TRIQUINT AP561_09

AP561
0.7-2.9 GHz WiMAX 8W Power Amplifier
Product Features
Product Description
• 0.7 – 2.9 GHz
• +39 dBm P1dB
• 13 Gain
• 1.5% EVM @ 30 dBm Pout
Functional Diagram
The AP561 is a high dynamic range broadband power
amplifier in a surface mount package. The single-stage
amplifier has 13 dB Gain, while being able to achieve high
performance for 0.7–2.9 GHz applications with up to +39
dBm of compressed 1dB power.
• +12 V Supply Voltage
The AP561 uses a high reliability +12V InGaP/GaAs HBT
process technology. The device incorporates proprietary
• Lead-free/green/RoHS-compliant bias circuitry to compensate for variations in linearity and
5x6 mm power DFN package
current draw over temperature. The device does not require
any negative bias voltage; an internal active bias allows the
AP561 to operate directly off a commonly used +12V
Applications
supply and has the added feature of a +5V power down
control pin. RoHS-compliant 5x6mm DFN package is
• WiMAX CPE/BTS
surface mountable to allow for low manufacturing costs to
• WiBro CPE/BTS
the end user.
The AP561 is targeted for use in a balanced or single ended
configuration for WiMAX or WiBro applications where
high linearity and high power is required.
Specifications
Parameter
Function
RFIN
RFOUT
IREF
VBIAS
NC
Pin No.
4,5,6
9,10,11
14
1
2,3,7,8,12,13
Typical Performance
Units Min
Operational Bandwidth
Test Frequency
Output Channel Power
Power Gain
Input Return Loss
Output Return Loss
Error Vector Magnitude
Operating Current, Icc
Collector Efficiency
RF Switching Speed
Output P1dB
Noise Figure
Quiescent Current, Icq
Vpd(4)
Vcc
GHz
GHz
dBm
dB
dB
dB
%
mA
%
ns
dBm
dB
mA
V
V
Typ
0.7
Max
2.9
2.6
+30
13.1
13
6.2
1.5
480
17.6
50
39.0
5.3
300
+5
+12
Parameter
Units
Test Frequency
Channel Power
Power Gain
Input Return Loss
Output Return Loss
Error Vector Magnitude
Operating Current, Icc
Collector Efficiency
Output P1dB
Noise Figure
Quiescent Current, Icq
Vpd
Vcc
GHz
dBm
dB
dB
dB
%
mA
%
dBm
dB
mA
V
V
Typical
2.5
+30
13.4
12
6.4
2.2
510
15.8
39.7
5
2.6
+30
13.1
13
6.2
1.5
480
17.6
39.0
5.3
300
+5
+12
2.7
+30
12.2
16
4.3
2.1
490
16
37.6
6.2
Notes:
1. Test conditions unless otherwise noted: T = 25ºC, Vpd = +5V, Vcc = +12, Icq = 300mA at Pout = +30
dBm and f = 2.6 GHz.
2. Using an 802.16-2004 OFDMA, 64QAM-1/2,1024-FFT, 20 symbols, 30 subchannels signal, 9.5
dB PAR @ 0.01%.
3. Switching speed: 50% TTL to 100/0% RF.Vpd used for device power down (low=RF off).
4. Vpd relates to Iref as shown in Table 1 on Page 12.
5. Capable of handling 10:1 VSWR @ 12 VDC, WiMax signal, PoutAVG = 30dBm.
Absolute Maximum Rating
Parameter
Rating
Pin max (CW into 50Ω load)
BVcbo
Pdiss max
Supply Voltage
Storage Temperature
Max Junction Temperature, TJ,max
Thermal Resistance, ΘJC
+33 dBm
35V
14 W
15V
-55 to +125 ºC
158 ºC
8.4 °C / W
Operation of this device above any of these parameters may cause permanent damage.
Ordering Information
Part No.
Description
AP561-F
AP561-PCB2500
WiMAX 12V 8W HBT Amplifier
2.5-2.7 GHz Fully Assembled Evaluation Board
Standard T/R size = 500 pieces on a 7” reel.
Specifications and information are subject to change without notice
TriQuint Semiconductor, Inc • Phone 1-800-951-4401 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www.TriQuint.com
Page 1 of 15 May 2009
AP561
0.7-2.9 GHz WiMAX 8W Power Amplifier
Application Circuit PC Board Layout
Circuit Board Material: 0.0147” Rogers Ultralam 2000, single layer, 1 oz
copper, εr = 2.45, Microstrip line details: width = .043”, spacing = .050”
Baseplate Configuration
Notes:
1.
Please note that for reliable operation, the evaluation board will have to be mounted to a much
larger heat sink during operation and in laboratory environments to dissipate the power
consumed by the device. The use of a convection fan is also recommended in laboratory
environments.
2.
The area around the module underneath the PCB should not contain any soldermask in order to
maintain good RF grounding.
3.
For proper and safe operation in the laboratory, the power-on sequencing is recommended.
Evaluation Board Bias Procedure
Following bias procedure is recommended to ensure proper functionality of AP561 in a laboratory environment. The sequencing is not
required in the final system application.
Bias.
Vcc
Vpd
Voltage (V)
+12
+5
Turn-on Sequence:
1.
2.
3.
4.
Attach input and output loads onto the evaluation board.
Turn on power supply Vcc = +12V.
