SS6612 High-Efficiency Synchronous Step-up DC/DC Converter with Selectable Current Limit DESCRIPTION FEATURES High efficiency (93% with VIN=2.4V, VOUT= 3.3V, IOUT=200mA) The SS6612 is a high-efficiency step-up Output current up to 500mA. (VIN=2.4V, at VOUT=3.3V, CLSEL=OUT) as 0.8V, and an operating voltage down to 0.7V. Quiescent supply current of 20µA this device includes a built-in synchronous rec- DC/DC converter, with a start-up voltage as low Consuming only 20µA of quiescent current, Power-saving shutdown mode (0.1µA typical). Internal synchronous rectifier (no external diode required). Selectable current limit for reduced ripple. Low-noise, anti-ringing feature. On-chip low-battery detector. Low-battery hysteresis. Space-saving package: MSOP-10 tifier that reduces size and cost by eliminating the need for an external Schottky diode, and improves overall efficiency by minimizing losses. The switching frequency can range up to 500KHz depending on the load and input voltage. The output voltage can be easily set; by two external resistors for 1.8V to 5.5V; con- APPLICATIONS necting FB to OUT to get 3.3V; or connecting Palmtop & Notebook Computers. PDAs Wireless Phones Pocket Organizers. Digital Cameras. Hand-Held Devices with 1 to 3 Cells of NiMH/NiCd Batteries. to GND to get 5.0V. For additional design flexibility, the peak current of the internal switch is selectable (0.65A or 1.0A). The SS6612 also features a circuit that eliminates noise caused by inductor ringing. TYPICAL APPLICATION CIRCUIT VIN + 47µF 200Ω 22µH BATT ON OFF Selectable Current Limit (1.0A or 0.65A) Low Battery Detection SHDN LX OUT CLSEL SS6612 LBI REF LBO GND FB Output 3.3V, 5.0V or Adj. (1.8V to + 5.5V) up to 300mA 47µF Low-battery Detect Out 0.1µF Rev.2.02 12/06/2003 www.SiliconStandard.com 1 of 16 SS6612 PIN CONFIGURATION ORDERING INFORMATION SS6612CXXX Packing TR: Tape and reel Package type O: MSOP-10 TOP VIEW MSOP-10 FB 1 LBI 2 LBO 3 Example: SS6612COTR in MSOP-10 package supplied on tape and reel. 10 OUT 9 LX 8 GND CLSEL 4 7 BATT REF 5 6 SHDN ABSOLUTE MAXIMUM RATINGS Supply Voltage (OUT to GND) 8.0V VOUT+ 0.3V Switch Voltage (LX to GND) Battery Voltage (BATT to GND) 6.0V SHDN , LBO to GND 6.0V VOUT+0.3V LBI, REF, FB, CLSEL to GND Switch Current (LX) -1.5A to +1.5A Output Current (OUT) -1.5A to +1.5A Operating Temperature Range -40°C ~ +85°C Storage Temperature Range -65°C ~150°C TEST CIRCUIT Refer to the typical application circuit. Rev.2.02 12/06/2003 www.SiliconStandard.com 2 of 16 SS6612 ELECTRICAL CHARACTERISTICS PARAMETER (VIN = 2.0V, VOUT = 3.3V (FB = VOUT), RL = ∝, TA = 25°C, unless otherwise specified.) TEST CONDITIONS MIN. Minimum Input Voltage MAX. 0.7 Operating Voltage Start-Up Voltage TYP. 1.1 RL=3kΩ (Note1) 0.8 Start-Up Voltage Temp. Coeff. V 5.5 V 1.1 V -2 Output Voltage Range VIN<VOUT 1.8 Output Voltage FB = VOUT 3.17 3.3 CLSEL=OUT 300 350 =3.3V) CLSEL=GND 150 300 CLSEL=OUT 180 230 =5.0V) CLSEL=GND 90 160 1.199 1.23 FB=OUT Steady State Output Current (VOUT (Note 2) FB=GND UNIT mV/°C 5.5 3.43 V mA (VOUT Reference Voltage IREF= 0 Reference Voltage Temp. Coeff. 