrements electronic control value Vop[5:0] of voltage regulator circuit by 1. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 0 1 1 1 If you set the electronic control value to 000000, the control value is set to 111111 after this command has been executed. Table 8.1.1 Possible Vop[5:0] values Ver 1.5 Electronic Control Value Decimal Equivalent VOP Offset 111111 31 +1240 mV 111110 30 +1200 mV 111101 29 +1160 mV … … … 000010 2 +80 mV 000001 1 +40 mV 000000 0 0 mV 111111 -1 -40 mV 111110 -2 -80 mV … … … 100010 -30 -1200 mV 100001 -31 -1240 mV 100000 -32 -1280mV 57/94 2007/01/20 ST7626 (27) Status read (STREAD) Command: 1; Parameter: None It is the command for reading the internal condition of the IC. A0 RD RW 0 0 1 Command D7 D6 D5 D4 D3 D2 D1 D0 (8) Status data Issue STREAD (Status Read) command is only for reading the internal condition of the IC. One status data can be displayed depending on the setting. Issue the NOP command after the STREAD (Status Read) command. The Status data will be composed of 8 bits below: D7: Area scroll mode Refer to P41 (ASCSET) D6: Area scroll mode Refer to P40 (ASCSET) D5: RMW on/off 0 : Out 1 : In D4: Scan direction 0 : Column 1 : Page D3: Display ON/OFF 0 : OFF 1 : ON D2: EEPROM access 0: OutAccess 1: InAccess D1: Display normal/inverse 0 : Normal 1 : Inverse D0: Partial display 0 : OFF 1 : ON (28) Read Register 1 (EPSRRD1) Command: 1; Parameter: 0 (7CH) It is the command for reading the Electronic Control values. Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 1 1 1 1 0 0 Issue the EPSRRD1 and then STREAD (Status Read) commands in succession to read the Electronic Control values. One status data can be displayed depending on the setting. Also, always issue the NOP command after the STREAD (Status Read) command. The Status data will be composed of 8 bits below: D7: 0 D6: 0 D[5:0]: Vop[5:0] Ver 1.5 Refer to electronic volume control values Vop[5:0] 58/94 2007/01/20 ST7626 (29) Read Register 2 (EPSRRD2) Command: 1 ;Parameter: 0 (7DH) It is the command for reading ID codes of the ST7626 and the built-in resistance ratio. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 1 1 1 1 0 1 Command Issue the EPSRRD2 and then STREAD (Status Read) commands in succession to read IC’s ID and the built-in resistance ratio. One status data can be displayed depending on the setting. Also, always issue the NOP command after the STREAD (Status Read) command. The Status data will be composed of 8 bits below: D[7:3]: ST7626 ID codes 00010 D[2:0]: Vop[8:6] Refer to the built-in resistance ratio Vop[8:6] (30) Non-operating (NOP) Command: 1; Parameter: 0 (25H) This command does not affect the operation. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 0 0 1 0 1 Command This command, however, has the function of canceling the IC test mode. Thus, it is recommended to enter it periodically to prevent malfunctioning due to noise and such. (31) EEPROM Function Start (EEOK) Command:1;Parameter:1(07H) In the EEPROM read/write flow, EEPROM is ready after issuing this command. Its parameter is set to 19H. A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 0 0 0 1 1 1 - Parameter(P1) 1 1 0 0 0 0 1 1 0 0 1 19H A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 0 0 0 0 1 0 (32) Reserved (82H) Do not use this command Command Ver 1.5 59/94 2007/01/20 ST7626 8.3 EXT=”1” Function Description (1) Set Frame1 value (Frame1 set) Command: 1; Parameter: 16 (20H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Frame1 Set 0 1 0 0 0 1 0 0 0 0 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 0 0 0 0 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set RGB level 0 of 1st frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set RGB level 1 of 1st frame Parameter15(P15) 1 1 0 * * * P154 P153 P152 P151 P150 Set RGB level 14 of 1st frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set RGB level 15 of 1st frame FRAME 1 PWM Set (2)Set Frame2 value (Frame2 set) Command: 1; Parameter: 16 (21H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Frame2 Set 0 1 0 0 0 1 0 0 0 0 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 0 0 0 0 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set RGB level 0 of 2nd frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set RGB level 1 of 2nd frame Parameter15(P15) 1 1 0 * * * P154 P153 P152 P151 P150 Set RGB level 14 of 2nd frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set RGB level 15 of 2nd