Turn on power supply Vpd = +5V.
Turn on RF power.
Turn-off Sequence:
1.
2.
3.
Turn off RF power.
Turn off power supply Vpd = +5V.
Turn off power supply Vcc = +12V.
Specifications and information are subject to change without notice
TriQuint Semiconductor, Inc • Phone 1-800-951-4401 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www.TriQuint.com
Page 2 of 15 May 2009
AP561
0.7-2.9 GHz WiMAX 8W Power Amplifier
Typical Device Data
S-Parameters (VCC= +12 V, ICC = 300 mA, 25 °C, unmatched 50 ohm system)
S(1,1)
AP561
0.8
1.0
S(2,2)
Max
AP561Swp6GHz
0
2.
2.
0
6
0.
0.8
Swp Max
6GHz
6
0.
40
S22
1.0
S11
Gain / Maximum Stable Gain
0.
4
0.
4
0
3.
20
0
3.
0
4.
4.
0.2
0.2
10.0
10.0
5.0
4.0
3.0
2.0
1.0
0.8
0.6
0.4
0.2
0
10.0
5.0
4.0
3.0
2.0
1.0
0.8
0.6
0.2
0
-10.0
0
DB(|S(2,1)|)
AP561
-4
.0
-0.8
Swp Min
0.05GHz
-1.0
-0
.6
-
-1.0
-0.8
Swp Min
0.05GHz
0
2.
.4
-0
0
2.
.4
-0
.6
Frequency (GHz)
.0
6
-3
4
-3
.0
-0
2
-4
.0
-40
0
2
-0.
-5.
2
-0.
DB(GMax())
AP561
0
-20
-5.
0
0.4
10.0
-10.0
Gain (dB)
0
5.0
5.0
Notes:
The gain for the unmatched device in 50 ohm system is shown as the trace in black color. For a tuned circuit for a particular frequency, it is expected that
actual gain will be higher, up to the maximum stable gain. The maximum stable gain is shown in the red line.
S-Parameters (VCC = +12 V, ICQ = 300 mA, 25 °C, unmatched 50 ohm system, calibrated to device leads)
Freq (MHz)
50
100
300
500
700
900
1100
1300
1500
1700
1900
2100
2300
2500
2700
2900
3100
3300
3500
3700
3900
4100
4300
4500
S11 (dB)
S11 (ang)
S21 (dB)
S21 (ang)
S12 (dB)
S12 (ang)
S22 (dB)
S22 (ang)
-0.83
-0.43
-0.35
-0.32
-0.34
-0.40
-0.47
-0.53
-0.59
-0.87
-1.14
-1.58
-2.07
-2.11
-1.52
-0.93
-0.60
-0.44
-0.30
-0.20
-0.16
-0.14
-0.15
-0.13
-174.19
-177.42
179.26
177.35
175.28
173.11
170.97
168.26
165.56
161.87
158.99
157.33
158.08
161.67
163.86
162.94
161.26
159.75
157.96
156.27
154.67
152.82
150.80
148.32
27.09
22.26
14.06
9.81
7.08
5.19
3.82
2.80
2.18
2.75
2.84
3.04
3.08
2.27
0.21
-2.57
-5.57
-8.55
-11.15
-13.44
-15.57
-17.53
-19.35
-21.11
122.75
106.35
89.18
79.93
71.64
63.88
55.72
47.12
37.92
25.71
12.58
-4.10
-26.45
-53.16
-79.14
-100.12
-115.90
-127.57
-136.15
-143.55
-150.57
-157.27
-163.61
-170.25
-43.35
-43.10
-41.21
-40.63
-40.35
-40.26
-40.09
-39.83
-39.58
-38.56
-37.79
-37.20
-36.71
-36.83
-37.65
-38.71
-39.66
-40.18
-40.26
-40.26
-39.83
-39.91
-39.49
-39.09
29.12
8.71
1.08
0.69
3.54
-3.79
-9.55
-16.44
-23.59
-35.47
-49.59
-69.96
-98.60
-134.34
-170.26
157.51
133.27
115.97
102.36
94.11
85.11
78.44
72.37
66.71
-1.38
-1.82
-2.02
-2.10
-2.09
-1.99
-1.86
-1.78
-1.68
-1.67
-1.45
-1.07
-0.57
-0.20
-0.18
-0.38
-0.55
-0.68
-0.77
-0.84
-0.87
-0.87
-0.86
-0.89
-106.01
-138.64
-164.78
-172.01
-176.13
-177.89
-178.93
-179.77
179.34
177.40
176.17
174.50
171.36
166.20
160.52
155.92
152.79
150.56
148.63
147.06
145.70
144.40
143.38
142.13
Device S-parameters are available for download off of the website at: http://www.tqs.com
Specifications and information are subject to change without notice
TriQuint Semiconductor, Inc • Phone 1-800-951-4401 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www.TriQuint.com
Page 3 of 15 May 2009
AP561
0.7-2.9 GHz WiMAX 8W Power Amplifier
776-787 MHz Reference Design
Typical O-FDMA Performance at 25°C
Frequency (MHz)
Channel Power
Power Gain
Input Return Loss
Output Return Loss
EVM
ACLR
Operating Current, Icc
Collector Efficiency
Output P1dB
Quiescent Current, Icq
Vpd
Vcc
776 780
+28 +28
16.5 16.6
10
12
11
11
0.68 0.64
-51 -51
405 404
13
13
37.8 37.9
300
+5
+12
787 Units
+28 dBm
16.6
dB
13
dB
11
dB
0.57
%
-52
dBc
402 mA
12.9
%
38
dBm
mA
V
V
Notes:
1.
