DS90CR215/DS90CR216 +3.3V Rising Edge Data Strobe LVDS 21-Bit Channel Link - 66 MHz General Description The DS90CR215 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CR216 receiver converts the LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of 66 MHz, 21 bits of TTL data are transmitted at a rate of 462 Mbps per LVDS data channel. Using a 66 MHz clock, the data throughput is 1.386 Gbit/s (173 Mbytes/s). The multiplexing of the data lines provides a substantial cable reduction. Long distance parallel single-ended buses typically require a ground wire per active signal (and have very limited noise rejection capability). Thus, for a 21-bit wide data and one clock, up to 44 conductors are required. With the Channel Link chipset as few as 9 conductors (3 data pairs, 1 clock pair and a minimum of one ground) are needed. This provides a 80% reduction in required cable width, which provides a system cost savings, reduces connector physical size and cost, and reduces shielding requirements due to the cables’ smaller form factor. The 21 CMOS/TTL inputs can support a variety of signal combinations. For example, five 4-bit nibbles plus 1 control, or two 9-bit (byte + parity) and 3 control. Features n n n n n n n n n n n n n n Single +3.3V supply Chipset (Tx + Rx) power consumption < 250 mW (typ) Power-down mode ( < 0.5 mW total) Up to 173 Megabytes/sec bandwidth Up to 1.386 Gbps data throughput Narrow bus reduces cable size 290 mV swing LVDS devices for low EMI +1V common mode range (around +1.2V) PLL requires no external components Low profile 48-lead TSSOP package Rising edge data strobe Compatible with TIA/EIA-644 LVDS standard ESD Rating > 7 kV Operating Temperature: −40˚C to +85˚C Block Diagrams DS90CR216 DS90CR215 01290901 Order Number DS90CR215MTD See NS Package Number MTD48 01290927 Order Number DS90CR216MTD See NS Package Number MTD48 TRI-STATE ® is a registered trademark of National Semiconductor Corporation. © 2005 National Semiconductor Corporation DS012909 www.national.com DS90CR215/DS90CR216 +3.3V Rising Edge Data Strobe LVDS 21-Bit Channel Link-66 MHz August 2005 DS90CR215/DS90CR216 Connection Diagrams 01290921 01290922 DS90CR215 DS90CR216 Typical Application 01290923 www.national.com 2 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Supply Voltage (VCC) −0.3V to (VCC + 0.3V) CMOS/TTL Output Voltage −0.3V to (VCC + 0.3V) LVDS Receiver Input Voltage −0.3V to (VCC + 0.3V) LVDS Driver Output Voltage −0.3V to (VCC + 0.3V) Circuit Duration DS90CR216 1.89 W DS90CR215 16 mW/˚C above +25˚C DS90CR216 15 mW/˚C above +25˚C ESD Rating > 7 kV (HBM, 1.5 kΩ, 100 pF) Recommended Operating Conditions LVDS Output Short Continuous Junction Temperature 1.98 W Package Derating −0.3V to +4V CMOS/TTL Input Voltage DS90CR215 Min Nom Max Units +150˚C Storage Temperature Range Supply Voltage (VCC) −65˚C to +150˚C 3.0 3.3 3.6 V −40 +25 +85 ˚C Operating Free Air Lead Temperature (Soldering, 4 sec.) Temperature (TA) +260˚C Receiver Input Range Maximum Package Power Dissipation @ +25˚C 0 Supply Noise Voltage (VCC) MTD48 (TSSOP) Package: 2.4 V 100 mVPP Electrical Characteristics Over recommended operating supply and temperature ranges unless otherwise specified Symbol Parameter Conditions Min Typ Max Units CMOS/TTL DC SPECIFICATIONS VIH High Level Input Voltage VIL Low Level Input Voltage VOH High Level Output Voltage I VOL Low Level Output Voltage I VCL Input Clamp Voltage I IIN Input Current V 2.0 GND OH = −0.4 mA OL = 2 mA CL = −18 mA IN 2.7 = VCC, GND, VCC V 0.8 V 3.3 V 0.06 0.3 V −0.79 −1.5 V ± 5.1 ± 10 µA -60 −120 mA 290 450 mV 35 mV 2.5V or 0.4V IOS Output Short Circuit Current V OUT R L = 0V LVDS DRIVER DC SPECIFICATIONS VOD Differential Output Voltage ∆VOD Change in V OD between Complimentary Output States VOS Offset Voltage (Note 4) ∆VOS Change in V OSbetween Complimentary Output States IOS Output Short Circuit Current Output TRI-STATE ® Current 250 1.125 V R IOZ = 100Ω OUT L = 0V, 1.25 1.375 V 35 mV −3.5 −5 mA ±1 ± 10 µA = 100Ω PWR DWN = 0V, V OUT V CM = 0V or VCC LVDS RECEIVER DC SPECIFICATIONS VTH Differential Input High Threshold VTL Differential Input Low Threshold I IN Input Current = +1.2V +100 −100 V V IN = +2.4V, VCC = 3.6V IN = 0V, VCC = 3.6V 3 mV mV ± 10 ± 10 µA µA www.national.com DS90CR215/DS90CR216 Absolute Maximum Ratings (Note 1) DS90CR215/DS90CR216 Electrical Characteristics (Continued) Over recommended operating supply and temperature ranges unless otherwise specified Symbol Parameter Conditions Min Typ Max Units TRANSMITTER SUPPLY CURRENT ICCTW Transmitter Supply Current Worst Case (with Loads) Transmitter Supply Current Power Down ICCTZ RL = 100Ω, CL = 5 pF, Worst Case Pattern (Figures 1, 2) , TA = −10˚C to +70˚C f = 32.5 MHz 31 45 mA f = 37.5 MHz 32 50 mA f = 66 MHz 37 55 mA RL = 100Ω, CL = 5 pF, Worst Case Pattern (Figures 1, 2) , TA = −40˚C to +85˚C f = 40 MHz 38 51 mA f = 66 MHz 42 55 mA 10 55 µA PWR DWN = Low Driver Outputs in TRI-STATE under Powerdown Mode RECEIVER SUPPLY CURRENT Receiver Supply Current Worst Case ICCRW ICCRZ Receiver Supply Current Power Down CL = 8 pF, Worst Case Pattern (Figures 1, 3) , TA = −10˚C to +70˚C f = 32.5 MHz 49 65 mA f = 37.5 MHz 53 70 mA f = 66 MHz 78 105 mA CL = 8 pF, Worst Case Pattern (Figures 1, 3) , TA = −40˚C to +85˚C f = 40 MHz 55 82 mA f = 66 MHz 78 105 mA PWR DWN = Low Receiver Outputs Stay Low during Powerdown Mode 10 55 µA Note 1: “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of “Electrical Characteristics” specify conditions for device operation. Note 2: Typical values are given for VCC = 3.3V and TA = +25˚C. Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified (except VOD and ∆VOD). Note 4: VOS previously referred as VCM. Transmitter Switching Characteristics Over recommended operating supply and −40˚C to +85˚C ranges unless otherwise specified Symbol Parameter Min Typ Max Units LLHT LVDS Low-to-High Transition Time (Figure 2) 0.5 1.5 ns LHLT LVDS High-to-Low Transition Time (Figure 2) 0.5 1.5 ns TCIT TxCLK IN Transition Time (Figure 4) TCCS TxOUT Channel-to-Channel Skew (Figure 5) TPPos0 Transmitter Output Pulse Position for Bit0 (Note 7) (Figure 16) TPPos1 TPPos2 5 250 −0.4 0 0.4 ns Transmitter Output Pulse Position for Bit1 3.1 3.3 4.0 ns Transmitter Output Pulse Position for Bit2 6.5 6.8 7.6 ns www.national.com f = 40 MHz ns ps 4 (Continued) Over recommended operating supply and −40˚C to +85˚C ranges unless otherwise specified Min Typ Max Units TPPos3 Symbol Transmitter Output Pulse Position for Bit3 Parameter 10.2 10.4 11.0 ns TPPos4 Transmitter Output Pulse Position for Bit4 13.7 13.9 14.6 ns TPPos5 Transmitter Output Pulse Position for Bit5 17.3 17.6 18.2 ns TPPos6 Transmitter Output Pulse Position for Bit6 TPPos0 Transmitter Output Pulse Position for Bit0 (Note 6) (Figure 16) TPPos1 21.0 21.2 21.8 ns −0.4 0 0.3 ns Transmitter Output Pulse Position for Bit1 1.8 2.2 2.5 ns TPPos2 Transmitter Output Pulse Position for Bit2 4.0 4.4 4.7 ns TPPos3 Transmitter Output Pulse Position for Bit3 6.2 6.6 6.9 ns TPPos4 Transmitter Output Pulse Position for Bit4 8.4 8.8 9.1 ns TPPos5 Transmitter Output