HOLTEK HT46R48E

HT46R48E
Cost-Effective A/D Type 8-Bit OTP MCU
Technical Document
· Tools Information
· FAQs
· Application Note
- HA0049E Read and Write Control of the HT1380
- HA0051E Li Battery Charger Demo Board - Using the HT46R47
- HA0052E Microcontroller Application - Battery Charger
- HA0083E Li Battery Charger Demo Board - Using the HT46R46
- HA0085E 8-bit Pseudo-Random Number Generator
Features
· Operating voltage:
· HALT function and wake-up feature reduce power
fSYS=4MHz: 2.2V~5.5V
fSYS=8MHz: 3.3V~5.5V
consumption
· Up to 0.5ms instruction cycle with 8MHz system clock
· 19 bidirectional I/O lines (max.)
at VDD=5V
· 1 interrupt input shared with an I/O line
· 6-level subroutine nesting
· 8-bit programmable timer/event counter with overflow
· 4 channels 9-bit resolution A/D converter
interrupt and 7-stage prescaler
· 1 channel 8-bit PWM output shared with an I/O line
· On-chip crystal and RC oscillator
· Bit manipulation instruction
· Watchdog Timer
· 14-bit table read instruction
· 2048´14 program memory
· 63 powerful instructions
· 64´8 data memory RAM
· All instructions in one or two machine cycles
· 128´8 data EEPROM
· Low voltage reset function
· Supports PFD for sound generation
· 24-pin SKDIP/SOP/SSOP package
General Description
The advantages of low power consumption, I/O flexibility, programmable frequency divider, timer functions,
oscillator options, multi-channel A/D Converter, Pulse
Width Modulation function, HALT and wake-up functions, enhance the versatility of these devices to suit a
wide range of A/D application possibilities such as sensor signal processing, motor driving, industrial control,
consumer products, subsystem controllers, etc.
The HT46R48E are 8-bit, high performance, RISC architecture microcontroller devices specifically designed
for A/D applications that interface directly to analog signals, such as those from sensors.
There are two dice in the HT46R48E package: one is
the HT46R48 MCU, the other is a 128´8 bits EEPROM
used for data memory purpose. The two dice are
wire-bonded to form HT46R48E.
Rev. 1.10
1
March 24, 2006
HT46R48E
Block Diagram
P A 5 /IN T
In te rru p t
C ir c u it
P ro g ra m
R O M
M
T M R C
S T A C K
P ro g ra m
C o u n te r
IN T C
T M R
P A 3 /P F D
In s tr u c tio n
R e g is te r
M
M P
U
P o rt D
P D
Y S
P A 4 /T M R
X
P A 4
fS
U
Y S
/4
W D T O S C
X
P D 0 /P W M
M U X
In s tr u c tio n
D e c o d e r
P C C
A L U
P A 3 , P A 5
S
S
A C C
P C 0 /S D A ~
P C 1 /S C L
4 -C h a n n e l
A /D C o n v e rte r
P B C
C 1
P o rt C
P C
S T A T U S
S h ifte r
T im in g
G e n e ra to r
O S
R E
V D
V S
fS
P W M
P D C
O S C 2
P r e s c a le r
M
W D T
D A T A
M e m o ry
X
U
P o rt B
P B
L V R
D
P A C
P o rt A
P A
P B 0 /A N 0 ~ P B 3 /A N 3
P B 4 ~ P B 7
P A
P A
P A
P A
P A
0 ~ P
3 /P
4 /T
5 /IN
6 ~ P
A 2
F D
M R
T
A 7
Data EEPROM
S C L
S D A
I/O
C o n tro l
L o g ic
H V P u m p
X
D
E E P R O M
A rra y
E
M e m o ry
C o n tro l
L o g ic
C
P a g e B u f
Y D E C
A d d re s s
C o u n te r
S e n s e A M P
R /W C o n tro l
V C C
V S S
Rev. 1.10
2
March 24, 2006
HT46R48E
Pin Assignment
P B 5
1
2 4
P B 6
P B 4
2
2 3
P B 7
P A 3 /P F D
3
2 2
P A 4 /T M R
P A 2
4
2 1
P A 5 /IN T
P A 1
5
2 0
P A 6
P A 0
6
1 9
P A 7
P B 3 /A N 3
7
1 8
O S C 2
P B 2 /A N 2
8
1 7
O S C 1
P B 1 /A N 1
9
1 6
V D D
P B 0 /A N 0
1 0
1 5
R E S
V S S
1 1
1 4
P D 0 /P W M
P C 0 /S D A
1 2
1 3
P C 1 /S C L
H T 4 6 R 4 8 E
2 4 S K D IP -A /S O P -A /S S O P -A
Pin Description
Pad Name
I/O
Options
Description
I/O
Pull-high
Wake-up
PA3 or PFD
Bidirectional 8-bit input/output port. Each Pin can be configured as
wake-up input by options. Software instructions determine the CMOS output or Schmitt trigger input with or without pull-high resistor (determined by
pull-high options: bit option). The PFD, TMR and INT are pin-shared with
PA3, PA4 and PA5, respectively.
Pull-high
Bidirectional 8-bit input/output port. Software instructions determine the
CMOS output, Schmitt trigger input with or without pull-high resistor (determined by pull-high options: bit option) or A/D input.
Once a PB line is selected as an A/D input (by using software control), the
I/O function and pull-high resistor are disabled automatically.
I/O
Pull-high
Bidirectional 2-bit input/output port. Software instructions determine the
CMOS output or Schmitt trigger input with or without pull-high resistor (determined by pull-high options: bit option).
PC0 is wire-bonded with SDA pad of the Data EEPROM.
PC1 is wire-bonded with SCL pad of the Data EEPROM
I/O
Pull-high
PD0 or PWM
Bidirectional I/O line. Software instructions determine the CMOS output,
Schmitt trigger input with or without a pull-high resistor (determined by
pull-high options: bit option). The PWM output function is pin-shared with
PD0 (dependent on PWM options).
RES
I
¾
Schmitt trigger reset input. Active low.
VDD
¾
¾
Positive power supply
VSS
¾
¾
Negative power supply, ground.
OSC1
OSC2
I
O
Crystal or RC
PA0~PA2
PA3/PFD
PA4/TMR
PA5/INT
PA6, PA7
PB0/AN0
PB1/AN1
PB2/AN2
PB3/AN3
PB4~PB7
PC0/SDA
PC1/SCL
PD0/PWM
I/O
OSC1, OSC2 are connected to an RC network or a Crystal (determined by
options) for the internal system clock. In the case of RC operation, OSC2 is
the output terminal for 1/4 system clock.
Absolute Maximum Ratings
Supply Voltage ...........................VSS-0.3V to VSS+6.0V
Storage Temperature ............................-50°C to 125°C
Input Voltage..............................VSS-0.3V to VDD+0.3V
Operating Temperature...........................-40°C to 85°C
Note: These are stress ratings only. Stresses exceeding the range specified under ²Absolute Maximum Ratings² may
cause substantial damage to the device. Functional operation of this device at other conditions beyond those
listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.
Rev. 1.10
3
March 24, 2006
HT46R48E
D.C. Characteristics
HT46R48
Ta=25°C
Test Conditions
Symbol
Parameter
VDD
IDD1
IDD2
Min.
Typ.
Max.
Unit
Conditions
VDD
¾
fSYS=4MHz
2.2
¾
5.5
V
¾
fSYS=8MHz
3.3
¾
5.5
V
Operating Current
(Crystal OSC)
3V
No load, fSYS=4MHz
ADC disable
¾
0.6
1.5
mA
¾
2
4
mA
Operating Current
(RC OSC)
3V
¾
0.8
1.5
mA
¾
2.5
4
mA
¾
4
8
mA
¾
¾
5
mA
¾
¾
10
mA
¾
¾
1
mA
¾
¾
2
mA
Operating Voltage
IDD3
Operating Current
(Crystal OSC, RC OSC)
ISTB1
Standby Current
(WDT Enabled)
5V
5V
5V
3V
5V
3V
No load, fSYS=4MHz
ADC disable
No load, fSYS=8MHz
ADC disable
No load,
system HALT
Standby Current
(WDT Disabled)
5V
VIL1
Input Low Voltage for I/O Ports,
TMR and INT
¾
¾
0
¾
0.3VDD
V
VIH1
Input High Voltage for I/O Ports,
TMR and INT
¾
¾
0.7VDD
¾
VDD
V
VIL2
Input Low Voltage (RES)
¾
¾
0
¾
0.4VDD
V
VIH2
Input High Voltage (RES)
¾
¾
0.9VDD
¾
VDD
V
VLVR
Low Voltage Reset
¾
¾
2.7
3
3.3
V
IOL
3V
VOL=0.1VDD
4
8
¾
mA
I/O Port Sink Current
5V
VOL=0.1VDD
10
20
¾
mA
3V
VOH=0.9VDD
-2
-4
¾
mA
5V
VOH=0.9VDD
-5
-10
¾
mA
ISTB2
IOH
RPH
I/O Port Source Current
No load,
system HALT
3V
¾
20
60
100
kW
5V
¾
10
30
50
kW
Pull-high Resistance
VAD
A/D Input Voltage
¾
¾
0
¾
VDD
V
EAD
A/D Conversion Error
¾
¾
¾
±0.5
±1
LSB
IADC
Additional Power Consumption
if A/D Converter is Used
3V
¾
0.5
1
mA
¾
1.5
3
mA
Rev. 1.10
¾
5V
4
March 24, 2006
HT46R48E
EEPROM D.C. Characteristics
Ta=25°C
Test Conditions
Symbol
Parameter
VCC
Conditions
¾
Min.
Typ.
Max.
Unit
2.2
¾
5.5
V
VCC
Operating Voltage
¾
ICC1
Operating Current
5V
Read at 100kHz
¾
¾
2
mA
ICC2
Operating Current
5V
Write at 100kHz
¾
¾
5
mA
VIL
Input Low Voltage
¾
¾
-1
¾
0.3VCC
V
VIH
Input High Voltage
¾
¾
0.7VCC
¾
VCC+0.5
V
VOL
Output Low Voltage
2.4V
IOL=2.1mA
¾
¾
0.4
V
ILI
Input Leakage Current
5V
VIN=0 or VCC
¾
¾
1
mA
ILO
Output Leakage Current
5V
VOUT=0 or VCC
¾
¾
1
mA
ISTB1
Standby Current
5V
VIN=0 or VCC
¾
¾
4
mA
ISTB2
Standby Current
2.4V
VIN=0 or VCC
¾
¾
3
mA
CIN
Input Capacitance (See Note)
¾
f=1MHz 25°C
¾
¾
6
pF
COUT
Output Capacitance (See Note)
¾
f=1MHz 25°C
¾
¾
8
pF
Note:
These parameters are periodically sampled but not 100% tested
VCC pad is wire-bonded to VDD pad of the HT46R48 die.
A.C. Characteristics
Ta=25°C
HT46R48
Test Conditions
Symbol
Parameter
fSYS
fTIMER
tWDTOSC
System Clock
(Crystal OSC, RC OSC)
Timer I/P Frequency
(TMR)
Min.
Typ.
Max.
Unit
Conditions
VDD
¾
2.2V~5.5V
400
¾
4000
kHz
¾
3.3V~5.5V
400
¾
8000
kHz
¾
2.2V~5.5V
0
¾
4000
kHz
¾
3.3V~5.5V
0
¾
8000
kHz
3V
¾
45
90
180
ms
5V
¾
32
65
130
ms
Watchdog Oscillator Period
tWDT1
Watchdog Time-out Period
(RC OSC)
¾
¾
215
¾
216
tWDTOSC
tWDT2
Watchdog Time-out Period
(System Clock)
¾
¾
217
¾
218
tSYS
tRES
External Reset Low Pulse Width
¾
¾
1
¾
¾
ms
tSST
System Start-up Timer Period
¾
Wake-up from HALT
¾
1024
¾
*tSYS
tLVR
Low Voltage Width to Reset
¾
¾
0.25
1
2
ms
tINT
Interrupt Pulse Width
¾
¾
1
¾
¾
ms
tAD
A/D Clock Period
¾
¾
1
¾
¾
ms
tADC
A/D Conversion Time
¾
¾
¾
76
¾
tAD
tADCS
A/D Sampling Time
¾
¾
¾
32
¾
tAD
Note: *tSYS=1/fSYS
Rev. 1.10
5
March 24, 2006
HT46R48E
EEPROM A.C. Characteristics
Ta=25°C
Standard Mode*
Symbol
Parameter
Remark
VCC=5V±10%
Min.
Max.
Min.
Max.
