ETC SS6611

SS6610/11
High Efficiency Synchronous
Step-up DC/DC Converter
DESCRIPTION
FEATURES
High efficiency. (93% when VIN=2.4V, VOUT=3.3V,
IOUT=200mA)
Output current up to 500mA. (SS6610 at VIN=2.4V
and VOUT=3.3V)
The SS6610/SS6611 are high-efficiency step-up
DC/DC converters, with a start-up voltage as low
as 0.8V, and an operating voltage down to 0.7V.
Consuming only 20µA of quiescent current,
Quiescent supply current of 20mA.
these devices include a built-in synchronous rec-
Power-saving shutdown mode (0.1µA typical).
Internal synchronous rectifier (no external diode
required).
On-chip low-battery detector.
Low battery hysteresis
Space-saving package: MSOP-8
tifier that reduces size and cost by eliminating
the need for an external Schottky diode, and
improves overall efficiency by minimizing
losses.
The switching frequency can range up to
500KHz depending on the load and input volt-
APPLICATIONS
age. The output voltage can be easily set; by
Palmtop & Notebook Computers.
PDAs
Wireless Phones
Pocket Organizers.
Digital Cameras.
Hand-Held Devices with 1 to 3 Cells of
NiMH/NiCd Batteries.
two external resistors or 1.8V to 5.5V; connecting FB to OUT to get 3.3V; or connecting
to GND to get 5.0V. The peak current of the
internal switch is fixed at 1.0A (SS6610) or
0.65A (SS6611) for design flexibility.
TYPICAL APPLICATION CIRCUIT
VIN
ON
+
47µF
OFF
22µH
LX
SHDN
SS6610
SS6611
Low Battery
Detection
LBI
REF
OUT
Output 3.3V, 5.0V
or Adj. (1.8V to
+
5.5V) up to
47µF 300mA
LBO
GND
Low-battery
Detect Out
FB
0.1µF
Rev.2.01 11/06/2003
www.SiliconStandard.com
1 of 16
SS6610/11
ORDERING INFORMATION
PIN CONFIGURATION
SS6610CX XX
SS6611CX XX
MSOP-8
Packing
TR: Tape and reel
Package type
O: MSOP-8
Example: SS6610COTR
TOP VIEW
FB 1
8
OUT
LBI 2
7
LX
LBO 3
6
GND
REF 4
5
SHDN
in MSOP-8 package supplied
on tape and reel
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (OUT to GND)
8.0V
VOUT+ 0.3V
Switch Voltage (LX to GND)
SHDN , LBO to GND
6.0V
VOUT+0.3V
LBI, REF, FB, to GND
Switch Current (LX)
-1.5A to +1.5A
Output Current (OUT)
-1.5A to +1.5A
Operating Temperature Range
-40°C ~ +85°C
-65°C ~150°C
Storage Temperature Range
TEST CIRCUIT
Refer to typical application circuit.
Rev.2.01 11/06/2003
www.SiliconStandard.com
2 of 16
SS6610/11
(VIN = 2.0V, VOUT = 3.3V (FB = VOUT), RL = ∝, TA = 25°C,
unless otherwise specified.)
ELECTRICAL CHARACTERISTICS
PARAMETER
TEST CONDITIONS
MIN.
Minimum Input Voltage
MAX.
0.7
Operating Voltage
Start-Up Voltage
TYP.
1.1
RL=3kΩ (Note1)
0.8
Start-Up Voltage Tempco
V
5.5
V
1.1
V
-2
Output Voltage Range
VIN<VOUT
1.8
Output Voltage
FB = VOUT
3.17
UNIT
mV/°C
5.5
3.3
FB=OUT
SS6610
300
350
Steady State Output Current
(VOUT =3.3V)
SS6611
150
300
(Note 2)
FB=GND
SS6610
180
230
(VOUT
SS6611
90
160
3.43
V
mA
Reference Voltage
=5.0V)
IREF= 0
1.199
Reference Voltage Temp. Coeff.