Pulse Position for Bit5 10.6 11.0 11.3 ns TPPos6 Transmitter Output Pulse Position for Bit6 12.8 13.2 13.5 ns TCIP TxCLK IN Period (Figure 6) 15 T 50 ns TCIH TxCLK IN High Time (Figure 6) 0.35T 0.5T 0.65T ns TCIL TxCLK IN Low Time (Figure 6) 0.35T 0.5T 0.65T ns TSTC TxIN Setup to TxCLK IN (Figure 6) 2.5 ns THTC TxIN Hold to TxCLK IN (Figure 6) 0 ns TCCD TxCLK IN to TxCLK OUT Delay @ 25˚C,VCC=3.3V (Figure 3 f = 66 MHz 3.7 5.5 ns 8) TPLLS Transmitter Phase Lock Loop Set (Figure 10) 10 ms TPDD Transmitter Powerdown Delay (Figure 14) 100 ns Receiver Switching Characteristics Over recommended operating supply and −40˚C to +85˚C ranges unless otherwise specified Symbol Parameter Min Typ Max Units 2.2 5.0 ns ns CLHT CMOS/TTL Low-to-High Transition Time (Figure 3) CHLT CMOS/TTL High-to-Low Transition Time (Figure 3) RSPos0 Receiver Input Strobe Position for Bit 0 (Note 7)(Figure 17) RSPos1 Receiver Input Strobe Position for Bit 1 RSPos2 Receiver Input Strobe Position for Bit 2 8.1 8.5 9.15 ns RSPos3 Receiver Input Strobe Position for Bit 3 11.6 11.9 12.6 ns RSPos4 Receiver Input Strobe Position for Bit 4 15.1 15.6 16.3 ns RSPos5 Receiver Input Strobe Position for Bit 5 18.8 19.2 19.9 ns RSPos6 Receiver Input Strobe Position for Bit 6 22.5 22.9 23.6 ns RSPos0 Receiver Input Strobe Position for Bit 0 (Note 6)(Figure 17) 0.7 1.1 1.4 ns RSPos1 Receiver Input Strobe Position for Bit 1 2.9 3.3 3.6 ns RSPos2 Receiver Input Strobe Position for Bit 2 5.1 5.5 5.8 ns RSPos3 Receiver Input Strobe Position for Bit 3 7.3 7.7 8.0 ns RSPos4 Receiver Input Strobe Position for Bit 4 9.5 9.9 10.2 ns RSPos5 Receiver Input Strobe Position for Bit 5 11.7 12.1 12.4 ns RSPos6 Receiver Input Strobe Position for Bit 6 13.9 14.3 14.6 ns RSKM RxIN Skew Margin (Note 5) (Figure 18) RCOP RxCLK OUT Period (Figure 7) RCOH RxCLK OUT High Time (Figure 7) RCOL RxCLK OUT Low Time (Figure 7) 5 f = 40 MHz f = 66 MHz 2.2 5.0 1.0 1.4 2.15 ns 4.5 5.0 5.8 ns f = 40 MHz 490 ps f = 66 MHz 400 ps 15 T f = 40 MHz 6.0 10.0 ns f = 66 MHz 4.0 6.1 ns f = 40 MHz 10.0 13.0 ns f = 66 MHz 6.0 7.8 ns 50 ns www.national.com DS90CR215/DS90CR216 Transmitter Switching Characteristics DS90CR215/DS90CR216 Receiver Switching Characteristics (Continued) Over recommended operating supply and −40˚C to +85˚C ranges unless otherwise specified Symbol RSRC Parameter RxOUT Setup to RxCLK OUT (Figure 7) RHRC RxOUT Hold to RxCLK OUT (Figure 7) RCCD RxCLK IN to RxCLK OUT Delay (Figure 9) Min Typ f = 40 MHz 6.5 14.0 Max Units f = 66 MHz 2.5 8.0 ns f = 40 MHz 6.0 8.0 ns f = 66 MHz 2.5 4.0 f = 40 MHz 4.0 6.7 8.0 ns f = 66 MHz 5.0 6.6 9.0 ns ns ns RPLLS Receiver Phase Lock Loop Set (Figure 11) 10 ms RPDD Receiver Powerdown Delay (Figure 15) 1 µs Note 5: Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account for transmitter pulse positions (min and max) and the receiver input setup and hold time (internal data sampling window). This margin allows LVDS interconnect skew, inter-symbol interference (both dependent on type/length of cable), and clock jitter less than 250 ps. Note 6: The min. and max. limits are based on the worst bit by applying a −400ps/+300ps shift from ideal position. Note 7: The min. and max. are based on the actual bit position of each of the 7 bits within the LVDS data stream across PVT. AC Timing Diagrams 01290902 FIGURE 1. “Worst Case” Test Pattern 01290903 01290904 FIGURE 2. DS90CR215 (Transmitter) LVDS Output Load and Transition Times www.national.com 6 DS90CR215/DS90CR216 AC Timing Diagrams (Continued) 01290905 01290906 FIGURE 3. DS90CR216 (Receiver) CMOS/TTL