LANSDALE ML12002CP

ML12002
Analog Mixer
Legacy Device: Motorola MC12002
The ML12002 is a double balanced analog mixer, including an input amplifier feeding the mixer carrier port and a
temperature compensated bias regulator. The input circuits
for both the amplifier and mixer are differential amplifier
circuits. The on-chip regulator provides all of the required
biasing.
This circuit is designed for use as a balanced mixer in
high-frequency wide-band circuits. Other typical applications include suppressed carrier and amplitude modulation,
synchronous AM detection, FM detection, phase detection,
and frequency doubling, at frequencies up to UHF.
14
1
P DIP 14 = CP
PLASTIC PACKAGE
CASE 646
SOG 14 = -5P
SOG
CASE 751A
CROSS REFERENCE/ORDERING INFORMATION
MOTOROLA
LANSDALE
PACKAGE
P DIP 14
MC12002P
ML12002CP
SOG 14
MC12002D
ML12002-5P
There are two package offerings:
• Plastic Dual Inline 14 Lead, P Dip.
• Plastic Surface Mount 14 Lead SOIC.
Note: Lansdale lead free (Pb) product, as it
becomes available, will be identified by a part
number prefix change from ML to MLE.
• Operating Temperature Range: TA = –30° to +85°C
PIN CONNECTIONS
Figure 1. Logic Diagram
Local
Oscillator
Inputs
2
12
Amplifier
3
VB
VR
8
Signal
Inputs
9
Regulator
Bypass
1
14
VCC
Mixer
Local Oscillator
Input
2
13
Resistor Load
Signal
Port
VR VB
Local Oscillator
Input
3
12
Data Output
Alternate Signal
Input
4
11
Data Output
Null Adjust
5
10
Regulator
Bypass
Null Adjust
6
9
Mixer Signal
Input
VEE
7
8
Mixer Signal
Input
Carrier
Port
11
Output
Bias
Regulator
(Top View)
Page 1 of 9
www.lansdale.com
Issue A
LANSDALE Semiconductor, Inc.
ML12002
TEST VOLTAGE VALUES
Volts
VIHmax
VILmin
VCC
+2.9
+2.0
+5.0
ELECTRICAL CHARACTERISTICS
VOLTAGE APPLIED TO PINS
LISTED BELOW
Test Limits
Characteristic
Power Supply Drain
Input Current
Output Current
Pin
–30°C
Under
Symbol Test Min Max
+25°C
+85°C
Min
Max
Min
Max
Unit
VIHmax
VILmin
ICC
IinH
14
—
—
—
16
—
—
mAdc
—
—
11,12,14 5,6,7
2
3
8
9
—
—
—
—
—
—
—
—
—
—
—
—
0.75
0.75
0.75
0.75
—
—
—
—
—
—
—
—
mAdc
mAdc
mAdc
mAdc
2
3
8
9
—
—
—
—
11,12,14
11,12,14
11,12,14
11,12,14
5,6,7
5,6,7
5,6,7
5,6,7
IinL
2
3
8
9
—
—
—
—
—
—
—
—
– 0.7
– 0.7
– 0.7
– 0.7
—
—
—
—
—
—
—
—
—
—
—
—
mAdc
mAdc
mAdc
mAdc
—
—
—
—
2
3
8
9
11,12,14
11,12,14
11,12,14
11,12,14
5,6,7
5,6,7
5,6,7
5,6,7
IO1
11
12
—
—
—
—
0.7
0.7
1.3
1.3
—
—
—
—
mAdc
mAdc
—
—
—
—
11,12,14
11,12,14
7
7
IO2
11
12
—
—
—
—
2.1
2.1
3.9
3.9
—
—
—
—
mAdc
mAdc
—
—
—
—
11,12,14 5,6,7
11,12,14 5,6,7
Iout
11
11
12
12
—
—
—
—
—
—
—
—
4.2
4.2
4.2
4.2
7.8
7.8
7.8
7.8
—
—
—
—
—
mAdc
mAdc
mAdc
mAdc
2,9
3,8
2,8
3,9
—
—
—
—
11,12,14
11,12,14
11,12,14
11,12,14
–100
–200
+100
+200
–100
–200
+100
+200
µAdc
µAdc
—
—
—
—
11,12,14
7
11,12,14 5,6,7
2.53 2.32
2.52
2.3
2.5
590 400
600
410
610
415 285
425
295
435
415 285
425
295
435
1.46 1.185 1.385 1.105 1.305
Vdc
mVdc
mVdc
mVdc
Vdc
—
—
—
—
—
—
—
—
—
—
11,12,14 5,6,7
11,12,14 5,6,7
11,12,14
7
11,12,14
7
11,12,14 5,6,7
Differential Current
∆IO1
∆IO2
Bias Voltage
VBias
11,12 –100 +100
11,12 –200 +200
1
4
5
6
10
2.33
390
275
275
1.26
Pulse Pulse
In
Out –3.0 V
AC Gain (See Figure 1)
(Frequency =
100 MHz) *Note
NOTE:
Page 2 of 9
AV
VCC
Gnd
Gnd
5,6,7
5,6,7
5,6,7
5,6,7
11
—
—
5.0
—
—
—
V/V
2
11
9
14
VEE
7
11
—
—
0.28
—
—
—
V/V
8
11
3
14
7
*Note: AC Gain is a function of collector load impedance.