1.23
1.261
0.024
V
mV/°C
Reference Load Regulation
IREF = 0 to 100µA
10
30
mV
Reference Line Regulation
VOUT = 1.8V to 5.5V
5
10
mV/V
1.23
1.261
V
0.3
0.6
Ω
FB , LBI Input Threshold
Internal switch On-Resistance
1.199
ILX = 100mA
SS6610
0.80
1.0
1.25
SS6611
0.50
0.65
0.85
VLX=0V~4V; VOUT=5.5V
0.05
1
µA
VFB = 1.4V , VOUT = 3.3V
20
35
µA
SHDN = GND
0.1
1
µA
VOUT= 3.3V ,ILOAD = 200mA
90
VOUT = 2V ,ILOAD = 1mA
85
LX Switch Current Limit
LX Leakage Current
A
Operating Current into OUT
(Note 3)
Shutdown Current into OUT
Efficiency
Rev.2.01 11/06/2003
www.SiliconStandard.com
%
3 of 16
SS6610/11
ELECTRICAL CHARACTERISTICS (Continued)
PARAMETER
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
LX Switch On-Time
VFB =1V , VOUT = 3.3V
2
4
7
µs
LX Switch Off-Time
VFB =1V , VOUT = 3.3V
0.6
0.9
1.4
µs
FB Input Current
VFB = 1.4V
0.03
50
nA
LBI Input Current
VLBI = 1.4V
1
50
nA
SHDN Input Current
V SHDN = 0 or VOUT
0.07
50
nA
LBO Low Output Voltage
VLBI = 0, ISINK = 1mA
0.2
0.4
µA
LBO Off Leakage Current
V LBO = 5.5V, VLBI = 5.5V
0.07
1
LBI Hystereisis
50
VIL
mV
0.2VOUT
V
SHDN Input Voltage
VIH
0.8VOUT
Note 1: Start-up voltage operation is guaranteed without the addition of an external Schottky diode between the
input and output.
Note 2: Steady-state output current indicates that the device maintains output voltage regulation under load.
Note 3: Device is bootstrapped (power to the IC comes from OUT). This correlates directly with the actual
battery supply.
Rev.2.01 11/06/2003
www.SiliconStandard.com
4 of 16
SS6610/11
TYPICAL PERFORMANCE CHARACTERISTICS
0.5
140
0.4
120
Shutdown Current (µA)
Input Battery Current (µA)
160
VOUT=5V (FB=GND)
100
80
60
40
20
VOUT=3.3V (FB=OUT)
0
0.5
0.1
1.0
1.5
2.0
2.5
3.0
3.5
VOUT=5.0V (FB=GND)
1.2
1.0
0.8
0.6
VOUT=3.3V (FB=OUT)
0.4
0.2
0.01
0.1
1
10
100
CCM/DCM Boundary Output Current (mA)
Fig. 2
1.6
1.4
Output Current (mA)
Fig. 3
300
200
VOUT=5.0V (FB=GND)
1.0
Fig. 4
Ripple Voltage (mV)
60
VIN=2.4V
VIN=3.6V
30
20
VOUT=5.0V (FB=GND)
10
SS6610 (I LIMIT =1A)
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
100
Turning Point between CCM & DCM
SS6610 (I LIMIT =1A)
160
140
VIN=3.6V
120
100
80
VOUT=5.0V
L=22µH
CIN=47µF
COUT=47µF
VIN=2.4V
60
40
VIN=1.2V
20
1000
0
0
50
100
150
Output Current (mA)
200
250
300
350
400
450
500
550
600
650
Output Current (mA)
Efficiency vs. Load Current (ref. to Fig.33)
Rev.2.01 11/06/2003
5.5
Input Voltage (V)
VIN=1.2V
Fig. 5
5.0
VOUT=3.3V (FB=OUT)
0
0.5
180
10
4.5
50
80
1
4.0
Shutdown Current vs. Supply Voltage
100
200
0.1
3.5
150
220
0
0.01
3.0
250
90
40
2.5
L=22µH
CIN=100µF
COUT=100µF
350
Start-Up Voltage vs. Output Current
50
2.0
400
100
70
1.5
Supply Voltage (V)
1.8
0.0
1.0
Input battery voltage (V)
No-Load Battery Current vs. Input Battery