The primary RF microstrip line is 50 Ω.
2.
Do not exceed 5.5V on Vpd or damage to D1 will occur.
3.
Do not exceed 13V on Vcc or damage to D2 will occur.
4.
Components shown on the silkscreen but not on the schematic are not used.
5.
The edge of C26 is placed at 35mil from edge of AP561. (1.2 o @ 780 MHz)
6.
The edge of L1 is placed 60mil from the edge of C26. (2 o @ 780 MHz)
7.
The edge of C27 is placed next to the edge of L1.
8.
The edge of C20 is placed 380mil from the edge of C27. (12.9 o @ 780 MHz)
9.
The edge of R5 is placed at 115mil from edge of AP561. (3.9 o @ 780 MHz)
10. The edge of C28 is placed 230mil from the edge of R5. (7.8 o @ 780 MHz)
11. The edge of C1 is placed 180mil from the edge of C28. (6.1 o @ 780 MHz)
12. 0 Ω jumpers can be replaced with copper trace in target application.
776-787 MHz Application Circuit Performance Plots
802.16-2004 O-FDMA, 64QAM-1/2, 1024-FFT, 20 symbols and 30 subchannels. 9.5 dB PAR @ 0.01%, 5 MHz Carrier BW
Gain vs. Frequency
T=25°C
20
S11, S22 (dB)
-5
16
15
15
-10
10
-15
S11
14
0.75
0.77
0.79
0.81
0.83
0.77
Frequency (GHz)
Current vs Output Average Power vs. Frequency
0.79
0.81
Frequency (GHz)
0.83
0.85
24
EVM vs. Output Average Power vs. Frequency
T=25°C
600
776 MHz
S22
Collector Current (mA)
776 MHz
780 MHz
787 MHz
ACLR (dBc)
EVM (%)
2
400
787 MHz
300
25
26
27
28
29
30
Output Power (dBm)
31
32
31
32
T=25°C
780 MHz
787 MHz
W-CDMA 3GPP Test
Model 1+64 DPCH,
100% clipping,
PAR = 10.2 dB @ 0.01%,
3.84 MHz BW
-40
-45
-50
-60
0
24
30
-55
1
780 MHz
27
28
29
Output Power (dBm)
-35
3
776 MHz
26
776 MHz
500
350
25
-30
4
450
787 MHz
ACLR vs. Output Average Power vs. Frequency
T=25°C
5
550
780 MHz
5
-20
0.75
0.85
T=25°C
25
Collector Efficiency (%)
0
17
Gain (dB)
Efficiency vs Output Average Power vs. Frequency
Return Loss
T=25°C
18
24
25
26
27
28
29
Output Power (dBm)
30
31
32
24
25
26
27
28
29
Output Power (dBm)
30
31
32
Specifications and information are subject to change without notice
TriQuint Semiconductor, Inc • Phone 1-800-951-4401 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www.TriQuint.com
Page 4 of 15 May 2009
AP561
0.7-2.9 GHz WiMAX 8W Power Amplifier
869-894 MHz Reference Design
Typical W-CDMA Performance at 25°C
Frequency (MHz)
Channel Power
Power Gain
Input Return Loss
Output Return Loss
ACLR
Operating Current, Icc
Collector Efficiency
Output P1dB
Quiescent Current, Icq
Vpd
Vcc
869 880
+28 +28
15.7 15.8
14
15
9.8
10
-53 -52
475 470
11 11.2
39.6 39.5
300
+5
+12
894 Units
+28 dBm
15.7
dB
15
dB
11
dB
-52
dBc
460 mA
11.4
%
39.4 dBm
mA
V
V
Notes:
1.
The primary RF microstrip line is 50 Ω.
2.
Do not exceed 5.5V on Vpd or damage to D1 will occur.
3.
Do not exceed 13V on Vcc or damage to D2 will occur.
4.
Components shown on the silkscreen but not on the schematic are not used.
5.
The edge of C26 is placed at 40mil from edge of AP561. (1.5 o @ 880 MHz)
6.
The edge of L1 is placed 60mil from the edge of C26. (2.3 o @ 880 MHz)
7.
The edge of C27 is placed 43 mil from the edge of L1. (1.6 o @ 880 MHz)
8.
The edge of C20 is placed 380mil from the edge of C27. (14.6 o @ 880 MHz)
9.
The edge of R5 is placed at 105mil from edge of AP561. (4 o @ 880 MHz)
10. The edge of C28 is placed 200mil from the edge of R5. (7.7 o @ 880 MHz)
11. 0 Ω jumpers can be replaced with copper trace in target application.
