MX25L4005 4M-BIT [x 1] CMOS SERIAL FLASH FEATURES GENERAL • Serial Peripheral Interface (SPI) compatible -- Mode 0 and Mode 3 • 4,194,304 x 1 bit structure • 128 Equal Sectors with 4K byte each - Any Sector can be erased individually • 8 Equal Blocks with 64K byte each - Any Block can be erased individually • Single Power Supply Operation - 2.7 to 3.6 volt for read, erase, and program operations • Latch-up protected to 100mA from -1V to Vcc +1V • Low Vcc write inhibit is from 1.5V to 2.5V SOFTWARE FEATURES • Input Data Format - 1-byte Command code • Block Lock protection - The BP0~BP2 status bit defines the size of the area to be software protected against Program and Erase instructions. • Auto Erase and Auto Program Algorithm - Automatically erases and verifies data at selected sector - Automatically programs and verifies data at selected page by an internal algorithm that automatically times the program pulse widths (Any page to be programed should have page in the erased state first) • Status Register Feature • Electronic Identification - JEDEC 2-byte Device ID - RES command, 1-byte Device ID PERFORMANCE • High Performance - Fast access time: 70MHz serial clock (15pF + 1TTL Load) and 66MHz serial clock (30pF + 1TTL Load) - Fast program time: 1.4ms(typ.) and 5ms(max.)/page (256-byte per page) - Fast erase time: 60ms(typ.) and 120ms(max.)/sector (4K-byte per sector) ; 1s(typ.) and 2s(max.)/block (64Kbyte per block) • Low Power Consumption - Low active read current: 12mA(max.) at 70MHz, 8mA(max.) at 66MHz and 4mA(max.) at 33MHz - Low active programming current: 15mA (max.) - Low active erase current: 15mA (max.) - Low standby current: 10uA (max.) - Deep power-down mode 1uA (typical) • Minimum 100,000 erase/program cycles HARDWARE FEATURES • SCLK Input - Serial clock input • SI Input - Serial Data Input • SO Output - Serial Data Output • WP# pin - Hardware write protection • HOLD# pin - pause the chip without diselecting the chip • PACKAGE - 8-pin SOP (150mil) - 8-pin SOP (200mil) - 8-land SON (6x5mm) - All Pb-free devices are RoHS Compliant P/N: PM1236 REV. 1.1, SEP. 30, 2005 1 MX25L4005 GENERAL DESCRIPTION The MX25L4005 is a CMOS 4,194,304 bit serial Flash memory, which is configured as 524,288 x 8 internally. The MX25L4005 feature a serial peripheral interface and software protocol allowing operation on a simple 3-wire bus. The three bus signals are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). SPI access to the device is enabled by CS# input. bytes) basis, and erase command is executes on chip or sector(4K-bytes) or block(64K-bytes). The MX25L4005 provide sequential read operation on whole chip. When the device is not in operation and CS# is high, it is put in standby mode and draws less than 10uA DC current. After program/erase command is issued, auto program/ erase algorithms which program/ erase and verify the specified page or byte /sector/block locations will be executed. Program command is executed on page (256 The MX25L4005 utilize MXIC's proprietary memory cell, which reliably stores memory contents even after 100,000 program and erase cycles. PIN CONFIGURATIONS PIN DESCRIPTION To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read command can be issued to detect completion status of a program or erase operation via WIP bit. 8-PIN SOP (150/200mil) 1 2 3 4 8 7 6 5 VCC HOLD# SCLK SI SYMBOL CS# SI SO SCLK HOLD# CS# SO WP# GND WP# VCC GND DESCRIPTION Chip Select Serial Data Input Serial Data Output Clock Input Hold, to pause the device without deselecting the device Write Protection + 3.3V Power Supply Ground 8-LAND SON (6x5mm) CS# SO WP# GND 1 2 3 4 8 7 6 5 VCC HOLD# SCLK SI P/N: PM1236 2 REV. 1.1, SEP. 30, 2005 MX25L4005 BLOCK DIAGRAM X-Decoder Address Generator Memory Array Page Buffer SI Data Register Y-Decoder SRAM Buffer CS# Mode Logic State Machine Sense Amplifier Output Buffer HV Generator SO SCLK Clock Generator P/N: PM1236 3 REV. 1.1, SEP. 30, 2005 MX25L4005 DATA PROTECTION • To avoid unexpected changes by system power supply transition, the Power-On Reset and an internal timer (tPUW) can protect the device. The MX25L4005 is designed to offer protection against accidental erasure or programming caused by spurious system level signals that may exist during power transition. During power up the device automatically resets the state machine in the Read mode. In addition, with its control register architecture, alteration of the memory contents only occurs after successful completion of specific command sequences. The device also incorporates several features to prevent inadvertent write cycles resulting from VCC power-up and power-down transition or system noise. • Before the Program, Erase, and Write Status Register execution, instruction length will be checked on following the clock pulse number to be multiple of eight base. • Write Enable (WREN) instruction must set to Write Enable Latch (WEL) bit before writing other instructions to modify data. The WEL bit will return to reset state by following situations: - Power-up - Write Disable (WRDI) instruction completion - Write Status Register (WRSR) instruction completion - Page Program (PP) instruction completion - Sector Erase (SE) instruction completion - Block Erase (BE) instruction completion - Chip Erase (CE) instruction completion • Power-On Reset and an internal timer (tPUW) can provide protection against inadvertant changes