AP561 0.7-2.9 GHz WiMAX 8W Power Amplifier Product Features Product Description • 0.7 – 2.9 GHz • +39 dBm P1dB • 13 Gain • 1.5% EVM @ 30 dBm Pout Functional Diagram The AP561 is a high dynamic range broadband power amplifier in a surface mount package. The single-stage amplifier has 13 dB Gain, while being able to achieve high performance for 0.7–2.9 GHz applications with up to +39 dBm of compressed 1dB power. • +12 V Supply Voltage The AP561 uses a high reliability +12V InGaP/GaAs HBT process technology. The device incorporates proprietary • Lead-free/green/RoHS-compliant bias circuitry to compensate for variations in linearity and 5x6 mm power DFN package current draw over temperature. The device does not require any negative bias voltage; an internal active bias allows the AP561 to operate directly off a commonly used +12V Applications supply and has the added feature of a +5V power down control pin. RoHS-compliant 5x6mm DFN package is • WiMAX CPE/BTS surface mountable to allow for low manufacturing costs to • WiBro CPE/BTS the end user. The AP561 is targeted for use in a balanced or single ended configuration for WiMAX or WiBro applications where high linearity and high power is required. Specifications Parameter Function RFIN RFOUT IREF VBIAS NC Pin No. 4,5,6 9,10,11 14 1 2,3,7,8,12,13 Typical Performance Units Min Operational Bandwidth Test Frequency Output Channel Power Power Gain Input Return Loss Output Return Loss Error Vector Magnitude Operating Current, Icc Collector Efficiency RF Switching Speed Output P1dB Noise Figure Quiescent Current, Icq Vpd(4) Vcc GHz GHz dBm dB dB dB % mA % ns dBm dB mA V V Typ 0.7 Max 2.9 2.6 +30 13.1 13 6.2 1.5 480 17.6 50 39.0 5.3 300 +5 +12 Parameter Units Test Frequency Channel Power Power Gain Input Return Loss Output Return Loss Error Vector Magnitude Operating Current, Icc Collector Efficiency Output P1dB Noise Figure Quiescent Current, Icq Vpd Vcc GHz dBm dB dB dB % mA % dBm dB mA V V Typical 2.5 +30 13.4 12 6.4 2.2 510 15.8 39.7 5 2.6 +30 13.1 13 6.2 1.5 480 17.6 39.0 5.3 300 +5 +12 2.7 +30 12.2 16 4.3 2.1 490 16 37.6 6.2 Notes: 1. Test conditions unless otherwise noted: T = 25ºC, Vpd = +5V, Vcc = +12, Icq = 300mA at Pout = +30 dBm and f = 2.6 GHz. 2. Using an 802.16-2004 OFDMA, 64QAM-1/2,1024-FFT, 20 symbols, 30 subchannels signal, 9.5 dB PAR @ 0.01%. 3. Switching speed: 50% TTL to 100/0% RF.Vpd used for device power down (low=RF off). 4. Vpd relates to Iref as shown in Table 1 on Page 12. 5. Capable of handling 10:1 VSWR @ 12 VDC, WiMax signal, PoutAVG = 30dBm. Absolute Maximum Rating Parameter Rating Pin max (CW into 50Ω load) BVcbo Pdiss max Supply Voltage Storage Temperature Max Junction Temperature, TJ,max Thermal Resistance, ΘJC +33 dBm 35V 14 W 15V -55 to +125 ºC 158 ºC 8.4 °C / W Operation of this device above any of these parameters may cause permanent damage. Ordering Information Part No. Description AP561-F AP561-PCB2500 WiMAX 12V 8W HBT Amplifier 2.5-2.7 GHz Fully Assembled Evaluation Board Standard T/R size = 500 pieces on a 7” reel. Specifications and information are subject to change without notice TriQuint Semiconductor, Inc • Phone 1-800-951-4401 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www.TriQuint.com Page 1 of 15 May 2009 AP561 0.7-2.9 GHz WiMAX 8W Power Amplifier Application Circuit PC Board Layout Circuit Board Material: 0.0147” Rogers Ultralam 2000, single layer, 1 oz copper, εr = 2.45, Microstrip line details: width = .043”, spacing = .050” Baseplate Configuration Notes: 1. Please note that for reliable operation, the evaluation board will have to be mounted to a much larger heat sink during operation and in laboratory environments to dissipate the power consumed by the device. The use of a convection fan is also recommended in laboratory environments. 