www.lansdale.com
Issue A
LANSDALE Semiconductor, Inc.
ML12002
Page 3 of 9
www.lansdale.com
Issue A
LANSDALE Semiconductor, Inc.
ML12002
Figure 4. Carrier Feedthrough Test Circuits
Signal A
Input (Pin 2)
Output (Pin12)
Output (Pin 11)
Signal B Input (Pin 8)
Output (Pin 12)
Output (Pin 11)
Tektronix
454 and 568
Oscilloscopes
1.0 µf
2
12
Local Oscillator
Inputs
3
1.0 µf
Hewlett Packard
651A and 3300B
100 kHz to 100 MHz
@ 30 mVpp
Sampling Volt meter
Hewlett Packard
3406A or Equiv.
Outputs
11
Mixer
Inputs
8
1.0 µf
Reg.
Bypass
9
1
10
0.1 µf
0.1 µf
Null
Adjust
VEE
7
5
6
133
133
VCC
14
50
0.1 µf
+5.0 V
Notes:
Test 1 – Adjust potentiometer for carrier null at fc = 100 kHz.
Test 2 – Connect pins 5 and 6 to Gnd.
Page 4 of 9
www.lansdale.com
All Input and output
cables to the scope are
equal lengths of 50-ohm
coaxial cable.
Issue A
LANSDALE Semiconductor, Inc.
ML12002
Figure 6. Carrier Feedthrough versus Frequency
(Test 2)
V CFT, CARRIER OUTPUT VOLTAGE (mV [rms])
V CFT, CARRIER OUTPUT VOLTAGE (mV[rms])
Figure 5. Carrier Feedthrough versus Frequency
(Test 1)
5.0
4.0
3.0
2.0
1.0
0.0
0.1
1.0
10.0
100.0
5.0
4.0
3.0
2.0
1.0
0.0
0.1
1.0
fc, CARRIER FREQUENCY (MHz)
10.0
100.0
fc, CARRIER FREQUENCY (MHz)
Figure 7. Carrier Suppression Test Circuit
Hewlett Packard 3406A
Sampling Voltmeter
0.1 µf
Hewlett
Packard
TEE 11536A
1.0 µf
50
2
3
9
0.1 µf
Outputs
11
50
8
Hewlett Packard
651A and 3300B
100 kHz to 400 MHz
@ 30 mV RMS.
Hewlett Packard
651A 10 kHz
@ 150 mV R.M.S.
50
12
Local Oscillator
Inputs
50
Reg.
Bypass
Mixer
Inputs
Null
Adjust
VEE
1.0µf
1
1.0 µf
10
7
5
6
X 50
Atten.
50
VCC
14
All input and output
cables to the scope are
equal lengths of 50-ohm
coaxial cable.
1.0 µf
50
– 5.0 V
–
+
– 5.0 V
Notes:
Test 1 – Adjust potentiometer for carrier null @ fc = 100 kHz
Test 2 – Connect pins 5 and 6 to –5.0 volts
Test 3 – Adjust potentiometer for carrier null @ 25° C
Figure 9. Carrier Suppression versus Frequency
(Test 2)
+40
+40
+30
+30
CARRIER SUPPRESSION (dB)
CARRIER SUPPRESSION (dB)
Figure 8. Carrier Suppression versus Frequency
(Test 1)
+20
+10
0
–10
–20
–30
–40
+10
0
–10
–20
–30
–40
–50
–50
–60
0.1
+20
1.0
10.0
100.0
1.0 K
–60
0.1
Page 5 of 9
1.0
10.0
100.0
1.0 K
fc, CARRIER FREQUENCY (MHz)
fc, CARRIER FREQUENCY (MHz)
www.lansdale.com
Issue A
LANSDALE Semiconductor, Inc.