while the power supply is outside the operating specification. • Program, Erase and Write Status Register instructions are checked that they consist of a number of clock pulses that is a multiple of eight, before they are accepted for execution. • The Software Protected Mode (SPM) use (BP2, BP1, BP0) bits to allow part of memory to be protected as read only. • All instructions that modify data must be preceded by a Write Enable (WREN) instruction to set the Write Enable Latch (WEL) bit . This bit is returned to its reset state by the following events: - Power-up - Write Disable (WRDI) instruction completion - Write Status Register (WRSR) instruction completion - Page Program (PP) instruction completion - Sector Erase (SE) instruction completion - Block Erase (BE) instruction completion - Chip Erase (CE) instruction completion • The Block Protect (BP2, BP1, BP0) bits allow part of the memory to be configured as readonly. This is the Software Protected Mode (SPM). • The Write Protect (WP#) signal allows the Block Protect (BP2, BP1, BP0) bits and Status Register Write Disable (SRWD) bit to be protected. This is the Hardware Protected Mode (HPM). • In addition to the low power consumption feature, the Deep Power-down mode offers extra software protection from inadvertent Write, Program and Erase instructions, as all instructions are ignored except one particular instruction (the Release from Deep Powerdown instruction). • The Hardware Protected Mode (HPM) use WP# to protect the (BP2, BP1, BP0) bits and SRWD bit. • Deep-Power Down Mode also protects the device by ignoring all instructions except Release from DeepPower Down (RDP) instruction and RES instruction. P/N: PM1236 4 REV. 1.1, SEP. 30, 2005 MX25L4005 Table 1. Protected Area Sizes BP2 0 0 0 0 1 1 1 1 Status bit BP1 BP0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 Protect level 4Mb 0 (none) 1 (1 block) 2 (2 blocks) 3 (4 blocks) 4 (8 blocks) 5 (All) 6 (All) 7 (All) None Block 7 Block 6-7 Block 4-7 All All All All P/N: PM1236 5 REV. 1.1, SEP. 30, 2005 MX25L4005 HOLD FEATURE HOLD# pin signal goes low to hold any serial communications with the device. The HOLD feature will not stop the operation of write status register, programming, or erasing in progress. The operation of HOLD requires Chip Select(CS#) keeping low and starts on falling edge of HOLD# pin signal while Serial Clock (SCLK) signal is being low (if Serial Clock signal is not being low, HOLD operation will not start until Serial Clock signal being low). The HOLD condition ends on the rising edge of HOLD# pin signal while Serial Clock(SCLK) signal is being low( if Serial Clock signal is not being low, HOLD operation will not end until Serial Clock being low), see Figure 1. Figure 1. Hold Condition Operation SCLK HOLD# Hold Condition (standard use) Hold Condition (non-standard use) The Serial Data Output (SO) is high impedance, both Serial Data Input (SI) and Serial Clock (SCLK) are don't care during the HOLD operation. If Chip Select (CS#) signal goes high during HOLD operation, it has the effect on resetting the internal logic of the device. It is necessary to drive HOLD# signal to high, and then to drive CS# to low for restarting communication with the device. P/N: PM1236 6 REV. 1.1, SEP. 30, 2005 MX25L4005 Table 2. COMMAND DEFINITION COMMAND WREN (byte) (write Enable) 1st 06 Hex 2nd 3rd 4th 5th Action sets the (WEL) write enable latch bit WRDI (write disable) 04 Hex RDID (read identification) 9F Hex RDSR (read status register) 05 Hex reset the (WEL) write enable latch bit output the to read out manufacturer the status ID and 2-byte register device ID COMMAND SE (byte) (Sector Erase) BE (Block Erase) CE (Chip Erase) PP (Page Program) 1st 20 Hex 60 or C7 Hex 02 Hex 2nd 3rd 4th 5th Action AD1 AD2 AD3 52 or D8 Hex AD1 AD2 AD3 DP (Deep Power Down) B9 Hex AD1 AD2 AD3 WRSR (write status register) 01 Hex READ (read data) 03 Hex AD1 AD2 AD3 Fast Read (fast read data) 0B Hex AD1 AD2 AD3 x to write new n bytes values to the read out status register until CS# goes high RDP (Release from Deep Power-down) AB Hex RES (Read Electronic ID) AB Hex REMS (Read Electronic Manufacturer & Device ID) 90 Hex x x x x x ADD(1) Output the manufacturer ID and device ID (1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first P/N: PM1236 7 REV. 1.1, SEP. 30, 2005 MX25L4005 Table 3. Memory Organization 070000h 06F000h 96 95 060000h 05F000h 16 15 0 3 2 1 0 003000h 002000h 001000h 000000h …….. …….. …….. 050FFFh 04FFFFh …….. 040FFFh 03FFFFh 030FFFh 02FFFFh …….. ……. ……. ……. ……. 010000h 00F000h 060FFFh 05FFFFh 020FFFh 01FFFFh …….. 1 020000h 01F000h 070FFFh 06FFFFh 010FFFh 00FFFFh …….. 32 31 030000h 02F000h ……. 2 040000h 03F000h ……. 48 47 050000h 04F000h ……. 3 …….. …….. 64 63 …….. 4 …….. 80 79 …….. 5 …….. 6 …….. 112 111 7 ……. Address Range 07F000h 07FFFFh …….. Sector 127 …….. Block 003FFFh 002FFFh 001FFFh 000FFFh P/N: PM1236 8 REV. 1.1, SEP. 30, 2005 MX25L4005 DEVICE OPERATION 1. Before a command is issued, status register should be checked to ensure device is ready for the intended operation. 