HAMAMATSU S5930_05

IMAGE SENSOR
NMOS linear image sensor
S5930/S5931 series
Built-in thermoelectric cooler ensures long exposure time and stable operation.
NMOS linear image sensors are self-scanning photodiode arrays designed specifically as detectors for multichannel spectroscopy. The scanning
circuit is made up of N-channel MOS transistors, operates at low power consumption and is easy to handle. Each photodiode has a large active
area, high UV sensitivity yet very low noise. The built-in thermoelectric cooler (air cooled) allows a long exposure time achieving a high S/N even
at low light levels. The cap uses a sapphire glass window hermetically welded for high reliability.
Features
Applications
l Wide active area
Pixel pitch: 50 µm (S5930 series)
25 µm (S5931 series)
Pixel height: 2.5 mm
l High UV sensitivity with good stability
l Low dark current and high saturation charge allow a long
integration time and a wide dynamic range at room temperature
l Excellent output linearity and sensitivity spatial uniformity
l Start pulse and clock pulses are CMOS logic compatible
l Built-in air-cooled thermoelectric cooler
(setting temperature: 0 ˚C)
■ Selection guide
l Multichannel spectrophotometry
l Image readout system
Active area size
[mm (H) × mm (V)]
S5930-256S
256
12.8 × 2.5
50 × 2500
S5930-512S
512
25.6 × 2.5
S5931-512S
512
12.8 × 2.5
25 × 2500
S5931-1024S
1024
25.6 × 2.5
In addition to S5930/S5931 series, Hamamatsu provides S8382/S8383 series thermoelectrically cooled NMOS linear image
sensors that offer higher sensitivity in the near IR range. Major characteristics of S8382/S8383 series are almost identical with
S5930/S5931 series except that the peak sensitivity wavelength is 750 nm (see Figure 5) and the saturation charge is 90 m lx s.
Type No.
Number of pixels
Pixel size
[µm (H) × µm (V)]
NMOS linear image sensor
Figure 1 Equivalent circuit
st
1
CLOCK
2
Figure 2 Active area structure
DIGITAL SHIFT REGISTER
(MOS SHIFT REGISTER)
END OF SCAN
2.5 mm
START
CLOCK
S5930/S5931 series
ACTIVE VIDEO
ACTIVE
PHOTODIODE
Vss
b
SATURATION
CONTROL GATE
SATURATION
CONTROL DRAIN
1.0 µm
a
DUMMY VIDEO
OXIDATION SILICON
1.0 µm
N TYPE SILICON
400 µm
DUMMY DIODE
KMPDC0020EA
P TYPE SILICON
S5930 SERIES: a=50 µm, b=45 µm
S5931 SERIES: a=25 µm, b=20 µm
KMPDA0132EA
■ Absolute maximum ratings
Parameter
Symbol
Value
Unit
15
V
Input pulse (φ1, φ2, φst) voltage
Vφ
Operating temperature * 1
Topr
-40 to +65
°C
Storage temperature
Tstg
-40 to +85
°C
*1: No condensation. Ambient temperature should be less than the element cooling temperature +35 °C. (Example: Ambient
temperature should be less than 35 °C in order to keep the element temperature at 0 °C.)
■ Specifications (Ta=25 °C, unless otherwise noted)
Parameter
Symbol
Min.
-
S5930 series
Typ.
Max.
50
2.5
-
Pixel pitch
Pixel height
Spectral response range
200 to 1000
λ
(10 % of peak)
Peak sensitivity wavelength
600
λp
25 °C
0.2
0.6
ID
Photodiode dark current *
0 °C
0.006
0.018
2
Photodiode capacitance *
Cph
20
Saturation exposure *2, *3
Esat
180
Saturation output charge *2
Qsat
50
Photo response non-uniformity *4
PRNU
±3
*2: Vb=2.0 V, Vφ=5.0 V
*3: 2856 K, tungsten lamp
*4: 50 % of saturation, excluding the start pixel and last pixel
Min.
-
S5931 series
Typ.