1.261 0.024 V mV/°C Reference Load Regulation IREF = 0 to 100µA 10 30 mV Reference Line Regulation VOUT = 1.8V to 5.5V 5 10 mV/V 1.23 1.261 V 0.3 0.6 Ω FB, LBI Input Threshold 1.199 Internal switch On-Resistance ILX = 100mA CLSEL=OUT 0.80 1.0 1.25 CLSEL=GND 0.50 0.65 0.85 0.05 1 µA VFB = 1.4V , VOUT = 3.3V 20 35 µA SHDN = GND 0.1 1 µA VOUT= 3.3V ,ILOAD = 200mA 90 VOUT = 2V ,ILOAD = 1mA 85 LX Switch Current Limit LX Leakage Current A VLX=0V~4V; VOUT=4V Operating Current into OUT (Note 3) Shutdown Current into OUT Efficiency Rev.2.02 12/06/2003 www.SiliconStandard.com % 3 of 16 SS6612 ELECTRICAL CHARACTERISTICS PARAMETER (Continued) TEST CONDITIONS MIN. TYP. MAX. UNIT LX Switch On-Time VFB =1V , VOUT = 3.3V 2 4 7 µs LX Switch Off-Time VFB =1V , VOUT = 3.3V 0.6 0.9 1.4 µs FB Input Current VFB = 1.4V 0.03 50 nA LBI Input Current VLBI = 1.4V 1 50 nA CLSEL Input Current CLSEL = OUT 1.4 3 µA SHDN Input Current V SHDN = 0 or VOUT 0.07 50 nA LBO Low Output Voltage VLBI = 0, ISINK = 1mA 0.2 0.4 µA LBO Off Leakage Current V LBO = 5.5V, VLBI = 5.5V 0.07 1 LBI Hystereisis Damping Switch Resistance 50 VBATT = 2V 50 VIL mV 100 Ω 0.2VOUT V SHDN Input Voltage 0.8VOUT VIH VIL 0.2VOUT CLSEL Input Voltage V VIH 0.8VOUT Note 1: Start-up voltage operation is guaranteed without the addition of an external Schottky diode between the input and output. Note 2: Steady-state output current indicates that the device maintains output voltage regulation under load. Note 3: Device is bootstrapped (power to the IC comes from OUT). This correlates directly with the actual battery supply. Rev.2.02 12/06/2003 www.SiliconStandard.com 4 of 16 SS6612 TYPICAL PERFORMANCE CHARACTERISTICS 0.5 140 0.4 120 100 Shutdown Current (µA) Input Battery Current (µA) 160 VOUT=5V (FB=GND) 80 60 40 VOUT=3.3V (FB=OUT) 20 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.1 Fig. 2 1.6 1.4 VOUT=5V (FB=GND) 1.2 1.0 0.8 0.6 VOUT=3.3V (FB=OUT) 0.4 0.2 0.01 0.1 1 10 100 Output Current (mA) Fig. 3 300 VOUT=5.0V (FB=GND) 0 0.5 1.0 Fig. 4 Ripple Voltage (mV) VIN=1.2V VIN=2.4V VIN=3.6V 30 20 VOUT=5V (FB=GND) 10 CLSEL=OUT (ILIMIT =1A) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 100 Turning Point between CCM & DCM CLSEL=OUT (ILIMIT =1A) 160 140 VIN=3.6V 120 100 80 VOUT=5.0V L=22µH CIN=47µF COUT=47µF VIN=2.4V 60 40 VIN=1.2V 20 1000 0 0 50 100 150 Output Current (mA) 200 250 300 350 400 450 500 550 600 650 Output Current (mA) Efficiency vs. Output Current (ref. to Fig.35) Rev.2.02 12/06/2003 5.5 Input Voltage (V) 60 Fig. 5 5.0 50 180 10 4.5 Shutdown Current vs. Supply Voltage 100 80 1 4.0 150 200 0.1 