Fig. 1
Start-Up Voltage (V)
0.2
0.0
0.0
Efficiency (%)
0.3
Fig. 6
www.SiliconStandard.com
Ripple Voltage (ref. to Fig.33)
5 of 16
SS6610/11
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
100
240
SS6610 (ILIMIT =1A)
90
80
VIN=3.6V
160
Efficiency (%)
Ripple Voltage (mV)
200
VIN=2.4V
120
VOUT=5.0V
L=22µH
CIN=100µF
COUT=100µF
80
40
VIN=1.2V
VIN=3.6V
70
VIN=2.4V
60
50
40
30
VOUT=5.0V (FB=GND)
20
SS6611 (I LIMIT =0.65A)
10
0
0
0
100
200
300
400
500
600
700
800
0.01
0.1
1
Output Current (mA)
Fig. 7
10
100
1000
Output Current (mA)
Ripple Voltage (ref. to Fig.33)
Fig. 8
160
Efficiency vs. Load Current (ref. to Fig.33)
120
SS6611 (I LIMIT =0.65A)
140
SS6611 (I LIMIT =0.65A)
VIN=3.6V
120
100
80
VIN=2.4V
60
VIN=3.6V
100
Ripple Voltage (mV)
Ripple Voltage (mV)
VIN=1.2V
VOUT=5.0V
L=22µH
CIN=47µF
COUT=47µF
40
VIN=1.2V
20
80
60
VOUT=5.0V
L=22µH
CIN=100µF
COUT=100µF
VIN=2.4V
40
20
VIN=1.2V
0
0
0
50
100
150
200
250
300
350
400
450
500
0
550
100
200
Output Current (mA)
Fig. 9
300
400
500
600
Output Current (mA)
Ripple Voltage (ref. to Fig.33)
Fig. 10
100
Ripple Voltage (ref. to Fig.33)
260
SS6610 (I LIMIT =1A)
240
90
220
VIN=1.2V
70
60
Ripple Voltage (mV)
(V) Efficiency (%)
80
VIN=2.4V
50
40
30
VOUT=3.3V (FB=OUT)
20
SS6610 (I LIMIT =1A)
10
200
180
160
140
VIN=2.4V
120
100
60
VIN=1.2V
40
20
0
0
0.01
0.1
1
10
100
1000
0
50
100
Output Current (mA)
Fig. 11
VOUT=3.3V
L=22µH
CIN=47µF
COUT=47µF
80
200
250
300
350
400
450
500
550
600
Output Current (mA)
Efficiency vs. Load Current (ref. to Fig.32)
Rev.2.01 11/06/2003
150
Fig. 12
www.SiliconStandard.com
Ripple Voltage (ref. to Fig.32)
6 of 16
SS6610/11
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
100
SS6610 (I LIMIT =1A)
140
90
80
Efficiency (%)
Ripple Voltage (mV)
120
100
VIN=2.4V
VIN=1.2V
80
60
40
20
SS6610 (ILIMIT =1A)
50
100
150
200
250
300
350
50
40
30
VOUT=3.3V (FB=OUT)
CIN=100µF
COUT=100µF
20
SS6611 (I LIMIT =0.65A)
10
400
450
500
0
0.01
550
1
Output Current (mA)
Fig. 13
10
100
1000
Output Current (mA)
Ripple Voltage (ref. to Fig.32)
Fig. 14
140
Efficiency vs. Load Current (ref. to Fig.32)
120
SS6611 (I LIMIT =0.65A)
SS6611 (I LIMIT =0.65A)
110
120
100
Ripple Voltage (mV)
Ripple Voltage (mV)
VIN=2.4V
60
VOUT=3.3V
0
0
VIN=1.2V
70
100
80
VIN=2.4V
60
VOUT=3.3V
L=22µH
CIN=47µF
COUT=47µF
40
VIN=1.2V
20
90
80
70
60
VIN=2.4V
50
VOUT=3.3V
L=22µH
CIN=100µF
COUT=100µF
40
30
20
VIN=1.2V
10
0
0
0
50
100
150
200
250
300
350
400
450
500
0
50
100
150
Output Current (mA)
Fig. 15
200
250
300
350
400
450
500
Output Current (mA)
Ripple Voltage (ref. to Fig.32)
Fig. 16
1.26
Ripple Voltage (ref. to Fig.32)
0.50
0.45
P-Channel
0.40
Resistance (Ω)
Reference Voltage (V)
1.25
1.24
1.23
1.22
0.35
0.30
N-Channel
0.25
0.20
0.15
VOUT=3.3V
ILX=100mA
0.10