Unit
fSK
Clock Frequency
¾
¾
100
¾
400
kHz
tHIGH
Clock High Time
¾
4000
¾
600
¾
ns
tLOW
Clock Low Time
¾
4700
¾
1200
¾
ns
tr
SDA and SCL Rise Time
Note
¾
1000
¾
300
ns
tf
SDA and SCL Fall Time
Note
¾
300
¾
300
ns
tHD:STA
START Condition Hold Time
After this period the first
clock pulse is generated
4000
¾
600
¾
ns
tSU:STA
START Condition Setup Time
Only relevant for repeated
START condition
4000
¾
600
¾
ns
tHD:DAT
Data Input Hold Time
¾
0
¾
0
¾
ns
tSU:DAT
Data Input Setup Time
¾
200
¾
100
¾
ns
tSU:STO
STOP Condition Setup Time
¾
4000
¾
600
¾
ns
tAA
Output Valid from Clock
¾
¾
3500
¾
900
ns
tBUF
Bus Free Time
Time in which the bus must
be free before a new transmission can start
4700
¾
1200
¾
ns
tSP
Input Filter Time Constant
(SDA and SCL Pins)
Noise suppression time
¾
100
¾
50
ns
tWR
Write Cycle Time
¾
5
¾
5
ms
Note:
¾
These parameters are periodically sampled but not 100% tested
* The standard mode means VCC=2.2V to 5.5V
For relative timing, refer to timing diagrams
Rev. 1.10
6
March 24, 2006
HT46R48E
Functional Description
Execution Flow
incremented by one. The program counter then points to
the memory word containing the next instruction code.
The system clock for the microcontroller is derived from
either a crystal or an RC oscillator. The system clock is
internally divided into four non-overlapping clocks. One
instruction cycle consists of four system clock cycles.
When executing a jump instruction, conditional skip execution, loading PCL register, subroutine call, initial reset, internal interrupt, external interrupt or return from
subroutine, the PC manipulates the program transfer by
loading the address corresponding to each instruction.
Instruction fetching and execution are pipelined in such
a way that a fetch takes an instruction cycle while decoding and execution takes the next instruction cycle.
However, the pipelining scheme causes each instruction to effectively execute in a cycle. If an instruction
changes the program counter, two cycles are required to
complete the instruction.
The conditional skip is activated by instructions. Once
the condition is met, the next instruction, fetched during
the current instruction execution, is discarded and a
dummy cycle replaces it to get the proper instruction.
Otherwise proceed with the next instruction.
The lower byte of the program counter (PCL) is a readable and writeable register (06H). Moving data into the
PCL performs a short jump. The destination will be
within 256 locations.
Program Counter - PC
The program counter (PC) controls the sequence in
which the instructions stored in program ROM are executed and its contents specify full range of program
memory.
When a control transfer takes place, an additional
dummy cycle is required.
After accessing a program memory word to fetch an instruction code, the contents of the program counter are
S y s te m
C lo c k
T 1
T 2
T 3
T 4
T 1
T 2
T 3
T 4
T 1
T 2
T 3
T 4
O S C 2 ( R C o n ly )
P C
P C
P C + 1
F e tc h IN S T (P C )
E x e c u te IN S T (P C -1 )
P C + 2
F e tc h IN S T (P C + 1 )
E x e c u te IN S T (P C )
F e tc h IN S T (P C + 2 )
E x e c u te IN S T (P C + 1 )
Execution Flow
Program Counter
Mode
*10
*9
*8
*7
*6
*5
*4
*3
*2
*1
*0
Initial Reset
0
0
0
0
0
0
0
0
0
0
0
External Interrupt
0
0
0
0
0
0
0
0
1
0
0
Timer/Event Counter Overflow
0
0
0
0
0
0
0
1
0
0
0
A/D Converter Interrupt
0
0
0
0
0
0
0
1
1
0
0
Skip
Program Counter+2
Loading PCL
*10
*9
*8
@7
@6
@5
@4
@3
@2
@1
@0
Jump, Call Branch
#10
#9
#8
#7
#6
#5
#4
#3
#2
#1
#0
Return from Subroutine
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
S0
Program Counter
Note:
*10~*0: Program counter bits
#10~#0: Instruction code bits
Rev. 1.10
S10~S0: Stack register bits
@7~@0: PCL bits
7
March 24, 2006
HT46R48E
· Location 00CH
Program Memory - ROM
This area is reserved for the A/D converter interrupt
service program. If an A/D converter interrupt results
from an end of A/D conversion, and if the interrupt is
enabled and the stack is not full, the program begins
execution at location 00CH.
The program memory is used to store the program instructions which are to be executed. It also contains
data, table, and interrupt entries, and is organized into
2048´14 bits, addressed by the program counter and table pointer.
· Table location
Certain locations in the program memory are reserved
for special usage:
Any location in the ROM space can be used as
look-up tables. The instructions ²TABRDC [m]² (the
current page, 1 page=256 words) and ²TABRDL [m]²
(the last page) transfer the contents of the lower-order
byte to the specified data memory, and the
higher-order byte to TBLH (08H). Only the destination
of the lower-order byte in the table is well-defined, the
other bits of the table word are transferred to the lower
portion of TBLH, and the remaining 2 bits are read as
²0². The Table Higher-order byte register (TBLH) is
read only. The table pointer (TBLP) is a read/write register (07H), which indicates the table location. Before
accessing the table, the location must be placed in
TBLP. The TBLH is read only and cannot be restored.
If the main routine and the ISR (Interrupt Service Routine) both employ the table read instruction, the contents of the TBLH in the main routine are likely to be
changed by the table read instruction used in the ISR.
Errors can occur. In other words, using the table read
instruction in the main routine and the ISR simultaneously should be avoided. However, if the table read
instruction has to be applied in both the main routine
and the ISR, the interrupt is supposed to be disabled
prior to the table read instruction. It will not be enabled
until the TBLH has been backed up. All table related
instructions require two cycles to complete the operation. These areas may function as normal program
memory depending upon the requirements.
· Location 000H
This area is reserved for program initialization. After
chip reset, the program always begins execution at location 000H.
· Location 004H
This area is reserved for the external interrupt service
program. If the INT input pin is activated, the interrupt
is enabled and the stack is not full, the program begins
execution at location 004H.
· Location 008H
This area is reserved for the timer/event counter interrupt service program. If a timer interrupt results from a
timer/event counter overflow, and if the interrupt is enabled and the stack is not full, the program begins execution at location 008H.
0 0 0 H
D e v ic e In itia liz a tio n P r o g r a m
0 0 4 H
0 0 8 H
E x te r n a l In te r r u p t S u b r o u tin e
T im e r /E v e n t C o u n te r In te r r u p t S u b r o u tin e
0 0 C H
A /D
C o n v e r te r In te r r u p t S u b r o u tin e
P ro g ra m
M e m o ry
n 0 0 H
Stack Register - STACK
This is a special part of the memory which is used to
save the contents of the program counter only. The
stack is organized into 6 levels and is neither part of the
data nor part of the program space, and is neither readable nor writeable. The activated level is indexed by the
stack pointer (SP) and is neither readable nor writeable.
At a subroutine call or interrupt acknowledgment, the
contents of the program counter are pushed onto the
stack. At the end of a subroutine or an interrupt routine,
signaled by a return instruction (RET or RETI), the program counter is restored to its previous value from the
L o o k - u p T a b le ( 2 5 6 w o r d s )
n F F H
7 0 0 H
L o o k - u p T a b le ( 2 5 6 w o r d s )
7 F F H
1 4 b its
N o te : n ra n g e s fro m
0 to 7
Program Memory
Table Location
Instruction
*10
*9
*8
*7
*6
*5
*4
*3
*2
*1
*0
TABRDC [m]
P10
P9
P8
@7
@6
@5
@4
@3
@2
@1
@0
TABRDL [m]
1
1
1
@7
@6
@5
@4
@3
@2
@1
@0
Table Location
Note:
*10~*0: Table location bits
@7~@0: Table pointer bits
Rev. 1.10
P10~P8: Current program counter bits
8
March 24, 2006
HT46R48E
stack. After a chip reset, the SP will point to the top of the
stack.
In d ir e c t A d d r e s s in g R e g is te r
0 1 H
M P
0 2 H
If the stack is full and a non-masked interrupt takes
place, the interrupt request flag will be recorded but the
acknowledgment will be inhibited. When the stack
pointer is decremented (by RET or RETI), the interrupt
will be serviced. This feature prevents stack overflow allowing the programmer to use the structure more easily.
In a similar case, if the stack is full and a ²CALL² is subsequently executed, stack overflow occurs and the first
entry will be lost (only the most recent 6 return addresses are stored).
0 3 H
0 4 H
0 5 H
A C C
0 6 H
P C L
0 7 H
T B L P
0 8 H
T B L H
0 9 H
0 A H
S T A T U S
0 B H
IN T C
0 C H
Data Memory - RAM
0 D H
T M R
0 E H
T M R C
0 F H
1 0 H
The data memory is designed with 87´8 bits. The data
memory is divided into two functional groups: special
function registers and general purpose data memory
(64´8). Most are read/write, but some are read only.
1 1 H
The special function registers include the indirect addressing register (00H), timer/event counter
(TMR;0DH), timer/event counter control register
(TMRC;0EH), program counter lower-order byte register (PCL;06H), memory pointer register (MP;01H), accumulator (ACC;05H), table pointer (TBLP;07H), table
higher-order byte register (TBLH;08H), status register
(STATUS;0AH), interrupt control register (INTC;0BH),
PWM data register (PWM;1AH), the A/D result
lower-order byte register (ADRL;20H), the A/D result
higher-order byte register (ADRH;21H), the A/D control
register (ADCR;22H), the A/D clock setting register
(ACSR;23H), I/O registers (PA;12H, PB;14H, PC;16H,
PD;18H) and I/O control registers (PAC;13H,
PBC;15H, PCC;17H, PDC;19H). The remaining space
before the 40H is reserved for future expanded usage
and reading these locations will get ²00H². The general
purpose data memory, addressed from 40H to 7FH, is
used for data and control information under instruction
commands.
1 2 H
P A
1 3 H
P A C
1 4 H
P B
1 5 H
P B C
1 6 H
P C
1 7 H
P C C
1 8 H
P D
1 9 H
P D C
1 A H
P W M
S p e c ia l P u r p o s e
D a ta M e m o ry
1 B H
1 C H
1 D H
1 E H
1 F H
2 0 H
A D R L
2 1 H
A D R H
2 2 H
2 3 H
2 4 H
A D C R
3 F H
4 0 H
A C S R
G e n e ra l P u rp o s e
D a ta M e m o ry
(6 4 B y te s )
7 F H
: U n u s e d
R e a d a s "0 0 "
RAM Mapping
All of the data memory areas can handle arithmetic,
logic, increment, decrement and rotate operations directly. Except for some dedicated bits, each bit in the
data memory can be set and reset by ²SET [m].i² and
²CLR [m].i². They are also indirectly accessible through
memory pointer register (MP;01H).
Accumulator
The accumulator is closely related to ALU operations. It
is also mapped to location 05H of the data memory and
can carry out immediate data operations. The data
movement between two data memory locations must
pass through the accumulator.
Indirect Addressing Register
Location 00H is an indirect addressing register that is
not physically implemented. Any read/write operation of
[00H] accesses data memory pointed to by MP (01H).
Reading location 00H itself indirectly will return the result 00H. Writing indirectly results in no operation.
Arithmetic and Logic Unit - ALU
This circuit performs 8-bit arithmetic and logic operations. The ALU provides the following functions:
· Arithmetic operations (ADD, ADC, SUB, SBC, DAA)
· Logic operations (AND, OR, XOR, CPL)
The memory pointer register MP (01H) is a 7-bit register.
The bit 7 of MP is undefined and reading will return the
result ²1². Any writing operation to MP will only transfer the
lower 7-bit data to MP.
Rev. 1.10
0 0 H
· Rotation (RL, RR, RLC, RRC)
· Increment and Decrement (INC, DEC)
· Branch decision (SZ, SNZ, SIZ, SDZ ....)
9
March 24, 2006
HT46R48E
Once an interrupt subroutine is serviced, all the other interrupts will be blocked (by clearing the EMI bit). This
scheme may prevent any further interrupt nesting. Other
interrupt requests may happen during this interval but
only the interrupt request flag is recorded. If a certain interrupt requires servicing within the service routine, the
EMI bit and the corresponding bit of INTC may be set to
allow interrupt nesting. If the stack is full, the interrupt request will not be acknowledged, even if the related interrupt is enabled, until the stack pointer is decremented. If
immediate service is desired, the stack must be prevented from becoming full.
The ALU not only saves the results of a data operation but
also changes the status register.