frame FRAME 2 PWM Set (3) Set Frame3 value (Frame3 set) Command: 1; Parameter: 16 (22H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Frame3 Set 0 1 0 0 0 1 0 0 0 1 0 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 0 0 0 0 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set RGB level 0 of 3rd frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set RGB level 1 of 3rd frame Parameter15(P15) 1 1 0 * * * P154 P153 P152 P151 P150 Set RGB level 14 of 3rd frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set RGB level 15 of 3rd frame Ver 1.5 60/94 Function FRAME 3 PWM Set 2007/01/20 ST7626 (4) Set Frame4 value (Frame4 set) Command: 1; Parameter: 16 (23H) Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Frame4 Set 0 1 0 0 0 1 0 0 0 1 1 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 0 0 0 0 0 - Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 P10 Set RGB level 0 of 4th frame Parameter2(P2) 1 1 0 * * * P24 P23 P22 P21 P20 Set RGB level 1 of 4th frame Parameter15(P15) 1 1 0 * * * P154 P153 P152 P151 P150 Set RGB level 14 of 4th frame Parameter16(P16) 1 1 0 * * * P164 P163 P162 P161 P160 Set RGB level 15 of 4th frame FRAME 4 PWM Set The default value of RGB level set FRAM1 SET FRAM2 SET FRAM3 SET FRAME4 SET RGB level0 00 00 00 00 RGB level1 02 02 02 02 RGB level2 04 04 04 04 RGB level3 06 06 06 06 RGB level4 08 08 08 08 RGB level5 0A 0A 0A 0A RGB level6 0C 0C 0C 0C RGB level7 0E 0E 0E 0E RGB level8 10 10 10 10 RGB level9 12 12 12 12 RGB level10 14 14 14 14 RGB level11 16 16 16 16 RGB level12 18 18 18 18 RGB level13 1A 1A 1A 1A RGB level14 1C 1C 1C 1C RGB level15 1E 1E 1E 1E All the modulation range of each level for each frame is from 00’H to 1F’H. Example:Paint setup void LoadPaint( void ) { Write( COMMAND, 0x0031 ); Write( COMMAND, 0x0020 ); Write( DATA, 0x0000 ); Write( DATA, 0x0002 ); Write( DATA, 0x0005 ); Ver 1.5 // Ext = 1 // Palette FRC1 Setup // RGB Level0 Setup // RGB Level1 Setup // RGB Level2 Setup 61/94 2007/01/20 ST7626 ……. Write( DATA, 0x001E ); ……. // RGB Level15 Setup Write( COMMAND, 0x0021 ); Write( DATA, 0x0000 ); Write( DATA, 0x0002 ); Write( DATA, 0x0005 ); ……. Write( DATA, 0x001E ); // Palette FRC2 Setup // RGB Level0 Setup // RGB Level1 Setup // RGB Level2 Setup ……. // RGB Level15 Setup Write( COMMAND, 0x0022 ); Write( DATA, 0x0000 ); Write( DATA, 0x0002 ); Write( DATA, 0x0005 ); ……. Write( DATA, 0x001E ); // Palette FRC3 Setup // RGB Level0 Setup // RGB Level1 Setup // RGB Level2 Setup ……. // RGB Level15 Setup Write( COMMAND, 0x0023 ); Write( DATA, 0x0000 ); Write( DATA, 0x0002 ); Write( DATA, 0x0005 ); ……. Write( DATA, 0x001E ); // Palette FRC4 Setup // RGB Level0 Setup // RGB Level1 Setup // RGB Level2 Setup ……. // RGB Level15 Setup Write( COMMAND, 0x0030 ); // Ext = 0 } (5) Analog set (ANASET) Command 1; Parameter: 3 (32H) A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Function Command 0 1 0 0 0 1 1 0 0 1 0 Parameter1(P1) 1 1 0 * * * * * P12 P11 P10 OSC frequency Adjustment Parameter2(P2) 1 1 0 * * * * * * P21 P20 Booster Efficiency Set Parameter3(P3) 1 1 0 * * * * * P32 P31 P30 Bias setting Parameter4(P4) 1 1 0 * * * * * P42 P41 P40 Booster setting - P1: OSC frequency adjustment P12 P10 P10 CL pin frequency ( KHz ) : CL pin frequency ( KHz ) : CL dividing ratio setting = 00H CL dividing ratio setting = 04H (No division) (Divided by 2) 0 0 0 5.39 2.70 0 0 1 5.64 2.82 0 1 0 6.18 3.09 0 1 1 6.83 3.42 1 0 0 7.65 3.82 1 0 1 8.68 4.34 1 1 0 10.10 5.05 1 1 1 12.02 6.01 Ver 1.5 62/94 2007/01/20 ST7626 OSC frequency can be adjusted by P1 setting and command CAH, see page 46. The default OSC frequency (CL pin frequency) is 5.39 KHz. And the frame frequency is from OSC frequency and duty setting, as the formula shown below: Frame frequency = OSC frequency/(Duty+1) Example: 1. duty=68, P1 setting=[000], frame frequency=5.39KHz/78.12Hz 2. duty=64, P1 setting=[101], frame frequency=8.68KHz/133.53Hz P2: Booster Efficiency set P21 P20 Frequency ( Hz ) 0 0 Level 1 0 1 Level 2 1 0 Level 3 1 1 Level 4 By Booster Stages (2X, 3X, 4X, 5X) and Booster Efficiency (Level1~4) commands, we could easily set the best Booster performance with suitable current consumption. If the Booster Efficiency is set to lower level (level1 is higher than level4). The Boost Efficiency is better than higher level, and it just need few more power consumption current. P3: Select LCD bias ratio of the voltage required for driving the LCD. P32 