1.21
IREF=0
1.20
-40
-20
0
20
40
60
80
0.05
0.00
-60
-40
-20
Fig. 17
Rev.2.01 11/06/2003
0
20
40
60
80
100
Temperature (°C)
Temperature (°C)
Reference Voltage vs. Temperature
Fig. 18
Switch Resistance vs. Temperature
www.SiliconStandard.com
7 of 16
SS6610/11
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
900
Maximum Output Current (mA)
Maximum Output Current (mA)
800
VOUT=3.3V (FB=OUT)
700
600
SS6610 (ILIMIT=1A)
500
400
300
200
SS6611 (ILIMIT=0.65A)
100
0
1.0
1.2
Fig. 19
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
800
600
Input Voltage (V)
Maximum Output Current vs. Input Voltage
SS6610 (ILIMIT=1A)
500
400
300
200
SS6611 (I LIMIT=0.65A)
100
0
3.0
VOUT=5.0V (FB=GND)
700
1.0
1.5
2.5
3.0
3.5
4.0
4.5
Input Voltage (V)
Maximum Output Current vs. Input Voltage
Fig. 20
1.2
2.0
160
Switching Frequency fosc (KHz)
SS6610 (I LIMIT=1A)
1.0
ILIM (A)
0.8
0.6
SS6611 (ILIMIT=0.65A)
0.4
0.2
0.0
2.0
2.5
Fig. 21
3.0
3.5
4.0
4.5
5.0
Output Voltage (V)
Inductor Current vs. Output Voltage
140
120
VOUT=5.0V
100
80
VOUT=3.3V
60
40
IOUT=100mA
20
0
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
Supply Voltage (V)
Fig. 22
Switching Frequency vs. Supply Voltage
Switching Frequency Fosc (KHz)
220
200
VIN=1.2V
VOUT=3.3V
180
160
VIN=2.4V
VOUT=3.3V
VIN=2.4V
VOUT=3.3V
140
120
VIN=2.4V
VOUT=5V
100
80
60
40
VIN=3.6V
VOUT=5V
20
0
1
10
100
1000
Output Current (mA)
Fig. 23
Rev.2.01 11/06/2003
Switching Frequency vs. Output Current
Fig. 24
www.SiliconStandard.com
LX Switching Waveform
8 of 16
SS6610/11
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
LX Pin Waveform
VIN=2.4V
Loading:
VOUT=3.3V
1mA ↔ 200mA
Inductor Current
Loading=200mA
VIN=2.4V
VOUT=3.3V
VOUT: AC Couple
VOUT AC Couple
Fig. 25
VIN
Heavy Load Waveform
VIN=2.0V~3.0V
Fig. 26
Load Transient Response
V SHDN
VOUT=3.3V, IOUT=100mA
VOUT
VOUT
VOUT=3.3V
CIN=COUT=47µF
Fig. 27
Line Transient Response
Fig. 28 Exiting Shutdown
V SHDN
V SHDN
VOUT
VOUT
Fig. 29
Rev.2.01 11/06/2003
VOUT=3.3V
VOUT=5.0V
CIN=COUT=100µF
CIN=COUT=47µF
Exiting Shutdown
www.SiliconStandard.com
Fig. 30
Exiting Shutdown
9 of 16
SS6610/11
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
V SHDN
VOUT
VOUT=5.0V
CIN=COUT=100µF
Fig. 31
Exiting Shutdown
BLOCK DIAGRAM
OUT
SHDN
+
Minimum
Off-Time
OUT
C3
47µF
C2
0.1µF
Q1
One Shot
L
LX
VIN
Q2
47µH
+
F/ F
S Q
C1
47µF
GND
R
One Shot
Max. On-Time
+
Mirror
+
LBO
+
-
FB
Reference
Voltage
REF
C4
0.1µF
LBI
Rev.2.01 11/06/2003
www.SiliconStandard.com
10 of 16
SS6610/11
PIN DESCRIPTIONS
PIN 1: FB-
PIN 2: LBIPIN 3: LBO-
Connecting to OUT to get +3.3V
output, connecting to GND to get
+5.0V output, or using a resistor
network to set the output voltage
from +1.8V to +5.5V.
Low-battery comparator input. Internally set at +1.23V to trip.