Status Register - STATUS
This 8-bit register (0AH) contains the zero flag (Z), carry
flag (C), auxiliary carry flag (AC), overflow flag (OV),
power down flag (PDF), and watchdog time-out flag
(TO). It also records the status information and controls
the operation sequence.
With the exception of the TO and PDF flags, bits in
the status register can be altered by instructions like
most other registers. Any data written into the status
register will not change the TO or PDF flag. In addition operations related to the status register may give
different results from those intended. The TO flag
can be affected only by system power-up, a WDT
time-out or executing the ²CLR WDT² or ²HALT² instruction. The PDF flag can be affected only by executing the ²HALT² or ²CLR WDT² instruction or a
system power-up.
All these kinds of interrupts have a wake-up capability.
As an interrupt is serviced, a control transfer occurs by
pushing the program counter onto the stack, followed by
a branch to a subroutine at specified location in the program memory. Only the program counter is pushed onto
the stack. If the contents of the register or status register
(STATUS) are altered by the interrupt service program
which corrupts the desired control sequence, the contents should be saved in advance.
The Z, OV, AC and C flags generally reflect the status of
the latest operations.
External interrupts are triggered by a high to low transition of INT and the related interrupt request flag (EIF; bit
4 of INTC) will be set. When the interrupt is enabled, the
stack is not full and the external interrupt is active, a subroutine call to location 04H will occur. The interrupt request flag (EIF) and EMI bits will be cleared to disable
other interrupts.
In addition, on entering the interrupt sequence or executing the subroutine call, the status register will not be
pushed onto the stack automatically. If the contents of
the status are important and if the subroutine can corrupt the status register, precautions must be taken to
save it properly.
The internal timer/event counter interrupt is initialized by
setting the timer/event counter interrupt request flag
(TF;bit 5 of INTC), caused by a timer overflow. When the
interrupt is enabled, the stack is not full and the TF bit is
set, a subroutine call to location 08H will occur. The related interrupt request flag (TF) will be reset and the EMI
bit cleared to disable further interrupts.
Interrupt
The device provides an external interrupt, internal
timer/event counter interrupt and A/D converter interrupts. The Interrupt Control Register (INTC;0BH) contains the interrupt control bits to set the enable or disable
and the interrupt request flags.
Bit No.
Label
Function
0
C
C is set if the operation results in a carry during an addition operation or if a borrow does not
take place during a subtraction operation; otherwise C is cleared. C is also affected by a rotate through carry instruction.
1
AC
AC is set if the operation results in a carry out of the low nibbles in addition or no borrow from
the high nibble into the low nibble in subtraction; otherwise AC is cleared.
2
Z
Z is set if the result of an arithmetic or logic operation is zero; otherwise Z is cleared.
3
OV
OV is set if the operation results in a carry into the highest-order bit but not a carry out of the
highest-order bit, or vice versa; otherwise OV is cleared.
4
PDF
PDF is cleared by system power-up or executing the ²CLR WDT² instruction. PDF is set by
executing the ²HALT² instruction.
5
TO
TO is cleared by system power-up or executing the ²CLR WDT² or ²HALT² instruction. TO is
set by a WDT time-out.
6, 7
¾
Unused bit, read as ²0²
Status (0AH) Register
Rev. 1.10
10
March 24, 2006
HT46R48E
Bit No.
Label
Function
0
EMI
Controls the master (global) interrupt (1=enabled; 0=disabled)
1
EEI
Controls the external interrupt (1=enabled; 0=disabled)
2
ETI
Controls the Timer/Event Counter interrupt (1=enabled; 0=disabled)
3
EADI
4
EIF
External interrupt request flag (1=active; 0=inactive)
5
TF
Internal Timer/Event Counter request flag (1=active; 0=inactive)
6
ADF
7
¾
Controls the A/D converter interrupt (1=enabled; 0=disabled)
A/D converter request flag (1=active; 0=inactive)
For test mode used only.
Must be written as ²0²; otherwise may result in unpredictable operation.
INTC (0BH) Register
It is recommended that a program does not use the
CALL subroutine within the interrupt subroutine. Interrupts often occur in an unpredictable manner or
need to be serviced immediately in some applications.
If only one stack is left and enabling the interrupt is not
well controlled, the original control sequence will be damaged once the ²CALL² operates in the interrupt subroutine.
The A/D converter interrupt is initialized by setting the
A/D converter request flag (ADF; bit 6 of INTC), caused
by an end of A/D conversion. When the interrupt is enabled, the stack is not full and the ADF is set, a subroutine call to location 0CH will occur. The related interrupt
request flag (ADF) will be reset and the EMI bit cleared
to disable further interrupts.
During the execution of an interrupt subroutine, other interrupt acknowledgments are held until the RETI instruction is executed or the EMI bit and the related
interrupt control bit are set to 1 (of course, if the stack is
not full). To return from the interrupt subroutine, RET or
RETI may be invoked. RETI will set the EMI bit to enable
an interrupt service, but RET will not.
Oscillator Configuration
There are two oscillator circuits in the microcontroller.
V
O S C 1
Interrupts, occurring in the interval between the rising
edges of two consecutive T2 pulses, will be serviced on
the latter of the two T2 pulses, if the corresponding interrupts are enabled. In the case of simultaneous requests
the following table shows the priority that is applied.
These can be masked by resetting the EMI bit.
Interrupt Source
Priority
Vector
External Interrupt
1
04H
Timer/Event Counter Overflow
2
08H
A/D Converter Interrupt
3
0CH
4 7 0 p F
fS
O S C 2
Y S
O S C 1
O S C 2
/4
C r y s ta l O s c illa to r
R C
O s c illa to r
System Oscillator
Both are designed for system clocks, namely the RC oscillator and the Crystal oscillator, which are determined
by the options. No matter what oscillator type is selected, the signal provides the system clock. The HALT
mode stops the system oscillator and ignores an external signal to conserve power.
The timer/event counter interrupt request flag (TF), external interrupt request flag (EIF), A/D converter request
flag (ADF), enable timer/event counter bit (ETI), enable
external interrupt bit (EEI), enable A/D converter interrupt bit (EADI) and enable master interrupt bit (EMI)
constitute an interrupt control register (INTC) which is
located at 0BH in the data memory. EMI, EEI, ETI, EADI
are used to control the enabling/disabling of interrupts.
These bits prevent the requested interrupt from being
serviced. Once the interrupt request flags (TF, EIF, ADF)
are set, they will remain in the INTC register until the interrupts are serviced or cleared by a software instruction.
Rev. 1.10
D D
If an RC oscillator is used, an external resistor between
OSC1 and VSS is required and the resistance must
range from 24kW to 1MW. The system clock, divided by
4, is available on OSC2 with pull-high resistor, which
can be used to synchronize external logic. The RC oscillator provides the most cost effective solution. However, the frequency of oscillation may vary with VDD,
temperatures and the chip itself due to process variations. It is, therefore, not suitable for timing sensitive
operations where an accurate oscillator frequency is
desired.
11
March 24, 2006
HT46R48E
tion, only one can be active depending on the options ²CLR WDT times selection option². If the ²CLR WDT² is
selected (i.e. CLR WDT times equal one), any execution
of the ²CLR WDT² instruction will clear the WDT. In the
case that ²CLR WDT1² and ²CLR WDT2² are chosen
(i.e. CLR WDT times equal two), these two instructions
must be executed to clear the WDT; otherwise, the WDT
may reset the chip as a result of time-out.
If the Crystal oscillator is used, a crystal across OSC1
and OSC2 is needed to provide the feedback and phase
shift required for the oscillator, and no other external
components are required. Instead of a crystal, a resonator can also be connected between OSC1 and OSC2 to
get a frequency reference, but two external capacitors in
OSC1 and OSC2 are required (If the oscillating frequency is less than 1MHz).
The WDT oscillator is a free running on-chip RC oscillator,
and no external components are required. Even if the system enters the power down mode, the system clock is
stopped, but the WDT oscillator still works with a period of
approximately 65ms at 5V. The WDT oscillator can be disabled by options to conserve power.
Power Down Operation - HALT
The HALT mode is initialized by the ²HALT² instruction
and results in the following...
· The system oscillator will be turned off but the WDT
oscillator keeps running (if the WDT oscillator is selected).
Watchdog Timer - WDT
· The contents of the on chip RAM and registers remain
The clock source of WDT is implemented by a dedicated
RC oscillator (WDT oscillator) or instruction clock (system clock divided by 4), decided by options. This timer is
designed to prevent a software malfunction or sequence
from jumping to an unknown location with unpredictable
results. The Watchdog Timer can be disabled by an option. If the Watchdog Timer is disabled, all the executions related to the WDT result in no operation.
unchanged.
· WDT will be cleared and recounted again (if the WDT
clock is from the WDT oscillator).
· All of the I/O ports maintain their original status.
· The PDF flag is set and the TO flag is cleared.
The system can leave the HALT mode by means of an
external reset, an interrupt, an external falling edge signal on port A or a WDT overflow. An external reset
causes a device initialization and the WDT overflow performs a ²warm reset². After the TO and PDF flags are
examined, the reason for chip reset can be determined.
The PDF flag is cleared by system power-up or executing the ²CLR WDT² instruction and is set when executing the ²HALT² instruction. The TO flag is set if the WDT
time-out occurs, and causes a wake-up that only resets
the program counter and stack pointer; the others keep
their original status.
Once the internal oscillator (RC oscillator with a period
of 65ms at 5V normally) is selected, it is divided by
32768~65536 to get the time-out period of approximately 2.1s~4.3s. This time-out period may vary with
temperatures, VDD and process variations. If the WDT
oscillator is disabled, the WDT clock may still come from
the instruction clock and operate in the same manner
except that in the HALT state the WDT may stop counting and lose its protecting purpose. In this situation the
logic can only be restarted by external logic.
The port A wake-up and interrupt methods can be considered as a continuation of normal execution. Each bit
in port A can be independently selected to wake up the
device by the options. Awakening from an I/O port stimulus, the program will resume execution of the next instruction. If it is awakening from an interrupt, two
sequences may happen. If the related interrupt is disabled or the interrupt is enabled but the stack is full, the
program will resume execution at the next instruction. If
the interrupt is enabled and the stack is not full, the regular interrupt response takes place. If an interrupt request
flag is set to ²1² before entering the HALT mode, the
wake-up function of the related interrupt will be disabled.
If the device operates in a noisy environment, using the
on-chip RC oscillator (WDT OSC) is strongly recommended, since the HALT will stop the system clock.
The WDT overflow under normal operation will initialize
²chip reset² and set the status bit ²TO². But in the HALT
mode, the overflow will initialize a ²warm reset², and
only the program counter and stack pointer are reset to
zero. To clear the contents of WDT, three methods are
adopted; external reset (a low level to RES), software instruction and a HALT instruction. The software instruction include ²CLR WDT² and the other set - ²CLR
WDT1² and ²CLR WDT2². Of these two types of instrucS y s te m
C lo c k /4
O p tio n
S e le c t
fS
8 - b it C o u n te r
7 - b it C o u n te r
W D T
O S C
T
T
W D T T im e - o u t
1 5
1 6
fS /2 ~ fS /2
C L R
W D T
Watchdog Timer
Rev. 1.10
12
March 24, 2006
HT46R48E
Once a wake-up event occurs, it takes 1024 tSYS (system clock period) to resume normal operation. In other
words, a dummy period will be inserted after wake-up. If
the wake-up results from an interrupt acknowledgment,
the actual interrupt subroutine execution will be delayed
by one or more cycles. If the wake-up results in the next
instruction execution, this will be executed immediately
after the dummy period is finished.
The functional unit chip reset status are shown below.
Program Counter
000H
Interrupt
Disable
WDT
Clear. After master reset,
WDT begins counting
Timer/Event Counter Off
To minimize power consumption, all the I/O pins should
be carefully managed before entering the HALT status.
Input/Output Ports
Input mode
Stack Pointer
Points to the top of the stack
Reset
V
There are three ways in which a reset can occur:
0 .0 1 m F *
· RES reset during normal operation
· RES reset during HALT
1 0 0 k W
· WDT time-out reset during normal operation
R E S
1 0 k W
The WDT time-out during HALT is different from other
chip reset conditions, since it can perform a ²warm re set² that resets only the program counter and stack
pointer, leaving the other circuits in their original state.
Some registers remain unchanged during other reset
conditions. Most registers are reset to the ²initial condition² when the reset conditions are met. By examining
the PDF and TO flags, the program can distinguish between different ²chip resets².