2. The area around the module underneath the PCB should not contain any soldermask in order to maintain good RF grounding. 3. For proper and safe operation in the laboratory, the power-on sequencing is recommended. Evaluation Board Bias Procedure Following bias procedure is recommended to ensure proper functionality of AP561 in a laboratory environment. The sequencing is not required in the final system application. Bias. Vcc Vpd Voltage (V) +12 +5 Turn-on Sequence: 1. 2. 3. 4. Attach input and output loads onto the evaluation board. Turn on power supply Vcc = +12V. Turn on power supply Vpd = +5V. Turn on RF power. Turn-off Sequence: 1. 2. 3. Turn off RF power. Turn off power supply Vpd = +5V. Turn off power supply Vcc = +12V. Specifications and information are subject to change without notice TriQuint Semiconductor, Inc • Phone 1-800-951-4401 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www.TriQuint.com Page 2 of 15 May 2009 AP561 0.7-2.9 GHz WiMAX 8W Power Amplifier Typical Device Data S-Parameters (VCC= +12 V, ICC = 300 mA, 25 °C, unmatched 50 ohm system) S(1,1) AP561 0.8 1.0 S(2,2) Max AP561Swp6GHz 0 2. 2. 0 6 0. 0.8 Swp Max 6GHz 6 0. 40 S22 1.0 S11 Gain / Maximum Stable Gain 0. 4 0. 4 0 3. 20 0 3. 0 4. 4. 0.2 0.2 10.0 10.0 5.0 4.0 3.0 2.0 1.0 0.8 0.6 0.4 0.2 0 10.0 5.0 4.0 3.0 2.0 1.0 0.8 0.6 0.2 0 -10.0 0 DB(|S(2,1)|) AP561 -4 .0 -0.8 Swp Min 0.05GHz -1.0 -0 .6 - -1.0 -0.8 Swp Min 0.05GHz 0 2. .4 -0 0 2. .4 -0 .6 Frequency (GHz) .0 6 -3 4 -3 .0 -0 2 -4 .0 -40 0 2 -0. -5. 2 -0. DB(GMax()) AP561 0 -20 -5. 0 0.4 10.0 -10.0 Gain (dB) 0 5.0 5.0 Notes: The gain for the unmatched device in 50 ohm system is shown as the trace in black color. For a tuned circuit for a particular frequency, it is expected that actual gain will be higher, up to the maximum stable gain. The maximum stable gain is shown in the red line. S-Parameters (VCC = +12 V, ICQ = 300 mA, 25 °C, unmatched 50 ohm system, calibrated to device leads) Freq (MHz) 50 100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300 4500 S11 (dB) S11 (ang) S21 (dB) S21 (ang) S12 (dB) S12 (ang) S22 (dB) S22 (ang) -0.83 -0.43 -0.35 -0.32 -0.34 -0.40 -0.47 -0.53 -0.59 -0.87 -1.14 -1.58 -2.07 -2.11 -1.52 -0.93 -0.60 -0.44 -0.30 -0.20 -0.16 -0.14 -0.15 -0.13 -174.19 -177.42 179.26 177.35 175.28 173.11 170.97 168.26 165.56 161.87 158.99 157.33 158.08 161.67 163.86 162.94 161.26 159.75 157.96 156.27 154.67 152.82 150.80 148.32 27.09 22.26 14.06 9.81 7.08 5.19 3.82 2.80 2.18 2.75 2.84 3.04 3.08 2.27 0.21 -2.57 -5.57 -8.55 -11.15 -13.44 -15.57 -17.53 -19.35 -21.11 122.75 106.35 89.18 79.93 71.64 63.88 55.72 47.12 37.92 25.71 12.58 -4.10 -26.45 -53.16 -79.14 -100.12 -115.90 -127.57 -136.15 -143.55 -150.57 -157.27 -163.61 -170.25 -43.35 -43.10 -41.21 -40.63 -40.35 -40.26 -40.09 -39.83 -39.58 -38.56 -37.79 -37.20 -36.71 -36.83 -37.65 -38.71 -39.66 -40.18 -40.26 -40.26 -39.83 -39.91 -39.49 -39.09 29.12 8.71 1.08 0.69 3.54 -3.79 -9.55 -16.44 -23.59 -35.47 -49.59 -69.96 -98.60 -134.34 -170.26 157.51 133.27 115.97 102.36 94.11 85.11 78.44 72.37 66.71 -1.38 -1.82 -2.02 -2.10 -2.09 -1.99 -1.86 -1.78 -1.68 -1.67 -1.45 -1.07 -0.57 -0.20 -0.18 -0.38 -0.55 -0.68 -0.77 -0.84 -0.87 -0.87 -0.86 -0.89 -106.01 -138.64 -164.78 -172.01 -176.13 -177.89 -178.93 -179.77 179.34 177.40 176.17 174.50 171.36 166.20 160.52 155.92 152.79 150.56 148.63 147.06 145.70 144.40 143.38 142.13 Device S-parameters are available for download off of the website at: http://www.tqs.com Specifications and information are subject to change without notice TriQuint Semiconductor, Inc • Phone 1-800-951-4401 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www.TriQuint.com Page 3 of 15 May 2009 AP561 0.7-2.9 GHz WiMAX 8W Power Amplifier 776-787 MHz Reference Design Typical O-FDMA Performance at 25°C Frequency (MHz) Channel Power Power Gain Input Return Loss Output Return Loss EVM ACLR Operating Current, Icc Collector Efficiency Output P1dB Quiescent Current, Icq Vpd Vcc 776 780 +28 +28 16.5 16.6 10 12 11 11 0.68 0.64 -51 -51 405 404 13 13 37.8 37.9 300 +5 +12 787 Units +28 dBm 16.6 dB 13 dB 11 dB 0.57 % -52 dBc 402 mA 12.9 % 38 dBm mA V V Notes: 1. The primary RF microstrip line is 50 Ω. 2. Do not exceed 5.5V on Vpd or damage to D1 will occur. 