Open-drain low battery comparator
output. Output is low when VLBI is
<1.23V. LBO is high impedance
during shutdown.
PIN 4: REF-
1.23V reference voltage. Bypass
with a 0.1µF capacitor.
PIN 5: SHDN- Shutdown input. High=operating,
low=shutdown.
PIN 6: GND- Ground
PIN 7: LXN-channel and P-channel power
MOSFET drain.
PIN 8: OUT- Power output. OUT provides bootstrap power to the IC.
APPLICATION INFORMATION
Overview
current. The peak current of the internal N-MOSFET
The SS6610/11 series are high-efficiency, step-up DC/DC
power switch can be fixed at 1.0A SS6610) or
converters, featuring a built-in synchronous
0.65A (SS6611). The switch frequency depends on
rectifier, which reduces size and cost by eliminating
either loading conditions or input voltage, and can
the need for an external Schottky diode. The start-up
range up to 500KHz. It is governed by a pair of one-
voltage of the SS6610 and SS6611 is as low as
0.8V and it operates with an input voltage down
to 0.7V. Quiescent supply current is only 20µA.
The internal P-MOSFET on-resistance is typically
shots that set a minimum off-time (1µs ) and a
maximum on-time (4µs).
Synchronous Rectification
0.3Ω to improve overall efficiency by minimizing AC
Using the internal synchronous rectifier eliminates
losses. The output voltage can be easily set; by two
the need for an external Schottky diode, reducing
external resistors for 1.8V to 5.5V; connecting FB
the cost and board space. During the cycle of off-
to OUT to get 3.3V; or connecting to GND to get
time, the P-MOSFET turns on and shuts the N-
5.0V. The peak current of the internal switch is fixed
MOSFET off. Due to the low turn-on resistance
at 1.0A (SS6610) or 0.65A (SS6611) for design
of the MOSFET, the synchronous rectifier signif-
flexibility. The current limits of the SS6610 and SS6611
cantly improves efficiency without an additional ex-
are 1.0A and 0.65A respectively. The lower current
ternal Schottky diode. Thus, the conversion effi-
limit allows the use of a physically smaller inductor in
ciency can be as high as 93%.
space-sensitive applications.
Reference Voltage
PFM Control Scheme
The reference voltage (REF) is nominally 1.23V for
A key feature of the SS6610 series is a unique
excellent T.C. performance. In addition, the REF pin can
minimum-off-time, constant-on-time, current-limited,
source up to 100µA to external circuit with good load
pulse-frequency-modulation (PFM) control scheme
regulation (<10mV). A bypass capacitor of 0.1µF is
(see BLOCK DIAGRAM) with ultra-low quiescent
required for proper operation and good performance.
Rev.2.01 11/06/2003
www.SiliconStandard.com
11 of 16
SS6610/11
Shutdown
The whole circuit is shutdown when V SHDN is low. In
shutdown mode, the current can flow from the battery
to the output due to the body diode of the P-MOSFET.
VOUTfalls to approximately (Vin - 0.6V) and LX remains
high impedance. The capacitance and load at OUT de-
……………………………………………………(2)
where IOUT(MAX)=maximum output current in
amps
VIN=input voltage
L=inductor value in µH
η=efficiency (typically 0.9)
termine the rate at which VOUT decays. Shutdown
tOFF=LX switch’ off-time in µs
can be pulled as high as 6V. Regardless of the volt-
ILIM=1.0A or 0.65A
age at OUT.
2. Capacitor Selection
The output ripple voltage is related to the peak
Selecting the Output Voltage
inductor current and the output capacitor ESR.
VOUT can be simply set to 3.3V/5.0V by connecting the
FB pin to OUT/GND due to the use of an internal resistor divider in the IC (Fig.32 and Fig.33). In order to
adjust output voltage, a resistor divider is connected
to VOUT, FB, GND (Fig.34). Vout can be calculated
Besides output ripple voltage, the output ripple
current may also be of concern. A filter capacitor
with low ESR is helpful to the efficiency and the
steady state output current of the SS6610 series.