TO PDF
0 .1 m F *
Reset Circuit
Note:
RESET Conditions
0
0
RES reset during power-up
u
u
RES reset during normal operation
0
1
RES wake-up HALT
1
u
WDT time-out during normal operation
1
1
WDT wake-up HALT
D D
²*² Make the length of the wiring, which is connected to the RES pin as short as possible, to
avoid noise interference.
V D D
R E S
tS
S T
S S T T im e - o u t
C h ip
R e s e t
Reset Timing Chart
Note: ²u² means ²unchanged²
To guarantee that the system oscillator is started and
stabilized, the SST (System Start-up Timer) provides an
extra-delay of 1024 system clock pulses when the system reset (power-up, WDT time-out or RES reset) or the
system awakes from the HALT state.
H A L T
R e s e t
W D T
R E S
When a system reset occurs, the SST delay is added
during the reset period. Any wake-up from HALT will enable the SST delay.
O S C 1
An extra option load time delay is added during system
reset (power-up, WDT time-out at normal mode or RES
reset).
Rev. 1.10
W a rm
S S T
1 0 - b it R ip p le
C o u n te r
S y s te m
C o ld
R e s e t
R e s e t
Reset Configuration
13
March 24, 2006
HT46R48E
The registers¢ states are summarized in the following table.
Register
Reset
(Power On)
WDT Time-out
RES Reset
(Normal Operation) (Normal Operation)
RES Reset
(HALT)
WDT Times-out
(HALT)*
TMR
xxxx xxxx
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
TMRC
00-0 1000
00-0 1000
00-0 1000
00-0 1000
uu-u uuuu
000H
000H
000H
000H
000H
MP
-xxx xxxx
-uuu uuuu
-uuu uuuu
-uuu uuuu
-uuu uuuu
ACC
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
TBLP
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
TBLH
--xx xxxx
--uu uuuu
--uu uuuu
--uu uuuu
--uu uuuu
STATUS
--00 xxxx
--1u uuuu
--uu uuuu
--01 uuuu
--11 uuuu
Program
Counter
INTC
-000 0000
-000 0000
-000 0000
-000 0000
-uuu uuuu
PA
1111 1111
1111 1111
1111 1111
1111 1111
uuuu uuuu
PAC
1111 1111
1111 1111
1111 1111
1111 1111
uuuu uuuu
PB
1111 1111
1111 1111
1111 1111
1111 1111
uuuu uuuu
PBC
1111 1111
1111 1111
1111 1111
1111 1111
uuuu uuuu
PC
---- --11
---- --11
---- --11
---- --11
---- --uu
PCC
---- --11
---- --11
---- --11
---- --11
---- --uu
PD
---- ---1
---- ---1
---- ---1
---- ---1
---- ---u
PDC
---- ---1
---- ---1
---- ---1
---- ---1
---- ---u
PWM
xxxx xxxx
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
ADRL
x--- ----
x--- ----
x--- ----
x--- ----
u--- ----
ADRH
xxxx xxxx
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
ADCR
0100 0000
0100 0000
0100 0000
0100 0000
uuuu uuuu
ACSR
1--- --00
1--- --00
1--- --00
1--- --00
u--- --uu
Note:
²*² stands for warm reset
²u² stands for unchanged
²x² stands for unknown
The TM0, TM1 bits define the operating mode. The
event count mode is used to count external events,
which means the clock source comes from an external
(TMR) pin. The timer mode functions as a normal timer
with the clock source coming from the fINT clock. The
pulse width measurement mode can be used to count the
high or low level duration of the external signal (TMR). The
counting is based on the fINT.
Timer/Event Counter
A timer/event counter (TMR) is implemented in the
microcontroller. The timer/event counter contains an
8-bit programmable count-up counter and the clock may
come from an external source or the system clock.
Using external clock input allows the user to count external events, measure time internals or pulse widths, or
generate an accurate time base. While using the internal clock allows the user to generate an accurate time
base.
The timer/event counter can generate PFD signal by using external or internal clock and PFD frequency is determine by the equation fINT/[2´(256-N)].
In the event count or timer mode, once the timer/event
counter starts counting, it will count from the current contents in the timer/event counter to FFH. Once overflow occurs, the counter is reloaded from the timer/event counter
preload register and generates the interrupt request flag
(TF; bit 5 of INTC) at the same time.
There are 2 registers related to the timer/event counter;
TMR ([0DH]), TMRC ([0EH]). Two physical registers are
mapped to TMR location; writing TMR makes the starting value be placed in the timer/event counter preload
register and reading TMR retrieves the contents of the
timer/event counter. The TMRC is a timer/event counter
control register, which defines some options.
In the pulse width measurement mode with the TON
and TE bits equal to one, once the TMR has received a
transient from low to high (or high to low if the TE bits is
²0²) it will start counting until the TMR returns to the original level and resets the TON. The measured result will
remain in the timer/event counter even if the activated
transient occurs again. In other words, only one cycle
Rev. 1.10
14
March 24, 2006
HT46R48E
In the case of timer/event counter OFF condition, writing data to the timer/event counter preload register will
also reload that data to the timer/event counter. But if the
timer/event counter is turned on, data written to it will
only be kept in the timer/event counter preload register.
The timer/event counter will still operate until overflow occurs. When the timer/event counter (reading TMR) is read,
the clock will be blocked to avoid errors. As clock blocking
may results in a counting error, this must be taken into consideration by the programmer.
measurement can be done. Until setting the TON, the
cycle measurement will function again as long as it receives further transient pulse. Note that, in this operating mode, the timer/event counter starts counting not
according to the logic level but according to the transient
edges. In the case of counter overflows, the counter is
reloaded from the timer/event counter preload register
and issues the interrupt request just like the other two
modes. To enable the counting operation, the timer ON
bit (TON; bit 4 of TMRC) should be set to 1. In the pulse
width measurement mode, the TON will be cleared automatically after the measurement cycle is completed.
But in the other two modes the TON can only be reset by
instructions. The overflow of the timer/event counter is
one of the wake-up sources. No matter what the operation mode is, writing a 0 to ETI can disable the interrupt
service.
Bit No.
The bit0~bit2 of the TMRC can be used to define the
pre-scaling stages of the internal clock sources of
timer/event counter. The definitions are as shown. The
overflow signal of timer/event counter can be used to
generate the PFD signal.
Label
PSC0
PSC1
PSC2
0
1
2
Defines the TMR active edge of the timer/event counter:
In Event Counter Mode (TM1,TM0)=(0,1):
1:count on falling edge;
0:count on rising edge
In Pulse Width measurement mode (TM1,TM0)=(1,1):
1: start counting on the rising edge, stop on the falling edge;
0: start counting on the falling edge, stop on the rising edge
3
TE
4
TON
5
¾
6
7
Function
To define the prescaler stages, PSC2, PSC1, PSC0=
000: fINT=fSYS
001: fINT=fSYS/2
010: fINT=fSYS/4
011: fINT=fSYS/8
100: fINT=fSYS/16
101: fINT=fSYS/32
110: fINT=fSYS/64
111: fINT=fSYS/128
To enable or disable timer counting
(0=disabled; 1=enabled)
Unused bits, read as ²0²
TM0
TM1
To define the operating mode
01=Event count mode (external clock)
10=Timer mode (internal clock)
11=Pulse width measurement mode
00=Unused
TMRC (0EH) Register
P W M
(6 + 2 ) C o m p a re
fS
Y S
T o P D 0 C ir c u it
8 - s ta g e P r e s c a le r
f IN
8 -1 M U X
P S C 2 ~ P S C 0
D a ta B u s
T
T M 1
T M 0
T M R
8 - B it T im e r /E v e n t
C o u n te r P r e lo a d
R e g is te r
R e lo a d
T E
T M 1
T M 0
T O N
8 - B it T im e r /E v e n t
C o u n te r
P u ls e W id th
M e a s u re m e n t
M o d e C o n tro l
O v e r flo w
to In te rru p t
1 /2
P F D
Timer/Event Counter
Rev. 1.10
15
March 24, 2006
HT46R48E
Input/Output Ports
Some instructions first input data and then follow the
output operations. For example, ²SET [m].i², ²CLR
[m].i², ²CPL [m]², ²CPLA [m]² read the entire port states
into the CPU, execute the defined operations (bit-operation), and then write the results back to the latches or the
accumulator.
There are 19 bidirectional input/output lines in the
microcontroller, labeled as PA, PB, PC and PD, which
are mapped to the data memory of [12H], [14H], [16H]
and [18H] respectively. All of these I/O ports can be
used for input and output operations. For input operation, these ports are non-latching, that is, the inputs
must be ready at the T2 rising edge of instruction ²MOV
A,[m]² (m=12H, 14H, 16H or 18H). For output operation,
all the data is latched and remains unchanged until the
output latch is rewritten.
Each line of port A has the capability of waking-up the
device.
Each I/O line has a pull-high option. Once the pull-high
option is selected, the I/O line has a pull-high resistor,
otherwise, there¢s none. Take note that a non-pull-high
I/O line operating in input mode will cause a floating
state.
Each I/O line has its own control register (PAC, PBC,
PCC, PDC) to control the input/output configuration.
With this control register, CMOS output or Schmitt trigger input with or without pull-high resistor structures can
be reconfigured dynamically (i.e. on-the-fly) under software control. To function as an input, the corresponding
latch of the control register must write ²1². The input
source also depends on the control register. If the control register bit is ²1², the input will read the pad state. If
the control register bit is ²0², the contents of the latches
will move to the internal bus. The latter is possible in the
²read-modify-write² instruction.
The PA3 is pin-shared with the PFD signal. If the PFD
option is selected, the output signal in output mode of
PA3 will be the PFD signal generated by the timer/event
counter overflow signal. The input mode always remaining its original functions. Once the PFD option is selected, the PFD output signal is controlled by PA3 data
register only. Writing ²1² to PA3 data register will enable
the PFD output function and writing ²0² will force the
PA3 to remain at ²0². The I/O functions of PA3 are
shown below.
For output function, CMOS is the only configuration.
These control registers are mapped to locations 13H,
15H, 17H and 19H.
I/O
Mode
Logical
Input
PA3
After a chip reset, these input/output lines remain at high
levels or floating state (dependent on pull-high options).
Each bit of these input/output latches can be set or
cleared by ²SET [m].i² and ²CLR [m].i² (m=12H, 14H,
16H or 18H) instructions.
Note:
I/P
O/P
(Normal) (Normal)
Q
D
C K
Q
S
R e a d C o n tr o l R e g is te r
D a ta B it
Q
D
(P D 0 o r P W M )
C K
S
Q
M
P A 3
P F D
M
R e a d D a ta R e g is te r
S y s te m
W a k e -u p
( P A o n ly )
D D
P A
P A
P A
P A
P A
P B
P B
P C
P C
P D
C h ip R e s e t
W r ite D a ta R e g is te r
Logical
PFD
Input (Timer on)
P u ll- H ig h
O p tio n
C o n tr o l B it
D a ta B u s
O/P
(PFD)
The PFD frequency is the timer/event counter
overflow frequency divided by 2.
V
W r ite C o n tr o l R e g is te r
Logical
Output
I/P
(PFD)
U
U
0 ~ P
3 /P
4 /T
5 /IN
6 , P
0 /A
4 ~ P
0 /S
1 /S
0 /P
A 2
F D
M R
T
A 7
N 0 ~ P B 3 /A N 3
B 7
D A
C L
W M
X
P F D E N
(P A 3 )
X
O P 0 ~ O P 7
IN T fo r P A 5 O n ly
T M R
fo r P A 4 O n ly
Input/Output Ports
Rev. 1.10
16
March 24, 2006
HT46R48E
tion cycle has 64 PWM input clock period. In a (6+2) bit
PWM function, the contents of the PWM register is divided into two groups. Group 1 of the PWM register is
denoted by DC which is the value of PWM.7~PWM.2.
The PA5 and PA4 are pin-shared with INT and TMR pins
respectively.
The PB can also be used as A/D converter inputs. The
A/D function will be described later. There is a PWM
function shared with PD0. If the PWM function is enabled, the PWM signal will appear on PD0 (if PD0 is operating in output mode). Writing ²1² to PD0 data register
will enable the PWM output function and writing ²0² will
force the PD0 to remain at ²0². The I/O functions of PD0
are as shown.
I/O
Mode
PD0
I/P
O/P
(Normal) (Normal)
Logical
Input
Logical
Output
I/P
(PWM)
O/P
(PWM)
Logical
Input
PWM
The group 2 is denoted by AC which is the value of
PWM.1~PWM.0.
In a PWM cycle, the duty cycle of each modulation cycle
is shown in the table.
Parameter
i<AC
DC+1
64
i³AC
DC
64
The modulation frequency, cycle frequency and cycle
duty of the PWM output signal are summarized in the
following table.
