CREE C460UT230

UltraThin™ LEDs
CxxxUT230-S0100
Cree’s UltraThin LEDs combine highly efficient InGaN materials with Cree’s proprietary G•SiC® substrate to deliver
superior price/performance for blue LEDs. These vertically structured LED chips are small in size and require a low
forward voltage. Cree’s UT™ series chips are tested for conformity to optical and electrical specifications and the
ability to withstand 1000 V ESD. Applications include keypad backlighting where sub-miniaturization and thinner
form factors are required.
FEATURES
APPLICATIONS
•
Small Chip – 230 x 230 x 85 μm
•
Low Forward Voltage
–
White LEDs
–
–
Blue LEDs
•
•
3.3V Typical at 20 mA
Mobile Phone Keypads
UT LED Performance
•
Audio Product Display Lighting
–
•
Mobile Appliance Keypads
8.0 mW min. (455–475 nm) Blue
•
Single Wire Bond Structure
•
Class 2 ESD Rating
CxxxXT230-S0100 Chip Diagram
.C
CPR3CC Rev
Data Sheet:
Top View
Bottom View
G•SiC LED Chip
230 x 230 μm
Die Cross Section
SiC Substrate
Bottom Surface
150 x 150 μm
Mesa (junction)
176 x 176 μm
Gold Bond Pad
105 μm Diameter
InGaN
Anode (+)
SiC Substrate
h = 85 μm
Backside
Metallization
80 x 80 μm
Subject to change without notice.
www.cree.com
Cathode (-)
Maximum Ratings at TA = 25°C Notes 1&3
CxxxUT230-S0100
DC Forward Current
30 mA
Peak Forward Current (1/10 duty cycle @ 1 kHz)
100 mA
LED Junction Temperature
125°C
Reverse Voltage
5V
Operating Temperature Range
-40°C to +100°C
Storage Temperature Range
Electrostatic Discharge Threshold (HBM)
-40°C to +100°C
1000 V
Note 2
Electrostatic Discharge Classification (MIL-STD-883E)
Class 2
Note 2
Typical Electrical/Optical Characteristics at TA = 25°C, If = 20 mA
Part Number
Forward Voltage (Vf, V)
Note 3
Reverse Current
[I(Vr=5V), μA]
Full Width Half Max
(λD, nm)
Min.
Typ.
Max.
Max.
Typ.
C460UT230-S0100
2.7
3.3
3.7
1
21
C460UT230-S0100
2.7
3.3
3.7
1
22
Mechanical Specifications
Description
CxxxUT230-S0100
Dimension
Tolerance
P-N Junction Area (μm)
176 x 176
± 25
Top Area (μm)
230 x 230
± 25
Bottom Area (Substrate) (μm)
150 x 150
± 25
85
± 10
Au Bond Pad Diameter (μm)
105
-5, +15
Au Bond Pad Thickness (μm)
1.2
± 0.5
80 x 80
± 25
Chip Thickness (μm)
Back Contact Metal Area (μm)
Notes:
1.
2.
3.
4.
Maximum ratings are package dependent. The above ratings were determined using a T-1 3/4 package (with Hysol OS4000
epoxy) for characterization. Ratings for other packages may differ. The forward currents (DC and Peak) are not limited by the die
but by the effect of the LED junction temperature on the package. The junction temperature limit of 125°C is a limit of the T-1
3/4 package; junction temperature should be characterized in a specific package to determine limitations. Assembly processing
temperature must not exceed 325°C (< 5 seconds).
Product resistance to electrostatic discharge (ESD) according to the HBM is measured by simulating ESD using a rapid avalanche
energy test (RAET). The RAET procedures are designed to approximate the minimum ESD ratings shown. The ESD classification of
Class 2 is based on sample testing according to MIL-STD-883E.
All products conform to the listed minimum and maximum specifications for electrical and optical characteristics when assembled
and operated at 20 mA within the maximum ratings shown above. Efficiency decreases at higher currents. Typical values given
are within the range of average values expected by manufacturer in large quantities and are provided for information only. All
measurements were made using lamps in T-1 3/4 packages (with Hysol OS4000 epoxy). Optical characteristics measured in an
integrating sphere using Illuminance E.
Caution: To obtain optimum output efficiency, the amount of epoxy used should be characterized based upon the specific
application.
Copyright © 2004-2006 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree,
the Cree logo and G•SiC are registered trademarks, and UltraThin and UT are trademarks of Cree, Inc.
CPR3CC Rev. C
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
www.cree.com
Standard Bins for CxxxUT230-S0100
LED chips are sorted to the radiant flux and dominant wavelength bins shown. Sorted die sheets contain die from
only one bin. Sorted die kit (CxxxUT230-S0100) orders may be filled with any or all bins (CxxxUT230-00100) contained
in the kit. All radiant flux values are measured at If = 20 mA and all dominant wavelength values are measured at If =
20 mA.
Radiant Flux
C460UT230-S0100
C460UT230-0105
8.0 mW
455 nm
C460UT230-0106
C460UT230-0107
C460UT230-0108
457.5 nm
460 nm
462.5 nm
Dominant Wavelength – If = 20 mA
465 nm
Radiant Flux
C470UT230-S0100
C470UT230-0105
8.0 mW
465 nm
C470UT230-0106
C470UT230-0107
C470UT230-0108
467.5 nm
470 nm
472.5 nm
Dominant Wavelength – If = 20 mA
Copyright © 2004-2006 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree,
the Cree logo and G•SiC are registered trademarks, and UltraThin and UT are trademarks of Cree, Inc.
CPR3CC Rev. C
475 nm
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
www.cree.com
Characteristic Curves
These are representative measurements for the UltraThin product. Actual curves will vary slightly for the various radiant
flux and dominant wavelength bins.
Dominant Wavelength Shift vs Forward Current
Forward Current vs Forward Voltage
5
Dominant Wavelength Shift (nm)
35
Forward Current (mA)
30
25
20
15
10
4
3
2
1
0
5
-1
0
0
0.5
1
1.5
2
2.5
3
0
3.5
5
10
15
20
25
30
35
Forward Current (mA)
Forward Voltage (V)
Relative Intensity vs Forward Voltage
Relative Intensity vs Peak Wavelength
100
160
140
Relative Intensity (%)
80
% Intensity
120
100
80
60
60
40
40
20
20
0
0
5
10
15
20
25
30
35
400
Forward Current (mA)
500
Wavelength (nm)
Copyright © 2004-2006 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree,
the Cree logo and G•SiC are registered trademarks, and UltraThin and UT are trademarks of Cree, Inc.
CPR3CC Rev. C
600
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
www.cree.com