Therefore a NIPPON MCM Series tantalum
by the following equation:
capacitor of 100µF/6V is recommended. A smaller
R5=R6 [(VOUT / VREF )-1] .....................................(1)
capacitor (down to 47μF with higher ESR) is ac-
where V REF =1.23V and VOUT ranges from 1.8V to
ceptable for light loads or in applications that can
5.5V. The recommended R6 is 240kΩ.
tolerate higher output ripple.
Low-Battery Detection
3. PCB Layout and Grounding
The SS6610 series contains an on-chip comparator with
Since the SS6610/11’s switching frequency can
50mV internal hysteresis (REF, REF+50mV) for low
range up to 500kHz, the SS6610/11 can be very
battery detection. If the voltage at LBI falls below the
sensitive. Careful printed circuit layout is im-
internal reference voltage, LBO ( an open-drain out-
portant for minimizing ground bounce and noise.
put) sinks current to GND.
The OUT pin should be as clear as possible,
and the GND pin should be placed close to the
Component Selection
ground plane. Keep the IC’s GND pin and the
1. Inductor Selection
ground leads of the input and output filter capaci-
An inductor value of 22µH performs well in most
tors less than 0.2in (5mm) apart. In addition,
applications. The SS6610 series also work with
keep all connection to the FB and LX pins as
inductors in the 10µH to 47µH range. An inductor
short as possible. In particular, when using ex-
with higher peak inductor current creates a higher
ternal feedback resistors, locate them as close
output voltage ripple (IPEAK×output filter capaci-
to the FB as possible. To maximize output power
tor ESR). The inductor’s DC resistance signifi-
and efficiency, and minimize output ripple voltage,
cantly affects efficiency. We can calculate the
use a ground plane and solder the IC’s GND di-
maximum output current as follows:
VIN 
 VOUT − VIN 
 η
IOUT(MAX ) =
ILIM − t OFF 
VOUT 
2×L


rectly to the ground plane. Fig. 35 to 37 are the
Rev.2.01 11/06/2003
recommended layout diagrams.
www.SiliconStandard.com
12 of 16
SS6610/11
Ripple Voltage Reduction
pacitor results in a stable output voltage. Fig.38
Two or three parallel output capacitors can sig-
shows the application circuit with the above fea-
nificantly improve the output ripple voltage of the
tures. Fig.39 to Fig.46 show the performance of
SS6610/11. The addition of an extra input ca-
Fig. 38.
APPLICATION EXAMPLES
VIN
VIN
C1
47µF
L
22µH
L
22µH
OUT
LX
R1
LX
VOUT
C2
0.1µF
LBI
C1
47µF
C3
47µF
0.1µF
0.1µF
LBO
C4
GND
FB
C3
47µF
SHDN
R2
R4
100KΩ
REF
C2
0.1µF
LBI
SHDN
R2
VOUT
OUT
R1
R4
100KΩ
REF
LBO
C4
LOW BATTERY
OUTPUT
GND
FB
SS6610/11
SS6610/11
LOW BATTERY
OUTPUT
L: TDK SLF7045T-22OMR90
C1, C3: NIPPON Tantalum Capacitor 6MCM476MB2TER
L: TDK SLF7045T-22OMR90
C1, C3: NIPPON Tantalum Capacitor 6MCM476MB2TER
Fig. 32. VOUT = 3.3V Application Circuit.
Fig. 33. VOUT = 5.0V Application Circuit.
VIN
L
22µH
C1
47µF
VOUT
LX
OUT
R1
C2
0.1µF
LBI
SHDN
R2
100KΩ
R4
REF
0.1µF
C4
C3
47µF
R5
LBO
GND
SS6610/11
FB
LOW BATTERY
OUTPUT
R6
L: TDK SLF7045T-22OMR90
C1, C3: NIPPON Tantalum Capacitor 6MCM476MB2TER
VOUT=VREF*(1+R5/R6)
Fig. 34 An Adjustable Output Application Circuit
Rev.2.01 11/06/2003
www.SiliconStandard.com
13 of 16
SS6610/11
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
IIIIIIIIIIIIIIIIII9915H,J
Fig. 35. Top layer
Fig. 36. Bottom layer
L1
VIN
VIN
+
+
C1
100µF
C2
100µF
Fig. 37. Placement
22µH
C3
0.1µF
VOUT
R1 R3 R4
R5
100K
+
+
+
C7
0.1µF 100µF 100µF
C5
8
1 FB
OUT
2
R2
LX 7
R6
LBI
6
3 LBO
GND
5
4
SHDN
REF
LBI
SS6610/11
LBO
C4
100nF
R5=0Ω, R6=open; for VOUT=3.3V
R5=open, R6=0Ω; for VOUT=5.0V
VOUT=1.23(1+R5/R6); for adjustable output voltage
C6
+
C8
100µF
R7
10k
ShutDown
L1: TDK SLF7045T-22OMR90
C1~C2, C6~8: NIPPON Tantalum Capacitor 6MCM107MCTER
Fig. 38 SS6610/11 application circuit with small ripple voltage.