Max.
25
2.5
200 to 1000
-
600
0.1
0.003
10
180
25
-
Unit
µm
mm
nm
0.3
0.009
±3
nm
pA
pF
mlx · s
pC
%
S5930/S5931 series
NMOS linear image sensor
■ Electrical characteristics (Ta=25 °C)
Parameter
Symbol
High Vφ1, Vφ2 (H)
Low Vφ1, Vφ2 (L)
High
Vφs (H)
Start pulse (φst) voltage
Low
Vφs (L)
Video bias voltage *5
Vb
Saturation control gate voltage
Vscg
Saturation control drain voltage
Vscd
trφ1, trφ2
Clock pulse (φ1, φ2)
rise/fall time *6
tfφ1, tfφ2
Clock pulse (φ1, φ2) pulse width
tpwφ1, tpwφ2
Start pulse (φst) rise/fall time
trφs, tfφs
Start pulse (φst) pulse width
tpwφs
Start pulse (φst) and clock pulse
tφov
(φ2) overlap
6
Clock pulse space *
X1, X2
Data rate *7
f
Condition
Min.
4.5
0
4.5
0
1.5
-
Clock pulse (φ1, φ2)
voltage
Video delay time
Clock pulse (φ1, φ2)
line capacitance
Saturation control gate (Vscg)
line capacitance
Video line capacitance
tvd
50 % of
saturation
*7, *8
Cφ
5 V bias
Cscg
5 V bias
CV
2 V bias
S5930 series
Typ.
Max.
5
10
0.4
10
Vφ1
0.4
Vφ - 3.0 Vφ - 2.5
0
Vb
-
Min.
4.5
0
4.5
0
1.5
-
S5931 series
Typ.
Max.
5
10
0.4
10
Vφ1
0.4
Vφ - 3.0 Vφ - 2.5
0
Vb
-
Unit
V
V
V
V
V
V
V
-
20
-
-
20
-
ns
200
200
20
-
-
200
200
20
-
-
ns
ns
ns
200
-
-
200
-
-
ns
2000
-
ns
kHz
ns
trf - 20
0.1
120 (-256S)
2000
-
trf - 20
0.1
150 (-512S)
-
160 (-512S)
-
-
200 (-1024S)
-
ns
-
36 (-256S)
67 (-512S)
20 (-256S)
35 (-512S)
11 (-256S)
20 (-512S)
-
-
50 (-512S)
100 (-1024S)
24 (-512S)
45 (-1024S)
16 (-512S)
30 (-1024S)
-
pF
pF
pF
pF
pF
pF
*5: Vφ is input pulse voltage.
*6: trf is the clock pulse rise or fall time. A clock pulse space of “rise time/fall time - 20 ” ns (nanoseconds) or more should be
input if the clock pulse rise or fall time is longer than 20 ns.
*7: Vb=2.0 V, Vφ=5.0 V
*8: Measured with C7883 driver circuit.
Figure 3 Dimensional outlines (unit: mm)
S5930-256S, S5931-512S
S5930-512S, S5931-1024S
4.05 ± 0.4 *2
12.8
4.05 ± 0.4 *2
0.8 *1
0.8 *1
5.0
32.0 ± 0.3
40.64 ± 0.3
50.0
0.46
2.54
27.94
7.65 ± 0.5
58.84
0.46
*1: Thickness of sapphire glass
*2: Distance from the surface of sapphire
glass to the chip surface
KMPDA0089JA
2.54
27.94
7.65 ± 0.5
5.0
14.99 ± 0.25
4.0
12.0
2.5
14.99 ± 0.25
4.0
12.0
2.5
25.6
*1: Thickness of sapphire glass
*2: Distance from the surface of sapphire
glass to the chip surface
KMPDA0090JA
NMOS linear image sensor
S5930/S5931 series
Figure 4 Pin connection
NC
1
24
st
NC
2
23
1
Vss
3
22
2
Vscg
4
21
NC
Vsub
5
20
NC
NC
6
19
TE-COOLER +
THERMISTOR
7
18
TE-COOLER -
THERMISTOR
8
17
END OF SCAN
NC
9
16
NC
Vscd
10
15
DUMMY VIDEO
NC
11
14
ACTIVE VIDEO
NC
12
13
Vss
Vss, Vsub and NC should be grounded.
