AOD476 N-Channel Enhancement Mode Field Effect Transistor 1.4 General Description Features The AOD476 uses advanced trench technology and design to provide excellent RDS(ON) with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications. Standard product AOD476 is Pb-free (meets ROHS & Sony 259 specifications). AOD476L is a Green Product ordering option. AOD476 and AOD476L are electrically identical. VDS (V) = 20V ID = 25A (VGS = 10V) RDS(ON) <21 mΩ (VGS = 10V) RDS(ON) <28 mΩ (VGS = 4.5V) RDS(ON) <79 mΩ (VGS = 2.5V) 193 UIS Tested 18 Rg,Ciss,Coss,Crss Tested TO-252 D-PAK D Top View Drain Connected to Tab G S G D S Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol VDS Drain-Source Voltage VGS Gate-Source Voltage TC=25°C Continuous Drain Current G TC=100°C C Repetitive avalanche energy L=0.3mH C TC=25°C Power Dissipation B A ±16 V Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A A Maximum Junction-to-Ambient B Maximum Junction-to-Case Alpha & Omega Semiconductor, Ltd. 23 IAR 13 A 25 mJ 75 EAR 33.3 2.5 W 1.7 TJ, TSTG -55 to 175 Symbol t ≤ 10s Steady-State Steady-State W 16.7 PDSM TA=70°C A ID IDM PD TC=100°C TA=25°C Power Dissipation Units V 25 Pulsed Drain Current C Avalanche Current Maximum 20 RθJA RθJC Typ 17 40 3.6 °C Max 25 50 4.5 Units °C/W °C/W °C/W AOD476 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage Conditions Min ID=250uA, VGS=0V IGSS Gate-Body leakage current VDS=0V, VGS=±16V VGS(th) Gate Threshold Voltage VDS=VGS, ID=250µA 0.6 ID(ON) On state drain current VGS=10V, VDS=5V 75 VGS=10V, ID=20A TJ=125°C gFS Forward Transconductance VSD Diode Forward Voltage IS=1A, VGS=0V G Maximum Body-Diode Continuous Current VGS=4.5V, ID=10A Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qg(4.5V) Total Gate Charge Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime 100 nA 1.26 2 V 14 21 A 21 28 VGS=2.5V, ID=4A 57 79 VDS=5V, ID=20A 19 VGS=0V, VDS=10V, f=1MHz VGS=0V, VDS=0V, f=1MHz VGS=10V, VDS=10V, ID=20A VGS=10V, VDS=10V, RL=0.5Ω, RGEN=3Ω uA 5 20 DYNAMIC PARAMETERS Ciss Input Capacitance Coss V TJ=55°C Static Drain-Source On-Resistance Units 1 Zero Gate Voltage Drain Current RDS(ON) Max 20 VDS=16V, VGS=0V IDSS IS Typ 0.77 mΩ S 1 V 30 A 900 pF 162 pF 105 pF 1.8 2.7 Ω 15 18 nC 7.2 9 nC 1.8 nC 2.8 nC 4.5 ns 9.2 ns 18.7 ns tf Turn-Off Fall Time 3.3 ns trr Body Diode Reverse Recovery Time IF=20A, dI/dt=100A/µs 18 Qrr Body Diode Reverse Recovery Charge IF=20A, dI/dt=100A/µs 9.5 ns nC A: The value of R θJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with of 150°C. The value in any given T A =25°C. The Power dissipation P DSM is based on R θJA and the maximum allowed junction temperature 0 application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation P D is based on T J(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C: Repetitive rating, pulse width limited by junction temperature T J(MAX)=175°C. D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T J(MAX)=175°C. G. The maximum current rating is limited by bond-wires. H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA curve provides a single pulse rating. Rev0: Sept 2006 THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Alpha & Omega Semiconductor, Ltd. AOD476 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 30 10V 6V 8V 80 25°C VDS=5V 25 125°C -40°C 20 60 40 ID(A) ID (A) 4.5V 3.5V 15 1.4 10 20 494 692 5 593 830 VGS=3V 0 0 0 1 2 3 4 VDS (Volts) Fig 1: On-Region Characteristics 5 1 3 4 VGS(Volts) Figure 2: Transfer Characteristics 5 193 18 1.60 80 VGS=10V, 20A 70 Normalized On-Resistance VGS=2.5V 60 RDS(ON) (mΩ) 2 1.40 50 VGS=4.5V, 10A 1.20 40 VGS=4.5V 30 1.00 20 10 VGS=2.5V, 4A 0.80 VGS=10V 0 0 5 10 15 20 25 30 0.60 -50 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage -25 0 50 59 75 142 100 125 150 175 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 35 100 ID=20A 10 30 1 125°C 25 IS (A) RDS(ON) (mΩ) 25 125°C 0.1 -40°C 0.01 20 25°C 25°C 0.001 15 0.0001 10 3 4 5 6 7 8 9 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage Alpha & Omega Semiconductor, Ltd. 10 0.00001 0.0 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics 1.2 AOD476 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 1400 10 1200 VDS=12.5V ID=20A Ciss Capacitance (pF) VGS (Volts) 8 6 4 1000 800 1.4 600 Coss 400 494 692 2 200 0 Crss 0 0 3 6 9 12 15 0 5 10 15 VDS (Volts) Figure 8: Capacitance Characteristics Qg (nC) Figure 7: Gate-Charge Characteristics 100 DC 20 193 18 10µs 200 100µs 160 TJ(Max)=175°C TC=25°C 1ms Power (W) ID (Amps) 10 593 830 RDS(ON) limited 120 80 1 40 TJ(Max)=175°C, TC=25°C 0 0.0001 0.1 0.1 1 10 100 VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) 0.001 0.01 59 0.1 1 10 Pulse Width 142 (s) Figure 10: Single Pulse Power Rating Junction-toCase (Note F) ZθJC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=4.5°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 1 PD 0.1 0.01 0.00001 Ton T Single Pulse 0.0001 0.001 0.01 0.1 1 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Alpha & Omega Semiconductor, Ltd. 10 100 AOD476 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS tA = 30 40 L ⋅ ID 35 BV − VDD Power Dissipation (W) ID(A), Peak Avalanche Current 35 25 TA=25°C 20 15 30 25 20 1.4 15 494 692 10 5 10 0 0.000001 0.00001 0.0001 0.001 0 25 Time in avalanche, t A (s) Figure 12: Single Pulse Avalanche capability 50 75 100 125 150 175 TCASE (°C) Figure 13: Power De-rating (Note B) 30 50 25 40 20 Power (W) Current rating ID(A) 593 830 15 193 18 TA=25°C 30 20 10 10 5 0 0.01 0 0 25 50 75 100 125 150 175 0.1 1 59 10 142 100 1000 Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) TCASE (°C) Figure 14: Current De-rating (Note B) ZθJA Normalized Transient Thermal Resistance 10 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 1 0.1 0.01 Single Pulse PD D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA RθJA=50°C/W Ton 0.001 0.00001 0.0001 0.001 0.01 0.1 1 T 10 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Alpha & Omega Semiconductor, Ltd. 100 1000