3.5 VOUT=3.3V (FB=OUT) 200 90 0 0.01 3.0 250 220 40 2.5 L=22µH CIN=100µF COUT=100µF 350 Start-Up Voltage vs. Output Current 50 2.0 400 100 70 1.5 Supply Voltage (V) 1.8 0.0 1.0 Input battery voltage (V) No-Load Battery Current vs. Input Battery CCM/DCM Boundary Output Current (mA) Fig. 1 Start-Up Voltage (V) 0.2 0.0 0.0 Efficiency (%) 0.3 Fig. 6 www.SiliconStandard.com Ripple Voltage (ref. to Fig.35) 5 of 16 SS6612 TYPICAL PERFORMANCE CHARACTERISTICS 100 240 CLSEL=OUT (ILIMIT =1A) 90 200 80 VIN=3.6V 160 Efficiency (%) Ripple Voltage (mV) (Continued) VIN=2.4V 120 VOUT=5.0V L=22µH CIN=100µF COUT=100µF 80 40 VIN=1.2V VIN=3.6V 70 VIN=2.4V 60 50 40 30 VOUT=5V (FB=GND) 20 CLSEL=GND (ILIMIT =0.65A) 10 0 0 0 100 200 300 400 500 600 700 800 0.01 0.1 1 Output Current (mA) Fig. 7 10 100 1000 Output Current (mA) Ripple Voltage (ref. to Fig.35) Fig. 8 160 Efficiency vs. Output Current (ref. to Fig.35) 120 CLSEL=GND (ILIMIT =0.65A) 140 CLSEL=GND (ILIMIT =0.65A) VIN=3.6V 120 100 80 VIN=2.4V 60 VIN=3.6V 100 Ripple Voltage (mV) Ripple Voltage (mV) VIN=1.2V VOUT=5.0V L=22µH CIN=47µF COUT=47µF 40 VIN=1.2V 20 80 60 VOUT=5.0V L=22µH CIN=100µF COUT=100µF VIN=2.4V 40 20 VIN=1.2V 0 0 0 50 100 150 200 250 300 350 400 450 500 0 550 100 200 Output Current (mA) Fig. 9 300 400 500 600 Output Current (mA) Ripple Voltage (ref. to Fig.35) Fig. 10 100 Ripple Voltage (ref. to Fig.35) 260 CLSEL=OUT (ILIMIT =1A) 240 90 220 80 Efficiency (%) 60 Ripple Voltage (mV) VIN=1.2V 70 VIN=2.4V 50 40 30 VOUT=3.3V (FB=OUT) 20 CLSEL=OUT (ILIMIT =1A) 10 200 180 160 140 VIN=2.4V 120 100 60 VIN=1.2V 40 20 0 0 0.01 0.1 1 10 100 1000 0 50 100 Output Current (mA) Fig. 11 VOUT=3.3V L=22µH CIN=47µF COUT=47µF 80 200 250 300 350 400 450 500 550 600 Output Current (mA) Efficiency vs. Output Current (ref. to Fig.34) Rev.2.02 12/06/2003 150 Fig. 12 www.SiliconStandard.com Ripple Voltage (ref. to Fig.34) 6 of 16 SS6612 TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 100 CLSEL=OUT (ILIMIT =1A) 140 90 80 Efficiency (%) Ripple Voltage (mV) 120 100 VIN=2.4V VIN=1.2V 80 60 VIN=1.2V 70 50 40 40 VOUT=3.3V 30 VOUT=3.3V (FB=OUT) 20 20 CIN=100µF COUT=100µF CLSEL=GND (ILIMIT =0.65A) 10 0 0.01 0 0 50 100 150 200 250 300 350 400 450 500 550 1 Output Current (mA) Fig. 13 10 100 1000 Output Current (mA) Ripple Voltage (ref. to Fig.34) Fig. 14 140 Efficiency vs. Output Current (ref. to Fig.34) 120 CLSEL=GND (ILIMIT =0.65A) CLSEL=GND (ILIMIT =0.65A) 110 120 100 Ripple Voltage (mV) Ripple Voltage (mV) VIN=2.4V 60 100 80 VIN=2.4V 60 VOUT=3.3V L=22µH CIN=47µF COUT=47µF 40 VIN=1.2V 20 90 80 70 60 VIN=2.4V 50 VOUT=3.3V L=22µH CIN=100µF COUT=100µF 40 30 20 VIN=1.2V 10 0 0 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 Output Current (mA) Fig. 15 200 250 300 350 400 450 500 Output Current (mA) Ripple Voltage (ref. to Fig.34) Fig. 16 1.26 Ripple Voltage (ref. to Fig.34) 