ML12002 Analog Mixer Legacy Device: Motorola MC12002 The ML12002 is a double balanced analog mixer, including an input amplifier feeding the mixer carrier port and a temperature compensated bias regulator. The input circuits for both the amplifier and mixer are differential amplifier circuits. The on-chip regulator provides all of the required biasing. This circuit is designed for use as a balanced mixer in high-frequency wide-band circuits. Other typical applications include suppressed carrier and amplitude modulation, synchronous AM detection, FM detection, phase detection, and frequency doubling, at frequencies up to UHF. 14 1 P DIP 14 = CP PLASTIC PACKAGE CASE 646 SOG 14 = -5P SOG CASE 751A CROSS REFERENCE/ORDERING INFORMATION MOTOROLA LANSDALE PACKAGE P DIP 14 MC12002P ML12002CP SOG 14 MC12002D ML12002-5P There are two package offerings: • Plastic Dual Inline 14 Lead, P Dip. • Plastic Surface Mount 14 Lead SOIC. Note: Lansdale lead free (Pb) product, as it becomes available, will be identified by a part number prefix change from ML to MLE. • Operating Temperature Range: TA = –30° to +85°C PIN CONNECTIONS Figure 1. Logic Diagram Local Oscillator Inputs 2 12 Amplifier 3 VB VR 8 Signal Inputs 9 Regulator Bypass 1 14 VCC Mixer Local Oscillator Input 2 13 Resistor Load Signal Port VR VB Local Oscillator Input 3 12 Data Output Alternate Signal Input 4 11 Data Output Null Adjust 5 10 Regulator Bypass Null Adjust 6 9 Mixer Signal Input VEE 7 8 Mixer Signal Input Carrier Port 11 Output Bias Regulator (Top View) Page 1 of 9 www.lansdale.com Issue A LANSDALE Semiconductor, Inc. ML12002 TEST VOLTAGE VALUES Volts VIHmax VILmin VCC +2.9 +2.0 +5.0 ELECTRICAL CHARACTERISTICS VOLTAGE APPLIED TO PINS LISTED BELOW Test Limits Characteristic Power Supply Drain Input Current Output Current Pin –30°C Under Symbol Test Min Max +25°C +85°C Min Max Min Max Unit VIHmax VILmin ICC IinH 14 — — — 16 — — mAdc — — 11,12,14 5,6,7 2 3 8 9 — — — — — — — — — — — — 0.75 0.75 0.75 0.75 — — — — — — — — mAdc mAdc mAdc mAdc 2 3 8 9 — — — — 11,12,14 11,12,14 11,12,14 11,12,14 5,6,7 5,6,7 5,6,7 5,6,7 IinL 2 3 8 9 — — — — — — — — – 0.7 – 0.7 – 0.7 – 0.7 — — — — — — — — — — — — mAdc mAdc mAdc mAdc — — — — 2 3 8 9 11,12,14 11,12,14 11,12,14 11,12,14 5,6,7 5,6,7 5,6,7 5,6,7 IO1 11 12 — — — — 0.7 0.7 1.3 1.3 — — — — mAdc mAdc — — — — 11,12,14 11,12,14 7 7 IO2 11 12 — — — — 2.1 2.1 3.9 3.9 — — — — mAdc mAdc — — — — 11,12,14 5,6,7 11,12,14 5,6,7 Iout 11 11 12 12 — — — — — — — — 4.2 4.2 4.2 4.2 7.8 7.8 7.8 7.8 — — — — — mAdc mAdc mAdc mAdc 2,9 3,8 2,8 3,9 — — — — 11,12,14 11,12,14 11,12,14 11,12,14 –100 –200 +100 +200 –100 –200 +100 +200 µAdc µAdc — — — — 11,12,14 7 11,12,14 5,6,7 2.53 2.32 2.52 2.3 2.5 590 400 600 410 610 415 285 425 295 435 415 285 425 295 435 1.46 1.185 