ML12002
Figure 10. Carrier Suppression versus Temperature
CARRIER SUPPRESSION (dB)
–10
–20
–30
fc = 10 MHz @ 30 mvrms
fs = 10 KHz @ 150 mvrms
–40
–50
–60
–55
–25
0
+25
+50
+75
+100
+125
TA, AMBIENT TEMPERATURE (°C)
Figure 11a. Output Offset Current (I
00) versus Temperature
1.0 µf
1.0 µf
2
12
Local Oscillator
Inputs
3
I12
I
µA
Outputs
1.0 µf
1.0 µf
8
11
Mixer
Inputs
Reg.
Bypass
9
1
10
0.1µf
I11
I
µA
Null
Adjust
VEE
7
0.1 µf
5
VCC
6
14
IOO = I11 – I12
0.1 µf
–5.0 V
Notes:
Test 1 – Pins 5 and 6 left open
Test 2 – Pins 5 and 6 are tied to –5.0 volts
Figure 12. Output Offset Current versus Temperature
Figure 13. Typical Input Impedance versus Frequency
(No Circuit)
31
R L RESISTANCE (Ohms)
+50
350
TEST 1
0.0
–50
TEST 2
300
250
26
R
16
Zin
21
C
200
11
6
150
100
–25
0
+25
+50
+75
+100
+125
TA, AMBIENT TEMPERATURE (°C)
Page 6 of 9
TYPICAL INPUT IMPEDANCE
vs
FREQUENCY
R
C
– LOCAL OSCILLATOR –
AND SIGNAL INPUTS
1
50
–100
–55
R(OHMS)
C, CAPACITANCE (pF)
I OO, OUTPUT OFFSET CURRENT ( µ A)
400
+100
200
400
600
800
1000
f, FREQUENCY (MHZ)
www.lansdale.com
Issue A
LANSDALE Semiconductor, Inc.
ML12002
C8
.1uF
C5
1nF
C6
1nF
C7
1uF
MOD
input
P1
V2
5V
+V
R4
1k
V1
5V
+V
ML12002
U1
byp P1
LOin P2
LOin P3
altin P4
null P5
null P6
gnd P7
R2
50
P14 vcc
P13 load
P12 rfout
P11 rfout
P10 byp
P9 sigin
P8 sigin
R1
50
C2
1nF
RF out
C3
1nF
C1
1nF
P2
C4
1nF
P3
R3
10k 40%
RF input
AGC
Figure 11b. Application Circuite Using ML12002 as a AM Modulator
Page 7 of 9
www.lansdale.com
Issue A
LANSDALE Semiconductor, Inc.
ML12002
OUTLINE DIMENSIONS
P DIP 14 = CP
PLASTIC PACKAGE
(ML12002CP)
CASE 646–06
ISSUE M
14
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
8
B
1
7
A
F
L
N
C
–T–
SEATING
PLANE
G
D 14 PL
0.13 (0.005)
Page 8 of 9
J
K
H
M
DIM
A
B
C
D
F
G
H
J
K
L
M
N
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.290
0.310
–––
10
0.015
0.039
MILLIMETERS
MIN
MAX
18.16
18.80
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.37
7.87
–––
10
0.38
1.01
M
www.lansdale.com
Issue A
LANSDALE Semiconductor, Inc.
ML12002
OUTLINE DIMENSIONS
SOG 14 = -5P
(ML12002-5P)
CASE 751A-03
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION
4. MAXIMUM HOLD PROTRUSION 0.15 (0.006) PER
SIDE
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION
-A14
8
-B1
P7
PL
0.25 (0.010)
7
G
M
T B
M
F
M
K
0.25 (0.010)
B
R X 45
C
SEATING
PLANE
M
S
A
S
J
DIM
A
B
C
D
F
G
J
K
M
P
R
INCHES
MIN
MAX
8.55
8.75
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0°
7°
5.80
6.20
0.25
0.50
MILLIMETERS
MIN
MAX
0.337 0.334
0.150 0.157
0.054 0.068
0.014 0.019
0.016 0.049
0.050 BSC
0.008 0.009
0.004 0.009
0°
7°
0.228 0.244
0.010 0.019
Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights nor the rights of others. “Typical” parameters which
may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by the customer’s
technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.
Page 9 of 9
www.lansdale.com
Issue A