0.50 0.45 P-Channel 0.40 Resistance (Ω) Reference Voltage (V) 1.25 1.24 1.23 1.22 0.35 0.30 N-Channel 0.25 0.20 0.15 VOUT=3.3V ILX=100mA 0.10 1.21 IREF=0 1.20 -40 -20 0 20 40 60 80 0.05 0.00 -60 -40 -20 Fig. 17 Rev.2.02 12/06/2003 0 20 40 60 80 100 Temperature (°C) Temperature (°C) Reference Voltage vs. Temperature Fig. 18 Switch Resistance vs. Temperature www.SiliconStandard.com 7 of 16 SS6612 TYPICAL PERFORMANCE CHARACTERISTICS 900 700 Maximum Output Current (mA) Maximum Output Current (mA) 800 VOUT=3.3V (FB=OUT) 600 CLSEL=OUT (ILIMIT=1A) 500 400 300 200 CLSEL=GND (ILIMIT=0.65A) 100 0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 800 VOUT=5V (FB=GND) 700 600 CLSEL=OUT (ILIMIT=1A) 500 400 300 200 CLSEL=GND (ILIMIT=0.65A) 100 0 3.0 Input Voltage (V) Maximum Output Current vs. Input Voltage Fig. 19 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Input Voltage (V) Maximum Output Current vs. Input Voltage Fig. 20 1.2 160 Switching Frequency fosc (kHz) CLSEL=OUT (ILIMIT=1A) 1.0 0.8 ILIM (A) (Continued) 0.6 CLSEL=GND (ILIMIT=0.65A) 0.4 0.2 0.0 2.0 2.5 Fig. 21 3.0 3.5 4.0 4.5 5.0 Output Voltage (V) Inductor Current vs. Output Voltage 140 120 VOUT=5.0V 100 80 VOUT=3.3V 60 40 IOUT=100mA 20 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Supply Voltage (V) Fig. 22 Switching Frequency vs. Supply Voltage Switching Frequency fosc (kHz) 220 200 VIN=1.2V VOUT=3.3V 180 160 VIN=2.4V VOUT=3.3V W /o Anti-Ringing V IN =2.4V V OUT =3.3V 140 120 VIN=2.4V VOUT=5V 100 80 60 40 VIN=3.6V VOUT=5V 20 0 1 10 100 1000 Output Current (mA) Fig. 23 Switching Frequency vs. Output Current Rev.2.02 12/06/2003 Fig. 24 www.SiliconStandard.com Without Anti-Ringing Function 8 of 16 SS6612 TYPICAL PERFORMANCE CHARACTERISTICS (Continued) LX Pin W aveform W i t h A n t i - Ringing V IN =2.4V V IN =2.4V V O U T =3.3V V OUT =3.3V Loading=200m A Inductor C urrent V O UT A C C ouple Fig. 25 W ith Anti-Ringing Function Loading: 1m A F ig. 26 H eavy Load W aveform ↔ 200m A VIN VIN=2.0V~3.0V V IN =2.4V V O U T =3.3V VOUT=3.3V, IOUT=100mA V O U T : A C C ouple VOUT F ig. 27 Load Transient R esponse Fig. 28 V SHDN Line Transient Response V SHDN VOUT VOUT VOUT=3.3V VOUT=3.3V CIN=COUT=100µF C IN=COUT=47µF Fig. 29 Rev.2.02 12/06/2003 Exiting Shutdown www.SiliconStandard.com Fig. 30 Exiting Shutdown 9 of 16 SS6612 TYPICAL PERFORMANCE CHARACTERISTICS (Continued) V SHDN V SHDN VOUT Fig. 31 V OUT VOUT=5.0V V OUT =5.0V CIN=COUT=47µF C IN =C OUT =100µF Exiting Shutdown Fig. 32 Exiting Shutdown BLOCK DIAGRAM OUT SHDN CLSEL OUT + Minimum Off-Time 0.1µF Damping Q1 Switch One Shot Q3 BATT R1 200Ω VIN L LX Q2 47µH F/ F S Q C3 47µF + C1 47µF GND R - One Shot + Mirror Maximum On-Time FB + LBO + Reference Voltage REF C4 0.1µF LBI Rev.2.02 12/06/2003 www.SiliconStandard.com 10 of 16 SS6612 PIN DESCRIPTIONS PIN 1: FB- Connected to OUT to get +3.3V