3. Do not exceed 13V on Vcc or damage to D2 will occur. 4. Components shown on the silkscreen but not on the schematic are not used. 5. The edge of C26 is placed at 35mil from edge of AP561. (1.2 o @ 780 MHz) 6. The edge of L1 is placed 60mil from the edge of C26. (2 o @ 780 MHz) 7. The edge of C27 is placed next to the edge of L1. 8. The edge of C20 is placed 380mil from the edge of C27. (12.9 o @ 780 MHz) 9. The edge of R5 is placed at 115mil from edge of AP561. (3.9 o @ 780 MHz) 10. The edge of C28 is placed 230mil from the edge of R5. (7.8 o @ 780 MHz) 11. The edge of C1 is placed 180mil from the edge of C28. (6.1 o @ 780 MHz) 12. 0 Ω jumpers can be replaced with copper trace in target application. 776-787 MHz Application Circuit Performance Plots 802.16-2004 O-FDMA, 64QAM-1/2, 1024-FFT, 20 symbols and 30 subchannels. 9.5 dB PAR @ 0.01%, 5 MHz Carrier BW Gain vs. Frequency T=25°C 20 S11, S22 (dB) -5 16 15 15 -10 10 -15 S11 14 0.75 0.77 0.79 0.81 0.83 0.77 Frequency (GHz) Current vs Output Average Power vs. Frequency 0.79 0.81 Frequency (GHz) 0.83 0.85 24 EVM vs. Output Average Power vs. Frequency T=25°C 600 776 MHz S22 Collector Current (mA) 776 MHz 780 MHz 787 MHz ACLR (dBc) EVM (%) 2 400 787 MHz 300 25 26 27 28 29 30 Output Power (dBm) 31 32 31 32 T=25°C 780 MHz 787 MHz W-CDMA 3GPP Test Model 1+64 DPCH, 100% clipping, PAR = 10.2 dB @ 0.01%, 3.84 MHz BW -40 -45 -50 -60 0 24 30 -55 1 780 MHz 27 28 29 Output Power (dBm) -35 3 776 MHz 26 776 MHz 500 350 25 -30 4 450 787 MHz ACLR vs. Output Average Power vs. Frequency T=25°C 5 550 780 MHz 5 -20 0.75 0.85 T=25°C 25 Collector Efficiency (%) 0 17 Gain (dB) Efficiency vs Output Average Power vs. Frequency Return Loss T=25°C 18 24 25 26 27 28 29 Output Power (dBm) 30 31 32 24 25 26 27 28 29 Output Power (dBm) 30 31 32 Specifications and information are subject to change without notice TriQuint Semiconductor, Inc • Phone 1-800-951-4401 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www.TriQuint.com Page 4 of 15 May 2009 AP561 0.7-2.9 GHz WiMAX 8W Power Amplifier 869-894 MHz Reference Design Typical W-CDMA Performance at 25°C Frequency (MHz) Channel Power Power Gain Input Return Loss Output Return Loss ACLR Operating Current, Icc Collector Efficiency Output P1dB Quiescent Current, Icq Vpd Vcc 869 880 +28 +28 15.7 15.8 14 15 9.8 10 -53 -52 475 470 11 11.2 39.6 39.5 300 +5 +12 894 Units +28 dBm 15.7 dB 15 dB 11 dB -52 dBc 460 mA 11.4 % 39.4 dBm mA V V Notes: 1. The primary RF microstrip line is 50 Ω. 2. Do not exceed 5.5V on Vpd or damage to D1 will occur. 3. Do not exceed 13V on Vcc or damage to D2 will occur. 4. Components shown on the silkscreen but not on the schematic are not used. 5. The edge of C26 is placed at 40mil from edge of AP561. (1.5 o @ 880 MHz) 6. The edge of L1 is placed 60mil from the edge of C26. (2.3 o @ 880 MHz) 7. The edge of C27 is placed 43 mil from the edge of L1. (1.6 o @ 880 MHz) 8. The edge of C20 is placed 380mil from the edge of C27. (14.6 o @ 880 MHz) 9. The edge of R5 is placed at 105mil from edge of AP561. (4 o @ 880 MHz) 10. The edge of C28 is placed 200mil from the edge of R5. (7.7 o @ 880 MHz) 11. 0 Ω jumpers can be replaced with copper trace in target application. 