869-894 MHz Application Circuit Performance Plots
W-CDMA 3GPP Test Model 1+64 DPCH, 100% clipping, PAR = 10.2 dB @ 0.01% Probability, 3.84 MHz BW
Gain vs. Frequency
Efficiency vs Output Average Power vs. Frequency
Return Loss
T=25°C
18
T=25°C
0
Collector Efficiency (%)
-5
20
S11, S22 (dB)
Gain (dB)
17
16
15
-10
15
-15
-20
10
-25
S11
14
0.86
T=25°C
25
0.87
0.88
0.89
0.90
869 MHz
880 MHz
894 MHz
5
-30
0.86
0.87
Frequency (GHz)
0.88
Frequency (GHz)
Current vs Output Average Power vs. Frequency
0.89
0.90
24
25
26
27
28
29
Output Power (dBm)
30
31
32
ACLR vs. Output Average Power vs. Frequency
T=25°C
800
S22
T=25°C
-40
Collector Current (mA)
-45
ACLR (dBc)
700
600
500
400
-50
-55
-60
-65
869 MHz
880 MHz
894 MHz
869 MHz
880 MHz
894 MHz
-70
300
24
25
26
27
28
29
30
Output Power (dBm)
31
32
24
25
26
27
28
29
Output Power (dBm)
30
31
32
Specifications and information are subject to change without notice
TriQuint Semiconductor, Inc • Phone 1-800-951-4401 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www.TriQuint.com
Page 5 of 15 May 2009
AP561
0.7-2.9 GHz WiMAX 8W Power Amplifier
1930-1990 MHz Reference Design
Typical W-CDMA Performance at 25°C
Frequency (MHz)
Channel Power
Power Gain
Input Return Loss
Output Return Loss
ACLR
Operating Current, Icc
Collector Efficiency
Output P1dB
Quiescent Current, Icq
Vpd
Vcc
1930
+28
15.3
12
7.7
-49
440
11.7
39.1
1960 1990 Units
+28 +28 dBm
15.4 15.3
dB
16
18
dB
7.6
7.5
dB
-49
-51
dBc
430 425 mA
12
12.3
%
38.7 38.2 dBm
mA
300
V
+5
V
+12
Notes:
1.
The primary RF microstrip line is 50 Ω.
2.
Do not exceed 5.5V on Vpd or damage to D1 will occur.
3.
Do not exceed 13V on Vcc or damage to D2 will occur.
4.
Components shown on the silkscreen but not on the schematic are not used.
5.
The edge of C34 is placed at 95mil from edge of AP561. (8.1 o @ 1960 MHz)
6.
The edge of C33 is placed 375mil from the edge of C34. (32 o @ 1960 MHz)
7.
The edge of C20 is placed 65mil from the edge of C33. (5.6 o @ 1960 MHz)
8.
The edge of C31 is placed 60mil from edge of AP561. (5.1 o @ 1960 MHz)
9.
The edge of C30 is placed next to the edge of C31
10. The edge of C2 is placed 435mil from the edge of C30. (37.2 o @ 1960 MHz)
11. 0 Ω jumpers can be replaced with copper trace in target application.
1930-1990 MHz Application Circuit Performance Plots
W-CDMA 3GPP Test Model 1+64 DPCH, 100% clipping, PAR = 10.2 dB @ 0.01% Probability, 3.84 MHz BW
Gain vs. Frequency
Efficiency vs Output Average Power vs. Frequency
Return Loss
T=25°C
18
T=25°C
0
Collector Efficiency (%)
-5
20
S11, S22 (dB)
Gain (dB)
17
16
15
-10
15
-15
-20
10
-25
S11
14
1.92
T=25°C
25
1.94
1.96
1.98
2.00
1.94
Frequency (GHz)
1.96
Frequency (GHz)
Current vs Output Average Power vs. Frequency
1930 MHz
1960 MHz
1990 MHz
1.98
2.00
24
25
26
27
28
29
Output Power (dBm)
30
31
32
ACLR vs. Output Average Power vs. Frequency
T=25°C
800
S22
5
-30
1.92
T=25°C
-30
Collector Current (mA)
-35
ACLR (dBc)
700
600
500
400
-40
-45
-50
-55
1930 MHz
1960 MHz
1930 MHz
1990 MHz
1960 MHz
1990 MHz
-60
300
24
25
26
27
28
29
30
Output Power (dBm)
31
32
24
25
26
27
28
29
Output Power (dBm)
30
31
32
Specifications and information are subject to change without notice
TriQuint Semiconductor, Inc • Phone 1-800-951-4401 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www.TriQuint.com
Page 6 of 15 May 2009
AP561
0.7-2.9 GHz WiMAX 8W Power Amplifier
2010-2025 MHz Reference Design
Typical TD-SCDMA Performance at 25°C
Frequency (MHz) 2010 2015 2025 Units
Channel Power
+27 +27 +27 dBm
Power Gain
13
13
13
dB
Input Return Loss
8.4
8.6
8.7
dB
Output Return Loss 6.7
6.6
6.4
dB
ACLR
-49 -49
-49
dBc
Operating Current, Icc 673 675 679 mA
Collector Efficiency 6.2
6.2
6.1
%
Output P1dB
37.4 37.3 37.1 dBm
mA
Quiescent Current, Icq
600
V
Vpd
+5
V
Vcc
+12
Notes:
1.
The primary RF microstrip line is 50 Ω.
2.
Do not exceed 5.5V on Vpd or damage to D1 will occur.
3.
Do not exceed 13V on Vcc or damage to D2 will occur.
4.
Components shown on the silkscreen but not on the schematic are not used.
5.
The edge of C31 is placed at 35mil from edge of AP561. (3.1 o @ 780 MHz)
6.
The edge of L1 next to the edge of C31.
7.