1.385 1.105 1.305 Vdc mVdc mVdc mVdc Vdc — — — — — — — — — — 11,12,14 5,6,7 11,12,14 5,6,7 11,12,14 7 11,12,14 7 11,12,14 5,6,7 Differential Current ∆IO1 ∆IO2 Bias Voltage VBias 11,12 –100 +100 11,12 –200 +200 1 4 5 6 10 2.33 390 275 275 1.26 Pulse Pulse In Out –3.0 V AC Gain (See Figure 1) (Frequency = 100 MHz) *Note NOTE: Page 2 of 9 AV VCC Gnd Gnd 5,6,7 5,6,7 5,6,7 5,6,7 11 — — 5.0 — — — V/V 2 11 9 14 VEE 7 11 — — 0.28 — — — V/V 8 11 3 14 7 *Note: AC Gain is a function of collector load impedance. www.lansdale.com Issue A LANSDALE Semiconductor, Inc. ML12002 Page 3 of 9 www.lansdale.com Issue A LANSDALE Semiconductor, Inc. ML12002 Figure 4. Carrier Feedthrough Test Circuits Signal A Input (Pin 2) Output (Pin12) Output (Pin 11) Signal B Input (Pin 8) Output (Pin 12) Output (Pin 11) Tektronix 454 and 568 Oscilloscopes 1.0 µf 2 12 Local Oscillator Inputs 3 1.0 µf Hewlett Packard 651A and 3300B 100 kHz to 100 MHz @ 30 mVpp Sampling Volt meter Hewlett Packard 3406A or Equiv. Outputs 11 Mixer Inputs 8 1.0 µf Reg. Bypass 9 1 10 0.1 µf 0.1 µf Null Adjust VEE 7 5 6 133 133 VCC 14 50 0.1 µf +5.0 V Notes: Test 1 – Adjust potentiometer for carrier null at fc = 100 kHz. Test 2 – Connect pins 5 and 6 to Gnd. Page 4 of 9 www.lansdale.com All Input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Issue A LANSDALE Semiconductor, Inc. ML12002 Figure 6. Carrier Feedthrough versus Frequency (Test 2) V CFT, CARRIER OUTPUT VOLTAGE (mV [rms]) V CFT, CARRIER OUTPUT VOLTAGE (mV[rms]) Figure 5. Carrier Feedthrough versus Frequency (Test 1) 5.0 4.0 3.0 2.0 1.0 0.0 0.1 1.0 10.0 100.0 5.0 4.0 3.0 2.0 1.0 0.0 0.1 1.0 fc, CARRIER FREQUENCY (MHz) 10.0 100.0 fc, CARRIER FREQUENCY (MHz) Figure 7. Carrier Suppression Test Circuit Hewlett Packard 3406A Sampling Voltmeter 0.1 µf Hewlett Packard TEE 11536A 1.0 µf 50 2 3 9 0.1 µf Outputs 11 50 8 Hewlett Packard 651A and 3300B 100 kHz to 400 MHz @ 30 mV RMS. Hewlett Packard 651A 10 kHz @ 150 mV R.M.S. 50 12 Local Oscillator Inputs 50 Reg. Bypass Mixer Inputs Null Adjust VEE 1.0µf 1 1.0 µf 10 7 5 6 X 50 Atten. 50 VCC 14 All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. 1.0 µf 50 – 5.0 V – + – 5.0 V Notes: Test 1 – Adjust potentiometer for carrier null @ fc = 100 kHz Test 2 – Connect pins 5 and 6 to –5.0 volts Test 3 – Adjust potentiometer for carrier null @ 25° C Figure 9. Carrier Suppression versus Frequency (Test 2) +40 +40 +30 +30 CARRIER SUPPRESSION (dB) CARRIER SUPPRESSION (dB) Figure 8. Carrier Suppression versus Frequency (Test 1) +20 +10 0 –10 –20 –30 –40 +10 0 –10 –20 –30 –40 –50 –50 –60 0.1 +20 1.0 10.0 100.0 1.0 K –60 0.1 Page 5 of 9 1.0 10.0 100.0 1.0 K fc, CARRIER FREQUENCY (MHz) fc, CARRIER FREQUENCY (MHz) www.lansdale.com Issue A LANSDALE Semiconductor, Inc. ML12002 Figure 10. Carrier Suppression