869-894 MHz Application Circuit Performance Plots W-CDMA 3GPP Test Model 1+64 DPCH, 100% clipping, PAR = 10.2 dB @ 0.01% Probability, 3.84 MHz BW Gain vs. Frequency Efficiency vs Output Average Power vs. Frequency Return Loss T=25°C 18 T=25°C 0 Collector Efficiency (%) -5 20 S11, S22 (dB) Gain (dB) 17 16 15 -10 15 -15 -20 10 -25 S11 14 0.86 T=25°C 25 0.87 0.88 0.89 0.90 869 MHz 880 MHz 894 MHz 5 -30 0.86 0.87 Frequency (GHz) 0.88 Frequency (GHz) Current vs Output Average Power vs. Frequency 0.89 0.90 24 25 26 27 28 29 Output Power (dBm) 30 31 32 ACLR vs. Output Average Power vs. Frequency T=25°C 800 S22 T=25°C -40 Collector Current (mA) -45 ACLR (dBc) 700 600 500 400 -50 -55 -60 -65 869 MHz 880 MHz 894 MHz 869 MHz 880 MHz 894 MHz -70 300 24 25 26 27 28 29 30 Output Power (dBm) 31 32 24 25 26 27 28 29 Output Power (dBm) 30 31 32 Specifications and information are subject to change without notice TriQuint Semiconductor, Inc • Phone 1-800-951-4401 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www.TriQuint.com Page 5 of 15 May 2009 AP561 0.7-2.9 GHz WiMAX 8W Power Amplifier 1930-1990 MHz Reference Design Typical W-CDMA Performance at 25°C Frequency (MHz) Channel Power Power Gain Input Return Loss Output Return Loss ACLR Operating Current, Icc Collector Efficiency Output P1dB Quiescent Current, Icq Vpd Vcc 1930 +28 15.3 12 7.7 -49 440 11.7 39.1 1960 1990 Units +28 +28 dBm 15.4 15.3 dB 16 18 dB 7.6 7.5 dB -49 -51 dBc 430 425 mA 12 12.3 % 38.7 38.2 dBm mA 300 V +5 V +12 Notes: 1. The primary RF microstrip line is 50 Ω. 2. Do not exceed 5.5V on Vpd or damage to D1 will occur. 3. Do not exceed 13V on Vcc or damage to D2 will occur. 4. Components shown on the silkscreen but not on the schematic are not used. 5. The edge of C34 is placed at 95mil from edge of AP561. (8.1 o @ 1960 MHz) 6. The edge of C33 is placed 375mil from the edge of C34. (32 o @ 1960 MHz) 7. The edge of C20 is placed 65mil from the edge of C33. (5.6 o @ 1960 MHz) 8. The edge of C31 is placed 60mil from edge of AP561. (5.1 o @ 1960 MHz) 9. The edge of C30 is placed next to the edge of C31 10. The edge of C2 is placed 435mil from the edge of C30. (37.2 o @ 1960 MHz) 11. 0 Ω jumpers can be replaced with copper trace in target application. 1930-1990 MHz Application Circuit Performance Plots W-CDMA 3GPP Test Model 1+64 DPCH, 100% clipping, PAR = 10.2 dB @ 0.01% Probability, 3.84 MHz BW Gain vs. Frequency Efficiency vs Output Average Power vs. Frequency Return Loss T=25°C 18 T=25°C 0 Collector Efficiency (%) -5 20 S11, S22 (dB) Gain (dB) 17 16 15 -10 15 -15 -20 10 -25 S11 14 1.92 T=25°C 25 1.94 1.96 1.98 2.00 1.94 Frequency (GHz) 1.96 Frequency (GHz) Current vs Output Average Power vs. Frequency 1930 MHz 1960 MHz 1990 MHz 1.98 2.00 24 25 26 27 28 29 Output Power (dBm) 30 31 32 ACLR vs. Output Average Power vs. Frequency T=25°C 800 S22 5 -30 1.92 T=25°C -30 Collector Current (mA) -35 ACLR (dBc) 700 600 500 400 -40 -45 -50 -55 1930 MHz 1960 MHz 1930 MHz 1990 MHz 1960 MHz 1990 MHz -60 300 24 25 26 27 28 29 30 Output Power (dBm) 31 32 24 25 26 27 28 29 Output Power (dBm) 30 31 32 Specifications and information are subject to change without notice TriQuint Semiconductor, Inc • Phone 1-800-951-4401 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www.TriQuint.com Page 6 of 15 May 2009 AP561 0.7-2.9 GHz WiMAX 8W Power Amplifier 2010-2025 MHz Reference Design Typical TD-SCDMA Performance at 25°C Frequency (MHz) 2010 2015 2025 Units Channel Power +27 +27 +27 dBm Power Gain 13 13 13 dB Input Return Loss 8.4 8.6 8.7 dB Output Return Loss 6.7 6.6 6.4 dB ACLR -49 -49 -49 dBc Operating Current, Icc 673 675 679 mA Collector Efficiency 6.2 6.2 6.1 % Output P1dB 37.4 37.3 37.1 dBm mA Quiescent Current, Icq 600 V Vpd +5 V Vcc +12 Notes: 1. The primary RF microstrip line is 50 Ω. 2. Do not exceed 5.5V on Vpd or damage to D1 will occur. 3. Do not exceed 13V on Vcc or damage to D2 will occur. 4. Components shown on the silkscreen but not on the schematic are not used. 5. The edge of C31 is placed at 35mil from edge of AP561. (3.1 o @ 780 MHz) 6. The edge of L1 next to the edge of C31. 