output, connected to GND to get +5.0V output, or using a resistor network to set output voltage ranging from +1.8V to +5.5V. PIN 2: LBILow-battery comparator input internally set at +1.23V to trip. PIN 3: LBO- Open-drain low battery comparator output. Output is low when VLBI is <1.23V. LBO is high impedance during shutdown. PIN 4: CLSEL- Current-limit select input. CLSEL= OUT sets the current limit to 1.0A. CLSEL=GND sets the current limit to 0.65A. PIN 5: REF- 1.23V reference voltage. Bypass with a 0.1µF capacitor. PIN 6: SHDN- Shutdown input. High=operating, low=shutdown. PIN 7: BATT- Battery input and damping switch connection. If damping switch is unused, leave BATT unconnected. PIN 8: GND- Ground. PIN 9: LXN-channel and P-channel power MOSFET drain. PIN 10: OUT- Power output. OUT provides bootstrap power to the IC. APPLICATION INFORMATION Overview BLOCK DIAGRAM) with ultra-low quiescent current. The SS6612 is a high-efficiency, step-up DC/DC The peak current of the internal N-MOSFET power converter, featuring a built-in synchronous switch is selectable. The switch frequency depends rectifier, which reduces size and cost by eliminating on either loading conditions or input voltage, and can the need for an external Schottky diode. The start-up range up to 500KHz. It is governed by a pair of one- voltage of the SS6612 is as low as 0.8V and it operates shots that set a minimum off-time (1µs ) and a with an input voltage down to 0.7V. Quiescent supply maximum on-time (4µs ). current is only 20µA. In addition, the SS6612 features a circuit that eliminates inductor ringing to reduce Synchronous Rectification noise. The internal P-MOSFET on-resistance is typi- Using the internal synchronous rectifier eliminates cally 0.3Ω to improve overall efficiency by minimizing the need for an external Schottky diode, reducing AC losses. The output voltage can be easily set; by the cost and board space. During the cycle of off- two external resistors for 1.8V to 5.5V; connecting time, the P-MOSFET turns on and shuts the N- FB to OUT to get 3.3V; or connecting to GND to get MOSFET off. Due to the low turn-on resistance 5.0V. The CLSEL pin offers a selectable current of the MOSFET, the synchronous rectifier signifi- limit (1.0A or 0.65A). The lower current limit allows cantly improves efficiency without an additional ex- the use of a physically smaller inductor in space- ternal Schottky diode. Thus, the conversion effi- sensitive applications. ciency can be as high as 93%. PFM Control Scheme Reference Voltage A key feature of the SS6612 is a unique minimum- The reference voltage (REF) is nominally 1.23V for off-time, constant-on-time, current-limited, pulse- excellent T.C. performance. In addition, the REF pin can frequency-modulation (PFM) control scheme (see source up to 100µA to an external circuit with good load