100
95
60
SS6610 (I LIMIT =1A)
VIN=3.6V
90
50
Ripple Voltage (mV)
85
Efficiency (%)
80
VIN=2.4V
75
70
65
60
SS6610 (ILIMIT =1A)
55
50
30
20
VIN=2.4V
VOUT=5.0V
45
40
VIN=3.6V
40
L=22µH
L=22µH
35
30
0.01
VOUT=5.0V
VIN=1.2V
10
VIN=1.2V
0
0.1
1
10
100
1000
0
100
Output Current (mA)
Fig. 39
Rev.2.01 11/06/2003
200
300
400
500
600
700
Output Current (mA)
Efficiency (ref. to Fig.38)
Fig. 40
www.SiliconStandard.com
Ripple Voltage (ref. to Fig.38)
14 of 16
SS6610/11
60
95
90
60
SS6611 (I LIMIT =0.65A)
VIN=3.6V
50
Ripple Voltage (mV)
85
Efficiency (%)
80
75
70
VIN=2.4V
65
60
55
SS6611 (I LIMIT =0.65A)
50
45
40
VIN=3.6V
40
30
20
VIN=2.4V
VOUT=5.0V
VIN=1.2V
10
35
VIN=1.2V
L=22µH
30
25
0.01
0.1
1
Fig. 41
10
100
1000
0
100
200
Efficiency (ref. to Fig.38)
Fig. 42
VIN=2.4V
500
Ripple Voltage (ref. to Fig.38)
SS6610 (ILIMIT =1A)
45
40
Ripple Voltage (mV)
85
80
75
70
VIN=1.2V
65
60
55
SS6610 (I LIMIT =1A)
50
VOUT=3.3V
45
35
30
25
VIN=2.4V
20
15
10
L=22µH
VOUT=3.3V
VIN=1.2V
L=22µH
5
0
40
0.01
0.1
1
10
100
0
1000
50
100
150
Output Current (mA)
Fig. 43
200
250
300
350
400
450
500
550
600
Output Current (mA)
Efficiency (ref. to Fig.38)
Fig. 44
Ripple Voltage (ref. to Fig.38)
35
100
SS6611 (I LIMIT =0.65A)
95
30
90
80
Ripple Voltage (mV)
85
Efficiency (%)
400
50
90
VIN=2.4V
75
70
65
SS6611 (I LIMIT =0.65A)
60
55
50
300
Output Current (mA)
100
Efficiency (%)
L=22µH
0
Output Current (mA)
95
VOUT=5.0V
25
20
VIN=2.4V
15
10
VOUT=3.3V
VIN=1.2V
L=22µH
45
40
0.01
VOUT=3.3V
VIN=1.2V
5
L=22µH
0
0.1
1
10
100
1000
0
50
100
Output Current (mA)
Fig. 45
Rev.2.01 11/06/2003
150
200
250
300
350
400
Output Current (mA)
Efficiency (ref. to Fig.38)
Fig. 46
www.SiliconStandard.com
Ripple Voltage (ref. to Fig.38)
15 of 16
SS6610/11
PHYSICAL DIMENSION
8 LEAD MSOP (unit: mm)
D
SYMBOL
MIN
MAX
A1
--
0.20
A2
0.76
0.97
b
0.28
0.38
C
0.13
0.23
D
2.90
3.10
E
4.80
5.00
E1
2.90
3.10
E
E1
e
A2
e
C
0.40
0.66
A1
L
0.65
b
L
Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no
guarantee or warranty, express or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no
responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its
use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including
without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to
the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of
Silicon Standard Corporation or any third parties.
Rev.2.01 11/06/2003
www.SiliconStandard.com
16 of 16