2. When incorrect command is inputted to this LSI, this LSI becomes standby mode and keeps the standby mode until next CS# falling edge. In standby mode, SO pin of this LSI should be High-Z. 3. When correct command is inputted to this LSI, this LSI becomes active mode and keeps the active mode until next CS# rising edge. 4. Input data is latched on the rising edge of Serial Clock(SCLK) and data shifts out on the falling edge of SCLK. The difference of SPI mode 0 and mode 3 is shown as Figure 2. Figure 2. SPI Modes Supported CPOL CPHA (SPI mode 0) 0 0 SCLK (SPI mode 3) 1 1 SCLK SI MSB SO MSB 5. For the following instructions: RDID, RDSR, READ, FAST_READ, RES and REMS the shifted-in instruction sequence is followed by a data-out sequence. After any bit of data being shifted out, the CS# can be high. For the following instructions: WREN, WRDI, WRSR, SE, BE, CE, PP, RDP and DP the CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed. 6. During the progress of Write Status Register, Program, Erase operation, to access the memory array is neglected and not affect the current operation of Write Status Register, Program, Erase. P/N: PM1236 9 REV. 1.1, SEP. 30, 2005 MX25L4005 COMMAND DESCRIPTION (1) Write Enable (WREN) The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP, SE, BE, CE, and WRSR, which are intended to change the device content, should be set every time after the WREN instruction setting the WEL bit. The sequence of issuing WREN instruction is: CS# goes low-> sending WREN instruction code-> CS# goes high. (see Figure 11) (2) Write Disable (WRDI) The Write Disable (WRDI) instruction is for resetting Write Enable Latch (WEL) bit. The sequence of issuing WRDI instruction is: CS# goes low-> sending WRDI instruction code-> CS# goes high. (see Figure 12) The WEL bit is reset by following situations: - Power-up - Write Disable (WRDI) instruction completion - Write Status Register (WRSR) instruction completion - Page Program (PP) instruction completion - Sector Erase (SE) instruction completion - Block Erase (BE) instruction completion - Chip Erase (CE) instruction completion (3) Read Identification (RDID) The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The MXIC Manufacturer ID is C2(hex), the memory type ID is 20(hex) as the first-byte device ID, and the individual device ID of second-byte ID is as followings: 13(hex) for MX25L4005. The sequence of issuing RDID instruction is: CS# goes low-> sending RDID instruction code -> 24-bits ID data out on SO -> to end RDID operation can use CS# to high at any time during data out. (see Figure. 13) While Program/Erase operation is in progress, it will not decode the RDID instruction, so there's no effect on the cycle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby stage. P/N: PM1236 10 REV. 1.1, SEP. 30, 2005 MX25L4005 (4) Read Status Register (RDSR) The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even in program/erase/write status register condition) and continuously. It is recommended to check the Write in Progress (WIP) bit before sending a new instruction when a program, erase, or write status register operation is in progress. The sequence of issuing RDSR instruction is: CS# goes low-> sending RDSR instruction code-> Status Register data out on SO (see Figure. 14) The definition of the status register bits is as below: WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status register progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/write status register cycle. WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable latch. When WEL bit sets to 1, which means the internal write enable latch is set, the device can accept program/erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the device will not accept program/erase/write status register instruction. BP2, BP1, BP0 bits. The Block Protect (BP2, BP1, BP0) bits, non-volatile bits, indicate the protected area(as defined in table 1) of the device to against the program/erase instruction without hardware protection mode being set. To write the Block Protect (BP2, BP1, BP0) bits requires the Write Status Register (WRSR) instruction to be executed. Those bits define the protected area of the memory to against Page Program (PP), Sector Erase (SE), Block Erase (BE) and Chip Erase(CE) instructions (only if all Block Protect bits set to 0, the CE instruction can be executed) SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, is operated together with Write Protection (WP#) pin for providing hardware protection mode. The hardware protection mode requires SRWD sets to 1 and WP# pin signal is low stage. In the hardware protection mode, the Write Status Register (WRSR) instruction is no longer accepted for execution and the SRWD bit and Block Protect bits (BP2, BP1, BP0) are read only. bit 7 SRWD Status Register Write Protect 1= status register write disable bit 6 bit 5 0 0 bit 4 bit 3 bit 2 BP2 BP1 BP0 the level of the level of the level of protected protected protected block block block (note 1) (note 1) (note 1) bit 1 WEL (write enable latch) bit 0 WIP (write in progress bit) 1=write enable 1=write operation 0=not write 0=not in write enable operation Note: 1. see the table "Protected Area Sizes" P/N: PM1236 11 REV. 1.1, SEP. 30, 2005 MX25L4005 (5) Write Status Register (WRSR) The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the Write Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in advance. The WRSR instruction can change the value of Block Protect (BP2, BP1, BP0) bits to define the protected area of memory (as shown in table 1). The WRSR also can set or reset the Status Register Write Disable (SRWD) bit in accordance with Write Protection (WP#) pin signal. The WRSR instruction cannot be executed