Rev.2.02 12/06/2003 www.SiliconStandard.com 11 of 16 SS6612 regulation (<10mV). A bypass capacitor of 0.1µF is required for proper operation and good performance. Low-Battery Detection The SS6612 contains an on-chip comparator with 50mV internal hysteresis (REF, REF+50mV) for low battery Shutdown detection. If the voltage at LBI falls below the internal The whole circuit is shutdown when V SHDN is low. In reference voltage, LBO (an open-drain output) sinks shutdown mode, the current can flow from the battery current to GND. to the output due to the body diode of the P-MOSFET. VOUT falls to approximately (Vin - 0.6V) and LX remains high impedance. The capacitance and load at OUT de- Component Selection termine the rate at which VOUT decays. Shutdown 1. Inductor Selection can be pulled as high as 6V, regardless of the volt- An inductor value of 22µH performs well in most age at OUT. applications. The SS6612 also works with inductors in the 10µH to 47µH range. An inductor Current Limit Select Pin with higher peak inductor current creates a higher The SS6612 allows a selectable inductor current limit output voltage ripple (IPEAK×output filter capaci- of either 1.0A or 0.65A, allowing the flexibility to design tor ESR). The inductor’s DC resistance signifi- for higher current or smaller applications. CLSEL cantly affects efficiency. We can calculate the draws 1.4µA when connecting to OUT. BATT/Damping Switch The SS6612 is designed with an internal damping maximum output current as follows: VIN VOUT − VIN IOUT(MAX ) = ILIM − t OFF η VOUT 2×L switch (Fig.33) to reduce ringing at LX. The damping ........................................................................(2) where IOUT(MAX)=maximum output current in switch supplies a path to quickly dissipate the energy amps stored in the inductor and reduces the ringing at LX. VIN=input voltage Damping LX ringing does not reduce VOUT ripple, L=inductor value in µH but does reduce EMI. R1=200Ω works well for most applications while reducing efficiency by only 1%. Larger R1 values provide less damping, but less impact on efficiency. In principle, a lower value of R1 is needed to fully damp LX when VOUT /VIN ratio is high. η=efficiency (typically 0.9) tOFF=LX switch’ off-time in µs ILIM=1.0A or 0.65A 2. Capacitor Selection The output ripple voltage is related to the peak Selecting the Output Voltage inductor current and the output capacitor ESR. VOUT can be simply set to 3.3V/5.0V by connecting the FB pin to OUT/GND due to the use of an internal resis- Besides output ripple voltage, the output ripple tor divider in the IC (Fig.34 and Fig.35). In order to with low ESR is helpful to the efficiency and the adjust the output voltage, a resistor divider is connected to VOUT, FB, GND (Fig.36). Vout can be calculated by the following equation: current may also be of concern. A filter capacitor steady state output current of the SS6612. Therefore a NIPPON MCM series tantalum capacitor of 100µF/6V is recommended. A smaller R5 = R6 [(VOUT / VREF )-1] .....................................