PWM
The microcontroller provides 1 channel (6+2) bits PWM
output shared with PD0. The PWM channel has its data
register denoted as PWM (1AH). The frequency source
of the PWM counter comes from fSYS. The PWM register
is an eight bits register. The waveforms of PWM output
are as shown. Once the PD0 is selected as the PWM
output and the output function of PD0 is enabled
(PDC.0=²0²), writing 1 to PD0 data register will enable
the PWM output function and writing ²0² will force the
PD0 to stay at ²0².
PWM
Modulation
Frequency
PWM Cycle
Frequency
PWM Cycle
Duty
fSYS/64
fSYS/256
[PWM]/256
A/D Converter
The 4 channels and 9-bit resolution A/D converter are
implemented in this microcontroller. The reference voltage is VDD. The A/D converter contains 4 special registers which are; ADRL (20H), ADRH (21H), ADCR (22H)
and ACSR (23H). The ADRH and ADRL are A/D result
register higher-order byte and lower-order byte and are
read-only. After the A/D conversion is completed, the
ADRH and ADRL should be read to get the conversion
A PWM cycle is divided into four modulation cycles
(modulation cycle 0~modulation cycle 3). Each modula-
Y S
Duty Cycle
Modulation cycle i
(i=0~3)
It is recommended that unused or not bonded out I/O
lines should be set as output pins by software instruction
to avoid consuming power under input floating state.
fS
AC (0~3)
/2
[P W M ] = 1 0 0
P W M
2 5 /6 4
2 5 /6 4
2 5 /6 4
2 5 /6 4
2 5 /6 4
2 6 /6 4
2 5 /6 4
2 5 /6 4
2 5 /6 4
2 6 /6 4
2 6 /6 4
2 6 /6 4
2 5 /6 4
2 5 /6 4
2 6 /6 4
2 6 /6 4
2 6 /6 4
2 5 /6 4
2 6 /6 4
[P W M ] = 1 0 1
P W M
[P W M ] = 1 0 2
P W M
[P W M ] = 1 0 3
P W M
2 6 /6 4
P W M
m o d u la tio n p e r io d : 6 4 /fS
M o d u la tio n c y c le 0
Y S
M o d u la tio n c y c le 1
P W M
M o d u la tio n c y c le 2
c y c le : 2 5 6 /fS
M o d u la tio n c y c le 3
M o d u la tio n c y c le 0
Y S
PWM
Rev. 1.10
17
March 24, 2006
HT46R48E
converter. Give START bit a raising edge and falling
edge that means the A/D conversion has started. In order to ensure the A/D conversion is completed, the
START should stay at ²0² until the EOCB is cleared to
²0² (end of A/D conversion).
result data. The ADCR is an A/D converter control register, which defines the A/D channel number, analog
channel select, start A/D conversion control bit and the
end of A/D conversion flag. If the users want to start an
A/D conversion, define PB configuration, select the converted analog channel, and give START bit a raising
edge and a falling edge (0®1®0). At the end of A/D
conversion, the EOCB bit is cleared and an A/D converter interrupt occurs (if the A/D converter interrupt is
enabled). The ACSR is A/D clock setting register, which
is used to select the A/D clock source.
Bit 7 of the ACSR register is used for test purposes only
and must not be used for other purposes by the application program. Bit1 and bit0 of the ACSR register are
used to select the A/D clock source.
When the A/D conversion has completed, the A/D interrupt request flag will be set. The EOCB bit is set to ²1²
when the START bit is set from ²0² to ²1².
The A/D converter control register is used to control the
A/D converter. The bit2~bit0 of the ADCR are used to
select an analog input channel. There are a total of four
channels to select. The bit5~bit3 of the ADCR are used
to set PB configurations. PB can be an analog input or
as digital I/O line decided by these 3 bits. Once a PB line
is selected as an analog input, the I/O functions and
pull-high resistor of this I/O line are disabled, and the
A/D converter circuit is power on. The EOCB bit (bit6 of
the ADCR) is end of A/D conversion flag. Check this bit
to know when A/D conversion is completed. The START
bit of the ADCR is used to begin the conversion of A/D
Important Note for A/D initialization:
Special care must be taken to initialize the A/D converter each time the Port B A/D channel selection bits
are modified, otherwise the EOCB flag may be in an undefined condition. An A/D initialization is implemented
by setting the START bit high and then clearing it to zero
within 10 instruction cycles of the Port B channel selection bits being modified. Note that if the Port B channel
selection bits are all cleared to zero then an A/D initialization is not required.
Register
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
ADRL (20H)
D0
¾
¾
¾
¾
¾
¾
¾
ADRH (21H)
D8
D7
D6
D5
D4
D3
D2
D1
Note:
D0~D8 is A/D conversion result data bit LSB~MSB.
ADRL (20H), ADRH (21H) Register
Bit No.
Label
0
1
2
ACS0
ACS1
ACS2
ACS2, ACS1, ACS0: Select A/D channel
0, 0, 0: AN0
0, 0, 1: AN1
0, 1, 0: AN2
0, 1, 1: AN3
1, X, X: undefined, cannot be used
PCR0
PCR1
PCR2
PCR2, PCR1, PCR0: PB3~PB0 configurations
0, 0, 0: PB3 PB2 PB1 PB0 (The ADC circuit is power off to reduce power consumption.)
0, 0, 1: PB3 PB2 PB1 AN0
0, 1, 0: PB3 PB2 AN1 AN0
0, 1, 1: PB3 AN2 AN1 AN0
1, x, x: AN3 AN2 AN1 AN0
6
EOCB
Indicates end of A/D conversion. (0 = end of A/D conversion)
Each time bits 3~5 change state the A/D should be initialized by issuing a START signal, otherwise the EOCB flag may have an undefined condition. See ²Important note
for A/D initialization².
7
START
Start the A/D conversion
0®1®0= Start
0®1= Reset A/D converter and set EOCB to ²1²
3
4
5
Function
ADCR (22H) Register
Rev. 1.10
18
March 24, 2006
HT46R48E
Bit No.
Label
0
1
ADCS0
ADCS1
2~6
¾
7
TEST
Function
Select the A/D converter clock source.
0, 0: fSYS/2
0, 1: fSYS/8
1, 0: fSYS/32
1, 1: Undefined
Unused bit, read as ²0².
For internal test only.
ACSR (23H) Register
The following two programming examples illustrate how to setup and implement an A/D conversion. In the first example, the method of polling the EOCB bit in the ADCR register is used to detect when the conversion cycle is complete,
whereas in the second example, the A/D interrupt is used to determine when the conversion is complete.
Example: using EOCB Polling Method to detect end of conversion
clr
mov
mov
mov
mov
EADI
a,00000001B
ACSR,a
a,00100000B
ADCR,a
:
:
:
Start_conversion:
clr
START
set
START
clr
START
Polling_EOC:
sz
EOCB
jmp
polling_EOC
mov
a,ADRH
mov
adrh_buffer,a
mov
a,ADRL
mov
adrl_buffer,a
:
:
jmp
start_conversion
; disable ADC interrupt
; setup the ACSR register to select fSYS/8 as the A/D clock
; setup ADCR register to configure Port PB0~PB3 as A/D inputs
; and select AN0 to be connected to the A/D converter
; As the Port B channel bits have changed the following START
; signal (0-1-0) must be issued within 10 instruction cycles
; reset A/D
; start A/D
; poll the ADCR register EOCB bit to detect end of A/D conversion
; continue polling
; read conversion result high byte value from the ADRH register
; save result to user defined memory
; read conversion result low byte value from the ADRL register
; save result to user defined memory
; start next A/D conversion
Example: using interrupt method to detect end of conversion
clr
EADI
; disable ADC interrupt
mov
a,00000001B
mov
ACSR,a
; setup the ACSR register to select fSYS/8 as the A/D clock
mov
mov
a,00100000B
ADCR,a
:
; setup ADCR register to configure Port PB0~PB3 as A/D inputs
; and select AN0 to be connected to the A/D converter
; As the Port B channel bits have changed the following START
; signal (0-1-0) must be issued within 10 instruction cycles
:
Start_conversion:
clr
START
set
START
clr
START
clr
ADF
Rev. 1.10
; reset A/D
; start A/D
; clear ADC interrupt request flag
19
March 24, 2006
HT46R48E
set
set
EADI
EMI
:
:
:
; ADC interrupt service routine
ADC_ISR:
mov
acc_stack,a
mov
a,STATUS
mov
status_stack,a
:
:
mov
a,ADRH
mov
adrh_buffer,a
mov
a,ADRL
mov
adrl_buffer,a
clr
START
set
START
clr
START
:
:
EXIT_INT_ISR:
mov
a,status_stack
mov
STATUS,a
mov
a,acc_stack
reti
M in im u m
; enable ADC interrupt
; enable global interrupt
; save ACC to user defined memory
; save STATUS to user defined memory
; read conversion result high byte value from the ADRH register
; save result to user defined register
; read conversion result low byte value from the ADRL register
; save result to user defined register
; reset A/D
; start A/D
; restore STATUS from user defined memory
; restore ACC from user defined memory
o n e in s tr u c tio n c y c le n e e d e d , M a x im u m
te n in s tr u c tio n c y c le s a llo w e d
S T A R T
E O C B
A /D s a m p lin g tim e
tA D C S
P C R 2 ~
P C R 0
0 0 0 B
A /D
tA
s a m p lin g tim e
A /D
tA
D C S
1 0 0 B
1 0 0 B
s a m p lin g tim e
D C S
1 0 1 B
0 0 0 B
1 . P B p o rt s e tu p a s I/O s
2 . A /D c o n v e r te r is p o w e r e d o ff
to r e d u c e p o w e r c o n s u m p tio n
A C S 2 ~
A C S 0
0 0 0 B
P o w e r-o n
R e s e t
0 1 0 B
0 0 0 B
0 0 1 B
S ta rt o f A /D
c o n v e r s io n
S ta rt o f A /D
c o n v e r s io n
S ta rt o f A /D
c o n v e r s io n
R e s e t A /D
c o n v e rte r
R e s e t A /D
c o n v e rte r
E n d o f A /D
c o n v e r s io n
1 : D e fin e P B c o n fig u r a tio n
2 : S e le c t a n a lo g c h a n n e l
A /D
N o te :
A /D
tA D
tA
C S
D C
c lo c k m u s t b e fS
= 3 2 tA D
= 7 6 tA D
Y S
/2 , fS
tA D C
c o n v e r s io n tim e
Y S
/8 o r fS
Y S
R e s e t A /D
c o n v e rte r
E n d o f A /D
c o n v e r s io n
A /D
tA D C
c o n v e r s io n tim e
d o n 't c a r e
E n d o f A /D
c o n v e r s io n
A /D
tA D C
c o n v e r s io n tim e
/3 2
A/D Conversion Timing
Rev. 1.10
20
March 24, 2006
HT46R48E
Low Voltage Reset - LVR
The relationship between VDD and VLVR is shown below.
V D D
5 .5 V
The microcontroller provides low voltage reset circuit in
order to monitor the supply voltage of the device. If the
supply voltage of the device is within the range
0.9V~3.3V, such as changing a battery, the LVR will automatically reset the device internally.
O P R
5 .5 V
V
The LVR includes the following specifications:
L V R
3 .0 V
· The low voltage (0.9V~VLVR) has to remain in their
2 .2 V
original state to exceed 1ms. If the low voltage state
does not exceed 1ms, the LVR will ignore it and do not
perform a reset function.
0 .9 V
· The LVR uses the ²OR² function with the external RES
Note:
signal to perform chip reset.
V
V
VOPR is the voltage range for proper chip
operation at 4MHz system clock.
D D
5 .5 V
V
L V R
L V R
D e te c t V o lta g e
0 .9 V
0 V
R e s e t S ig n a l
N o r m a l O p e r a tio n
R e s e t
*1
R e s e t
*2
Low Voltage Reset
Note:
*1: To make sure that the system oscillator has stabilized, the SST provides an extra delay of 1024 system
clock pulses before entering the normal operation.
*2: Since the low voltage has to maintain in its original state and exceed 1ms, therefore 1ms delay enter the
reset mode.
Options
The following table shows all kinds of options in the microcontroller. All of the options must be defined to ensure proper
system functioning.
No.
Options
1
WDT clock source: WDTOSC or fTID
2
WDT function: enable or disable
3
CLRWDT instruction(s): one or two clear WDT instruction(s)
4
System oscillator: RC or crystal
5
Pull-high resistors (PA, PB, PC, PD): none or pull-high
6
PWM enable or disable
7
PA0~PA7 wake-up: enable or disable
8
PFD enable or disable
9
Low voltage reset selection: enable or disable LVR function.