P31 P30 LCD bias 0 0 0 1/12 0 0 1 1/11 0 1 0 1/10 0 1 1 1/9 1 0 0 1/8 1 0 1 1/7 1 1 0 1/6 1 1 1 1/5 P4: Booster setting. P42 P41 P40 0 0 0 Booster off 0 0 1 2 times boosting circuit 0 1 0 3 times boosting circuit 0 1 1 4 times boosting circuit 1 0 0 5 times boosting circuit Ver 1.5 63/94 2007/01/20 ST7626 (6) Control EEPROM: 1; Parameter: 1 (CDH) A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 1 1 0 0 1 1 0 1 Parameter1(P1) 1 1 0 * * P15 * * * * * P15: when setting “1” Î The Write Enable of EEPROM will be opened. P15: when setting “0” Î The Read Enable of EEPROM will be opened. (7) Cancel EEPROM Command: 1; Parameter: None (CCH) Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 0 1 1 0 0 (8) Write data to EEPROM (EPMWR) Command: 1; Parameter: None (FCH) Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 1 1 1 0 0 (9) Read data from EEPROM (EPMWR) Command: 1; Parameter: None (FDH) Command A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 1 1 1 0 1 (10) Display performance adjustment (DISPADJ) Command: 1; Parameter: 1 (FAH) A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Command 0 1 0 1 1 1 1 1 0 1 0 Parameter1(P1) 1 1 0 * * * P14 P13 P12 P11 Function Display performance adjustment P10 Fine tuning level set ST7626 provide the function of 32 levels fine tuning to adjust best crosstalk performance for each module. Just like Vop offset for different modules, the fine tuning level value can also be stored in EEPROM, and therefore each module can have its individual setup for best display performance. Due to IC and module process variation, it’s hard for all modules to have same display performance. By using this command, different modules can adjust to the best performance by having different parameters of DISPADJ. When loading EEPROM, this individual parameter can be loaded into IC and best display performance can be achieved. Detail using method please refer ST7626 EEPROM User Manual guide. (11) Internal Initialize Preparation (IIPP) Command: 1; Parameter: 1 (F4H) Use this command to set internal initializing for ready status. Command Parameter(P1) Ver 1.5 A0 RD RW D7 D6 D5 D4 D3 D2 D1 D0 Function 0 1 0 1 1 1 1 0 1 0 0 - 1 1 0 0 1 0 1 1 0 0 0 64/94 Internal initialize sequencing 2007/01/20 ST7626 8.4 EXT=”0” or ”1” Function Description (1) Extension instruction disable (EXT IN) Command:1 Parameter: None (30H) Use the “Ext=0” command table Command A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 0 0 0 0 (2) Extension instruction enable (EXT OUT) Command:1 Parameter: None (31H) Use the extended command table (EXT=”1”) Command Ver 1.5 A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 0 0 0 1 65/94 2007/01/20 ST7626 8.5 Referential Instruction Setup Flow 8.5.1 Initializing with the Built-in Power Supply Circuits Power On Keeping the /RES Pin = "L" ( t > tRW ) and waiting for stabilizing the Power /RES Pin="H" Wait a minute ( t > tR ) And execute below Instruction Immediately Write (Command, 0x31); Write (Command, 0xF4); Write (data, 0x58); User Application Setup by Internal Instructions [Sleep Out: 94H] [Internal OSC On: D1H] [Display Control: CAH] [COM Scan Direction: BBH] User LCD Power Setup by Internal Instructions [Analog Control - LCD Bias Select … : 32H] [Electronic Volume Control: 81H] [DC-DC Step-up Register Select: 20H] Execute the “Load EEPROM Flow” Execute the “Load Paint Flow” ( Adjust for Panel Characteristics ) [Normal / Inverse Display: A6H/A7H] [Data Display Setting: BCH] [Display On: AFH] [Column Address Setting: 15H] [Page Address Setting: 75H] [Entry Data Write Mode: 5CH] End of Initialization Ver 1.5 66/94 2007/01/20 ST7626 Example:ST7626 Initial setting for 98X68 void ST7626_Init( void ) { Write( COMMAND, 0x30 ); Write( COMMAND, 0x04 ); Write( DATA, 0x3e ); // Ext = 0 //Sleep In/Out Preparation //Sleep In/Out Sequencing Write( COMMAND, 0x31 ); Write( COMMAND, 0xf4 ); Write( DATA, 0x58 ); // Ext = 1 // Internal Initialize Preparation // Internal Initialize Sequencing Write( COMMAND, 0x30 ); Write( DATA, 0x10 ); Write( DATA, 0x00 ); // Ext = 0 // Duty Setting (= 68) // N-Line Inverse-set value Write( COMMAND, 0x31 ); Write( COMMAND, 0x32 ); Write( DATA, 0x00 ); Write( DATA, 0x02 ); Write( DATA, 0x03 ); Write( DATA, 0x04 ); // Ext = 1 // Analog Setting // OSC Freqency adjustment // Booster Efficiency Setting is level3 // Bias Setting (=1/9) // Booster is X5 Write( COMMAND, 0x30 ); Write( COMMAND, 0x81 ); Write( DATA, 