(1) capacitor (down to 47µF with higher ESR) is ac- where V REF =1.23V and VOUT ranges from 1.8V to ceptable for light loads or in applications that can 5.5V. The recommended R6 is 240kΩ. tolerate higher output ripple. Rev.2.02 12/06/2003 www.SiliconStandard.com 12 of 16 SS6612 3. PCB Layout and Grounding and efficiency, and minimize output ripple voltage, Since the SS6612’s switching frequency can use a ground plane and solder the IC’s GND di- range up to 500kHz, the SS6612 can be very rectly to the ground plane. Fig.37 to 39 are the sensitive. Careful printed circuit layout is im- recommended layout diagrams. portant for minimizing ground bounce and noise. The OUT pin should be as clear as possible, Ripple Voltage Reduction and the GND pin should be placed close to the Two or three parallel output capacitors can sig- ground plane. Keep the IC’s GND pin and the nificantly improve the output ripple voltage of the ground leads of the input and output filter capaci- SS6612. The addition of an extra input capaci- tors less than 0.2in (5mm) apart. In addition, tor results in a stable output voltage. Fig.40 keep all connections to the FB and LX pins as shows the application circuit with the above fea- short as possible. In particular, when using ex- tures. Fig. 41 to 48 show the performance of ternal feedback resistors, locate them as close Fig.40. to the FB as possible. To maximize output power APPLICATION EXAMPLES VIN VOUT R1 200Ω OUT DAMPING SWITCH Q3 Q1 L 22µH LX BATT BATT LX R1 200Ω 0.1µF R2 100KΩ REF LBO GND SS6612 Fig.33 Simplified Damping Switch Diagram Fig.34 VOUT = 3.3V Application Circuit. VIN VIN L 22µH R1 200Ω L 22µH R1 200Ω C1 47µF VOUT OUT VOUT OUT R3 CLSEL C2 0.1µF C3 47µF R3 R2 100KΩ REF CLSEL SHDN R4 GND FB 0.1µF C4 SS6612 Fig.35 VOUT = 5.0V Application Circuit. C3 47µF R5 LBO GND LOW BATTERY OUTPUT FB SS6612 LOW BATTERY OUTPUT L: TDK SLF7045T-22OMR90 C1, C3: NIPPON Tantalum Capacitor 6MCM476MB2TER 100KΩ R2 REF LBO C4 C2 0.1µF LBI SHDN R4 C1 47µF LX BATT LX BATT Rev.2.02 12/06/2003 LOW BATTERY OUTPUT FB SS6612 L: TDK SLF7045T-22OMR90 C1, C3: NIPPON Tantalum Capacitor 6MCM476MB2TER GND 0.1µF C3 47µF SHDN R4 C4 LBI C2 0.1µF CLSEL LBI VIN 22µH Q2 VOUT OUT R3 L1 C1 47µF R6 L: TDK SLF7045T-22OMR90 C1, C3: NIPPON Tantalum Capacitor 6MCM476MB2TER V OUT=V REF*(1+R5/R6) Fig.36 An Adjustable Output Application Circuit www.SiliconStandard.com 13 of 16 SS6612 IIIIIIIIIIIIIIIIII9915H,J IIIIIIIIIIIIIIIIII9915H,J IIIIIIIIIIIIIIIIII9915H,J IIIIIIIIIIIIIIIIII9915H,J IIIIIIIIIIIIIIIIII9915H,J IIIIIIIIIIIIIIIIII9915H,J IIIIIIIIIIIIIIIIII9915H,J IIIIIIIIIIIIIIIIII9915H,J IIIIIIIIIIIIIIIIII9915H,J