AOSMD AOL1442

AOL1442
N-Channel Enhancement Mode Field Effect Transistor
General Description
Features
The AOL1442 uses advanced trench technology and
design to provide excellent R DS(ON) with low gate
charge. This device is suitable for use in PWM, load
switching and general purpose applications. Standard
Product AOL1442 is Pb-free (meets ROHS & Sony
259 specifications). AOL1442L is a Green Product
ordering option. AOL1442 and AOL1442L are
electrically identical.
VDS (V) = 30V
(V GS = 10V)
ID = 75A
RDS(ON) < 5mΩ (VGS = 10V)
RDS(ON) < 9mΩ (VGS = 4.5V)
Ultra SO-8TM Top View
UIS Tested
Rg,Ciss,Coss,Crss Tested
D
Fits SOIC8
footprint !
D
S
Bottom tab
connected to
drain
G
S
G
Absolute Maximum Ratings T A=25°C unless otherwise noted
Parameter
Symbol
VDS
Drain-Source Voltage
VGS
Gate-Source Voltage
Continuous Drain
CurrentG
TC=25°C
Pulsed Drain Current
Continuous Drain
Current H
C
C
Power Dissipation
Power Dissipation
B
A
C
TC=25°C
TA=25°C
Junction and Storage Temperature Range
Alpha & Omega Semiconductor, Ltd.
A
IDSM
IAR
20
30
A
EAR
135
mJ
50
5
W
3
TJ, TSTG
t ≤ 10s
Steady-State
Steady-State
W
25
-55 to 175
Symbol
A
A
200
PDSM
TA=70°C
A
V
56
PD
TC=100°C
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient
Maximum Junction-to-Ambient
Maximum Junction-to-Case B
±20
25
TA=70°C
Repetitive avalanche energy L=0.3mH
Units
V
75
ID
IDM
TC=100°C
TA=25°C
Avalanche Current
Maximum
30
RθJA
RθJC
Typ
16.2
44
2
°C
Max
25
60
3
Units
°C/W
°C/W
°C/W
AOL1442
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
Conditions
ID=250µA, VGS=0V
Gate-Body leakage current
VDS=0V, VGS=±20V
Gate Threshold Voltage
VDS=VGS, ID=250µA
ID(ON)
On state drain current
VGS=10V, VDS=5V
V
4
5
5
6
VGS=4.5V, ID=10A
7
9
VDS=5V, ID=20A
40
1
100
TJ=125°C
IS=1A, VGS=0V
Diode Forward Voltage
Maximum Body-Diode Continuous Current
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Gate resistance
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
Qg(4.5V) Total Gate Charge
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
Turn-Off Fall Time
trr
Qrr
µA
nA
Forward Transconductance
Rg
5
2.5
VSD
Reverse Transfer Capacitance
V
100
gFS
Crss
Units
1.5
Static Drain-Source On-Resistance
Output Capacitance
35
Max
1
VGS=10V, ID=20A
Coss
30
TJ=55°C
VGS(th)
IS
Typ
VDS=24V, VGS=0V
IGSS
RDS(ON)
Min
A
2662
VGS=0V, VDS=15V, f=1MHz
VGS=0V, VDS=0V, f=1MHz
VGS=10V, VDS=15V, ID=20A
mΩ
mΩ
S
1
V
55
A
3194
pF
502
pF
375
pF
1.1
1.7
Ω
70
84
nC
34.8
42
nC
13.1
nC
18.5
nC
9
ns
VGS=10V, VDS=15V, RL=0.75Ω,
RGEN=3Ω
11
ns
30.7
ns
9.2
ns
IF=20A, dI/dt=100A/µs
34.5
Body Diode Reverse Recovery Time
Body Diode Reverse Recovery Charge IF=20A, dI/dt=100A/µs
28.3
42
34
ns
nC
A: The value of R θJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The
Power dissipation P DSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends
on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.
B. The power dissipation P D is based on T J(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C: Repetitive rating, pulse width limited by junction temperature T J(MAX)=175°C.