7. The edge of C34 is placed at 195mil from edge of AP561. (17.1 o @ 780 MHz) 8. The edge of C33 is placed next to the edge of C34. 9. 0 Ω jumpers can be replaced with copper trace in target application. 2010-2025 MHz Application Circuit Performance Plots TD-SCDMA 3 Carrier, PAR = 10 dB @ 0.01% Probability, 1.28 MHz BW Gain vs Frequency Collector Efficiency (%) 10 5 -10 -15 -20 S21 2.01 2.02 Frequency (GHz) S11 2.03 2.04 12 9 6 3 2010 MHz S22 2015 MHz 2025 MHz 0 -25 2.00 2.01 2.02 Frequency (GHz) Current vs Output Average Power vs. Frequency 2.03 20 2.04 21 22 23 24 25 26 27 Output Power (dBm) 28 29 30 ACLR vs. Output Average Power vs. Frequency T=25°C 700 T=25°C 15 -5 S11, S22 (dB) S11, S22 (dB) T=25°C 0 15 0 2.00 Efficiency vs Output Average Power vs. Frequency Return Loss T=25°C 20 T=25°C -40 Collector Current (mA) -42 -44 675 ACLR (dBc) -46 -48 -50 650 -52 -54 625 -56 2010 MHz 2015 MHz 21 22 23 24 25 26 Output Power (dBm) 27 2015 MHz 2025 MHz -60 600 20 2010 MHz -58 2025 MHz 28 20 21 22 23 24 25 Output Power (dBm) 26 27 28 Specifications and information are subject to change without notice TriQuint Semiconductor, Inc • Phone 1-800-951-4401 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www.TriQuint.com Page 7 of 15 May 2009 AP561 0.7-2.9 GHz WiMAX 8W Power Amplifier 2110-2170 MHz Application Circuit Typical W-CDMA Performance at 25°C Frequency (MHz) Channel Power Power Gain Input Return Loss Output Return Loss ACLR Operating Current, Icc Collector Efficiency Quiescent Current, Icq Vpd Vcc 2110 +28 13.5 7.0 12 -55 485 11.1 2140 2170 Units +28 +28 dBm 13.8 13.1 dB 12 21 dB 8.0 6.1 dB -59 -55 dBc 490 520 mA 10.8 10.3 % mA 400 V +5 V +12 Notes: 1. The primary RF microstrip line is 50 Ω. 2. Do not exceed 5.5V on Vpd or damage to D1 will occur. 3. Do not exceed 13V on Vcc or damage to D2 will occur. 4. Components shown on the silkscreen but not on the schematic are not used. 5. The edge of C34 is placed at 65mil from AP561 RFout pin. (6 o @ 2140 MHz) 6. The edge of C32 is placed 40mil from the edge of C34. (3.7 o @ 2140 MHz) 7. The edge of C33 is placed 375mil from the edge of C32. (35 o @ 2140 MHz) 8. The edge of C30 is placed at 100mil from AP561 RFin pin. (9.3 o @ 2140 MHz) 9. The edge of C31 is placed 275mil from the edge of C30. (25.6 o @ 2140 MHz) 10. 0 Ω jumpers can be replaced with copper trace in target application. 2110-2170 MHz Application Circuit Performance Plots W-CDMA 3GPP Test Model 1+64 DPCH, 60% clipping, PAR = 8 dB @ 0.01% Probability, 3.84 MHz BW Gain vs. Frequency 13 12 11 550 -10 500 -15 450 -20 400 -25 -30 2.10 2.20 Frequency (GHz) 2.30 S11 -35 2.00 350 S22 2110 MHz 2.10 2.20 Frequency (GHz) 2.30 15 17 19 21 23 25 Output Power (dBm) 27 29 T=25°C -40 2170 MHz 2110 MHz -45 2140 MHz 2170 MHz 15 -50 ACLR (dBc) Collector Efficiency (%) 2140 MHz 2170 GHz ACLR vs. Output Average Power vs. Frequency T=25°C 2110 MHz 2140 MHz 300 Efficiency vs Output Average Power vs. Frequency 20 T=25°C 600 -5 S11, S22 (dB) Gain (dB) T=25°C 0 14 10 2.00 Current vs Output Average Power vs. Frequency Return Loss vs. Frequency T=25°C Collector Current (mA) 15 -55 10 -60 5 -65 -70 0 15 17 19 21 23 25 Output Power (dBm) 27 29 15 17 19 21 23 25 Output Power (dBm) 27 29 Specifications and information are subject to change without notice TriQuint Semiconductor, Inc • Phone 1-408-577-6300 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www. TriQuint.com Page 8 of 15 May 2009 AP561 0.7-2.9 GHz WiMAX 8W Power Amplifier 2.3-2.4 GHz Reference Design Typical O-FDMA Performance at 25°C Frequency (GHz) Channel Power Power Gain Input Return Loss Output Return Loss EVM Operating Current, Icc Collector Efficiency Output P1dB Quiescent Current, Icq Vpd Vcc 2.3 +30 14.5 12 7.3 1.9 515 16 39.7 2.35 +30 14.5 16 7.6 1.6 490 16.8 39 300 +5 +12 2.4 Units +30 dBm 14 dB 20 dB 6.8 dB 1.6 % 475 mA 17.8 % 38 dBm mA V V Notes: 1. The primary RF microstrip line is 50 Ω. 2. Do not exceed 5.5V on Vpd or damage to D1 will occur. 