once the Hardware Protected Mode (HPM) is entered. The sequence of issuing WRSR instruction is: CS# goes low-> sending WRSR instruction code-> Status Register data on SI-> CS# goes high. (see Figure 15) The WRSR instruction has no effect on b6, b5, b1, b0 of the status register. The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed. The selftimed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Write Status Register cycle is in progress. The WIP sets 1 during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL) bit is reset. Table 4. Protection Modes WP# Signal SRWD Bit 1 0 0 0 1 1 0 1 Mode Write Protection of the Status Register Memory Content Protected Area1 Unprotected Area1 Software Protected (SPM) Status Register is Writable (if the WREN instruction has set the WEL bit) The values in the SRWD, BP2, BP1 and BP0 bits can be changed Protected against Page Program, Sector Erase and Chip Erase Ready to accept Page Program and Sector Erase instructions Hardware Protected (HPM) Status Register is Hardware write protected The values in the SRWD, BP2, BP1 and BP0 bits cannot be changed Protected against Page Program, Sector Erase and Chip Erase Ready to accept Page Program and Sector Erase instructions Note: 1. As defined by the values in the Block Protect (BP2, BP1, BP0) bits of the Status Register, as shown in Table 1. As the above table showing, the summary of the Software Protected Mode (SPM) and Hardware Protected Mode (HPM). Software Protected Mode (SPM): - When SRWD bit=0, no matter WP# is low or high, the WREN instruction may set the WEL bit and can change the values of SRWD, BP2, BP1, BP0. The protected area, which is defined by BP2, BP1, BP0, is at software protected mode (SPM). - When SRWD bit=1 and WP# is high, the WREN instruction may set the WEL bit can change the values of SRWD, BP2, BP1, BP0. The protected area, which is defined by BP2, BP1, BP0, is at software protected mode (SPM) P/N: PM1236 12 REV. 1.1, SEP. 30, 2005 MX25L4005 Note: If SRWD bit=1 but WP# is low, it is impossible to write the Status Register even if the WEL bit has previously been set. It is rejected to write the Status Register and not be executed. Hardware Protected Mode (HPM): - When SRWD bit=1, and then WP# is low (or WP# is low before SRWD bit=1), it enters the hardware protected mode (HPM). The data of the protected area is protected by software protected mode by BP2, BP1, BP0 and hardware protected mode by the WP# to against data modification. Note: to exit the hardware protected mode requires WP# driving high once the hardware protected mode is entered. If the WP# pin is permanently connected to high, the hardware protected mode can never be entered; only can use software protected mode via BP2, BP1, BP0. (6) Read Data Bytes (READ) The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single READ instruction. The address counter rolls over to 0 when the highest address has been reached. The sequence of issuing READ instruction is: CS# goes low-> sending READ instruction code-> 3-byte address on SI -> data out on SO-> to end READ operation can use CS# to high at any time during data out. (see Figure. 16) (7) Read Data Bytes at Higher Speed (FAST_READ) The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when the highest address has been reached. The sequence of issuing FAST_READ instruction is: CS# goes low-> sending FAST_READ instruction code-> 3-byte address on SI-> 1-dummy byte address on SI->data out on SO-> to end FAST_READ operation can use CS# to high at any time during data out. (see Figure. 17) While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle. (8) Sector Erase (SE) The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Sector Erase (SE). Any address of the sector (see table 3) is a valid address for Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. Address bits [Am-A12] (Am is the most significant address) select the sector address. The sequence of issuing SE instruction is: CS# goes low -> sending SE instruction code-> 3-byte address on SI -> CS# goes high. (see Figure 19) P/N: PM1236 13 REV. 1.1, SEP. 30, 2005 MX25L4005 The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tSE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by BP2, BP1, BP0 bits, the Sector Erase (SE) instruction will not be executed on the page. (9) Block Erase (BE) The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Block Erase (BE). Any address of the block (see table 3) is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. The sequence of issuing BE instruction is: CS# goes low -> sending BE instruction code-> 3-byte address on SI -> CS# goes high. (see Figure 20) The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tBE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by BP2, BP1, BP0 bits, the Block Erase (BE) instruction will not be executed on the page. (10) Chip Erase (CE) The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). Any address of the sector (see table 3) is a valid address for Chip Erase (CE) instruction. The CS# must go high exactly at the byte boundary( the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. The sequence of issuing CE instruction is: CS# goes low-> sending CE instruction code-> CS# goes high. (see Figure 20) The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Chip Erase cycle is in progress. The WIP sets 1 during the tCE timing, and sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the chip is protected by BP2, BP1, BP0 bits, the Chip Erase (CE) instruction will not be executed. It will be only executed when BP2, BP1, BP0 all set to "0". (11) Page Program (PP) The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). If the eight least significant address bits (A7-A0) are not all 0, all transmitted data which goes beyond the end of the current page are programmed from the start address if the same page (from the address whose 8 least significant address bits (A7-A0) are all 0). The CS# must keep during the whole Page Program cycle. The CS# must go high exactly at the byte boundary( the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. If more than 256 bytes are sent to the device, the data of the last 256-byte is programmed at the request page and previous data will be disregarded. If less than 256 bytes are sent to the device, the data is programmed at the request address of the page without effect on other address of the same page. The sequence of issuing PP instruction is: CS# goes low-> sending PP instruction code-> 3-byte address on SI-> at least 1-byte on data on SI-> CS# goes high. (see Figure 18) P/N: PM1236 14 REV. 1.1, SEP. 30, 2005 MX25L4005 The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Page Program cycle is in progress. The WIP sets 1 during the tPP timing, and sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by BP2, BP1, BP0 bits, the Page Program (PP) instruction will not be executed. (12) Deep Power-down (DP) The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (to entering the Deep Power-down mode), the standby current is reduced from ISB1 to ISB2). The Deep Power-down mode requires the Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is not active and all Write/ Program/Erase instruction are ignored. When CS# goes high, it's only in standby mode not deep power-down mode. It's different from Standby mode. The sequence of issuing DP instruction is: CS# goes low-> sending DP instruction code-> CS# goes high. (see Figure 22) Once the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP) and Read Electronic Signature (RES) instruction. (RES instruction to allow the ID been read out). When Power-down, the deep power-down mode automatically stops, and when power-up, the device automatically is in standby mode. For RDP instruction the CS# must go high exactly at the byte boundary (the latest eighth bit of instruction code been latched-in); otherwise, the instruction will not executed. As soon as Chip Select (CS#) goes high, a delay of tDP is required before entering the Deep Power-down mode and reducing the current to ISB2. (13) Release from Deep Power-down (RDP), Read Electronic Signature (RES) The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When Chip Select (CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the Deep Powerdown mode, the transition to the Stand-by Power mode is immediate. If the device was previously in the Deep Power-down mode, though, the transition to the Stand-by Power mode is delayed by tRES2, and Chip Select (CS#) must remain High for at least tRES2(max), as specified in Table 6. Once in the Stand-by Power mode, the device waits to be selected, so that it can receive, decode and execute instructions. RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as table of ID Definitions. This is not the same as RDID instruction. It is not recommended to use for new design. For new deisng, please use RDID instruction. Even in Deep power-down mode, the RDP and RES are also allowed to be executed, only except the device is in progress of program/erase/write cycle; there's no effect on the current program/erase/write cycle in progress. The sequence is shown as Figure 23,24. The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeatedly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously in Deep Powerdown mode, the device transition to standby mode is immediate. If the device was previously in Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at least tRES2(max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and execute instruction. The RDP instruction is for releasing from Deep Power Down Mode. P/N: PM1236 15 REV. 1.1, SEP. 30, 2005 MX25L4005 (14) Read Electronic Manufacturer ID & Device ID (REMS) The REMS instruction is an alternative to the Release from Power-down/Device ID instruction that provides both the JEDEC assigned manufacturer ID and the specific device ID. The REMS instruction is very similar to the Release from Power-down/Device ID instruction. The instruction is initiated by driving the CS# pin low and shift the instruction code "90h" followed by two dummy bytes and one bytes address (A7~A0). After which, the Manufacturer ID for MXIC (C2h) and the Device ID are shifted out on the falling edge of SCLK with most significant bit (MSB) first as shown in figure 25. The Device ID values are listed in Table of ID Definitions on page 16. If the one-byte address is initially set to 01h, then the device ID will be read first and then followed by the Manufacturer ID. The Manufacturer and Device IDs can be read continuously, alternating from one to the other. The instruction is completed by driving CS# high. Table of ID Definitions: RDID Command manufacturer ID memory type C2 memory density 20 RES Command 13 electronic ID 12 REMS Command manufacturer ID device ID C2 12 