Rev. 1.10
21
March 24, 2006
HT46R48E
Data EEPROM Functional Description
Device Addressing
· Serial clock (SCL)
The 1K EEPROM devices all require an 8-bit device address word following a start condition to enable the chip
for a read or write operation. The device address word
consist of a mandatory one, zero sequence for the first
four most significant bits (refer to the diagram showing
the Device Address). This is common to all the
EEPROM device.
The SCL input is used for positive edge clock data into
each EEPROM device and negative edge clock data
out of each device.
· Serial data (SDA)
The SDA pin is bidirectional for serial data transfer.
The pin is open-drain driven and may be wired-OR
with any number of other open-drain or open collector
devices.
The next three bits are the fixed to be ²0².
The 8th bit of device address is the read/write operation
select bit. A read operation is initiated if this bit is high
and a write operation is initiated if this bit is low.
Memory Organization
· 1K Serial EEPROM
Internally organized with 128 8-bit words, the 1K requires an 8-bit data word address for random word addressing.
If the comparison of the device address succeed the
EEPROM will output a zero at ACK bit. If not, the chip will
return to a standby state.
Device Operations
1
· Clock and data transition
Data transfer may be initiated only when the bus is not
busy. During data transfer, the data line must remain
stable whenever the clock line is high. Changes in
data line while the clock line is high will be interpreted
as a START or STOP condition.
0
1
0
0
0
0
R /W
D e v ic e A d d r e s s
Write Operations
· Byte write
· Start condition
A write operation requires an 8-bit data word address
following the device address word and acknowledgment. Upon receipt of this address, the EEPROM will
again respond with a zero and then clock in the first
8-bit data word. After receiving the 8-bit data word, the
EEPROM will output a zero and the addressing device, such as a microcontroller, must terminate the
write sequence with a stop condition. At this time the
EEPROM enters an internally-timed write cycle to the
non-volatile memory. All inputs are disabled during
this write cycle and EEPROM will not respond until the
write is completed (refer to Byte write timing).
A high-to-low transition of SDA with SCL high is a start
condition which must precede any other command
(refer to Start and Stop Definition Timing diagram).
· Stop condition
A low-to-high transition of SDA with SCL high is a stop
condition. After a read sequence, the stop command
will place the EEPROM in a standby power mode (refer to Start and Stop Definition Timing Diagram).
· Acknowledge
All addresses and data words are serially transmitted
to and from the EEPROM in 8-bit words. The
EEPROM sends a zero to acknowledge that it has received each word. This happens during the ninth clock
cycle.
· Acknowledge polling
To maximise bus throughput, one technique is to allow
the master to poll for an acknowledge signal after the
start condition and the control byte for a write command have been sent. If the device is still busy implementing its write cycle, then no ACK will be returned.
The master can send the next read/write command
when the ACK signal has finally been received.
D a ta a llo w e d
to c h a n g e
S D A
S C L
S ta rt
c o n d itio n
A d d re s s o r
a c k n o w le d g e
v a lid
N o A C K
s ta te
S to p
c o n d itio n
D e v ic e a d d r e s s
S D A
W o rd a d d re s s
D A T A
S
S ta rt
P
R /W
A C K
A C K
A C K
S to p
Byte Write Timing
Rev. 1.10
22
March 24, 2006
HT46R48E
page. The address roll over during write from the last
byte of the current page to the first byte of the same
page. Once the device address with the read/write select bit set to one is clocked in and acknowledged by
the EEPROM, the current address data word is serially clocked out. The microcontroller should respond a
No ACK (High) signal and following stop condition (refer to Current read timing).
S e n d W r ite C o m m a n d
S e n d S to p C o n d itio n
to In itia te W r ite C y c le
S e n d S ta rt
· Random read
S e n d C o tr o ll B y te
w ith R /W = 0
(A C K = 0 )?
A random read requires a dummy byte write sequence
to load in the data word address which is then clocked
in and acknowledged by the EEPROM. The
microcontroller must then generate another start condition. The microcontroller now initiates a current address read by sending a device address with the
read/write select bit high. The EEPROM acknowledges the device address and serially clocks out the
data word. The microcontroller should respond with a
²no ACK² signal (high) followed by a stop condition.
(refer to Random read timing).
N o
Y e s
N e x t O p e r a tio n
Acknowledge Polling Flow
· Sequential read
· Read operations
Sequential reads are initiated by either a current address read or a random address read. After the
microcontroller receives a data word, it responds with an
acknowledgment. As long as the EEPROM receives an
acknowledgment, it will continue to increment the data
word address and serially clock out sequential data
words. When the memory address limit is reached, the
data word address will roll over and the sequential read
continues. The sequential read operation is terminated
when the microcontroller responds with a ²no ACK² signal (high) followed by a stop condition.
The data EEPROM supports three read operations,
namely, current address read, random address read
and sequential read. During read operation execution,
the read/write select bit should be set to ²1².
· Current address read
The internal data word address counter maintains the
last address accessed during the last read or write operation, incremented by one. This address stays valid
between operations as long as the chip power is maintained. The address roll over during read from the last
byte of the last memory page to the first byte of the first
D e v ic e a d d r e s s
S D A
D A T A
S to p
S
P
S ta rt
A C K
N o A C K
Current Read Timing
D e v ic e a d d r e s s
W o rd a d d re s s
D e v ic e a d d r e s s
S
S D A
D A T A
S
S ta rt
A C K
S to p
P
A C K
S ta rt
A C K
N o A C K
Random Read Timing
D e v ic e a d d r e s s
S D A
D A T A n
D A T A n + 1
S
S ta rt
D A T A n + x
S to p
P
A C K
A C K
N o A C K
Sequential Read Timing
Rev. 1.10
23
March 24, 2006
HT46R48E
Data EEPROM Timing Diagrams
tf
tr
tL
S C L
tS
S D A
U
:S
tH
T A
tS
tH
IG H
D
O W
:S
T A
tH
D
:D
A T
tS
:D
U
A T
tS
U
tB
U F
:S
T O
P
tA
S D A
A
V a lid
O U T
V a lid
S C L
S D A
8 th b it
A C K
W o rd n
tW
S to p
C o n d itio n
Note:
R
S ta rt
C o n d itio n
The write cycle time tWR is the time from a valid stop condition of a write sequence to the end of the valid start
condition of sequential command.
Rev. 1.10
24
March 24, 2006
HT46R48E
Application Circuits
V
D D
0 .0 1 m F *
P A 0 ~ P A 2
V D D
0 .1 m F
4 7 0 p F
R
P A 6 ~ P A 7
0 .1 m F *
O S C 1
P B 0 /A N 0 ~ P B 3 /A N 3
P B 4 ~ P B 7
fS
C 1
P C 0 /S D A ~ P C 1 /S C L
Y S
/4
O S C 2
O S C 1
C 2
P D 0 /P W M
O S C 2
O S C
R C S y s te m O s c illa to r
2 4 k W < R O S C < 1 M W
O S C 1
P A 5 /IN T
1 0 k W
V S S
D D
P A 4 /T M R
R E S
O S C
C ir c u it
V
P A 3 /P F D
1 0 0 k W
R 1
C ry s ta l S y s te m
F o r th e v a lu e s ,
s e e ta b le b e lo w
O s c illa to r
O S C 2
S e e R ig h t S id e
H T 4 6 R 4 8 E
O S C
C ir c u it
The following table shows the C1, C2 and R1 values corresponding to the different crystal values. (For reference only)
C1, C2
R1
4MHz Crystal
Crystal or Resonator
0pF
10kW
4MHz Resonator
10pF
12kW
3.58MHz Crystal
0pF
10kW
3.58MHz Resonator
25pF
10kW
2MHz Crystal & Resonator
25pF
10kW
1MHz Crystal
35pF
27kW
480kHz Resonator
300pF
9.1kW
455kHz Resonator
300pF
10kW
429kHz Resonator
300pF
10kW
The function of the resistor R1 is to ensure that the oscillator will switch off should low voltage conditions occur. Such a low voltage, as mentioned here, is one which is less than the lowest value of the
MCU operating voltage. Note however that if the LVR is enabled then R1 can be removed.
Note:
The resistance and capacitance for reset circuit should be designed in such a way as to ensure that the VDD is
stable and remains within a valid operating voltage range before bringing RES to high.
²*² Make the length of the wiring, which is connected to the RES pin as short as possible, to avoid noise
interference.
Rev. 1.10
25
March 24, 2006
HT46R48E
Instruction Set Summary
Description
Instruction
Cycle
Flag
Affected
Add data memory to ACC
Add ACC to data memory
Add immediate data to ACC
Add data memory to ACC with carry
Add ACC to data memory with carry
Subtract immediate data from ACC
Subtract data memory from ACC
Subtract data memory from ACC with result in data memory
Subtract data memory from ACC with carry
Subtract data memory from ACC with carry and result in data memory
Decimal adjust ACC for addition with result in data memory
1
1(1)
1
1
1(1)
1
1
1(1)
1
1(1)
1(1)
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
C
1
1
1
1(1)
1(1)
1(1)
1
1
1
1(1)
1
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Increment data memory with result in ACC
Increment data memory
Decrement data memory with result in ACC
Decrement data memory
1
1(1)
1
1(1)
Z
Z
Z
Z
Rotate data memory right with result in ACC
Rotate data memory right
Rotate data memory right through carry with result in ACC
Rotate data memory right through carry
Rotate data memory left with result in ACC
Rotate data memory left
Rotate data memory left through carry with result in ACC
Rotate data memory left through carry
1
1(1)
1
1(1)
1
1(1)
1
1(1)
None
None
C
C
None
None
C
C
Move data memory to ACC
Move ACC to data memory
Move immediate data to ACC
1
1(1)
1
None
None
None
Clear bit of data memory
Set bit of data memory
1(1)
1(1)
None
None
Mnemonic
Arithmetic
ADD A,[m]
ADDM A,[m]
ADD A,x
ADC A,[m]
ADCM A,[m]
SUB A,x
SUB A,[m]
SUBM A,[m]
SBC A,[m]
SBCM A,[m]
DAA [m]
Logic Operation
AND A,[m]
OR A,[m]
XOR A,[m]
ANDM A,[m]
ORM A,[m]
XORM A,[m]
AND A,x
OR A,x
XOR A,x
CPL [m]
CPLA [m]
AND data memory to ACC
OR data memory to ACC
Exclusive-OR data memory to ACC
AND ACC to data memory
OR ACC to data memory
Exclusive-OR ACC to data memory
AND immediate data to ACC
OR immediate data to ACC
Exclusive-OR immediate data to ACC
Complement data memory
Complement data memory with result in ACC
Increment & Decrement
INCA [m]
INC [m]
DECA [m]
DEC [m]
Rotate
RRA [m]
RR [m]
RRCA [m]
RRC [m]
RLA [m]
RL [m]
RLCA [m]
RLC [m]
Data Move
MOV A,[m]
MOV [m],A
MOV A,x
Bit Operation
CLR [m].i
SET [m].i
Rev. 1.10
26
March 24, 2006
HT46R48E
Instruction
Cycle
Flag
Affected
Jump unconditionally
Skip if data memory is zero
Skip if data memory is zero with data movement to ACC
Skip if bit i of data memory is zero
Skip if bit i of data memory is not zero
Skip if increment data memory is zero
Skip if decrement data memory is zero
Skip if increment data memory is zero with result in ACC
Skip if decrement data memory is zero with result in ACC
Subroutine call
Return from subroutine
Return from subroutine and load immediate data to ACC
Return from interrupt
2
1(2)
1(2)
1(2)
1(2)
1(3)
1(3)
1(2)
1(2)
2
2
2
2
None
None
None
None
None
None
None
None
None
None
None
None
None
Read ROM code (current page) to data memory and TBLH
Read ROM code (last page) to data memory and TBLH
2(1)
2(1)
None
None
No operation
Clear data memory
Set data memory
Clear Watchdog Timer
Pre-clear Watchdog Timer
Pre-clear Watchdog Timer
Swap nibbles of data memory
Swap nibbles of data memory with result in ACC
Enter power down mode
1
1(1)
1(1)
1
1
1
1(1)
1
1
None
None
None
TO,PDF
TO(4),PDF(4)
TO(4),PDF(4)
None
None
TO,PDF
Mnemonic
Description
Branch
JMP addr
SZ [m]
SZA [m]
SZ [m].i
SNZ [m].i
SIZ [m]
SDZ [m]
SIZA [m]
SDZA [m]
CALL addr
RET
RET A,x
RETI
Table Read
TABRDC [m]
TABRDL [m]
Miscellaneous
NOP
CLR [m]
SET [m]
CLR WDT
CLR WDT1
CLR WDT2
SWAP [m]
SWAPA [m]
HALT
Note:
x: Immediate data
m: Data memory address
A: Accumulator
i: 0~7 number of bits
addr: Program memory address
Ö: Flag is affected
-: Flag is not affected
(1)
: If a loading to the PCL register occurs, the execution cycle of instructions will be delayed for one more cycle
(four system clocks).
