IMAGE SENSOR NMOS linear image sensor S5930/S5931 series Built-in thermoelectric cooler ensures long exposure time and stable operation. NMOS linear image sensors are self-scanning photodiode arrays designed specifically as detectors for multichannel spectroscopy. The scanning circuit is made up of N-channel MOS transistors, operates at low power consumption and is easy to handle. Each photodiode has a large active area, high UV sensitivity yet very low noise. The built-in thermoelectric cooler (air cooled) allows a long exposure time achieving a high S/N even at low light levels. The cap uses a sapphire glass window hermetically welded for high reliability. Features Applications l Wide active area Pixel pitch: 50 µm (S5930 series) 25 µm (S5931 series) Pixel height: 2.5 mm l High UV sensitivity with good stability l Low dark current and high saturation charge allow a long integration time and a wide dynamic range at room temperature l Excellent output linearity and sensitivity spatial uniformity l Start pulse and clock pulses are CMOS logic compatible l Built-in air-cooled thermoelectric cooler (setting temperature: 0 ˚C) ■ Selection guide l Multichannel spectrophotometry l Image readout system Active area size [mm (H) × mm (V)] S5930-256S 256 12.8 × 2.5 50 × 2500 S5930-512S 512 25.6 × 2.5 S5931-512S 512 12.8 × 2.5 25 × 2500 S5931-1024S 1024 25.6 × 2.5 In addition to S5930/S5931 series, Hamamatsu provides S8382/S8383 series thermoelectrically cooled NMOS linear image sensors that offer higher sensitivity in the near IR range. Major characteristics of S8382/S8383 series are almost identical with S5930/S5931 series except that the peak sensitivity wavelength is 750 nm (see Figure 5) and the saturation charge is 90 m lx s. Type No. Number of pixels Pixel size [µm (H) × µm (V)] NMOS linear image sensor Figure 1 Equivalent circuit st 1 CLOCK 2 Figure 2 Active area structure DIGITAL SHIFT REGISTER (MOS SHIFT REGISTER) END OF SCAN 2.5 mm START CLOCK S5930/S5931 series ACTIVE VIDEO ACTIVE PHOTODIODE Vss b SATURATION CONTROL GATE SATURATION CONTROL DRAIN 1.0 µm a DUMMY VIDEO OXIDATION SILICON 1.0 µm N TYPE SILICON 400 µm DUMMY DIODE KMPDC0020EA P TYPE SILICON S5930 SERIES: a=50 µm, b=45 µm S5931 SERIES: a=25 µm, b=20 µm KMPDA0132EA ■ Absolute maximum ratings Parameter Symbol Value Unit 15 V Input pulse (φ1, φ2, φst) voltage Vφ Operating temperature * 1 Topr -40 to +65 °C Storage temperature Tstg -40 to +85 °C *1: No condensation. Ambient temperature should be less than the element cooling temperature +35 °C. (Example: Ambient temperature should be less than 35 °C in order to keep the element temperature at 0 °C.) ■ Specifications (Ta=25 °C, unless otherwise noted) Parameter Symbol Min. - S5930 series Typ. Max. 50 2.5 - Pixel pitch Pixel height Spectral response range 200 to 1000 λ (10 % of peak) Peak sensitivity wavelength 600 λp 25 °C 0.2 0.6 ID Photodiode dark current * 0 °C 0.006 0.018 2 Photodiode capacitance * Cph 20 Saturation exposure *2, *3 Esat 180 Saturation output charge *2 Qsat 50 Photo response non-uniformity *4 PRNU ±3 *2: Vb=2.0 V, Vφ=5.0 V *3: 2856 K, tungsten lamp *4: 50 % of saturation, excluding the start pixel and last pixel Min. - S5931 series Typ. Max. 25 2.5 200 to 1000 - 600 0.1 0.003 10 180 25 - Unit µm mm nm 0.3 0.009 ±3 nm pA pF mlx · s pC % S5930/S5931 series NMOS linear image sensor ■ Electrical characteristics (Ta=25 °C) Parameter Symbol High Vφ1, Vφ2 (H) Low Vφ1, Vφ2 (L) High Vφs (H) Start pulse (φst) voltage Low Vφs (L) Video bias voltage *5 Vb Saturation control gate voltage Vscg Saturation control drain voltage Vscd trφ1, trφ2 Clock pulse (φ1, φ2) rise/fall time *6 tfφ1, tfφ2 Clock pulse (φ1, φ2) pulse width tpwφ1, tpwφ2 Start pulse (φst) rise/fall time