P/N: PM1236 16 REV. 1.1, SEP. 30, 2005 MX25L4005 POWER-ON STATE At Power-up and Power-down, the device must not be selected (that is Chip Select (CS#) must follow the voltage applied on VCC) until VCC reaches the correct value: - VCC(min) at Power-up, and then for a further delay of tVSL - VSS at Power-down Usually a simple pull-up resistor on Chip Select (CS#) can be used to insure safe and proper Power-up and Power-down. To avoid data corruption and inadvertent write operations during power up, a Power On Reset (POR) circuit is included. The logic inside the device is held reset while VCC is less than the POR threshold value, VWI --all operations are disabled, and the device does not respond to any instruction. Moreover, the device ignores all Write Enable (WREN), Page Program (PP), Sector Erase (SE), Block Erase (BE), Chip Erase (CE) and Write Status Register (WRSR) instructions until a time delay of tPUW has elapsed after the moment that VCC rises above the VWI threshold. However, the correct operation of the device is not guaranteed if, by this time, VCC is still below VCC(min). No Write Status Register, Program or Erase instructions should be sent until the later of: - tPUW after VCC passed the VWI threshold - tVSL after VCC passed the VCC(min) level These values are specified in Table 7. If the delay, tVSL, has elapsed, after VCC has risen above VCC(min), the device can be selected for READ instructions even if the tPUW delay is not yet fully elapsed. At Power-up, the device is in the following state: - The device is in the Standby mode (not the Deep Power-down mode). - The Write Enable Latch (WEL) bit is reset. Normal precautions must be taken for supply rail decoupling, to stabilize the VCC feed. Each device in a system should have the VCC rail decoupled by a suitable capacitor close to the package pins. (Generally, this capacitor is of the order of 0.1uF). At Power-down, when VCC drops from the operating voltage, to below the POR threshold value, VWI, all operations are disabled and the device does not respond to any instruction. (The designer needs to be aware that if a Power-down occurs while a Write, Program or Erase cycle is in progress, some data corruption can result.) P/N: PM1236 17 REV. 1.1, SEP. 30, 2005 MX25L4005 ELECTRICAL SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS RATING NOTICE: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is stress rating only and functional operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability. 2. Specifications contained within the following tables are subject to change. 3. During voltage transitions, all pins may overshoot to 4.6V or -0.5V for period up to 20ns. 4. All input and output pins may overshoot to VCC+0.5V while VCC+0.5V is smaller than or equal to 4.6V. VALUE Ambient Operating Temperature -40° C to 85° C for Industrial grade 0° C to 70° C for Commercial grade Storage Temperature -55° C to 125° C Applied Input Voltage -0.5V to 4.6V Applied Output Voltage -0.5V to 4.6V VCC to Ground Potential -0.5V to 4.6V Figure 4. Maximum Positive Overshoot Waveform Figure 3.Maximum Negative Overshoot Waveform 20ns 4.6V 0V 3.6V -0.5V 20ns CAPACITANCE TA = 25°° C, f = 1.0 MHz SYMBOL PARAMETER CIN COUT MIN. MAX. UNIT Input Capacitance 6 pF VIN = 0V Output Capacitance 8 pF VOUT = 0V P/N: PM1236 18 TYP CONDITIONS REV. 1.1, SEP. 30, 2005 MX25L4005 Figure 5. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL Input timing referance level 0.8VCC 0.7VCC 0.3VCC Output timing referance level AC Measurement Level 0.5VCC 0.2VCC Note: Input pulse rise and fall time are <5ns Figure 6. OUTPUT LOADING 2.7K ohm DEVICE UNDER TEST +3.3V CL 6.2K ohm DIODES=IN3064 OR EQUIVALENT CL=30pF Including jig capacitance (CL=15pF Including jig capacitance for 70MHz) P/N: PM1236 19 REV. 1.1, SEP. 30, 2005 MX25L4005 Table 5. DC CHARACTERISTICS (Temperature = -40°° C to 85°° C for Industrial grade, Temperature = 0°° C to 70°° C for Commercial grade, VCC = 2.7V ~ 3.6V) SYMBOL PARAMETER ILI Input Load NOTES MIN. TYP MAX. UNITS ±2 1 uA Current ILO Output Leakage VCC Standby ±2 1 uA 1 10 uA Deep Power-down VCC Read VIN = VCC or GND CS# = VCC 10 uA Current ICC1 VCC = VCC Max VIN = VCC or GND Current ISB2 VCC = VCC Max VIN = VCC or GND Current ISB1 TEST CONDITIONS VIN = VCC or GND CS# = VCC 1 12 mA f=70MHz SCLK=0.1VCC/0.9VCC, SO=Open 8 mA f=66MHz SCLK=0.1VCC/0.9VCC, SO=Open 4 mA f=33MHz SCLK=0.1VCC/0.9VCC, SO=Open ICC2 VCC Program 1 15 mA Current (PP) ICC3 Program in Progress CS# = VCC VCC Write Status 15 mA Register (WRSR) Program status register in progress CS#=VCC Current ICC4 VCC Sector Erase 1 15 mA Current (SE) ICC5 VCC Chip Erase Erase in Progress CS#=VCC 1 15 mA Current (CE) Erase in Progress CS#=VCC VIL Input Low Voltage -0.5 0.3VCC V VIH Input High Voltage 0.7VCC VCC+0.4 V VOL Output Low Voltage 0.4 V IOL = 1.6mA VOH Output High Voltage V IOH = -100uA VCC-0.2 Notes : 1. Typical values at VCC = 3.3V, T = 25° C. These currents are valid for all product versions (package and speeds). 