D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of T J(MAX)=175°C.
G.The maximum current rating is limited by bond-wires.
H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA
curve provides a single pulse rating.
I. Revision 0: Mar 2006
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Alpha & Omega Semiconductor, Ltd.
AOL1442
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
100
5V
90
80
10V
70
70
4V
60
ID(A)
60
ID (A)
VDS=5V
90
4.5V
80
50
125°C
50
40
40
3.5V
30
25°C
30
20
20
VGS=3V
10
10
0
0
0
1
2
3
4
2
5
2.5
3.5
4
4.5
VGS(Volts)
Figure 2: Transfer Characteristics
VDS (Volts)
Fig 1: On-Region Characteristics
12
Normalized On-Resistance
1.8
10
RDS(ON) (mΩ)
3
VGS=4.5V
8
6
VGS=10V
4
VGS=10V
ID=20A
1.6
1.4
1.2
VGS=4.5V
ID=10A
1
0.8
2
0
10
0
20
30
40
50
60
ID (A)
Figure 3: On-Resistance vs. Drain Current and
Gate Voltage
25
50
75
100
125
150
175
Temperature (°C)
Figure 4: On-Resistance vs. Junction
Temperature
20
1.0E+02
ID=20A
1.0E+01
16
12
IS (A)
RDS(ON) (mΩ)
1.0E+00
125°C
125°C
1.0E-01
25°C
1.0E-02
8
1.0E-03
25°C
1.0E-04
4
1.0E-05
0
0.0
2
4
6
8
10
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
Alpha & Omega Semiconductor, Ltd.
0.2
0.4
0.6
0.8
1.0
VSD (Volts)
Figure 6: Body-Diode Characteristics
1.2
AOL1442
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10
4800
8
Ciss
4000
3600
Capacitance (pF)
VGS (Volts)
4400
VDS=15V
ID=20A
6
4
3200
2800
2400
Coss
2000
1600
Crss
1200
2
800
400
0
0
0
10
20
30
40
50
60
Qg (nC)
Figure 7: Gate-Charge Characteristics
70
0
1000.0
1µs
15
20
25
VDS (Volts)
Figure 8: Capacitance Characteristics
160
30
100us
1ms
1.0
10ms
DC
TJ(Max)=150°C
TC=25°C
0.0
0.01
0.1
120
80
40
1
VDS (Volts)
10
100
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
RθJC=3°C/W
0
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
Figure 9: Maximum Forward Biased Safe
Operating Area (Note F)
10
TJ(Max)=175°C
TC=25°C
10µs
Power (W)
ID (Amps)
RDS(ON)
limited
0.1
ZθJC Normalized Transient
Thermal Resistance
10
200
100.0
10.0
5
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
PD
0.1
Ton
Single Pulse
0.01
0.00001
0.0001
0.001
0.01
0.1
T
1
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Alpha & Omega Semiconductor, Ltd.
10
100
AOL1442
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
60
L ⋅ ID
tA =
BV − V DD
90
80
70
Power Dissipation (W)
ID(A), Peak Avalanche Current
100
60
50
40
30
20
TA=25°C
50
40
30
20
10
10
0
0
0.00001
0.0001
0
0.001
25
100
125
150
175
TA=25°C
40
75
Power (W)
Current rating ID(A)
75
50
100
50
25
30
20
10
0
0
10
ZθJA Normalized Transient
Thermal Resistance
50
TCASE (°C)
Figure 13: Power De-rating (Note B)
Time in avalanche, t A (s)
Figure 12: Single Pulse Avalanche capability
1
25
50
75
100
125
150
TCASE (°C)
Figure 14: Current De-rating (Note B)
0
0.001
175
0.01
0.1
1
10
100
1000
Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
RθJA=60°C/W
0.1
0.01
PD
Single Pulse
Ton
0.001
0.00001
0.0001
0.001
0.01
0.1
1
T
10
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Alpha & Omega Semiconductor, Ltd.
100
1000