Electricity flows between the 20th pin and package metal.
KMPDC0115EA
Terminal
Input or output
Input
(CMOS logic compatible)
φ1, φ2
Vss
Vscg
Input
(CMOS logic compatible)
Input
Vscd
Input
φst
Active video
Output
Dummy video
Output
Vsub
-
End of scan
Output
(CMOS logic compatible)
NC
TE-cooler
Thermistor
Input
Output
Figure 5 Spectral response (typical example)
Description
Pulses for operating the MOS shift register. The video data rate is equal
to the clock pulse frequency since the video output signal is obtained
synchronously with the rise of φ2 pulse.
Pulse for starting the MOS shift register operation. The time interval
between start pulses is equal to the signal accumulation time.
Connected to the anode of each photodiode. This should be grounded.
Used for restricting blooming. This should be grounded.
Used for restricting blooming. This should be biased at a voltage equal
to the video bias voltage.
Video output signal. Connects to photodiode cathodes when the
address is on. A positive voltage should be applied to the video line in
order to use photodiodes with a reverse voltage. When the amplitude of
φ1 and φ2 is 5 V, a video bias voltage of 2 V is recommended.
This has the same structure as the active video, but is not connected to
photodiodes, so only spike noise is output. This should be biased at a
voltage equal to the active video or left as an open-circuit when not
needed.
Connected to the silicon substrate. This should be grounded.
This should be pulled up at 5 V by using a 10 kΩ resistor. This is a
negative going pulse that appears synchronously with the φ2 timing
right after the last photodiode is addressed.
Should be grounded.
For sensor chip cooling
For temperature control
Figure 6 Output charge vs. exposure
(Ta=25 ˚C)
0.5
102
(Typ. Vb=2 V, V =5 V, light source: 2856 K)
SATURATION
CHARGE
1
0.4
10
OUTPUT CHARGE (pC)
PHOTO SENSITIVITY (A/W)
IR HIGH-SENSITIVITY TYPE
S8382/S8383 SERIES
0.3
0.2
S5930 SERIES
100
S5931 SERIES
-1
10
SATURATION EXPOSURE
10-2
0.1
S5930/S5931 SERIES
0
200
400
600
800
WAVELENGTH (nm)
1000
1200
KMPDB0163EA
10-3
-5
10
-4
10
-3
10
-2
10
EXPOSURE (lx · s)
-1
10
0
10
KMPDB0164EA
NMOS linear image sensor
S5930/S5931 series
■ TE-cooler type 1 (T-06E 144P-RNO)characteristics
(built-in S5930-512S, S5931-1024S)
Parameter
Condition
Built-in resistance
Ta=25 °C
Maximum current
Tc -Th=20 °C
Maximum voltage
Tc -Th=80 °C
Maximum heat absorption
Tc -Th=20 °C
Value
1.25
3.6
6.2
7.5
Figure 7 Voltage vs. temperature (Tc=0 °C)
Unit
Ω
A
V
W
Figure 8 Heat absorption vs. temperature (Tc=0 °C)
5
10
3.2 A
2.8 A
3
HEAT ABSORPTION (W)
VOLTAGE (V)
4
2.4 A
2.0 A
2
1.6 A
1.2 A
1
8
3.2 A
2.8 A
2.4 A
6
2.0 A
1.6 A
4
1.2 A
2
0.8 A
0.8 A
0.4 A
0
80
60
40
20
0
80
0
60
TEMPERATURE (Th - Tc) (˚C)
40
0.4 A
20
0