(2)
: If a skipping to the next instruction occurs, the execution cycle of instructions will be delayed for one more
cycle (four system clocks). Otherwise the original instruction cycle is unchanged.
(3) (1)
:
(4)
Rev. 1.10
and (2)
: The flags may be affected by the execution status. If the Watchdog Timer is cleared by executing the
CLR WDT1 or CLR WDT2 instruction, the TO and PDF are cleared.
Otherwise the TO and PDF flags remain unchanged.
27
March 24, 2006
HT46R48E
Instruction Definition
ADC A,[m]
Add data memory and carry to the accumulator
Description
The contents of the specified data memory, accumulator and the carry flag are added simultaneously, leaving the result in the accumulator.
Operation
ACC ¬ ACC+[m]+C
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
Ö
Ö
Ö
Ö
ADCM A,[m]
Add the accumulator and carry to data memory
Description
The contents of the specified data memory, accumulator and the carry flag are added simultaneously, leaving the result in the specified data memory.
Operation
[m] ¬ ACC+[m]+C
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
Ö
Ö
Ö
Ö
ADD A,[m]
Add data memory to the accumulator
Description
The contents of the specified data memory and the accumulator are added. The result is
stored in the accumulator.
Operation
ACC ¬ ACC+[m]
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
Ö
Ö
Ö
Ö
ADD A,x
Add immediate data to the accumulator
Description
The contents of the accumulator and the specified data are added, leaving the result in the
accumulator.
Operation
ACC ¬ ACC+x
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
Ö
Ö
Ö
Ö
ADDM A,[m]
Add the accumulator to the data memory
Description
The contents of the specified data memory and the accumulator are added. The result is
stored in the data memory.
Operation
[m] ¬ ACC+[m]
Affected flag(s)
Rev. 1.10
TO
PDF
OV
Z
AC
C
¾
¾
Ö
Ö
Ö
Ö
28
March 24, 2006
HT46R48E
AND A,[m]
Logical AND accumulator with data memory
Description
Data in the accumulator and the specified data memory perform a bitwise logical_AND operation. The result is stored in the accumulator.
Operation
ACC ¬ ACC ²AND² [m]
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
Ö
¾
¾
AND A,x
Logical AND immediate data to the accumulator
Description
Data in the accumulator and the specified data perform a bitwise logical_AND operation.
The result is stored in the accumulator.
Operation
ACC ¬ ACC ²AND² x
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
Ö
¾
¾
ANDM A,[m]
Logical AND data memory with the accumulator
Description
Data in the specified data memory and the accumulator perform a bitwise logical_AND operation. The result is stored in the data memory.
Operation
[m] ¬ ACC ²AND² [m]
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
Ö
¾
¾
CALL addr
Subroutine call
Description
The instruction unconditionally calls a subroutine located at the indicated address. The
program counter increments once to obtain the address of the next instruction, and pushes
this onto the stack. The indicated address is then loaded. Program execution continues
with the instruction at this address.
Operation
Stack ¬ Program Counter+1
Program Counter ¬ addr
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
CLR [m]
Clear data memory
Description
The contents of the specified data memory are cleared to 0.
Operation
[m] ¬ 00H
Affected flag(s)
Rev. 1.10
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
29
March 24, 2006
HT46R48E
CLR [m].i
Clear bit of data memory
Description
The bit i of the specified data memory is cleared to 0.
Operation
[m].i ¬ 0
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
CLR WDT
Clear Watchdog Timer
Description
The WDT is cleared (clears the WDT). The power down bit (PDF) and time-out bit (TO) are
cleared.
Operation
WDT ¬ 00H
PDF and TO ¬ 0
Affected flag(s)
TO
PDF
OV
Z
AC
C
0
0
¾
¾
¾
¾
CLR WDT1
Preclear Watchdog Timer
Description
Together with CLR WDT2, clears the WDT. PDF and TO are also cleared. Only execution
of this instruction without the other preclear instruction just sets the indicated flag which implies this instruction has been executed and the TO and PDF flags remain unchanged.
Operation
WDT ¬ 00H*
PDF and TO ¬ 0*
Affected flag(s)
TO
PDF
OV
Z
AC
C
0*
0*
¾
¾
¾
¾
CLR WDT2
Preclear Watchdog Timer
Description
Together with CLR WDT1, clears the WDT. PDF and TO are also cleared. Only execution
of this instruction without the other preclear instruction, sets the indicated flag which implies this instruction has been executed and the TO and PDF flags remain unchanged.
Operation
WDT ¬ 00H*
PDF and TO ¬ 0*
Affected flag(s)
TO
PDF
OV
Z
AC
C
0*
0*
¾
¾
¾
¾
CPL [m]
Complement data memory
Description
Each bit of the specified data memory is logically complemented (1¢s complement). Bits
which previously contained a 1 are changed to 0 and vice-versa.
Operation
[m] ¬ [m]
Affected flag(s)
Rev. 1.10
TO
PDF
OV
Z
AC
C
¾
¾
¾
Ö
¾
¾
30
March 24, 2006
HT46R48E
CPLA [m]
Complement data memory and place result in the accumulator
Description
Each bit of the specified data memory is logically complemented (1¢s complement). Bits
which previously contained a 1 are changed to 0 and vice-versa. The complemented result
is stored in the accumulator and the contents of the data memory remain unchanged.
Operation
ACC ¬ [m]
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
Ö
¾
¾
DAA [m]
Decimal-Adjust accumulator for addition
Description
The accumulator value is adjusted to the BCD (Binary Coded Decimal) code. The accumulator is divided into two nibbles. Each nibble is adjusted to the BCD code and an internal
carry (AC1) will be done if the low nibble of the accumulator is greater than 9. The BCD adjustment is done by adding 6 to the original value if the original value is greater than 9 or a
carry (AC or C) is set; otherwise the original value remains unchanged. The result is stored
in the data memory and only the carry flag (C) may be affected.
Operation
If ACC.3~ACC.0 >9 or AC=1
then [m].3~[m].0 ¬ (ACC.3~ACC.0)+6, AC1=AC
else [m].3~[m].0 ¬ (ACC.3~ACC.0), AC1=0
and
If ACC.7~ACC.4+AC1 >9 or C=1
then [m].7~[m].4 ¬ ACC.7~ACC.4+6+AC1,C=1
else [m].7~[m].4 ¬ ACC.7~ACC.4+AC1,C=C
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
Ö
DEC [m]
Decrement data memory
Description
Data in the specified data memory is decremented by 1.
Operation
[m] ¬ [m]-1
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
Ö
¾
¾
DECA [m]
Decrement data memory and place result in the accumulator
Description
Data in the specified data memory is decremented by 1, leaving the result in the accumulator. The contents of the data memory remain unchanged.
Operation
ACC ¬ [m]-1
Affected flag(s)
Rev. 1.10
TO
PDF
OV
Z
AC
C
¾
¾
¾
Ö
¾
¾
31
March 24, 2006
HT46R48E
HALT
Enter power down mode
Description
This instruction stops program execution and turns off the system clock. The contents of
the RAM and registers are retained. The WDT and prescaler are cleared. The power down
bit (PDF) is set and the WDT time-out bit (TO) is cleared.
Operation
Program Counter ¬ Program Counter+1
PDF ¬ 1
TO ¬ 0
Affected flag(s)
TO
PDF
OV
Z
AC
C
0
1
¾
¾
¾
¾
INC [m]
Increment data memory
Description
Data in the specified data memory is incremented by 1
Operation
[m] ¬ [m]+1
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
Ö
¾
¾
INCA [m]
Increment data memory and place result in the accumulator
Description
Data in the specified data memory is incremented by 1, leaving the result in the accumulator. The contents of the data memory remain unchanged.
Operation
ACC ¬ [m]+1
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
Ö
¾
¾
JMP addr
Directly jump
Description
The program counter are replaced with the directly-specified address unconditionally, and
control is passed to this destination.
Operation
Program Counter ¬addr
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
MOV A,[m]
Move data memory to the accumulator
Description
The contents of the specified data memory are copied to the accumulator.
Operation
ACC ¬ [m]
Affected flag(s)
Rev. 1.10
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
32
March 24, 2006
HT46R48E
MOV A,x
Move immediate data to the accumulator
Description
The 8-bit data specified by the code is loaded into the accumulator.
Operation
ACC ¬ x
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
MOV [m],A
Move the accumulator to data memory
Description
The contents of the accumulator are copied to the specified data memory (one of the data
memories).
Operation
[m] ¬ACC
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
NOP
No operation
Description
No operation is performed. Execution continues with the next instruction.
Operation
Program Counter ¬ Program Counter+1
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
OR A,[m]
Logical OR accumulator with data memory
Description
Data in the accumulator and the specified data memory (one of the data memories) perform a bitwise logical_OR operation. The result is stored in the accumulator.
Operation
ACC ¬ ACC ²OR² [m]
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
Ö
¾
¾
OR A,x
Logical OR immediate data to the accumulator
Description
Data in the accumulator and the specified data perform a bitwise logical_OR operation.
The result is stored in the accumulator.
Operation
ACC ¬ ACC ²OR² x
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
Ö
¾
¾
ORM A,[m]
Logical OR data memory with the accumulator
Description
Data in the data memory (one of the data memories) and the accumulator perform a
bitwise logical_OR operation. The result is stored in the data memory.
Operation
[m] ¬ACC ²OR² [m]
Affected flag(s)
Rev. 1.10
TO
PDF
OV
Z
AC
C
¾
¾
¾
Ö
¾
¾
33
March 24, 2006
HT46R48E
RET
Return from subroutine
Description
The program counter is restored from the stack. This is a 2-cycle instruction.
Operation
Program Counter ¬ Stack
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
RET A,x
Return and place immediate data in the accumulator
Description
The program counter is restored from the stack and the accumulator loaded with the specified 8-bit immediate data.
Operation
Program Counter ¬ Stack
ACC ¬ x
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
RETI
Return from interrupt
Description
The program counter is restored from the stack, and interrupts are enabled by setting the
EMI bit. EMI is the enable master (global) interrupt bit.
Operation
Program Counter ¬ Stack
EMI ¬ 1
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
RL [m]
Rotate data memory left
Description
The contents of the specified data memory are rotated 1 bit left with bit 7 rotated into bit 0.
Operation
[m].(i+1) ¬ [m].i; [m].i:bit i of the data memory (i=0~6)
[m].0 ¬ [m].7
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
RLA [m]
Rotate data memory left and place result in the accumulator
Description
Data in the specified data memory is rotated 1 bit left with bit 7 rotated into bit 0, leaving the
rotated result in the accumulator. The contents of the data memory remain unchanged.
Operation
ACC.(i+1) ¬ [m].i; [m].i:bit i of the data memory (i=0~6)
ACC.0 ¬ [m].7
Affected flag(s)
Rev. 1.10
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
34
March 24, 2006
HT46R48E
RLC [m]
Rotate data memory left through carry
Description
The contents of the specified data memory and the carry flag are rotated 1 bit left. Bit 7 replaces the carry bit; the original carry flag is rotated into the bit 0 position.
Operation
[m].(i+1) ¬ [m].i; [m].i:bit i of the data memory (i=0~6)
[m].0 ¬ C
C ¬ [m].7
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
Ö
RLCA [m]
Rotate left through carry and place result in the accumulator
Description
Data in the specified data memory and the carry flag are rotated 1 bit left. Bit 7 replaces the
carry bit and the original carry flag is rotated into bit 0 position. The rotated result is stored
in the accumulator but the contents of the data memory remain unchanged.
Operation
ACC.(i+1) ¬ [m].i; [m].i:bit i of the data memory (i=0~6)
ACC.0 ¬ C
C ¬ [m].7
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
Ö
RR [m]
Rotate data memory right
Description
The contents of the specified data memory are rotated 1 bit right with bit 0 rotated to bit 7.
Operation
[m].i ¬ [m].(i+1); [m].i:bit i of the data memory (i=0~6)
[m].7 ¬ [m].0
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
RRA [m]
Rotate right and place result in the accumulator
Description
Data in the specified data memory is rotated 1 bit right with bit 0 rotated into bit 7, leaving
the rotated result in the accumulator. The contents of the data memory remain unchanged.
