AOSMD AOD476

AOD476
N-Channel Enhancement Mode Field Effect Transistor
1.4
General Description
Features
The AOD476 uses advanced trench technology and
design to provide excellent RDS(ON) with low gate
charge. This device is suitable for use in PWM, load
switching and general purpose applications. Standard
product AOD476 is Pb-free (meets ROHS & Sony
259 specifications). AOD476L is a Green Product
ordering option. AOD476 and AOD476L are
electrically identical.
VDS (V) = 20V
ID = 25A (VGS = 10V)
RDS(ON) <21 mΩ (VGS = 10V)
RDS(ON) <28 mΩ (VGS = 4.5V)
RDS(ON) <79 mΩ (VGS = 2.5V)
193
UIS Tested
18
Rg,Ciss,Coss,Crss
Tested
TO-252
D-PAK
D
Top View
Drain Connected to
Tab
G
S
G
D
S
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
VDS
Drain-Source Voltage
VGS
Gate-Source Voltage
TC=25°C
Continuous Drain
Current
G
TC=100°C
C
Repetitive avalanche energy L=0.3mH
C
TC=25°C
Power Dissipation B
A
±16
V
Junction and Storage Temperature Range
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A
A
Maximum Junction-to-Ambient
B
Maximum Junction-to-Case
Alpha & Omega Semiconductor, Ltd.
23
IAR
13
A
25
mJ
75
EAR
33.3
2.5
W
1.7
TJ, TSTG
-55 to 175
Symbol
t ≤ 10s
Steady-State
Steady-State
W
16.7
PDSM
TA=70°C
A
ID
IDM
PD
TC=100°C
TA=25°C
Power Dissipation
Units
V
25
Pulsed Drain Current C
Avalanche Current
Maximum
20
RθJA
RθJC
Typ
17
40
3.6
°C
Max
25
50
4.5
Units
°C/W
°C/W
°C/W
AOD476
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
Conditions
Min
ID=250uA, VGS=0V
IGSS
Gate-Body leakage current
VDS=0V, VGS=±16V
VGS(th)
Gate Threshold Voltage
VDS=VGS, ID=250µA
0.6
ID(ON)
On state drain current
VGS=10V, VDS=5V
75
VGS=10V, ID=20A
TJ=125°C
gFS
Forward Transconductance
VSD
Diode Forward Voltage
IS=1A, VGS=0V
G
Maximum Body-Diode Continuous Current
VGS=4.5V, ID=10A
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
Qg(4.5V) Total Gate Charge
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
100
nA
1.26
2
V
14
21
A
21
28
VGS=2.5V, ID=4A
57
79
VDS=5V, ID=20A
19
VGS=0V, VDS=10V, f=1MHz
VGS=0V, VDS=0V, f=1MHz
VGS=10V, VDS=10V, ID=20A
VGS=10V, VDS=10V, RL=0.5Ω,
RGEN=3Ω
uA
5
20
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Coss
V
TJ=55°C
Static Drain-Source On-Resistance
Units
1
Zero Gate Voltage Drain Current
RDS(ON)
Max
20
VDS=16V, VGS=0V
IDSS
IS
Typ
0.77
mΩ
S
1
V
30
A
900
pF
162
pF
105
pF
1.8
2.7
Ω
15
18
nC
7.2
9
nC
1.8
nC
2.8
nC
4.5
ns
9.2
ns
18.7
ns
tf
Turn-Off Fall Time
3.3
ns
trr
Body Diode Reverse Recovery Time
IF=20A, dI/dt=100A/µs
18
Qrr
Body Diode Reverse Recovery Charge IF=20A, dI/dt=100A/µs
9.5
ns
nC
A: The value of R θJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with
of 150°C. The value in any given
T A =25°C. The Power dissipation P DSM is based on R θJA and the maximum allowed junction temperature 0
application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.