The edge of C34 is placed at 195mil from edge of AP561. (17.1 o @ 780 MHz)
8.
The edge of C33 is placed next to the edge of C34.
9.
0 Ω jumpers can be replaced with copper trace in target application.
2010-2025 MHz Application Circuit Performance Plots
TD-SCDMA 3 Carrier, PAR = 10 dB @ 0.01% Probability, 1.28 MHz BW
Gain vs Frequency
Collector Efficiency (%)
10
5
-10
-15
-20
S21
2.01
2.02
Frequency (GHz)
S11
2.03
2.04
12
9
6
3
2010 MHz
S22
2015 MHz
2025 MHz
0
-25
2.00
2.01
2.02
Frequency (GHz)
Current vs Output Average Power vs. Frequency
2.03
20
2.04
21
22
23 24 25 26 27
Output Power (dBm)
28
29
30
ACLR vs. Output Average Power vs. Frequency
T=25°C
700
T=25°C
15
-5
S11, S22 (dB)
S11, S22 (dB)
T=25°C
0
15
0
2.00
Efficiency vs Output Average Power vs. Frequency
Return Loss
T=25°C
20
T=25°C
-40
Collector Current (mA)
-42
-44
675
ACLR (dBc)
-46
-48
-50
650
-52
-54
625
-56
2010 MHz
2015 MHz
21
22
23
24
25
26
Output Power (dBm)
27
2015 MHz
2025 MHz
-60
600
20
2010 MHz
-58
2025 MHz
28
20
21
22
23
24
25
Output Power (dBm)
26
27
28
Specifications and information are subject to change without notice
TriQuint Semiconductor, Inc • Phone 1-800-951-4401 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www.TriQuint.com
Page 7 of 15 May 2009
AP561
0.7-2.9 GHz WiMAX 8W Power Amplifier
2110-2170 MHz Application Circuit
Typical W-CDMA Performance at 25°C
Frequency (MHz)
Channel Power
Power Gain
Input Return Loss
Output Return Loss
ACLR
Operating Current, Icc
Collector Efficiency
Quiescent Current, Icq
Vpd
Vcc
2110
+28
13.5
7.0
12
-55
485
11.1
2140 2170 Units
+28 +28 dBm
13.8 13.1
dB
12
21
dB
8.0
6.1
dB
-59
-55
dBc
490 520 mA
10.8 10.3
%
mA
400
V
+5
V
+12
Notes:
1.
The primary RF microstrip line is 50 Ω.
2.
Do not exceed 5.5V on Vpd or damage to D1 will occur.
3.
Do not exceed 13V on Vcc or damage to D2 will occur.
4.
Components shown on the silkscreen but not on the schematic are not used.
5.
The edge of C34 is placed at 65mil from AP561 RFout pin. (6 o @ 2140 MHz)
6.
The edge of C32 is placed 40mil from the edge of C34. (3.7 o @ 2140 MHz)
7.
The edge of C33 is placed 375mil from the edge of C32. (35 o @ 2140 MHz)
8.
The edge of C30 is placed at 100mil from AP561 RFin pin. (9.3 o @ 2140 MHz)
9.
The edge of C31 is placed 275mil from the edge of C30. (25.6 o @ 2140 MHz)
10. 0 Ω jumpers can be replaced with copper trace in target application.
2110-2170 MHz Application Circuit Performance Plots
W-CDMA 3GPP Test Model 1+64 DPCH, 60% clipping, PAR = 8 dB @ 0.01% Probability, 3.84 MHz BW
Gain vs. Frequency
13
12
11
550
-10
500
-15
450
-20
400
-25
-30
2.10
2.20
Frequency (GHz)
2.30
S11
-35
2.00
350
S22
2110 MHz
2.10
2.20
Frequency (GHz)
2.30
15
17
19
21
23
25
Output Power (dBm)
27
29
T=25°C
-40
2170 MHz
2110 MHz
-45
2140 MHz
2170 MHz
15
-50
ACLR (dBc)
Collector Efficiency (%)
2140 MHz
2170 GHz
ACLR vs. Output Average Power vs. Frequency
T=25°C
2110 MHz
2140 MHz
300
Efficiency vs Output Average Power vs. Frequency
20
T=25°C
600
-5
S11, S22 (dB)
Gain (dB)
T=25°C
0
14
10
2.00
Current vs Output Average Power vs. Frequency
Return Loss vs. Frequency
T=25°C
Collector Current (mA)
15
-55
10
-60
5
-65
-70
0
15
17
19
21
23
25
Output Power (dBm)
27
29
15
17
19
21
23
25
Output Power (dBm)
27
29
Specifications and information are subject to change without notice
TriQuint Semiconductor, Inc • Phone 1-408-577-6300 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www. TriQuint.com
Page 8 of 15 May 2009
AP561
0.7-2.9 GHz WiMAX 8W Power Amplifier
2.3-2.4 GHz Reference Design
Typical O-FDMA Performance at 25°C
Frequency (GHz)
Channel Power
Power Gain
Input Return Loss
Output Return Loss
EVM
Operating Current, Icc
Collector Efficiency
Output P1dB
Quiescent Current, Icq
Vpd
Vcc
2.3
+30
14.5
12
7.3
1.9
515
16
39.7
2.35
+30
14.5
16
7.6
1.6
490
16.8
39
300
+5
+12
2.4 Units
+30 dBm
14
dB
20
dB
6.8
dB
1.6
%
475 mA
17.8
%
38
dBm
mA
V
V
Notes:
1.