3. Do not exceed 13V on Vcc or damage to D2 will occur. 4. Components shown on the silkscreen but not on the schematic are not used. 5. The edge of C25 is placed at 55mil from AP561 RFout pin. (5.6 o @ 2350 MHz) 6. The edge of C26 is placed next to the edge of C25. 7. The edge of C27 is placed 75mil from the edge of C26. (7.7 o @ 2350 MHz) 8. The edge of C24 is placed at 40mil from AP561 RFin pin. (4.1 o @ 2350 MHz) 9. The edge of C23 is placed next to the edge of C24. 10. 0 Ω jumpers can be replaced with copper trace in target application. 2.3-2.4 GHz Application Circuit Performance Plots 802.16-2004 O-FDMA, 64QAM-1/2, 1024-FFT, 20 symbols and 30 subchannels. 9.5 dB PAR @ 0.01%, 5 MHz Carrier BW Gain vs. Frequency T=25°C 0 Collector Efficiency (%) S11, S22 (dB) 15 13 12 11 -10 10 -15 -20 -25 S11 10 2.25 T=25°C 20 -5 14 Gain (dB) Efficiency vs Output Average Power vs. Frequency Return Loss T=25°C 15 2.30 2.35 Frequency (GHz) 2.40 2.45 -30 2.25 2.3 GHz 2.35 GHz 2.4 GHz 0 2.30 2.35 Frequency (GHz) Current vs Output Average Power vs. Frequency 2.40 2.45 22 23 24 25 26 27 28 29 Output Power (dBm) 30 31 32 EVM vs. Output Average Power vs. Frequency T=25°C T=25°C 5 Collector Current (mA) 600 5 S22 4 400 3 EVM (%) 500 300 2 200 1 2.3 GHz 2.35 GHz 2.4 GHz 2.3 GHz 100 2.35 GHz 2.4 GHz 0 22 23 24 25 26 27 28 29 Output Power (dBm) 30 31 32 22 24 26 28 Output Power (dBm) 30 32 Specifications and information are subject to change without notice TriQuint Semiconductor, Inc • Phone 1-408-577-6300 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www. TriQuint.com Page 9 of 15 May 2009 AP561 0.7-2.9 GHz WiMAX 8W Power Amplifier 2.5-2.7 GHz Application Circuit (AP561-PCB2500) Typical O-FDMA Performance at 25°C Frequency (GHz) Channel Power Power Gain Input Return Loss Output Return Loss EVM Operating Current, Icc Collector Efficiency Output P1dB Quiescent Current, Icq Vpd Vcc 2.5 2.6 +30 +30 13.4 13.1 12 13 6.4 6.2 2.2 1.5 510 480 15.8 17.6 39.7 39.0 300 +5 +12 2.7 Units +30 dBm 12.2 dB 16 dB 4.3 dB 2.1 % 490 mA 16 % 37.6 dBm mA V V Notes: 1. The primary RF microstrip line is 50 Ω. 2. Do not exceed 5.5V on Vpd or damage to D1 will occur. 3. Do not exceed 13V on Vcc or damage to D2 will occur. 4. Components shown on the silkscreen but not on the schematic are not used. 5. The edge of C23 is placed right next to C24. 6. The edge of C24 is placed at 85mil from AP561 RFout pin. (9.6 o @ 2.6 GHz) 7. The edge of C25 is placed at 56mil from AP561 RFin pin. (6.3 o @ 2.6 GHz) 8. The edge of C26 is placed right next to C25. 9. The edge of C27 is placed 55mil from the edge of C26. (6.2 o @ 2.6 GHz) 10. 0 Ω jumpers can be replaced with copper trace in target application. 2.5-2.7 GHz Application Circuit Performance Plots 802.16-2004 O-FDMA, 64QAM-1/2, 1024-FFT, 20 symbols and 30 subchannels. 9.5 dB PAR @ 0.01%, 5 MHz Carrier BW Gain vs. Frequency Return Loss vs. Frequency T=25°C 14 42 40 12 11 P1dB(dBm) -5 S11, S22 (dB) Gain (dB) 13 P1dB vs. Frequency T=25°C 0 -10 38 36 -15 10 -20 2.4 9 2.4 2.5 2.6 Frequency (GHz) 2.7 2.8 NF vs. Frequency 25C + 85C 6 2.6 Frequency (GHz) 2.7 2.8 2.5 2.6 Frequency (GHz) 2.7 2.8 Power Gain vs.Frequency vs. Vcc T = 25C, Icq = 300mA 14 12 12 11 +8V +10V +12V +14V 10 10 2.5 32 2.4 2.8 13 11 5 4 2.4 2.7 13 7 +85C Gain (dB) - 40C 2.6 Frequency (GHz) Freq = 2.6GHz 14 Gain (dB) 8 2.5 -40C S22 Power Gain vs. Output Average Power vs. Vcc Freq = 2.6GHz 9 NF (dB) +25C 34 S11 24 26 28 30 32 34 Output Power (dBm) 36 38 40 9 2.4 +8V 2.5 +10V +12V +14V 2.6 Frequency (GHz) 2.7 2.8 Specifications and information are subject to change without notice TriQuint Semiconductor, Inc • Phone 