TEMPERATURE (Th - Tc) (˚C)
KMPDB0165EA
KMPDB0166EA
Figure 9 Voltage vs. temperature (Tc=20 °C)
Figure 10 Heat absorption vs. temperature (Tc=20 °C)
5
10
3.2 A
2.8 A
3.2 A
HEAT ABSORPTION (W)
4
VOLTAGE (V)
2.4 A
3
2.0 A
2
1.6 A
1.2 A
0.8 A
1
8
2.8 A
2.4 A
2.0 A
6
1.6 A
4
1.2 A
2
0.8 A
0.4 A
0
80
60
40
0.4 A
20
0
80
0
TEMPERATURE (Th - Tc) (˚C)
60
40
KMPDB0168EA
■ Thermister characteristics
Condition
Ta=25 °C
0
TEMPERATURE (Th - Tc) (˚C)
KMPDB0167EA
Characteristics
Parameter
Resistance
B-constant
Operating
temperature
20
Value
10
3450
Unit
kΩ
k
-40 to +100
ºC
Resistance vs. temperature
Temperature (ºC)
-20
-10
0
10
20
25
30
40
Resistance (kΩ)
78.4
46.7
28.1
18.2
12.2
10.0
8.3
5.7
S5930/S5931 series
NMOS linear image sensor
■ TE-cooler type 2 (T-06E 108P-RNO)characteristics
(built-in S5930-256S, S5931-512S)
Parameter
Condition
Built-in resistance
Ta=25 °C
Maximum current
Tc -Th=20 °C
Maximum voltage
Tc -Th=80 °C
Maximum heat absorption
Tc -Th=20 °C
Figure 11 Voltage vs. temperature (Tc=0 °C)
Value
0.983
3.6
4.7
5.7
Unit
Ω
A
V
W
Figure 12 Heat absorption vs. temperature (Tc=0 °C)
5
10
3.2 A
4
HEAT ABSORPTION (W)
2.8 A
2.4 A
VOLTAGE (V)
2.0 A
3
2
1.6 A
1.2 A
1
8
3.2 A
2.8 A
6
2.4 A
2.0 A
1.6 A
4
1.2 A
2
0.8 A
0.4 A
0
80
60
40
0.8 A
20
0
80
0
60
TEMPERATURE (Th - Tc) (˚C)
40
0.4 A
20
0
TEMPERATURE (Th - Tc) (˚C)
KMPDB0169EA
Figure 13 Voltage vs. temperature (Tc=20 °C)
KMPDB0170EA
Figure 14 Heat absorption vs. temperature (Tc=20 °C)
5
10
3.2 A
2.8 A
HEAT ABSORPTION (W)
2.4 A
4
VOLTAGE (V)
2.0 A
3
2
1.6 A
1.2 A
1
8
3.2 A
2.8 A
6
2.4 A
2.0 A
1.6 A
4
1.2 A
2
0.8 A
0.8 A
0.4 A
0
80
60
40
0.4 A
20
0
TEMPERATURE (Th - Tc) (˚C)
0
80
60
40
20
0
TEMPERATURE (Th - Tc) (˚C)
KMPDB0171EA
KMPDB0172EA
Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions.
Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2005 Hamamatsu Photonics K.K.
HAMAMATSU PHOTONICS K.K., Solid State Division
1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81) 53-434-3311, Fax: (81) 53-434-5184, www.hamamatsu.com
U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P.O.Box 6910, Bridgewater, N.J. 08807-0910, U.S.A., Telephone: (1) 908-231-0960, Fax: (1) 908-231-1218
Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 08152-3750, Fax: (49) 08152-2658
France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71 10
United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, United Kingdom, Telephone: (44) 1707-294888, Fax: (44) 1707-325777
North Europe: Hamamatsu Photonics Norden AB: Smidesvägen 12, SE-171 41 Solna, Sweden, Telephone: (46) 8-509-031-00, Fax: (46) 8-509-031-01
Italy: Hamamatsu Photonics Italia S.R.L.: Strada della Moia, 1/E, 20020 Arese, (Milano), Italy, Telephone: (39) 02-935-81-733, Fax: (39) 02-935-81-741
Cat. No. KMPD1018E03
Oct. 2005 DN