AOL1442 N-Channel Enhancement Mode Field Effect Transistor General Description Features The AOL1442 uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications. Standard Product AOL1442 is Pb-free (meets ROHS & Sony 259 specifications). AOL1442L is a Green Product ordering option. AOL1442 and AOL1442L are electrically identical. VDS (V) = 30V (V GS = 10V) ID = 75A RDS(ON) < 5mΩ (VGS = 10V) RDS(ON) < 9mΩ (VGS = 4.5V) Ultra SO-8TM Top View UIS Tested Rg,Ciss,Coss,Crss Tested D Fits SOIC8 footprint ! D S Bottom tab connected to drain G S G Absolute Maximum Ratings T A=25°C unless otherwise noted Parameter Symbol VDS Drain-Source Voltage VGS Gate-Source Voltage Continuous Drain CurrentG TC=25°C Pulsed Drain Current Continuous Drain Current H C C Power Dissipation Power Dissipation B A C TC=25°C TA=25°C Junction and Storage Temperature Range Alpha & Omega Semiconductor, Ltd. A IDSM IAR 20 30 A EAR 135 mJ 50 5 W 3 TJ, TSTG t ≤ 10s Steady-State Steady-State W 25 -55 to 175 Symbol A A 200 PDSM TA=70°C A V 56 PD TC=100°C Thermal Characteristics Parameter Maximum Junction-to-Ambient Maximum Junction-to-Ambient Maximum Junction-to-Case B ±20 25 TA=70°C Repetitive avalanche energy L=0.3mH Units V 75 ID IDM TC=100°C TA=25°C Avalanche Current Maximum 30 RθJA RθJC Typ 16.2 44 2 °C Max 25 60 3 Units °C/W °C/W °C/W AOL1442 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current Conditions ID=250µA, VGS=0V Gate-Body leakage current VDS=0V, VGS=±20V Gate Threshold Voltage VDS=VGS, ID=250µA ID(ON) On state drain current VGS=10V, VDS=5V V 4 5 5 6 VGS=4.5V, ID=10A 7 9 VDS=5V, ID=20A 40 1 100 TJ=125°C IS=1A, VGS=0V Diode Forward Voltage Maximum Body-Diode Continuous Current DYNAMIC PARAMETERS Ciss Input Capacitance Gate resistance SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qg(4.5V) Total Gate Charge Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime tf Turn-Off Fall Time trr Qrr µA nA Forward Transconductance Rg 5 2.5 VSD Reverse Transfer Capacitance V 100 gFS Crss Units 1.5 Static Drain-Source On-Resistance Output Capacitance 35 Max 1 VGS=10V, ID=20A Coss 30 TJ=55°C VGS(th) IS Typ VDS=24V, VGS=0V IGSS RDS(ON) Min A 2662 VGS=0V, VDS=15V, f=1MHz VGS=0V, VDS=0V, f=1MHz VGS=10V, VDS=15V, ID=20A mΩ mΩ S 1 V 55 A 3194 pF 502 pF 375 pF 1.1 1.7 Ω 70 84 nC 34.8 42 nC 13.1 nC 18.5 nC 9 ns VGS=10V, VDS=15V, RL=0.75Ω, RGEN=3Ω 11 ns 30.7 ns 9.2 ns IF=20A, dI/dt=100A/µs 34.5 Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge IF=20A, dI/dt=100A/µs 28.3 42 34 ns nC A: The value of R θJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The Power dissipation P DSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation P D is based on T J(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C: Repetitive rating, pulse width limited by junction temperature T J(MAX)=175°C. D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T J(MAX)=175°C. G.The maximum current rating is limited by bond-wires. H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA curve provides a single pulse rating. I. Revision 0: Mar 2006 THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Alpha & Omega Semiconductor, Ltd. AOL1442 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 100 5V 90 80 10V 70 70 4V 60 ID(A) 60 ID (A) VDS=5V 90 4.5V 80 50 125°C 50 40 40 3.5V 30 25°C 30 20 20 VGS=3V 10 10 0 0 0 1 2 3 4 2 5 2.5 3.5 4 4.5 VGS(Volts) Figure 2: Transfer Characteristics VDS (Volts) Fig 1: On-Region Characteristics 12 Normalized On-Resistance 1.8 10 RDS(ON) (mΩ) 3 VGS=4.5V 8 6 VGS=10V 4 VGS=10V ID=20A 1.6 1.4 1.2 VGS=4.5V ID=10A 1 0.8 2 0 10 0 20 30 40 50 60 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage 25 50 75 100 125 150 175 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 20 1.0E+02 ID=20A 1.0E+01 16 12 IS (A) RDS(ON) (mΩ) 1.0E+00 125°C 125°C 1.0E-01 25°C 1.0E-02 8 1.0E-03 25°C 1.0E-04 4 1.0E-05 0 0.0 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage Alpha & Omega Semiconductor, Ltd. 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics 1.2 AOL1442 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 4800 8 Ciss 4000 3600 Capacitance (pF) VGS (Volts) 4400 VDS=15V ID=20A 6 4 3200 2800 2400 Coss 2000 1600 Crss 1200 2 800 400 0 0 0 10 20 30 40 50 60 Qg (nC) Figure 7: Gate-Charge Characteristics 70 0 1000.0 1µs 15 20 25 VDS (Volts) Figure 8: Capacitance Characteristics 160 30 100us 1ms 1.0 10ms DC TJ(Max)=150°C TC=25°C 0.0 0.01 0.1 120 80 40 1 VDS (Volts) 10 100 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=3°C/W 0 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-toCase (Note F) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) 10 TJ(Max)=175°C TC=25°C 10µs Power (W) ID (Amps) RDS(ON) limited 0.1 ZθJC Normalized Transient Thermal Resistance 10 200 100.0 10.0 5 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 1 PD 0.1 Ton Single Pulse 0.01 0.00001 0.0001 0.001 0.01 0.1 T 1 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Alpha & Omega Semiconductor, Ltd. 10 100 AOL1442 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 60 L ⋅ ID tA = BV − V DD 90 80 70 Power Dissipation (W) ID(A), Peak Avalanche Current 100 60 50 40 30 20 TA=25°C 50 40 30 20 10 10 0 0 0.00001 0.0001 0 0.001 25 100 125 150 175 TA=25°C 40 75 Power (W) Current rating ID(A) 75 50 100 50 25 30 20 10 0 0 10 ZθJA Normalized Transient Thermal Resistance 50 TCASE (°C) Figure 13: Power De-rating (Note B) Time in avalanche, t A (s) Figure 12: Single Pulse Avalanche capability 1 25 50 75 100 125 150 TCASE (°C) Figure 14: Current De-rating (Note B) 0 0.001 175 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA RθJA=60°C/W 0.1 0.01 PD Single Pulse Ton 0.001 0.00001 0.0001 0.001 0.01 0.1 1 T 10 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Alpha & Omega Semiconductor, Ltd. 100 1000