The primary RF microstrip line is 50 Ω.
2.
Do not exceed 5.5V on Vpd or damage to D1 will occur.
3.
Do not exceed 13V on Vcc or damage to D2 will occur.
4.
Components shown on the silkscreen but not on the schematic are not used.
5.
The edge of C25 is placed at 55mil from AP561 RFout pin. (5.6 o @ 2350 MHz)
6.
The edge of C26 is placed next to the edge of C25.
7.
The edge of C27 is placed 75mil from the edge of C26. (7.7 o @ 2350 MHz)
8.
The edge of C24 is placed at 40mil from AP561 RFin pin. (4.1 o @ 2350 MHz)
9.
The edge of C23 is placed next to the edge of C24.
10. 0 Ω jumpers can be replaced with copper trace in target application.
2.3-2.4 GHz Application Circuit Performance Plots
802.16-2004 O-FDMA, 64QAM-1/2, 1024-FFT, 20 symbols and 30 subchannels. 9.5 dB PAR @ 0.01%, 5 MHz Carrier BW
Gain vs. Frequency
T=25°C
0
Collector Efficiency (%)
S11, S22 (dB)
15
13
12
11
-10
10
-15
-20
-25
S11
10
2.25
T=25°C
20
-5
14
Gain (dB)
Efficiency vs Output Average Power vs. Frequency
Return Loss
T=25°C
15
2.30
2.35
Frequency (GHz)
2.40
2.45
-30
2.25
2.3 GHz
2.35 GHz
2.4 GHz
0
2.30
2.35
Frequency (GHz)
Current vs Output Average Power vs. Frequency
2.40
2.45
22
23
24
25 26 27 28 29
Output Power (dBm)
30
31
32
EVM vs. Output Average Power vs. Frequency
T=25°C
T=25°C
5
Collector Current (mA)
600
5
S22
4
400
3
EVM (%)
500
300
2
200
1
2.3 GHz
2.35 GHz
2.4 GHz
2.3 GHz
100
2.35 GHz
2.4 GHz
0
22
23
24
25 26 27 28 29
Output Power (dBm)
30
31
32
22
24
26
28
Output Power (dBm)
30
32
Specifications and information are subject to change without notice
TriQuint Semiconductor, Inc • Phone 1-408-577-6300 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www. TriQuint.com
Page 9 of 15 May 2009
AP561
0.7-2.9 GHz WiMAX 8W Power Amplifier
2.5-2.7 GHz Application Circuit (AP561-PCB2500)
Typical O-FDMA Performance at 25°C
Frequency (GHz)
Channel Power
Power Gain
Input Return Loss
Output Return Loss
EVM
Operating Current, Icc
Collector Efficiency
Output P1dB
Quiescent Current, Icq
Vpd
Vcc
2.5
2.6
+30 +30
13.4 13.1
12
13
6.4
6.2
2.2
1.5
510 480
15.8 17.6
39.7 39.0
300
+5
+12
2.7 Units
+30 dBm
12.2
dB
16
dB
4.3
dB
2.1
%
490 mA
16
%
37.6 dBm
mA
V
V
Notes:
1.
The primary RF microstrip line is 50 Ω.
2.
Do not exceed 5.5V on Vpd or damage to D1 will occur.
3.
Do not exceed 13V on Vcc or damage to D2 will occur.
4.
Components shown on the silkscreen but not on the schematic are not used.
5.
The edge of C23 is placed right next to C24.
6.
The edge of C24 is placed at 85mil from AP561 RFout pin. (9.6 o @ 2.6 GHz)
7.
The edge of C25 is placed at 56mil from AP561 RFin pin. (6.3 o @ 2.6 GHz)
8.
The edge of C26 is placed right next to C25.
9.
The edge of C27 is placed 55mil from the edge of C26. (6.2 o @ 2.6 GHz)
10. 0 Ω jumpers can be replaced with copper trace in target application.