trφs, tfφs Start pulse (φst) pulse width tpwφs Start pulse (φst) and clock pulse tφov (φ2) overlap 6 Clock pulse space * X1, X2 Data rate *7 f Condition Min. 4.5 0 4.5 0 1.5 - Clock pulse (φ1, φ2) voltage Video delay time Clock pulse (φ1, φ2) line capacitance Saturation control gate (Vscg) line capacitance Video line capacitance tvd 50 % of saturation *7, *8 Cφ 5 V bias Cscg 5 V bias CV 2 V bias S5930 series Typ. Max. 5 10 0.4 10 Vφ1 0.4 Vφ - 3.0 Vφ - 2.5 0 Vb - Min. 4.5 0 4.5 0 1.5 - S5931 series Typ. Max. 5 10 0.4 10 Vφ1 0.4 Vφ - 3.0 Vφ - 2.5 0 Vb - Unit V V V V V V V - 20 - - 20 - ns 200 200 20 - - 200 200 20 - - ns ns ns 200 - - 200 - - ns 2000 - ns kHz ns trf - 20 0.1 120 (-256S) 2000 - trf - 20 0.1 150 (-512S) - 160 (-512S) - - 200 (-1024S) - ns - 36 (-256S) 67 (-512S) 20 (-256S) 35 (-512S) 11 (-256S) 20 (-512S) - - 50 (-512S) 100 (-1024S) 24 (-512S) 45 (-1024S) 16 (-512S) 30 (-1024S) - pF pF pF pF pF pF *5: Vφ is input pulse voltage. *6: trf is the clock pulse rise or fall time. A clock pulse space of rise time/fall time - 20 ns (nanoseconds) or more should be input if the clock pulse rise or fall time is longer than 20 ns. *7: Vb=2.0 V, Vφ=5.0 V *8: Measured with C7883 driver circuit. Figure 3 Dimensional outlines (unit: mm) S5930-256S, S5931-512S S5930-512S, S5931-1024S 4.05 ± 0.4 *2 12.8 4.05 ± 0.4 *2 0.8 *1 0.8 *1 5.0 32.0 ± 0.3 40.64 ± 0.3 50.0 0.46 2.54 27.94 7.65 ± 0.5 58.84 0.46 *1: Thickness of sapphire glass *2: Distance from the surface of sapphire glass to the chip surface KMPDA0089JA 2.54 27.94 7.65 ± 0.5 5.0 14.99 ± 0.25 4.0 12.0 2.5 14.99 ± 0.25 4.0 12.0 2.5 25.6 *1: Thickness of sapphire glass *2: Distance from the surface of sapphire glass to the chip surface KMPDA0090JA NMOS linear image sensor S5930/S5931 series Figure 4 Pin connection NC 1 24 st NC 2 23 1 Vss 3 22 2 Vscg 4 21 NC Vsub 5 20 NC NC 6 19 TE-COOLER + THERMISTOR 7 18 TE-COOLER - THERMISTOR 8 17 END OF SCAN NC 9 16 NC Vscd 10 15 DUMMY VIDEO NC 11 14 ACTIVE VIDEO NC 12 13 Vss Vss, Vsub and NC should be grounded. Electricity flows between the 20th pin and package metal. KMPDC0115EA Terminal Input or output Input (CMOS logic compatible) φ1, φ2 Vss Vscg Input (CMOS logic compatible) Input Vscd Input φst Active video Output Dummy video Output Vsub - End of scan Output (CMOS logic compatible) NC TE-cooler Thermistor Input Output Figure 5 Spectral response (typical example) Description Pulses for operating the MOS shift register. The video data rate is equal to the clock pulse frequency since the video output signal is obtained synchronously with the rise of φ2 pulse. Pulse for starting the MOS shift register operation. The time interval between start pulses is equal to the signal accumulation time. Connected to the anode of each photodiode. This should be grounded. Used for restricting blooming. This should be grounded. Used for restricting blooming. This should be biased at a voltage equal to the video bias voltage. Video output signal. Connects to photodiode cathodes when the address is on. A positive voltage should be applied to the video line in order to use photodiodes with a reverse voltage. When the amplitude of φ1 and φ2 is 5 V, a video bias voltage of 2 V is recommended. This has the same structure as the active video, but is not connected to photodiodes, so only spike noise is output. This should be biased at a voltage equal to the active video or left as an open-circuit when not needed. Connected to the silicon substrate. This should be grounded. This should be pulled up at 5 V by using a 10 kΩ resistor. This is a negative going pulse that appears synchronously with the φ2 timing right after the last photodiode is addressed. Should be grounded. For sensor chip cooling For temperature control