Fig.37 Top layer Fig.38 Bottom layer Connect to OUT for 3.3V output voltage Connect to GND for 5.0V output voltage Open for adjustable output voltage; VOUT=1.23(1+R5/R6) JU1 R5 VOUT VIN R6 1 R3 2 R4 100K R2 VOUT 3 JU2 Connect to OUT for 1.0A limit Connect to GND for 0.8A limit FB OUT 10 LBI LX 9 GND 8 4 LBO CLSEL BATT 7 5 SHDN 6 Fig.39 Placement VIN VIN L1 + 22µH + C2 6V/100uF C1 6V/100µF D1 is Optional VOUT R1 200 REF SS6612 VIN + C4 1µF + C5 6V/100µF + C6 6V/100µF C7 6V/100µF JU3 C3 0.1µF Connect to GND for shutdown Connect to VOUT for normal L1: TDK SLF7045T-22OMR90 C1~C2, C5~7: NIPPON Tantalum Capacitor 6MCM107MCTER Fig.40 SS6612 application circuit with small ripple voltage 100 95 60 VIN=3.6V CLSEL=OUT (ILIMIT =1A) 90 50 Ripple Voltage (mV) 85 Efficiency (%) 80 VIN=2.4V 75 70 65 60 CLSEL=OUT (ILIMIT =1A) 55 50 30 20 VIN=2.4V VOUT=5.0V 45 40 VIN=3.6V 40 VIN=1.2V L=22µH L=22µH 35 30 0.01 VOUT=5.0V VIN=1.2V 10 0 0.1 1 10 100 1000 0 100 Output Current (mA) Fig. 41 Rev.2.02 12/06/2003 200 300 400 500 600 700 Output Current (mA) Efficiency (ref. to Fig.40) Fig. 42 www.SiliconStandard.com Ripple Voltage (ref. to Fig.40) 14 of 16 SS6612 60 95 90 60 CLSEL=GND (ILIMIT =0.65A) VIN=3.6V 50 Ripple Voltage (mV) 85 Efficiency (%) 80 75 70 VIN=2.4V 65 60 55 CLSEL=GND (ILIMIT =0.65A) 50 45 40 VIN=3.6V 40 30 20 VIN=2.4V VOUT=5.0V VIN=1.2V 10 35 VIN=1.2V L=22µH 30 25 0.01 0.1 1 Fig. 43 10 100 1000 0 100 200 Efficiency (ref. to Fig.40) Fig. 44 VIN=2.4V Ripple Voltage (mV) Efficiency (%) CLSEL=OUT (ILIMIT =1A) 40 80 75 70 VIN=1.2V 65 60 CLSEL=OUT (ILIMIT =1A) VOUT=3.3V 35 30 25 VIN=2.4V 20 15 10 L=22µH 45 VOUT=3.3V VIN=1.2V L=22µH 5 0 40 0.01 0.1 1 10 100 0 1000 50 100 150 Output Current (mA) Fig. 45 200 250 300 350 400 450 500 550 600 Output Current (mA) Efficiency (ref. to Fig.40) Fig. 46 Ripple Voltage (ref. to Fig.40) 35 100 CLSEL=GND (ILIMIT =0.65A) 95 30 90 80 Ripple Voltage (mV) 85 Efficiency (%) 500 Ripple Voltage (ref. to Fig.40) 45 85 VIN=2.4V 75 70 65 60 CLSEL=GND (ILIMIT =0.65A) 55 50 400 50 90 50 300 Output Current (mA) 100 55 L=22µH 0 Output Current (mA) 95 VOUT=5.0V 25 20 VIN=2.4V 15 10 VOUT=3.3V VIN=1.2V L=22µH 45 40 0.01 L=22µH 0 0.1 1 10 100 1000 0 50 100 Output Current (mA) 150 200 250 300 350 400 Output Current (mA) Fig. 47 Efficiency (ref. to Fig.40) Rev.2.02 12/06/2003 VOUT=3.3V VIN=1.2V 5 Fig. 48 www.SiliconStandard.com Ripple Voltage (ref. to Fig.40) 15 of 16 SS6612 PHYSICAL DIMENSIONS 10 LEAD MSOP (unit: mm) D SYMBOL MIN MAX A1 -- 0.20 A2 0.76 0.97 b 0.15 0.30 C 0.13 0.23 D 2.90 3.10 E 4.80 5.00 E1 2.90 3.10 E E1 e A2 e C 0.40 0.66 A1 L 0.50 b L Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no guarantee or warranty, express or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of Silicon Standard Corporation or any third parties. Rev.2.02 12/06/2003 www.SiliconStandard.com 16 of 16