2.5-2.7 GHz Application Circuit Performance Plots
802.16-2004 O-FDMA, 64QAM-1/2, 1024-FFT, 20 symbols and 30 subchannels. 9.5 dB PAR @ 0.01%, 5 MHz Carrier BW
Gain vs. Frequency
Return Loss vs. Frequency
T=25°C
14
42
40
12
11
P1dB(dBm)
-5
S11, S22 (dB)
Gain (dB)
13
P1dB vs. Frequency
T=25°C
0
-10
38
36
-15
10
-20
2.4
9
2.4
2.5
2.6
Frequency (GHz)
2.7
2.8
NF vs. Frequency
25C
+ 85C
6
2.6
Frequency (GHz)
2.7
2.8
2.5
2.6
Frequency (GHz)
2.7
2.8
Power Gain vs.Frequency vs. Vcc
T = 25C, Icq = 300mA
14
12
12
11
+8V
+10V
+12V
+14V
10
10
2.5
32
2.4
2.8
13
11
5
4
2.4
2.7
13
7
+85C
Gain (dB)
- 40C
2.6
Frequency (GHz)
Freq = 2.6GHz
14
Gain (dB)
8
2.5
-40C
S22
Power Gain vs. Output Average Power vs. Vcc
Freq = 2.6GHz
9
NF (dB)
+25C
34
S11
24
26
28
30
32
34
Output Power (dBm)
36
38
40
9
2.4
+8V
2.5
+10V
+12V
+14V
2.6
Frequency (GHz)
2.7
2.8
Specifications and information are subject to change without notice
TriQuint Semiconductor, Inc • Phone 1-408-577-6300 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www. TriQuint.com
Page 10 of 15 May 2009
AP561
0.7-2.9 GHz WiMAX 8W Power Amplifier
Icc vs. Output Average Power vs. Vcc
Efficiency vs. Output Average Power vs. Vcc
Freq = 2.6GHz, T = 25ºC
800
Icc (mA)
400
+8V
+10V
+12V
+14V
30
+8V
+10V
+12V
+14V
4
25
24
26
28
30
Output Power (dBm)
32
+10V
+12V
+14V
3
20
2
15
10
1
0
0
22
+8V
5
200
20
Freq = 2.6GHz, T = 25ºC
5
EVM (% )
Collector Efficiency (% )
35
600
EVM vs. Output Average Power vs. Vcc
Freq = 2.6GHz , T = 25ºC
40
34
20
22
24
OIP3 vs. Output Power / Tone
26
28
30
Output Power (dBm)
32
20
34
22
24
IMD3 vs. Output Power / Tone
55
-30
50
-35
26
28
30
Output Power (dBm)
32
34
70
90
Power Gain vs Temperature
14
40
-40
Gain (dB)
IMD3 (dBc)
OIP3 (dBm)
13
45
-45
11
-50
35
2.5GHz
2.6GHz
2.7GHz
2.5GHz
2.6GHz
2.7GHz
2.5 GHz
-55
30
22
24
26
28
Output Power/Tone (dBm)
30
20
32
22
24
26
Output Power/Tone (dBm)
28
10
-50
30
-30
-10
2.6 GHz
2.7 GHz
10
30
Temperature (°C)
50
EVM vs. Output Average Power
EVM vs. Frequency
4
3
3
EVM (%)
EVM (%)
4
2
2
1
1
+25°C
-40°C
2.5 GHz
+85°C
2.6 GHz
2.7 GHz
0
0
2.5
12
2.55
2.6
Frequency (GHz)
2.65
2.7
20
22
24
26
28
30
32
Output Power (dBm)
Specifications and information are subject to change without notice
TriQuint Semiconductor, Inc • Phone 1-408-577-6300 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www. TriQuint.com
Page 11 of 15 May 2009
AP561
0.7-2.9 GHz WiMAX 8W Power Amplifier
2.3-2.9 GHz Application Circuit
Typical O-FDMA Performance at 25°C
Frequency (GHz)
2.3
Channel Power
+30
Power Gain
11.8
Input Return Loss
17
Output Return Loss 3.3
EVM
1.9
Operating Current, Icc 630
Collector Efficiency 13
Output P1dB
40
Quiescent Current, Icq
Vpd
Vcc
2.6
+30
11.5
14
4.0
2.5
640
12.7
39
300
+5
+12
2.9 Units
+30 dBm
12.1
dB
16
dB
5.9
dB
2.4
%
570 mA
14.3
%
39
dBm
mA
V
V
Notes:
1.
The primary RF microstrip line is 50 Ω.
2.
Do not exceed 5.5V on Vpd or damage to D1 will occur.
3.
Do not exceed 13V on Vcc or damage to D2 will occur.
4.
Components shown on the silkscreen but not on the schematic are not used.
5.
The edge of C26 is placed 10mil from C24. (1.1 o @ 2.6 GHz)
6.
The edge of L4 is placed right next to C26.
7.
The edge of C23 is placed next to AP561 RFout pin.
8.
The edge of C24 is placed right next to C23.
9.
The edge of C27 is placed at 50mil from AP561 RFin pin. (5.6 o @ 2.6 GHz)
10. The edge of C28 is placed right next to C27.
11. 0 Ω jumpers can be replaced with copper trace in target application.
2.3-2.9 GHz Application Circuit Performance Plots
802.16-2004 O-FDMA, 64QAM-1/2, 1024-FFT, 20 symbols and 30 subchannels. 9.5 dB PAR @ 0.01%, 5 MHz Carrier BW
Gain vs. Frequency
T=25°C
S11, S22 (dB)
-5
12
11
10
700
-10
600
-15
500
-20
400
-25
9
S11
8
2.3
2.4
2.5
2.6
2.7
Frequency (GHz)
2.8
2.9
-30
2.0
Collector Efficiency (%)
S22
2.3 GHz
2.6 GHz
2.9 GHz
300
2.2
2.4
2.6
Frequency (GHz)
Efficiency vs Output Average Power vs Frequency
2.8
3.0
20
22
24
26
28
Output Power (dBm)
30
32
EVM vs. Output Average Power vs. Frequency
T=25°C
20
T=25°C
800
Collector Current (mA)
0
13
Gain (dB)
Current vs. Output Average Power vs. Frequency
Return Loss vs. Frequency
T=25°C
14
T=25°C
5
4
EVM (%)
15
10
5
3
2
1
2.3 GHz
2.6 GHz
2.9 GHz
2.3 GHz
0
2.6 GHz
2.9 GHz
0
20
22
24
26
28
Output Power (dBm)
30
32
20
22
24
26
28
Output Power (dBm)
30
32
Specifications and information are subject to change without notice
TriQuint Semiconductor, Inc • Phone 1-408-577-6300 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www. TriQuint.com
Page 12 of 15 May 2009
AP561
0.7-2.9 GHz WiMAX 8W Power Amplifier
2.5 – 2.7 GHz Application Note: Changing Icq Biasing Configurations
The AP561 can be configured to operate with lower bias current by varying the bias-adjust resistor R2. (Table 1) The
recommended circuit configurations shown previously in this datasheet have the device operating with a 300 mA as the
quiescent current (ICQ). This biasing level represents a tradeoff in terms of EVM and efficiency. Lowering ICQ will improve
upon the efficiency of the device, but degrade the EVM performance. Measured data shown in the plots below represents the
AP561-PCB2500 measured and configured for 2.6GHz applications. It is expected that variation of the bias current for other
frequency applications will produce similar performance results.