1-408-577-6300 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www. TriQuint.com Page 10 of 15 May 2009 AP561 0.7-2.9 GHz WiMAX 8W Power Amplifier Icc vs. Output Average Power vs. Vcc Efficiency vs. Output Average Power vs. Vcc Freq = 2.6GHz, T = 25ºC 800 Icc (mA) 400 +8V +10V +12V +14V 30 +8V +10V +12V +14V 4 25 24 26 28 30 Output Power (dBm) 32 +10V +12V +14V 3 20 2 15 10 1 0 0 22 +8V 5 200 20 Freq = 2.6GHz, T = 25ºC 5 EVM (% ) Collector Efficiency (% ) 35 600 EVM vs. Output Average Power vs. Vcc Freq = 2.6GHz , T = 25ºC 40 34 20 22 24 OIP3 vs. Output Power / Tone 26 28 30 Output Power (dBm) 32 20 34 22 24 IMD3 vs. Output Power / Tone 55 -30 50 -35 26 28 30 Output Power (dBm) 32 34 70 90 Power Gain vs Temperature 14 40 -40 Gain (dB) IMD3 (dBc) OIP3 (dBm) 13 45 -45 11 -50 35 2.5GHz 2.6GHz 2.7GHz 2.5GHz 2.6GHz 2.7GHz 2.5 GHz -55 30 22 24 26 28 Output Power/Tone (dBm) 30 20 32 22 24 26 Output Power/Tone (dBm) 28 10 -50 30 -30 -10 2.6 GHz 2.7 GHz 10 30 Temperature (°C) 50 EVM vs. Output Average Power EVM vs. Frequency 4 3 3 EVM (%) EVM (%) 4 2 2 1 1 +25°C -40°C 2.5 GHz +85°C 2.6 GHz 2.7 GHz 0 0 2.5 12 2.55 2.6 Frequency (GHz) 2.65 2.7 20 22 24 26 28 30 32 Output Power (dBm) Specifications and information are subject to change without notice TriQuint Semiconductor, Inc • Phone 1-408-577-6300 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www. TriQuint.com Page 11 of 15 May 2009 AP561 0.7-2.9 GHz WiMAX 8W Power Amplifier 2.3-2.9 GHz Application Circuit Typical O-FDMA Performance at 25°C Frequency (GHz) 2.3 Channel Power +30 Power Gain 11.8 Input Return Loss 17 Output Return Loss 3.3 EVM 1.9 Operating Current, Icc 630 Collector Efficiency 13 Output P1dB 40 Quiescent Current, Icq Vpd Vcc 2.6 +30 11.5 14 4.0 2.5 640 12.7 39 300 +5 +12 2.9 Units +30 dBm 12.1 dB 16 dB 5.9 dB 2.4 % 570 mA 14.3 % 39 dBm mA V V Notes: 1. The primary RF microstrip line is 50 Ω. 2. Do not exceed 5.5V on Vpd or damage to D1 will occur. 3. Do not exceed 13V on Vcc or damage to D2 will occur. 4. Components shown on the silkscreen but not on the schematic are not used. 5. The edge of C26 is placed 10mil from C24. (1.1 o @ 2.6 GHz) 6. The edge of L4 is placed right next to C26. 7. The edge of C23 is placed next to AP561 RFout pin. 8. The edge of C24 is placed right next to C23. 9. The edge of C27 is placed at 50mil from AP561 RFin pin. (5.6 o @ 2.6 GHz) 10. The edge of C28 is placed right next to C27. 11. 0 Ω jumpers can be replaced with copper trace in target application. 2.3-2.9 GHz Application Circuit Performance Plots 802.16-2004 O-FDMA, 64QAM-1/2, 1024-FFT, 20 symbols and 30 subchannels. 9.5 dB PAR @ 0.01%, 5 MHz Carrier BW Gain vs. Frequency T=25°C S11, S22 (dB) -5 12 11 10 700 -10 600 -15 500 -20 400 -25 9 S11 8 2.3 2.4 2.5 2.6 2.7 Frequency (GHz) 2.8 2.9 -30 2.0 Collector Efficiency (%) S22 2.3 GHz 2.6 GHz 2.9 GHz 300 2.2 2.4 2.6 Frequency (GHz) Efficiency vs Output Average Power vs Frequency 2.8 3.0 20 22 24 26 28 Output Power (dBm) 30 32 EVM vs. Output Average Power vs. Frequency T=25°C 20 T=25°C 800 Collector Current (mA) 0 13 Gain (dB) Current vs. Output Average Power vs. Frequency Return Loss vs. Frequency T=25°C 14 T=25°C 5 4 EVM (%) 15 10 5 3 2 1 2.3 GHz 2.6 GHz 2.9 GHz 2.3 GHz 0 2.6 GHz 2.9 GHz 0 20 22 24 26 28 Output Power (dBm) 30 32 20 22 24 26 28 Output Power (dBm) 30 32 Specifications and information are subject to change without notice TriQuint Semiconductor, Inc • Phone 1-408-577-6300 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www. TriQuint.com Page 12 of 15 May 2009 AP561 0.7-2.9 GHz WiMAX 8W Power Amplifier 2.5 – 2.7 GHz Application Note: Changing Icq Biasing Configurations The AP561 can be configured to operate with lower bias current by varying the bias-adjust resistor R2. (Table 1) The recommended circuit configurations shown previously in this