B. The power dissipation P D is based on T J(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C: Repetitive rating, pulse width limited by junction temperature T J(MAX)=175°C.
D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a
maximum junction temperature of T J(MAX)=175°C.
G. The maximum current rating is limited by bond-wires.
H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA
curve provides a single pulse rating.
Rev0: Sept 2006
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Alpha & Omega Semiconductor, Ltd.
AOD476
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
30
10V
6V
8V
80
25°C
VDS=5V
25
125°C
-40°C
20
60
40
ID(A)
ID (A)
4.5V
3.5V
15
1.4
10
20
494
692
5
593
830
VGS=3V
0
0
0
1
2
3
4
VDS (Volts)
Fig 1: On-Region Characteristics
5
1
3
4
VGS(Volts)
Figure 2: Transfer Characteristics
5
193
18
1.60
80
VGS=10V, 20A
70
Normalized On-Resistance
VGS=2.5V
60
RDS(ON) (mΩ)
2
1.40
50
VGS=4.5V, 10A
1.20
40
VGS=4.5V
30
1.00
20
10
VGS=2.5V, 4A
0.80
VGS=10V
0
0
5
10
15
20
25
30
0.60
-50
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage
-25
0
50
59
75
142
100
125
150
175
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
35
100
ID=20A
10
30
1
125°C
25
IS (A)
RDS(ON) (mΩ)
25
125°C
0.1
-40°C
0.01
20
25°C
25°C
0.001
15
0.0001
10
3
4
5
6
7
8
9
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
Alpha & Omega Semiconductor, Ltd.
10
0.00001
0.0
0.2
0.4
0.6
0.8
1.0
VSD (Volts)
Figure 6: Body-Diode Characteristics
1.2
AOD476
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
1400
10
1200
VDS=12.5V
ID=20A
Ciss
Capacitance (pF)
VGS (Volts)
8
6
4
1000
800
1.4
600
Coss
400
494
692
2
200
0
Crss
0
0
3
6
9
12
15
0
5
10
15
VDS (Volts)
Figure 8: Capacitance Characteristics
Qg (nC)
Figure 7: Gate-Charge Characteristics
100
DC
20
193
18
10µs
200
100µs
160
TJ(Max)=175°C
TC=25°C
1ms
Power (W)
ID (Amps)
10
593
830
RDS(ON)
limited
120
80
1
40
TJ(Max)=175°C, TC=25°C
0
0.0001
0.1
0.1
1
10
100
VDS (Volts)
Figure 9: Maximum Forward Biased Safe
Operating Area (Note F)
0.001
0.01
59 0.1
1
10
Pulse Width
142 (s)
Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
ZθJC Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
RθJC=4.5°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
PD
0.1
0.01
0.00001
Ton
T
Single Pulse
0.0001
0.001
0.01
0.1
1
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Alpha & Omega Semiconductor, Ltd.
10
100
AOD476
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
tA =
30
40
L ⋅ ID
35
BV − VDD
Power Dissipation (W)
ID(A), Peak Avalanche Current
35
25
TA=25°C
20
15
30
25
20
1.4
15
494
692
10
5
10
0
0.000001
0.00001
0.0001
0.001
0
25
Time in avalanche, t A (s)
Figure 12: Single Pulse Avalanche capability
50
75
100
125
150
175
TCASE (°C)
Figure 13: Power De-rating (Note B)
30
50
25
40
20
Power (W)
Current rating ID(A)
593
830
15
193
18
TA=25°C
30
20
10
10
5
0
0.01
0
0
25
50
75
100
125
150
175
0.1
1
59
10
142
100
1000
Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
TCASE (°C)
Figure 14: Current De-rating (Note B)
ZθJA Normalized Transient
Thermal Resistance
10
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
0.1
0.01
Single Pulse
PD
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
RθJA=50°C/W
Ton
0.001
0.00001
0.0001
0.001
0.01
0.1
1
T
10
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Alpha & Omega Semiconductor, Ltd.
100
1000