Table 1 : Reduced Current Operation
EVM vs. Output Average Power vs. Icq
IREF
(V)
2.85
2.81
2.78
2.76
2.73
2.71
200mA
260mA
4
Gain (dB)
Gain (dB)
13
220mA
240mA
280mA
300mA
22
22
24
26
24
26
28
Output Power (dBm)
28
Output Power (dBm)
30
30
32
15
10
20
34
32
600
12
500
11
200mA
220mA
240mA
260mA
280mA
300mA
24
26
28
Output Power (dBm)
30
32
34
32
34
Freq = 2.6 GHz, T= 25ºC
700
13
9
2.4
22
Icc vs. Output Average Power vs. Icq
Vcc = 12V, T= 25ºC
10
9
20
20
Power Gain vs.Frequency vs. Icq
11
240mA
300mA
0
0
12
220mA
280mA
5
14
260mA
200mA
260mA
25
1
Freq = 2.6GHz, T= 25ºC
200mA
240mA
300mA
2
Power Gain vs. Output Average Power vs. Icq
10
220mA
280mA
Freq = 2.6 GHz, T= 25ºC
30
3
20
14
Efficiency vs. Output Average Power vs Icq
Freq = 2.6 GHz, T= 25ºC
5
Efficiency (%)
VPD
(V)
5
5
5
5
5
5
Icc (mA)
R2
(Ω)
330
336
240
343
348
351
EVM (%)
Icq
(mA)
300
280
260
240
220
200
200mA
260mA
220mA
280mA
240mA
300mA
400
300
200
2.5
2.6
Frequency (GHz)
2.7
2.8
20
22
24
26
28
Output Power (dBm)
30
Specifications and information are subject to change without notice
TriQuint Semiconductor, Inc • Phone 1-408-577-6300 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www. TriQuint.com
Page 13 of 15 May 2009
AP561
0.7-2.9 GHz WiMAX 8W Power Amplifier
Parameter Measurement Information
Switching Speed Test
Pulse Generator -ve
Test Conditions:
Vcc = +12V at 25oC
Output Power = +30dBm @ 2.5 GHz
Rep Rate = 1 KHz, 50% duty cycle
Vpd amplitude = +5V
R2=200 ohms, C9=12pF
(C10, C11 removed for best switching
performance)
Xtal Detector Voltage =15mV (square law)
Cable Length = Lx
Oscilloscope
+ve
Cable Length = Lx
Cable Length = Lx
CW Signal Source
Diode Detector
Vpd
Attenuator
AP56x Evaluation Brd
Test Result Waveforms:
Vpd = +5V
Vpd = +0V
RF On
Vpd = +5V
RF Off
Vpd = +5V
Delay = 50nS
Delay = 50nS
RF On
Specifications and information are subject to change without notice
TriQuint Semiconductor, Inc • Phone 1-408-577-6300 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www. TriQuint.com
Page 14 of 15 May 2009
AP561
0.7-2.9 GHz WiMAX 8W Power Amplifier
Mechanical Information
This package is lead-free/Green/RoHS-compliant. The plating material on the pins is annealed matte tin over copper. It is compatible with
both lead-free (maximum 260 °C reflow temperature) and leaded (maximum 245 °C reflow temperature) soldering processes.
Product Marking
Outline Drawing
The component will be laser marked with a
“AP561-F” product label with an alphanumeric
lot code on the top surface of the package.
Tape and reel specifications for this part will be
located on the website in the “Application
Notes” section.
Functional Pin Layout
Mounting Configuration / Land Pattern
Pin
1
2, 3, 7, 8, 12, 13
4, 5, 6
9, 10, 11
14
Backside paddle
Function
VBIAS
N/C
RF IN
RF Output / Vcc
IREF
GND
MSL / ESD Rating
ESD Rating:
Value:
Test:
Standard:
Class 1A
Passes 250V to <500V
Human Body Model (HBM)
JEDEC Standard JESD22-A114
ESD Rating:
Value:
Test:
Standard:
Class IV
Passes 1000V to <2000V
Charged Device Model (CDM)
JEDEC Standard JESD22-C101
MSL Rating: Level 3 at +260 °C convection reflow
Standard:
JEDEC Standard J-STD-020
Specifications and information are subject to change without notice
TriQuint Semiconductor, Inc • Phone 1-408-577-6300 • FAX: 408-577-6633 • e-mail: [email protected] • Web site: www. TriQuint.com
Page 15 of 15 May 2009