2. Typical value is calculated by simulation. P/N: PM1236 20 REV. 1.1, SEP. 30, 2005 MX25L4005 Table 6. AC CHARACTERISTICS (Temperature = -40°° C to 85°° C for Industrial grade, Temperature = 0°° C to 70°° C for Commercial grade, VCC = 2.7V ~ 3.6V) Symbol fSCLK Alt. fC fRSCLK tCH(1) tCL(1) tCLCH(2) tCHCL(2) tSLCH tCHSL tDVCH tCHDX tCHSH tSHCH tSHSL tSHQZ(2) tCLQV fR Clock Frequency for READ instructions D.C. tCLH Clock High Time 7 tCLL Clock Low Time 7 Clock Rise Time (3) (peak to peak) 0.1 Clock Fall Time (3) (peak to peak) 0.1 tCSS CS# Active Setup Time (relative to SCLK) 5 CS# Not Active Hold Time (relative to SCLK) 5 tDSU Data In Setup Time 2 tDH Data In Hold Time 5 CS# Active Hold Time (relative to SCLK) 5 CS# Not Active Setup Time (relative to SCLK) 5 tCSH CS# Deselect Time 100 tDIS Output Disable Time tV Clock Low to Output Valid @33MHz 30pF @70MHz 15pF or @66MHz 30pF tHO Output Hold Time 0 HOLD# Setup Time (relative to SCLK) 5 HOLD# Hold Time (relative to SCLK) 5 HOLD Setup Time (relative to SCLK) 5 HOLD Hold Time (relative to SCLK) 5 tLZ HOLD to Output Low-Z tHZ HOLD# to Output High-Z Write Protect Setup Time 20 Write Protect Hold Time 100 CS# High to Deep Power-down Mode CS# High to Standby Mode without Electronic Signature Read CS# High to Standby Mode with Electronic Signature Read Write Status Register Cycle Time Page Program Cycle Time Sector Erase Cycle Time Block Erase Cycle Time Chip Erase Cycle Time tCLQX tHLCH tCHHH tHHCH tCHHL tHHQX(2) tHLQZ(2) tWHSL(4) tSHWL(4) tDP(2) tRES1(2) tRES2(2) tW tPP tSE tBE tCE Parameter Clock Frequency for the following instructions: FAST_READ, PP, SE, BE, CE, DP, RES,RDP WREN, WRDI, RDID, RDSR, WRSR Min. D.C. Typ. Max. Unit 70 MHz (Condition:15pF) 66 MHz (Condition:30pF) 33 MHz ns ns V/ns V/ns ns ns ns ns ns ns ns 6 ns 8 ns 6 ns ns ns ns ns ns 6 ns 6 ns ns ns 3 us 3 us 1.8 us 5 15 ms 1.4 5 ms 60 120 ms 1 2 s 3.5 7.5 s Note: 1. tCH + tCL must be greater than or equal to 1/ fC 2. Value guaranteed by characterization, not 100% tested in production. 3. Expressed as a slew-rate. 4. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1. 5. Test condition is shown as Figure 3. P/N: PM1236 21 REV. 1.1, SEP. 30, 2005 MX25L4005 Table 7. Power-Up Timing and VWI Threshold Symbol tVSL(1) tPUW(1) VWI(1) Parameter VCC(min) to CS# low Time delay to Write instruction Write Inhibit Voltage Min. 10 1 1.5 Max. 10 2.5 Unit us ms V Note: 1. These parameters are characterized only. INITIAL DELIVERY STATE The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status Register contains 00h (all Status Register bits are 0). P/N: PM1236 22 REV. 1.1, SEP. 30, 2005 MX25L4005 Figure 7. Serial Input Timing tSHSL CS# tCHSL tSLCH tCHSH tSHCH SCLK tDVCH tCHCL tCHDX SI SO tCLCH LSB IN MSB IN High Impedance Figure 8. Write Protect Setup and Hold Timing during WRSR when SRWD=1 WP# tSHWL tWHSL CS# SCLK SI High Impedance SO P/N: PM1236 23 REV. 1.1, SEP. 30, 2005 MX25L4005 Figure 9. Hold Timing CS# tHLCH tCHHL tHHCH SCLK tCHHH tHLQZ tHHQX SO SI HOLD# Figure 10. Output Timing CS# tCH SCLK tCLQV tCLQX tCL tCLQV tSHQZ tCLQX LSB OUT SO tQLQH tQHQL SI ADDR.LSB IN P/N: PM1236 24 REV. 1.1, SEP. 30, 2005 MX25L4005 Figure 11. Write Enable (WREN) Instruction Sequence CS# 1 0 2 3 4 5 6 7 SCLK Instruction SI High Impedance SO Figure 12. Write Disable (WRDI) Instruction Sequence CS# 0 1 2 3 4 5 6 7 SCLK Instruction SI High Impedance SO Figure 13. Read Identification (RDID) Instruction Sequence and Data-Out Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 28 29 30 31 SCLK Instruction SI Manufacturer Identification Device Identification High Impedance SO 7 6 5 3 MSB 2 1 0 15 14 13 3 2 1 0 MSB P/N: PM1236 25 REV. 1.1, SEP. 30, 2005 MX25L4005 Figure 14. Read Status Register (RDSR) Instruction Sequence and Data-Out Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCLK Instruction SI Status Register Out Status Register Out High Impedance SO 7 6 5 4 3 2 1 0 7 MSB 6 5 4 3 2 1 7 0 MSB Figure 15. Write Status Register (WRSR) Instruction Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCLK Instruction Status Register In SI 7 High Impedance 6 5 4 3 2 0 1 MSB SO Figure 16. Read Data Bytes (READ) Instruction Sequence and Data-Out Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39 SCLK Instruction 24-Bit Address 23 22 21 SI 3 2 1 0 MSB Data Out 1 High Impedance 7 SO 6 5 4 3 2 Data Out 2 1 0 7 MSB P/N: PM1236 26 REV. 1.1, SEP. 30, 2005 MX25L4005 Figure 17. Read Data Bytes at Higher Speed (FAST_READ) Instruction Sequence and Data-Out Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 SCLK Instruction 24 BIT ADDRESS SI SO 23 22 21 3 2 1 0 High Impedance CS# 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SCLK Dummy Byte SI 7 6 5 4 3 2 1 0 DATA OUT 2 DATA OUT 1 SO 7 6 5 4 3 2 1 0 7 MSB MSB P/N: PM1236 27 6 5 4 3 2 1 0 7 MSB REV. 1.1, SEP. 30, 2005 MX25L4005 Figure 18. Page Program (PP) Instruction Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39 SCLK Instruction 24-Bit Address 23 22 21 SI 3 2 Data Byte 1 1 0 7 6 5 4 3 2 0 1 MSB MSB 2078 2079 2077 2076 2075 2074 2073 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 2072 CS# 1 0 SCLK Data Byte 2 SI 7 6 MSB 5 4 3 2 Data Byte 3 1 0 7 6 5 4 MSB 3 2 Data Byte 256 1 0 7 6 5 4 3 2 MSB P/N: PM1236 28 REV. 1.1, SEP. 30, 2005 MX25L4005 Figure 19. Sector Erase (SE) Instruction Sequence CS# 0 1 2 3 4 5 6 7 8 9 29 30 31 SCLK Instruction SI 7 6 2 24 Bit Address 1 0 7 6 2 1 0 MSB Note: SE instruction is 20(hex). Figure 20. Block Erase (BE) Instruction Sequence CS# 0 1 2 3 4 5 6 7 8 9 29 30 31 SCLK Instruction 24 Bit Address SI 23 22 2 1 0 MSB Note: BE instruction is 52 or D8(hex). P/N: PM1236 29 REV. 1.1, SEP. 30, 2005 MX25L4005 Figure 21. Chip Erase (CE) Instruction Sequence CS# 0 1 2 3 4 5 6 7 SCLK Instruction SI Note: CE instruction is 60(hex) or C7(hex). Figure 