Operation
ACC.(i) ¬ [m].(i+1); [m].i:bit i of the data memory (i=0~6)
ACC.7 ¬ [m].0
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
RRC [m]
Rotate data memory right through carry
Description
The contents of the specified data memory and the carry flag are together rotated 1 bit
right. Bit 0 replaces the carry bit; the original carry flag is rotated into the bit 7 position.
Operation
[m].i ¬ [m].(i+1); [m].i:bit i of the data memory (i=0~6)
[m].7 ¬ C
C ¬ [m].0
Affected flag(s)
Rev. 1.10
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
Ö
35
March 24, 2006
HT46R48E
RRCA [m]
Rotate right through carry and place result in the accumulator
Description
Data of the specified data memory and the carry flag are rotated 1 bit right. Bit 0 replaces
the carry bit and the original carry flag is rotated into the bit 7 position. The rotated result is
stored in the accumulator. The contents of the data memory remain unchanged.
Operation
ACC.i ¬ [m].(i+1); [m].i:bit i of the data memory (i=0~6)
ACC.7 ¬ C
C ¬ [m].0
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
Ö
SBC A,[m]
Subtract data memory and carry from the accumulator
Description
The contents of the specified data memory and the complement of the carry flag are subtracted from the accumulator, leaving the result in the accumulator.
Operation
ACC ¬ ACC+[m]+C
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
Ö
Ö
Ö
Ö
SBCM A,[m]
Subtract data memory and carry from the accumulator
Description
The contents of the specified data memory and the complement of the carry flag are subtracted from the accumulator, leaving the result in the data memory.
Operation
[m] ¬ ACC+[m]+C
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
Ö
Ö
Ö
Ö
SDZ [m]
Skip if decrement data memory is 0
Description
The contents of the specified data memory are decremented by 1. If the result is 0, the next
instruction is skipped. If the result is 0, the following instruction, fetched during the current
instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).
Operation
Skip if ([m]-1)=0, [m] ¬ ([m]-1)
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
SDZA [m]
Decrement data memory and place result in ACC, skip if 0
Description
The contents of the specified data memory are decremented by 1. If the result is 0, the next
instruction is skipped. The result is stored in the accumulator but the data memory remains
unchanged. If the result is 0, the following instruction, fetched during the current instruction
execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).
Operation
Skip if ([m]-1)=0, ACC ¬ ([m]-1)
Affected flag(s)
Rev. 1.10
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
36
March 24, 2006
HT46R48E
SET [m]
Set data memory
Description
Each bit of the specified data memory is set to 1.
Operation
[m] ¬ FFH
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
SET [m]. i
Set bit of data memory
Description
Bit i of the specified data memory is set to 1.
Operation
[m].i ¬ 1
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
SIZ [m]
Skip if increment data memory is 0
Description
The contents of the specified data memory are incremented by 1. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a
dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with
the next instruction (1 cycle).
Operation
Skip if ([m]+1)=0, [m] ¬ ([m]+1)
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
SIZA [m]
Increment data memory and place result in ACC, skip if 0
Description
The contents of the specified data memory are incremented by 1. If the result is 0, the next
instruction is skipped and the result is stored in the accumulator. The data memory remains unchanged. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper
instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).
Operation
Skip if ([m]+1)=0, ACC ¬ ([m]+1)
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
SNZ [m].i
Skip if bit i of the data memory is not 0
Description
If bit i of the specified data memory is not 0, the next instruction is skipped. If bit i of the data
memory is not 0, the following instruction, fetched during the current instruction execution,
is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).
Operation
Skip if [m].i¹0
Affected flag(s)
Rev. 1.10
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
37
March 24, 2006
HT46R48E
SUB A,[m]
Subtract data memory from the accumulator
Description
The specified data memory is subtracted from the contents of the accumulator, leaving the
result in the accumulator.
Operation
ACC ¬ ACC+[m]+1
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
Ö
Ö
Ö
Ö
SUBM A,[m]
Subtract data memory from the accumulator
Description
The specified data memory is subtracted from the contents of the accumulator, leaving the
result in the data memory.
Operation
[m] ¬ ACC+[m]+1
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
Ö
Ö
Ö
Ö
SUB A,x
Subtract immediate data from the accumulator
Description
The immediate data specified by the code is subtracted from the contents of the accumulator, leaving the result in the accumulator.
Operation
ACC ¬ ACC+x+1
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
Ö
Ö
Ö
Ö
SWAP [m]
Swap nibbles within the data memory
Description
The low-order and high-order nibbles of the specified data memory (1 of the data memories) are interchanged.
Operation
[m].3~[m].0 « [m].7~[m].4
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
SWAPA [m]
Swap data memory and place result in the accumulator
Description
The low-order and high-order nibbles of the specified data memory are interchanged, writing the result to the accumulator. The contents of the data memory remain unchanged.
Operation
ACC.3~ACC.0 ¬ [m].7~[m].4
ACC.7~ACC.4 ¬ [m].3~[m].0
Affected flag(s)
Rev. 1.10
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
38
March 24, 2006
HT46R48E
SZ [m]
Skip if data memory is 0
Description
If the contents of the specified data memory are 0, the following instruction, fetched during
the current instruction execution, is discarded and a dummy cycle is replaced to get the
proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).
Operation
Skip if [m]=0
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
SZA [m]
Move data memory to ACC, skip if 0
Description
The contents of the specified data memory are copied to the accumulator. If the contents is
0, the following instruction, fetched during the current instruction execution, is discarded
and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed
with the next instruction (1 cycle).
Operation
Skip if [m]=0
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
SZ [m].i
Skip if bit i of the data memory is 0
Description
If bit i of the specified data memory is 0, the following instruction, fetched during the current
instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).
Operation
Skip if [m].i=0
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
TABRDC [m]
Move the ROM code (current page) to TBLH and data memory
Description
The low byte of ROM code (current page) addressed by the table pointer (TBLP) is moved
to the specified data memory and the high byte transferred to TBLH directly.
Operation
[m] ¬ ROM code (low byte)
TBLH ¬ ROM code (high byte)
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
TABRDL [m]
Move the ROM code (last page) to TBLH and data memory
Description
The low byte of ROM code (last page) addressed by the table pointer (TBLP) is moved to
the data memory and the high byte transferred to TBLH directly.
Operation
[m] ¬ ROM code (low byte)
TBLH ¬ ROM code (high byte)
Affected flag(s)
Rev. 1.10
TO
PDF
OV
Z
AC
C
¾
¾
¾
¾
¾
¾
39
March 24, 2006
HT46R48E
XOR A,[m]
Logical XOR accumulator with data memory
Description
Data in the accumulator and the indicated data memory perform a bitwise logical Exclusive_OR operation and the result is stored in the accumulator.
Operation
ACC ¬ ACC ²XOR² [m]
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
Ö
¾
¾
XORM A,[m]
Logical XOR data memory with the accumulator
Description
Data in the indicated data memory and the accumulator perform a bitwise logical Exclusive_OR operation. The result is stored in the data memory. The 0 flag is affected.
Operation
[m] ¬ ACC ²XOR² [m]
Affected flag(s)
TO
PDF
OV
Z
AC
C
¾
¾
¾
Ö
¾
¾
XOR A,x
Logical XOR immediate data to the accumulator
Description
Data in the accumulator and the specified data perform a bitwise logical Exclusive_OR operation. The result is stored in the accumulator. The 0 flag is affected.
Operation
ACC ¬ ACC ²XOR² x
Affected flag(s)
Rev. 1.10
TO
PDF
OV
Z
AC
C
¾
¾
¾
Ö
¾
¾
40
March 24, 2006
HT46R48E
Package Information
24-pin SKDIP (300mil) Outline Dimensions
A
B
2 4
1 3
1
1 2
H
C
D
E
Symbol
Rev. 1.10
F
a
G
I
Dimensions in mil
Min.
Nom.
Max.
A
1235
¾
1265
B
255
¾
265
C
125
¾
135
D
125
¾
145
E
16
¾
20
F
50
¾
70
G
¾
100
¾
H
295
¾
315
I
345
¾
360
a
0°
¾
15°
41
March 24, 2006
HT46R48E
24-pin SOP (300mil) Outline Dimensions
1 3
2 4
A
B
1 2
1
C
C '
G
H
D
E
Symbol
Rev. 1.10
a
F
Dimensions in mil
Min.
Nom.
Max.
A
394
¾
419
B
290
¾
300
C
14
¾
20
C¢
590
¾
614
D
92
¾
104
E
¾
50
¾
F
4
¾
¾
G
32
¾
38
H
4
¾
12
a
0°
¾
10°
42
March 24, 2006
HT46R48E
24-pin SSOP (150mil) Outline Dimensions
1 3
2 4
A
B
1 2
1
C
C '
G
H
D
E
Symbol
Rev. 1.10
a
F
Dimensions in mil
Min.
Nom.
Max.
A
228
¾
244
B
150
¾
157
C
8
¾
12
C¢
335
¾
346
D
54
¾
60
E
¾
25
¾
F
4
¾
10
G
22
¾
28
H
7
¾
10
a
0°
¾
8°
43
March 24, 2006
HT46R48E
Product Tape and Reel Specifications
Reel Dimensions
D
T 2
A
C
B
T 1
SOP 24W
Symbol
Description
Dimensions in mm
A
Reel Outer Diameter
330±1.0
B
Reel Inner Diameter
62±1.5
C
Spindle Hole Diameter
13.0+0.5
-0.2
D
Key Slit Width
2.0±0.5
T1
Space Between Flange
24.8+0.3
-0.2
T2
Reel Thickness
30.2±0.2
SSOP 24S (150mil)
Symbol
Description
A
Reel Outer Diameter
B
Reel Inner Diameter
Dimensions in mm
330±1.0
62±1.5
13.0+0.5
-0.2
C
Spindle Hole Diameter
D
Key Slit Width
2.0±0.5
T1
Space Between Flange
16.8+0.3
-0.2
T2
Reel Thickness
22.2±0.2
Rev. 1.10
44
March 24, 2006
HT46R48E
Carrier Tape Dimensions
P 0
D
P 1
t
E
F
W
C
D 1
B 0
P
K 0
A 0
SOP 24W
Symbol
W
Description
Dimensions in mm
Carrier Tape Width
24.0±0.3
P
Cavity Pitch
12.0±0.1
E
Perforation Position
1.75±0.1
F
Cavity to Perforation (Width Direction)
11.5±0.1
D
Perforation Diameter
1.55+0.1
D1
Cavity Hole Diameter
1.5+0.25
4.0±0.1
P0
Perforation Pitch
P1
Cavity to Perforation (Length Direction)
2.0±0.1
A0
Cavity Length
10.9±0.1
B0
Cavity Width
15.9±0.1
K0
Cavity Depth
3.1±0.1
t
Carrier Tape Thickness
C
Cover Tape Width
0.35±0.05
21.3
SSOP 24S (150mil)
Symbol
Description
Dimensions in mm
W
Carrier Tape Width
16.0+0.3
-0.1
P
Cavity Pitch
8.0±0.1
E
Perforation Position
1.75±0.1
F
Cavity to Perforation (Width Direction)
7.5±0.1
D
Perforation Diameter
1.5+0.1
D1
Cavity Hole Diameter
1.5+0.25
P0
Perforation Pitch
4.0±0.1
P1
Cavity to Perforation (Length Direction)
2.0±0.1
A0
Cavity Length
6.5±0.1
B0
Cavity Width
9.5±0.1
K0
Cavity Depth
2.1±0.1
t
Carrier Tape Thickness
0.3±0.05
C
Cover Tape Width
Rev. 1.10
13.3
45
March 24, 2006
HT46R48E
Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw
Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)
Holtek Semiconductor Inc. (Shanghai Sales Office)
7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233
Tel: 021-6485-5560
Fax: 021-6485-0313
http://www.holtek.com.cn
Holtek Semiconductor Inc. (Shenzhen Sales Office)
43F, SEG Plaza, Shen Nan Zhong Road, Shenzhen, China 518031
Tel: 0755-8346-5589
Fax: 0755-8346-5590
ISDN: 0755-8346-5591
Holtek Semiconductor Inc. (Beijing Sales Office)
Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031
Tel: 010-6641-0030, 6641-7751, 6641-7752
Fax: 010-6641-0125
Holmate Semiconductor, Inc. (North America Sales Office)
46712 Fremont Blvd., Fremont, CA 94538
Tel: 510-252-9880
Fax: 510-252-9885
http://www.holmate.com
Copyright Ó 2006 by HOLTEK SEMICONDUCTOR INC.
The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable
without further modification, nor recommends the use of its products for application that may present a risk to human life
due to malfunction or otherwise. Holtek¢s products are not authorized for use as critical components in life support devices
or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information,
please visit our web site at http://www.holtek.com.tw.
Rev. 1.10
46
March 24, 2006