versus Temperature CARRIER SUPPRESSION (dB) –10 –20 –30 fc = 10 MHz @ 30 mvrms fs = 10 KHz @ 150 mvrms –40 –50 –60 –55 –25 0 +25 +50 +75 +100 +125 TA, AMBIENT TEMPERATURE (°C) Figure 11a. Output Offset Current (I 00) versus Temperature 1.0 µf 1.0 µf 2 12 Local Oscillator Inputs 3 I12 I µA Outputs 1.0 µf 1.0 µf 8 11 Mixer Inputs Reg. Bypass 9 1 10 0.1µf I11 I µA Null Adjust VEE 7 0.1 µf 5 VCC 6 14 IOO = I11 – I12 0.1 µf –5.0 V Notes: Test 1 – Pins 5 and 6 left open Test 2 – Pins 5 and 6 are tied to –5.0 volts Figure 12. Output Offset Current versus Temperature Figure 13. Typical Input Impedance versus Frequency (No Circuit) 31 R L RESISTANCE (Ohms) +50 350 TEST 1 0.0 –50 TEST 2 300 250 26 R 16 Zin 21 C 200 11 6 150 100 –25 0 +25 +50 +75 +100 +125 TA, AMBIENT TEMPERATURE (°C) Page 6 of 9 TYPICAL INPUT IMPEDANCE vs FREQUENCY R C – LOCAL OSCILLATOR – AND SIGNAL INPUTS 1 50 –100 –55 R(OHMS) C, CAPACITANCE (pF) I OO, OUTPUT OFFSET CURRENT ( µ A) 400 +100 200 400 600 800 1000 f, FREQUENCY (MHZ) www.lansdale.com Issue A LANSDALE Semiconductor, Inc. ML12002 C8 .1uF C5 1nF C6 1nF C7 1uF MOD input P1 V2 5V +V R4 1k V1 5V +V ML12002 U1 byp P1 LOin P2 LOin P3 altin P4 null P5 null P6 gnd P7 R2 50 P14 vcc P13 load P12 rfout P11 rfout P10 byp P9 sigin P8 sigin R1 50 C2 1nF RF out C3 1nF C1 1nF P2 C4 1nF P3 R3 10k 40% RF input AGC Figure 11b. Application Circuite Using ML12002 as a AM Modulator Page 7 of 9 www.lansdale.com Issue A LANSDALE Semiconductor, Inc. ML12002 OUTLINE DIMENSIONS P DIP 14 = CP PLASTIC PACKAGE (ML12002CP) CASE 646–06 ISSUE M 14 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. 8 B 1 7 A F L N C –T– SEATING PLANE G D 14 PL 0.13 (0.005) Page 8 of 9 J K H M DIM A B C D F G H J K L M N INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.290 0.310 ––– 10 0.015 0.039 MILLIMETERS MIN MAX 18.16 18.80 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.37 7.87 ––– 10 0.38 1.01 M www.lansdale.com Issue A LANSDALE Semiconductor, Inc. ML12002 OUTLINE DIMENSIONS SOG 14 = -5P (ML12002-5P) CASE 751A-03 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION 4. MAXIMUM HOLD PROTRUSION 0.15 (0.006) PER SIDE 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION -A14 8 -B1 P7 PL 0.25 (0.010) 7 G M T B M F M K 0.25 (0.010) B R X 45 C SEATING PLANE M S A S J DIM A B C D F G J K M P R INCHES MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0° 7° 5.80 6.20 0.25 0.50 MILLIMETERS MIN MAX 0.337 0.334 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0° 7° 0.228 0.244 0.010 0.019 Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. “Typical” parameters which may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by the customer’s technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc. Page 9 of 9 www.lansdale.com Issue A