22. Deep Power-down (DP) Instruction Sequence CS# 0 1 2 3 4 5 6 tDP 7 SCLK Instruction SI Deep Power-down Mode Stand-by Mode Figure 23. Release from Deep Power-down and Read Electronic Signature (RES) Instruction Sequence and Data-Out Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 SCLK Instruction SI tRES2 3 Dummy Bytes 23 22 21 3 2 1 0 MSB Electronic Signature Out High Impedance 7 SO 6 5 4 3 2 1 0 MSB Deep Power-down Mode P/N: PM1236 30 Stand-by Mode REV. 1.1, SEP. 30, 2005 MX25L4005 Figure 24. Release from Deep Power-down (RDP) Instruction Sequence CS# 0 1 2 3 4 5 6 tRES1 7 SCLK Instruction SI High Impedance SO Deep Power-down Mode Stand-by Mode Figure 25. Read Electronic Manufacturer & Device ID (REMS) Instruction Sequence and Data-Out Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 SCLK Instruction 2 Dummy Bytes SI SO 15 14 13 3 2 1 0 High Impedance CS# 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SCLK ADD (1) SI 7 6 5 4 3 2 1 0 Manufacturer ID SO X 7 6 5 4 3 2 1 Device ID 0 7 6 5 4 3 MSB MSB 2 1 0 7 MSB Notes: (1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first P/N: PM1236 31 REV. 1.1, SEP. 30, 2005 MX25L4005 Figure 26. Power-up Timing VCC VCC(max) Program, Erase and Write Commands are Rejected by the Device Chip Selection Not Allowed VCC(min) tVSL Reset State of the Device Read Access allowed Device fully accessible VWI tPUW time P/N: PM1236 32 REV. 1.1, SEP. 30, 2005 MX25L4005 RECOMMENDED OPERATING CONDITIONS At Device Power-Up AC timing illustrated in Figure A is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly. VCC(min) VCC GND tSHSL tVR CS# tCHSL tSLCH tCHSH tSHCH SCLK tDVCH tCHCL tCHDX tCLCH LSB IN MSB IN SI High Impedance SO Figure A. AC Timing at Device Power-Up Symbol Parameter tVR VCC Rise Time Notes Min. Max. Unit 1 0.5 500000 us/V Notes : 1. Sampled, not 100% tested. 2. For AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer to "AC CHARACTERISTICS" table. P/N: PM1236 33 REV. 1.1, SEP. 30, 2005 MX25L4005 ERASE AND PROGRAMMING PERFORMANCE PARAMETER Min. TYP. (1) Max. (2) UNIT Write Status Register Cycle Time 5 15 ms Sector erase Time 60 120 ms Block erase Time 1 2 s Chip Erase Time 3.5 7.5 s Page Program Time 1.4 5 ms Erase/Program Cycle 100,000 cycles Note: 1. Typical program and erase time assumes the following conditions: 25° C, 3.3V, and checker board pattern. 2. Under worst conditions of 70° C and 3.0V. 3. System-level overhead is the time required to execute the first-bus-cycle sequence for the programming command. 4. The maximum chip programming time is evaluated under the worst conditions of 0C, VCC=3.0V, and 100K cycle with 90% confidence level. LATCH-UP CHARACTERISTICS MIN. MAX. Input Voltage with respect to GND on ACC -1.0V 12.5V Input Voltage with respect to GND on all power pins, SI, CS# -1.0V 2 VCCmax Input Voltage with respect to GND on SO -1.0V VCC + 1.0V -100mA +100mA Current Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time. P/N: PM1236 34 REV. 1.1, SEP. 30, 2005 MX25L4005 ORDERING INFORMATION PART NO. MX25L4005MC-15 CLOCK OPERATING STANDBY (MHz) CURRENT(mA) CURRENT(uA) 70 12 10 Temperature PACKAGE 0~70°C Remark 8-SOP (150mil) MX25L4005MC-15G 70 12 10 0~70°C 8-SOP Pb-free (150mil) MX25L4005M2C-15 70 12 10 0~70°C 8-SOP (200mil) MX25L4005M2C-15G 70 12 10 0~70°C 8-SOP Pb-free (200mil) MX25L4005ZMC-15G 70 12 10 0~70°C 8-land SON Pb-free (6x5mm) MX25L4005MI-15 70 12 10 -40~85°C 8-SOP (150mil) MX25L4005MI-15G 70 12 10 -40~85°C 8-SOP Pb-free (150mil) MX25L4005M2I-15 70 12 10 -40~85°C 8-SOP (200mil) MX25L4005M2I-15G 70 12 10 -40~85°C 8-SOP Pb-free (200mil) MX25L4005ZMI-15G 70 12 10 -40~85°C 8-land SON Pb-free (6x5mm) P/N: PM1236 35 REV. 1.1, SEP. 30, 2005 MX25L4005 PART NAME DESCRIPTION MX 25 L 4005 ZM C 15 G OPTION: G: Pb-free blank: normal SPEED: 15: 70MHz, for SPI TEMPERATURE RANGE: C: Commercial (0˚C to 70˚C) I: Industrial (-40˚C to 85˚C) PACKAGE: ZM: SON M: 150mil 8-SOP M2: 200mil 8-SOP DENSITY & MODE: 4005: 4Mb TYPE: L: 3V DEVICE: 25: Serial Flash P/N: PM1236 36 REV. 1.1, SEP. 30, 2005 MX25L4005 PACKAGE INFORMATION P/N: PM1236 37 REV. 1.1, SEP. 30, 2005 MX25L4005 P/N: PM1236 38 REV. 1.1, SEP. 30, 2005 MX25L4005 P/N: PM1236 39 REV. 1.1, SEP. 30, 2005 MX25L4005 REVISION HISTORY Revision No. Description 1.0 1. Removed "Preliminary" 2. Improved tVSL spec from 30us to 10us 3. To be separated from MX25L4005, MX25L8005 to MX25L4005 1.1 1. Standby current is reduced from 50uA(max.) to 10uA(max.) 2. Added description about Pb-free device is RoHS compliant 3. Improved erase speed: 4KB sector: 90ms(typ.)/270ms(max.)-->60ms(typ.)/120ms(max.) 64KB sector:1s(typ.)/3s(max.)-->1s(typ.)/2s(max.) chip sector:4.5s(typ.)/10s(max.)-->3.5s(typ.)/7.5s(max.) P/N: PM1236 40 Page Date P1 JUL/14/2005 P22 All P1,2,20,35 SEP/30/2005 P1 P1,21,34 REV. 1.1, SEP. 30, 2005 MX25L4005 MACRONIX INTERNATIONAL CO., LTD. Headquarters: TEL:+886-3-578-6688 FAX:+886-3-563-2888 Europe Office : TEL:+32-2-456-8020 FAX:+32-2-456-8021 Hong Kong Office : TEL:+86-755-834-335-79 FAX:+86-755-834-380-78 Japan Office : Kawasaki Office : TEL:+81-44-246-9100 FAX:+81-44-246-9105 Osaka Office : TEL:+81-6-4807-5460 FAX:+81-6-4807-5461 Singapore Office : TEL:+65-6346-5505 FAX:+65-6348-8096 Taipei Office : TEL:+886-2-2509-3300 FAX:+886-2-2509-2200 MACRONIX AMERICA, INC. TEL:+1-408-262-8887 FAX:+1-408-262-8810 http : //www.macronix.com MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.