datasheet have the device operating with a 300 mA as the quiescent current (ICQ). This biasing level represents a tradeoff in terms of EVM and efficiency. Lowering ICQ will improve upon the efficiency of the device, but degrade the EVM performance. Measured data shown in the plots below represents the AP561-PCB2500 measured and configured for 2.6GHz applications. It is expected that variation of the bias current for other frequency applications will produce similar performance results. Table 1 : Reduced Current Operation EVM vs. Output Average Power vs. Icq IREF (V) 2.85 2.81 2.78 2.76 2.73 2.71 200mA 260mA 4 Gain (dB) Gain (dB) 13 220mA 240mA 280mA 300mA 22 22 24 26 24 26 28 Output Power (dBm) 28 Output Power (dBm) 30 30 32 15 10 20 34 32 600 12 500 11 200mA 220mA 240mA 260mA 280mA 300mA 24 26 28 Output Power (dBm) 30 32 34 32 34 Freq = 2.6 GHz, T= 25ºC 700 13 9 2.4 22 Icc vs. Output Average Power vs. Icq Vcc = 12V, T= 25ºC 10 9 20 20 Power Gain vs.Frequency vs. Icq 11 240mA 300mA 0 0 12 220mA 280mA 5 14 260mA 200mA 260mA 25 1 Freq = 2.6GHz, T= 25ºC 200mA 240mA 300mA 2 Power Gain vs. Output Average Power vs. Icq 10 220mA 280mA Freq = 2.6 GHz, T= 25ºC 30 3 20 14 Efficiency vs. Output Average Power vs Icq Freq = 2.6 GHz, T= 25ºC 5 Efficiency (%) VPD (V) 5 5 5 5 5 5 Icc (mA) R2 (Ω) 330 336 240 343 348 351 EVM (%) Icq (mA) 300 280 260 240 220 200 200mA 260mA 220mA 280mA 240mA 300mA 400 300 200 2.5 2.6 Frequency (GHz) 2.7 2.8 20 22 24 26 28 Output Power (dBm) 30 Specifications and information are subject to change without notice TriQuint Semiconductor, Inc • Phone 1-408-577-6300 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www. TriQuint.com Page 13 of 15 May 2009 AP561 0.7-2.9 GHz WiMAX 8W Power Amplifier Parameter Measurement Information Switching Speed Test Pulse Generator -ve Test Conditions: Vcc = +12V at 25oC Output Power = +30dBm @ 2.5 GHz Rep Rate = 1 KHz, 50% duty cycle Vpd amplitude = +5V R2=200 ohms, C9=12pF (C10, C11 removed for best switching performance) Xtal Detector Voltage =15mV (square law) Cable Length = Lx Oscilloscope +ve Cable Length = Lx Cable Length = Lx CW Signal Source Diode Detector Vpd Attenuator AP56x Evaluation Brd Test Result Waveforms: Vpd = +5V Vpd = +0V RF On Vpd = +5V RF Off Vpd = +5V Delay = 50nS Delay = 50nS RF On Specifications and information are subject to change without notice TriQuint Semiconductor, Inc • Phone 1-408-577-6300 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www. TriQuint.com Page 14 of 15 May 2009 AP561 0.7-2.9 GHz WiMAX 8W Power Amplifier Mechanical Information This package is lead-free/Green/RoHS-compliant. The plating material on the pins is annealed matte tin over copper. It is compatible with both lead-free (maximum 260 °C reflow temperature) and leaded (maximum 245 °C reflow temperature) soldering processes. Product Marking Outline Drawing The component will be laser marked with a “AP561-F” product label with an alphanumeric lot code on the top surface of the package. Tape and reel specifications for this part will be located on the website in the “Application Notes” section. Functional Pin Layout Mounting Configuration / Land Pattern Pin 1 2, 3, 7, 8, 12, 13 4, 5, 6 9, 10, 11 14 Backside paddle Function VBIAS N/C RF IN RF Output / Vcc IREF GND MSL / ESD Rating ESD Rating: Value: Test: Standard: Class 1A Passes 250V to <500V Human Body Model (HBM) JEDEC Standard JESD22-A114 ESD Rating: Value: Test: Standard: Class IV Passes 1000V to <2000V Charged Device Model (CDM) JEDEC Standard JESD22-C101 MSL Rating: Level 3 at +260 °C convection reflow Standard: JEDEC Standard J-STD-020 Specifications and information are subject to change without notice TriQuint Semiconductor, Inc • Phone 1-408-577-6300 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www. TriQuint.com Page 15 of 15 May 2009