0x2D ); Write( DATA, 0x02 ); Write( COMMAND, 0x20 ); Write( DATA, 0x0b ); // Ext = 0 // Electronic Volume Control // EV:Vop[5:0]_6bit // EV:Vop[8:6]_3bit // Vop is 10.52V under this condition for example // Power Control // B/F/R = On/On/On delayms(50); LoadEEPROM() // Delay 50ms // Load EEPROM example program (refer page 68) LoadPaint(); // Load Gamma Table Parameter (refer page 61) Write( COMMAND, 0x30 ); Write( COMMAND, 0xa7 ); Write( COMMAND, 0xbb ); Write( DATA, 0x01 ); Write( COMMAND, 0xbc ); Write( DATA, 0x00 ); Write( DATA, 0x00 ); Write( DATA, 0x01 ); // Ext = 0 // Inverse Display // Com Scan Direction // 0~33 / 67~34 // Data Scan Direction // Page / Column Address Setting // RGB arrangement (0:RGB 1:BGR) // Gray-scale setup ( 64-gray: 01H) Write( COMMAND, 0x75 ); Write( DATA, 0x00 ); Write( DATA, 67 ); Write( COMMAND, 0x15 ); Write( DATA, 0x00 ); Write( DATA, 97 ); // Page address set // From page address 0 // to page address 67 // Column address set // From column address 0 // to column address 97 Write( COMMAND, 0xaf ); Write( COMMAND, 0x30 ); // Display On // Ext = 0 } Ver 1.5 67/94 2007/01/20 ST7626 Example:Load EEPROM void LoadEEPROM( void ) { Write( COMMAND, 0x31 ); Write( COMMAND, 0xcd ); Write( DATA, 0x00 ); delayms(50); Write( COMMAND, 0xfd ); delayms(50); Write( COMMAND, 0xcc ); Write( COMMAND, 0x30 ); // Ext = 1 // Enable EEPROM // // Delay 50ms // Load EEPROM // Delay 50ms // Disable EEPROM // Ext = 0 } 8.5.2 Data Displaying Normal State Display Data RAM Addressing by Instruction [Data Control: BCH] [Set Page Address: 75H] [Set Column Address: 15H] [Entry Memory Write Mode: 5CH] Display Data Write [Display Data Write] No End of Display Data Write ? Yes End of Data Display Figure 8.5.2.1 Data Displaying Ver 1.5 68/94 2007/01/20 ST7626 Example:Display for 98X68 void Display( char *pattern ) { unsigned char i, j; Write( COMMAND, 0x30 ); Write( COMMAND, 0x15 ); Write( DATA, 0 ); Write( DATA, 97 ); Write( COMMAND, 0x75 ); Write( DATA, 0 ); Write( DATA, 67 ); Write( COMMAND, 0x5c ) for( j = 0; j < 68 ; j++ ) for( i = 0 ; i < 98 ; i++ ) Write( DATA, pattern[ j ][ i ] ); // Ext = 0 // Column address set // From column address 0 to 97 // Page address set // From page address 0 to 67 // Entry Memory Write Mode // Display Data Write } 8.5.3 Partial Display In/Out Figure 8.5.3.1 Partial Display In/Out Ver 1.5 69/94 2007/01/20 ST7626 Example:Partial Display In Operation void PartailIn( unsigned char start_block, unsigned char end_block ) { Write( COMMAND, 0x30 ); // Ext = 0 Write( COMMAND, 0xA8); // Partial Display In Function Write( DATA, start_block ); // Start Block Write( DATA, end_block ); // End Block } void PartailOut( void ) { Write( COMMAND, 0x30 ); Write( COMMAND, 0xA9 ); } // Ext = 0 // Partial Display Out Function void main() { PartialIn( 11, 18 ); // entry partial display mode Windowing( 0, 11*4, 131, 18*4 ); PartialDisplay( display_pattern ); . . . PartialOut(); // set the page and column range // Fill the data into partial display area // Out of partial display mode } Ver 1.5 70/94 2007/01/20 ST7626 8.5.4 Scroll Display Figure 8.5.4.1 Scroll Display Example:Screen Scroll Operation void CenterScreenScroll( void ) { Write( COMMAND, 0x30 ); Write( COMMAND, 0xAA); Write( DATA, 0x0a ); Write( DATA, 0x14 ); Write( DATA, 0x14 ); Write( DATA, 0x00 ); ScrollUp() or ScrollDown(); // Ext = 0 // Partial Display In Function // Top_Block=10 // Bottom_Block=20 // Number of Specified Blocks=Bottom_Block=20 // Area Scroll Type=Center Screen Scroll // Scroll Up or Scroll Down } void TopScreenScroll( void ) { Write( COMMAND, 0x30 ); Write( COMMAND, 0xAA); Write( DATA, 0x00 ); Write( DATA, 0x14 ); Write( DATA, 0x14 ); Write( DATA, 0x01 ); ScrollUp() or ScrollDown(); } Ver 1.5 // Ext = 0 // Partial Display In Function // Top_Block=0 // Bottom_Block=20 // Number of Specified Blocks=Bottom_Block=20 // Area Scroll Type=Top Screen Scroll // Scroll Up or Scroll Down 71/94 2007/01/20 ST7626 void BottomScreenScroll( void ) { Write( COMMAND, 0x30 ); Write( COMMAND, 0xAA); Write( DATA, 0x0a ); Write( DATA, 0x20 ); Write( DATA, 0x20 ); Write( DATA, 0x02 ); ScrollUp() or ScrollDown(); } void WholeScreenScroll( void ) { Write( COMMAND, 0x30 ); Write( COMMAND, 0xAA); Write( DATA, 0x00 ); Write( DATA, 0x20 ); Write( DATA, 0x20 ); Write( DATA, 0x03 ); ScrollUp() or ScrollDown(); } void ScrollUp( void ) { Write( COMMAND, 0x30 ); Write( COMMAND, 0xAB); Write( DATA, Top_Block); Delay(); // Ext = 0 // Partial Display In Function // Top_Block=10 // Bottom_Block=32 // Number of Specified Blocks=Bottom_Block=32 // Area Scroll Type=Bottom Screen Scroll // Scroll Up or Scroll Down // Ext = 0 // Partial Display In Function // Top_Block=0 // Bottom_Block=32 // Number of Specified Blocks=Bottom_Block=32 // Area Scroll Type=Whole Screen Scroll // Scroll Up or Scroll Down // Ext = 0 // Scroll Start Set // Start Block Address=Top_Block // Delay Write( COMMAND, 0x00AB); Write( DATA, Top_Block +1 ); Delay(); // Scroll Start Set // Start Block Address= Top_Block+1 // Delay Write( COMMAND, 0x00AB); Write( DATA, Top_Block +2 ); Delay(); …… …… Write( COMMAND, 0x00AB); Write( DATA, Bottom_Block ); Delay(); // Scroll Start Set // Start Block Address= Top_Block +2 // Delay } void ScrollDown( void ) { Write( COMMAND, 0x30 ); Write( COMMAND, 0x00AB); Write( DATA, Bottom_Block); Delay(); // Scroll Start Set // Start Block Address= Bottom_Block // Delay // Ext = 0 // Scroll Start Set // Start Block Address= Bottom_Block // Delay Write( COMMAND, 0x00AB); Write( DATA, Bottom_Block -1 ); Delay(); // Scroll Start Set // Start Block Address= Bottom_Block -1 // Delay Write( COMMAND, 0x00AB); Write( DATA, Bottom_Block -2 ); Delay(); …… …… Write( COMMAND, 0x00AB); Write( DATA, Top _Block ); Delay(); // Scroll Start Set // Start Block Address= Bottom_Block -2 // Delay // Scroll Start Set // Start Block Address= Top_Block // Delay } Ver 1.5 72/94 2007/01/20 ST7626 8.5.5 Read-Modify-Write Cycle Figure 8.5.5.1 Read-Write-Modify Cycle Example:Read-Write-Modify Cycle void ReadModifyWriteIn( void ) { Write( COMMAND, 0x30 ); Write( COMMAND, 0xE0 ); } void ReadModifyWriteOut( void ) { Write( COMMAND, 0x30 ); Write( COMMAND, 0xEE ); } Ver 1.5 // Ext = 0 // Entry the Read-Modify-Write mode // Ext = 0 // Out of partial display mode 73/94 2007/01/20 ST7626 extern unsigned char *display_pattern; void main() { unsigned pixel, i; Windowing( 11, 31, 80, 50 ); ReadModifyWriteIn(); // set the page and column range // entry the Read-Modify-Write mode for( i = 0 ; i < 1400 ; i++ ) { Read( DATA ); pixel = Read( DATA ); pixel = pixel & 0x07ff; Write( DATA, pixel ); } // For dummy read // Pixel read // Pixel modify: red filter ReadModifyWriteOut(); // Out of Read-Modify-Write mode } 8.5.6 Power OFF Power OFF Normal State Execute the “Sleep In Flow” Keeping /RES Pin =“L” Power Off (VDD-VSS) End of Power OFF VDD /RES tR > 12 ms tR Internal State Normal State Reset Power Off Keep the /RES = Low Figure 8.5.6.1 Power off Ver 1.5 74/94 2007/01/20 ST7626 8.5.7 Sleep In/Out Normal State Sleep In Status Start of Sleep In Start of Sleep Out Sleep In Sequencing : [Display Off: AEH] [Booster Off Only: 20H^03H] [Set Sleep In Preparation: 04H^3FH] Sleep Out Sequencing : [Set Sleep Out Preparation: 04H^3EH] [Set Analog Power Control: 20H^0BH] Delay 500ms [Set Sleep Out by Instruction: 94H] [Set Sleep In by Instruction: 95H] Delay 100ms End of Sleep In [Display On: AFH] End of Sleep Out Fig 8.5.7.1 Sleep In/Out Flow Example:Sleep In Operation void SleepIn( void ) { Write( COMMAND, 0x30 ); Write( COMMAND, 0xae ); Write( COMMAND, 0x20); Write( DATA, 0x03 ); Write( COMMAND, 0x04 ); Write( DATA, 0x3f ); Delay( 500ms); Write( COMMAND, 0x95 ); } // Ext = 0 // Display Off // Power Control // B/F/R = Off/On/On // Sleep In Preparation // Sleep In Sequencing // Delay 500ms // Sleep In Example:Sleep Out Operation void SleepOut( void ) { Write( COMMAND, 0x30 ); Write( COMMAND, 0x04 ); Write( DATA, 0x3e ); Write( COMMAND, 0x20 ); Write( DATA, 0x0b ); Write( COMMAND, 0x94 ); Delay( 100ms ); Write( COMMAND, 0xaf ); } Ver 1.5 // Ext = 0 // Sleep Out Preparation // Sleep Out Sequencing // Power Control // B/F/R = On/On/On // Sleep Out // Delay 100ms // Display On 75/94 2007/01/20 ST7626 9. LIMITING VALUES In accordance with the Absolute Maximum Rating System of Bare Die; see notes 1 and 2. Parameter Symbol Conditions Unit Power supply voltage VDD, VDD1~VDD5 –0.5 ~ +4.0 V Power supply voltage VLCDIN –0.5 ~ +20 V Power supply voltage V1, V2, V3, V4 0.3 to VLCDIN V Input voltage VIN –0.5 to VDD+0.5 V Output voltage VO –0.5 to VDD+0.5 V Operating temperature (die) TOPR –30 to +85 °C Storage temperature (die) TSTR –40 to +125 °C VLCD V1 to V4 VDD VDD VSS VSS System (MPU) side VSS ST7626chip side Notes 1. Stresses above those listed under Limiting Values may cause permanent damage to the device. 