Figure 6 Output charge vs. exposure (Ta=25 ˚C) 0.5 102 (Typ. Vb=2 V, V =5 V, light source: 2856 K) SATURATION CHARGE 1 0.4 10 OUTPUT CHARGE (pC) PHOTO SENSITIVITY (A/W) IR HIGH-SENSITIVITY TYPE S8382/S8383 SERIES 0.3 0.2 S5930 SERIES 100 S5931 SERIES -1 10 SATURATION EXPOSURE 10-2 0.1 S5930/S5931 SERIES 0 200 400 600 800 WAVELENGTH (nm) 1000 1200 KMPDB0163EA 10-3 -5 10 -4 10 -3 10 -2 10 EXPOSURE (lx · s) -1 10 0 10 KMPDB0164EA NMOS linear image sensor S5930/S5931 series ■ TE-cooler type 1 (T-06E 144P-RNO)characteristics (built-in S5930-512S, S5931-1024S) Parameter Condition Built-in resistance Ta=25 °C Maximum current Tc -Th=20 °C Maximum voltage Tc -Th=80 °C Maximum heat absorption Tc -Th=20 °C Value 1.25 3.6 6.2 7.5 Figure 7 Voltage vs. temperature (Tc=0 °C) Unit Ω A V W Figure 8 Heat absorption vs. temperature (Tc=0 °C) 5 10 3.2 A 2.8 A 3 HEAT ABSORPTION (W) VOLTAGE (V) 4 2.4 A 2.0 A 2 1.6 A 1.2 A 1 8 3.2 A 2.8 A 2.4 A 6 2.0 A 1.6 A 4 1.2 A 2 0.8 A 0.8 A 0.4 A 0 80 60 40 20 0 80 0 60 TEMPERATURE (Th - Tc) (˚C) 40 0.4 A 20 0 TEMPERATURE (Th - Tc) (˚C) KMPDB0165EA KMPDB0166EA Figure 9 Voltage vs. temperature (Tc=20 °C) Figure 10 Heat absorption vs. temperature (Tc=20 °C) 5 10 3.2 A 2.8 A 3.2 A HEAT ABSORPTION (W) 4 VOLTAGE (V) 2.4 A 3 2.0 A 2 1.6 A 1.2 A 0.8 A 1 8 2.8 A 2.4 A 2.0 A 6 1.6 A 4 1.2 A 2 0.8 A 0.4 A 0 80 60 40 0.4 A 20 0 80 0 TEMPERATURE (Th - Tc) (˚C) 60 40 KMPDB0168EA ■ Thermister characteristics Condition Ta=25 °C 0 TEMPERATURE (Th - Tc) (˚C) KMPDB0167EA Characteristics Parameter Resistance B-constant Operating temperature 20 Value 10 3450 Unit kΩ k -40 to +100 ºC Resistance vs. temperature Temperature (ºC) -20 -10 0 10 20 25 30 40 Resistance (kΩ) 78.4 46.7 28.1 18.2 12.2 10.0 8.3 5.7 S5930/S5931 series NMOS linear image sensor ■ TE-cooler type 2 (T-06E 108P-RNO)characteristics (built-in S5930-256S, S5931-512S) Parameter Condition Built-in resistance Ta=25 °C Maximum current Tc -Th=20 °C Maximum voltage Tc -Th=80 °C Maximum heat absorption Tc -Th=20 °C Figure 11 Voltage vs. temperature (Tc=0 °C) Value 0.983 3.6 4.7 5.7 Unit Ω A V W Figure 12 Heat absorption vs. temperature (Tc=0 °C) 5 10 3.2 A 4 HEAT ABSORPTION (W) 2.8 A 2.4 A VOLTAGE (V) 2.0 A 3 2 1.6 A 1.2 A 1 8 3.2 A 2.8 A 6 2.4 A 2.0 A 1.6 A 4 1.2 A 2 0.8 A 0.4 A 0 80 60 40 0.8 A 20 0 80 0 60 TEMPERATURE (Th - Tc) (˚C) 40 0.4 A 20 0 TEMPERATURE (Th - Tc) (˚C) KMPDB0169EA Figure 13 Voltage vs. temperature (Tc=20 °C) KMPDB0170EA Figure 14 Heat absorption vs. temperature (Tc=20 °C) 5 10 3.2 A 2.8 A HEAT ABSORPTION (W) 2.4 A 4 VOLTAGE (V) 2.0 A 3 2 1.6 A 1.2 A 1 8 3.2 A 2.8 A 6 2.4 A 2.0 A 1.6 A 4 1.2 A 2 0.8 A 0.8 A 0.4 A 0 80 60 40 0.4 A 20 0 TEMPERATURE (Th - Tc) (˚C) 0 80 60 40 20 0 TEMPERATURE (Th - Tc) (˚C) KMPDB0171EA KMPDB0172EA Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2005 Hamamatsu Photonics K.K. HAMAMATSU PHOTONICS K.K., Solid State Division 1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81) 53-434-3311, Fax: (81) 53-434-5184, www.hamamatsu.com U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P.O.Box 6910, Bridgewater, N.J. 08807-0910, U.S.A., Telephone: (1) 908-231-0960, Fax: (1) 908-231-1218 Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 08152-3750, Fax: (49) 08152-2658 France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71 10 United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, United Kingdom, Telephone: (44) 1707-294888, Fax: (44) 1707-325777 North Europe: Hamamatsu Photonics Norden AB: Smidesvägen 12, SE-171 41 Solna, Sweden, Telephone: (46) 8-509-031-00, Fax: (46) 8-509-031-01 Italy: Hamamatsu Photonics Italia S.R.L.: Strada della Moia, 1/E, 20020 Arese, (Milano), Italy, Telephone: (39) 02-935-81-733, Fax: (39) 02-935-81-741 Cat. No. KMPD1018E03 Oct. 2005 DN