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. 3. Insure that the voltage levels of V1, V2, V3, and V4 are always such that VLCDIN ≧ V0 ≧ V1 ≧ V2 ≧ V3 ≧ V4 ≧ VSS Ver 1.5 76/94 2007/01/20 ST7626 10. HANDLING Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS devices”). 11. DC CHARACTERISTICS VDD = 1.8 V to 3.3V; VSS = 0 V; V0 = 3.76 to 18.0V; Tamb = -30℃ to +85℃; unless otherwise specified. Item Symbol High-level Input Voltage Rating Condition Units Applicable Pin Min. Typ. Max. VIHC 0.7 x VDD — VDD V *1 Low-level Input Voltage VILC VSS — 0.3 x VDD V *1 High-level Output Voltage VOHC 0.7 x VDD — VDD V *2 Low-level Output Voltage VOLC VSS — 0.3 x VDD V *2 Input leakage current ILI VIN = VDD or VSS -1.0 — 1.0 µA *3 Output leakage current ILO VIN = VDD or VSS -3.0 — 3.0 µA *4 — 1 — — 1.3 — Ta = 25°C V0IN = 15.0 Liquid Crystal Driver ON RON Resistance (Relative V To VSS) V0IN = 8.0 V KΩ SEGn COMn *5 Internal Oscillator fOSC — 5.39 12.02 kHz *6 External Input fCL — 167.09 372.62 kHz OSC Oscillator 1/68 duty Frequency Ta = 25°C Internal OSC: 31 PWM Frame frequency fFRAME fFRAME = fOSC /(Duty+1) Hz External OSC: fFRAME = fCL /[31*(Duty+1)] Item Operating Voltage (1) Symbol Rating Condition Units Applicable Pin 3.4 V VSS*7 — 3.4 V VSS — — 20 V VLCDOUT — — 20 V VLCDIN Min. Typ. Max. (Relative to VSS) 1.7 — (Relative to VSS) 2.4 VLCDOUT (Relative To VSS) VLCDIN (Relative To VSS) VDD VDD1 Internal Power VDD2 Operating Voltage (2) VDD3 VDD4 VDD5 Supply Step-up output voltage Circuit Voltage regulator Circuit Operating Voltage Ver 1.5 77/94 2007/01/20 ST7626 Dynamic Consumption Current : During Display, with the Internal Power Supply OFF Current consumed by total ICs when an external power supply is used . Test pattern Display Pattern Normal(Bare die) Power Down (Bare die) Symbol ISS Rating Condition Bare Die, VDD = 2.8 V, Booster x 5 @ 1/9 bias,1/68 duty,Vop=11V ISS Ta = 25°C Units Notes — µA *8 10 µA Min. Typ. Max. — 350 — — Notes to the DC characteristics 1. The maximum possible VLCD voltage that may be generated is dependent on voltage, temperature and (display) load Internal clock. 2. Power-down mode. During power down all static currents are switched off. 3. If external VLCD, the display load current is not transmitted to IDD. 4. VLCD external voltage applied to VLCDIN pin; VLCDIN disconnected from VLCDOUT References for items market with * *1 The A0, D0 to D5, D6, D7, SI, SCL, E_RD, RW_WR, /CS, RST terminals. *2 The D0 to D7. *3 The A0, E_RD, RW_WR, /CS, RST terminals. *4 Applies when the D0 to D5, D6, D7, SI, SCL, terminals are in a high impedance state. *5 These are the resistance values for when a 0.2 x V0 voltage is applied between the output terminal SEGn or COMn and the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range. RON = (0.2 V0 )/ ∆I (Where ∆I is the current that flows when 0.2 V0 is applied while the power supply is ON.) *6 The relationship between the oscillator frequency and the frame rate frequency under CL dividing ratio setting = 00H. *7 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden fluctuations to the voltage while the MPU is being accessed. *8 It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on. Ver 1.5 78/94 2007/01/20 ST7626 12. TIMING CHARACTERISTICS System Bus Read/Write Characteristics 1 (For the 8080 Series MPU) A0 tAW8 tAH8 tAS8 /CS tCYC8 tCCLR,tCCLW /WR,/RD tCCHR,tCCHW tDS8 tDH8 D0 to D7 (Write) tACC8 tOH8 D0 to D7 (Read) Figure 12.1 (VDD=3.3V,Ta= –30 to 85°C) Item Signal Symbol Condition Rating Min. Max. tAH8 10 — tAS8 60 — Address setup time tAW8 0 — System cycle time (WRITE) tCYC8 180 — tCCLW 60 — /WR H pulse width (WRITE) tCCHW 120 — System cycle time (READ) tCYC8 200 — tCCLR 80 — /RD H pulse width (READ) tCCHR 120 — WRITE data setup time tDS8 60 — tDH8 10 — Address hold time Address setup time /WR L pulse width (WRITE) /RD L pulse width (READ) WRITE data hold time READ access time READ Output disable time Ver 1.5 A0 WR RD D0 to D7 tACC8 CL = 100 pF — 70 tOH8 CL = 100 pF — 60 79/94 Units ns 2007/01/20 ST7626 (VDD=2.8V,Ta= –30 to 85°C) Item Signal Symbol Condition Rating Min. Max. tAH8 10 — tAS8 80 — Address setup time tAW8 0 — System cycle time (WRITE) tCYC8 220 — tCCLW 80 — /WR H pulse width (WRITE) tCCHW 140 — System cycle time (READ) tCYC8 280 — tCCLR 100 — /RD H pulse width (READ) tCCHR 180 — WRITE data setup time tDS8 80 — tDH8 10 — Address hold time Address setup time /WR L pulse width (WRITE) /RD L pulse width (READ) WRITE data hold time READ access time A0 WR RD D0 to D7 READ Output disable time tACC8 CL = 100 pF — 75 tOH8 CL = 100 pF — 65 Units ns (VDD=1.8V,Ta= –30 to 85°C ) Item Signal Symbol Condition Rating Min. Max. tAH8 10 — tAS8 180 — Address setup time tAW8 30 — System cycle time (WRITE) tCYC8 430 — tCCLW 150 — /WR H pulse width (WRITE) tCCHW 280 — System cycle time (READ) tCYC8 450 — tCCLR 190 — /RD H pulse width (READ) tCCHR 230 — WRITE data setup time tDS8 150 — tDH8 10 — Address hold time Address setup time /WR L pulse width (WRITE) /RD L pulse width (READ) WRITE data hold time READ access time READ Output disable time A0 WR RD D0 to D7 tACC8 CL = 100 pF — 100 tOH8 CL = 100 pF — 80 Units ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tCCLW and tCCLR are specified as the overlap between /CS being “L” and WR and RD being at the “L” level. Ver 1.5 80/94 2007/01/20 ST7626 System Bus Read/Write Characteristics 1 (For the 6800 Series MPU) A0 R/W tAW6 tAH6 tAS6 /CS1 tCYC6 tCCLR,tCCLW E tCCHR,tCCHW tDS6 tDH6 D0 to D7 (Write) tACC6 tOH6 D0 to D7 (Read) Figure 12.2 (VDD=3.3V,Ta= –30 to 85°C ) Item Signal Symbol Condition Rating Min. Max. tAH6 10 — tAS6 60 — Address setup time tAW6 0 — System cycle time (WRITE) tCYC6 180 — tCCLW 120 — Enable H pulse width (WRITE) tCCHW 60 — System cycle time (READ) tCYC6 200 — tCCLR 120 — Enable H pulse width (READ) tCCHR 80 — WRITE data setup time tDS6 60 — tDH6 10 — Address hold time Address setup time Enable L pulse width (WRITE) Enable L pulse width (READ) WRITE data hold time READ access time READ Output disable time Ver 1.5 A0 WR RD D0 to D7 tACC6 CL = 100 pF — 70 tOH6 CL = 100 pF — 60 81/94 Units ns 2007/01/20 ST7626 (VDD=2.8V,Ta= –30 to 85°C ) Item Signal Symbol Condition Rating Min. Max. tAH6 10 — tAS6 80 — Address setup time tAW6 0 — System cycle time (WRITE) tCYC6 220 — tCCLW 140 — Enable H pulse width (WRITE) tCCHW 80 — System cycle time (READ) tCYC6 220 — tCCLR 120 — Enable H pulse width (READ) tCCHR 100 — WRITE data setup time tDS6 80 — tDH6 10 — Address hold time Address setup time Enable L pulse width (WRITE) Enable L pulse width (READ) WRITE data hold time READ access time A0 WR RD D0 to D7 READ Output disable time tACC6 CL = 100 pF — 75 tOH6 CL = 100 pF — 65 Units ns (VDD=1.8V,Ta= –30 to 85°C ) Item Signal Symbol Condition Rating Min. Max. tAH6 10 — tAS6 180 — Address setup time tAW6 30 — System cycle time (WRITE) tCYC6 430 — tCCLW 280 — Enable H pulse width (WRITE) tCCHW 150 — System cycle time (READ) tCYC6 400 — tCCLR 220 — Enable H pulse width (READ) tCCHR 180 — WRITE data setup time tDS6 150 — tDH6 10 — Address hold time Address setup time Enable L pulse width (WRITE) Enable L pulse width (READ) WRITE data hold time READ access time READ Output disable time A0 WR RD D0 to D7 tACC6 CL = 100 pF — 100 tOH6 CL = 100 pF — 80 Units ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tEWLW and tEWLR are specified as the overlap between /CS being “L” and E. Ver 1.5 82/94 2007/01/20 ST7626 Serial Interface Characteristics (For 4-Line Interface) tCSS tCSH /CS1 tSAS tSAH A0 tSCYC tSLW SCL tSHW tf tr tSDS tSDH SI Fig 12.3 (VDD=3.3V,Ta= –30 to 85°C ) Item Signal Serial clock period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Address hold time Data setup time A0 SI Data hold time CS-SCL setup time CS-SCL hold time /CS Symbol Condition Rating Min. Max. tSCYC 80 — tSHW 40 — tSLW 40 — tSAS 10 — tSAH 10 — tSDS 10 — tSDH 30 — tCSS 20 — tCSH 30 — Units ns (VDD=2.8V,Ta= –30 to 85°C ) Item Signal Serial clock period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Address hold time Data setup time Data hold time CS-SCL setup time CS-SCL hold time Ver 1.5 A0 SI /CS Symbol Condition Rating Min. Max. tSCYC 100 — tSHW 50 — tSLW 50 — tSAS 10 — tSAH 10 — tSDS 10 — tSDH 30 — tCSS 20 — tCSH 40 — 83/94 Units ns 2007/01/20 ST7626 (VDD=1.8V,Ta= –30 to 85°C ) Item Signal Serial clock period SCL SCL “H” pulse width SCL “L” pulse width Address setup time A0 Address hold time Data setup time SI Data hold time CS-SCL time /CS CS-SCL time Symbol Condition Rating Min. Max. tSCYC 180 — tSHW 90 — tSLW 90 — tSAS 10 — tSAH 50 — tSDS 10 — tSDH 45 — tCSS 10 — tCSH 80 — Units ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard. Serial Interface Characteristics (For 3-Line Interface) tCSS tCSH /CS1 tSCYC tSLW SCL tSHW tf tSDS tr tSDH SI Fig 12.4 Ver 1.5 84/94 2007/01/20 ST7626 (VDD=3.3V,Ta= –30 to 85°C ) Item Signal Serial clock period SCL “H” pulse width SCL SCL “L” pulse width Data setup time SI Data hold time CS-SCL setup time CS-SCL hold time /CS Symbol Condition Rating Min. Max. tSCYC 80 — tSHW 40 — tSLW 40 — tSDS 10 — tSDH 30 — tCSS 20 — tCSH 50 — Units ns (VDD=2.8V,Ta= –30 to 85°C ) Item Signal Serial clock period SCL “H” pulse width SCL SCL “L” pulse width Data setup time SI Data hold time CS-SCL time /CS CS-SCL time Symbol Condition Rating Min. Max. tSCYC 100 — tSHW 50 — tSLW 50 — tSDS 10 — tSDH 30 — tCSS 20 — tCSH 50 — Units ns (VDD=1.8V,Ta= –30 to 85°C ) Item Signal Serial clock period SCL “H” pulse width SCL SCL “L” pulse width Data setup time Data hold time CS-SCL time CS-SCL time SI /CS Symbol Condition Rating Min. Max. tSCYC 180 — tSHW 90 — tSLW 90 — tSDS 10 — tSDH 45 — tCSS 10 — tCSH 80 — Units ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard. Ver 1.5 85/94 2007/01/20 ST7626 13. RESET TIMING tRW /RES tR Internal status During reset Reset complete Fig 13.1 (VDD = 3.3V , Ta = –30 to 85°C ) Item Signal Reset time Reset “L” pulse width RESB Symbol Condition Rating Units Min. Typ. Max. tR — — 1 us tRW 1.2 — — us (VDD = 2.8V , Ta = –30 to 85°C ) Item Signal Reset time Reset “L” pulse width RESB Symbol Condition Rating Units Min. Typ. Max. tR — — 1.5 us tRW 1.5 — — us (VDD = 1.8V , Ta = –30 to 85°C ) Item Signal Reset time Reset “L” pulse width Ver 1.5 RESB Symbol Condition Rating Units Min. Typ. Max. tR — — 2 us tRW 2 — — us 86/94 2007/01/20 ST7626 14. THE MPU INTERFACE (REFERENCE EXAMPLES) The ST7626 Series can be connected to either 8080 Series MPUs or to 6800 Series MPUs. Moreover, using the serial interface it is possible to operate the ST7626 series chips with fewer signal lines. The display area can be enlarged by using multiple ST7626 Series chips. When this is done, the chip select signal can be used to select the individual Ics to access. (1) 8080 Series MPUs VDD VCC VDD A0 A0 CS1 DO to D7 RD WR RES GND D0 to D7 /RD (E) /WR (R/W) /RES VSS RESET ST7626 MPU CS1 IF1 IF2 IF3 VSS (2) 6800 Series MPUs V DD V DD A0 A0 CS1 CS1 DO to D7 RD WR RES GND IF1 IF2 IF3 D0 to D7 E(/RD) R/W (/W R) /RES V SS RESET ST7626 MPU V CC V SS (3) Using the Serial Interface (4-line interface) V DD V CC V DD A0 CS1 CS1 IF1 IF2 IF3 Port 1 Port 2 RES GND ST7626 MPU A0 SI SCL /RES V SS RESET V SS Ver 1.5 87/94 2007/01/20 ST7626 (4) Using the Serial Interface (3-line interface) V DD or V SS V CC V DD IF1 IF2 IF3 CS1 Port 1 Port 2 RES GND ST7626 MPU CS1 SI SCL /RES V SS RESET V SS Ver 1.5 88/94 2007/01/20 ST7626 Application Circuits ( A ) 80 Series 16-bit Parallel Interface: Interface : 8080series-16bits VDD1(VDD,VDD1)=1.8~3.3V VDD2(VDD2~VDD5)=2.4~3.3V CSEL=H (Interlace Mode) IF1=H;IF2=H;IF3=H C0: 1.0~2.2uF/25V Ver 1.5 89/94 2007/01/20 ST7626 ( B ) 80 Series 8-bit Parallel Interface: Interface : 8080series-8bits VDD1(VDD,VDD1)=1.8~3.3V VDD2(VDD2~VDD5)=2.4~3.3V CSEL=H (Interlace Mode) IF1=H;IF2=H;IF3=L C0: 1.0~2.2uF/25V Ver 1.5 90/94 2007/01/20 ST7626 ( C ) 3 Line Serial Peripheral Interface: Interface : 9-bit Serial(3-Line) VDD1(VDD,VDD1)=1.8~3.3V VDD2(VDD2~VDD5)=2.4~3.3V CSEL=H (Interlace Mode) IF1=L;IF2=L;IF3=H C0: 1.0~2.2uF/25V Ver 1.5 91/94 2007/01/20 ST7626 ( D ) 4 Line Serial Peripheral Interface: Interface : 8-bit Serial(4-Line) VDD1(VDD,VDD1)=1.8~3.3V VDD2(VDD2~VDD5)=2.4~3.3V CSEL=H (Interlace Mode) IF1=L;IF2=L;IF3=L C0: 1.0~2.2uF/25V Ver 1.5 92/94 2007/01/20 ST7626 16. Application Note of VLCD and Vop (V0) ITO Layout When using internal voltage generator, VLCDIN、VLCDOUT must be connected together. V0IN and V0OUT must be connected together too. In the following is the ITO layout for VLCDIN、 VLCDOUT、V0IN and V0OUT individually. Please follow the way as below for these two LCD power voltages. NOTE: Microprocessor interfece pins should not be floating in any operation mode. Ver 1.5 93/94 2007/01/20 ST7626 ST7626 Serial Specification Revision History Version Date 0.x -- Preliminary version 1.0 2006/04/10 First issue. 1.1 2006/5/23 1.2 1.3 Ver 1.5 Description Change the limitation voltage (P77): VDD, VDD1=1.7V~3.4V VDD2,VDD3, VDD4, VDD5=2.4V~3.4V Change write EEPROM example program ( P.43) Add microprossoer notice item (P.13,P93) Add Vref Pin notice item (P.14,P11) 2006/09/25 Modifty Application circuit vref Pin section (P89, P90,P91,P92 ) 2006/7/23 1.4 2006/10/31 Modifty page 67: ST7626 initial code example program 1.5 2007/01/20 Modifty page application circuit : page 89~page 93 94/94 2007/01/20