Output Load and Transition Times 01290907 FIGURE 4. D590CR215 (Transmitter) Input Clock Transition Time 01290908 Note 8: Measurements at VDIFF = 0V Note 9: TCCS measured between earliest and latest LVDS edges Note 10: TxCLK Differential Low→High Edge FIGURE 5. D590CR215 (Transmitter) Channel-to-Channel Skew 7 www.national.com DS90CR215/DS90CR216 AC Timing Diagrams (Continued) 01290909 FIGURE 6. D590CR215 (Transmitter) Setup/Hold and High/Low Times 01290910 FIGURE 7. D590CR216 (Receiver) Setup/Hold and High/Low Times 01290929 FIGURE 8. DS90CR215 (Transmitter) Clock In to Clock Out Delay 01290912 FIGURE 9. D590CR216 (Receiver) Clock In to Clock Out Delay www.national.com 8 DS90CR215/DS90CR216 AC Timing Diagrams (Continued) 01290913 FIGURE 10. DS90CR215 (Transmitter) Phase Lock Loop Set Time 01290914 FIGURE 11. DS9OCR216 (Receiver) Phase Lock Loop Set Time 01290915 FIGURE 12. Seven Bits of LVDS in Once Clock Cycle 9 www.national.com DS90CR215/DS90CR216 AC Timing Diagrams (Continued) 01290916 FIGURE 13. 21 Parallel TTL Data Inputs Mapped to LVDS Outputs (DS90CR215) 01290917 FIGURE 14. Transmitter Powerdown Delay 01290918 FIGURE 15. Receiver Powerdown Delay www.national.com 10 DS90CR215/DS90CR216 AC Timing Diagrams (Continued) 01290919 FIGURE 16. Transmitter LVDS Output Pulse Position Measurement 11 www.national.com DS90CR215/DS90CR216 AC Timing Diagrams (Continued) 01290928 FIGURE 17. Receiver LVDS Input Strobe Position www.national.com 12 DS90CR215/DS90CR216 AC Timing Diagrams (Continued) 01290920 C — Setup and Hold Time (Internal data sampling window) defined by Rspos (receiver input strobe position) min and max Tppos — Transmitter output pulse position (min and max) RSKM ≥ Cable Skew (type, length) + Source Clock Jitter (cycle to cycle) (Note 11) + ISI (Inter-symbol interference) (Note 12) Cable Skew — typicaIIy 10 ps–40 ps per foot, media dependent Note 11: Cycle-to-cycle jitter is less than 250 ps Note 12: ISI is dependent on interconnect length; may be zero FIGURE 18. Receiver LVDS Input Skew Margin 2. Transmitter input and control inputs except 3.3V TTL/ CMOS levels. They are not 5V tolerant. 3. The receiver powerdown feature when enabled wilI lock receiver output to a logic low. However, the 5V/66 MHz receiver maintain the outputs in the previous state when powerdown occurred. Applications Information The DS90CR215 and DS90CR216 are backward compatible with the existing 5V Channel Link transmitter/receiver pair (DS90CR213, DS90CR214). To upgrade from a 5V to a 3.3V system the following must be addressed: 1. Change 5V power supply to 3.3V. Provide this supply to the VCC, LVDS VCC and PLL V CC. DS90CR215 Pin Descriptions — Channel Link Transmitter Pin Name I/O No. Description TxIN I 21 TTL level input. TxOUT+ O 3 Positive LVDS differential data output. TxOUT− O 3 Negative LVDS differential data output. TxCLK IN I 1 TTL level clock input. The rising edge acts as data strobe. Pin name TxCLK IN. TxCLK OUT+ O 1 Positive LVDS differential clock output. TxCLK OUT− O 1 Negative LVDS differential clock output. PWR DWN I 1 TTL level input. Assertion (low input) TRI-STATEs the outputs, ensuring low current at power down. V CC I 4 Power supply pins for TTL inputs. GND I 5 Ground pins for TTL inputs. PLL V CC I 1 Power supply pins for PLL. PLL GND I 2 Ground pins for PLL. LVDS V CC I 1 Power supply pin for LVDS outputs. LVDS GND I 3 Ground pins for LVDS outputs. DS90CR216 Pin Descriptions — Channel Link Receiver Pin Name RxIN+ I/O No. I 3 Description Positive LVDS differential data inputs. RxIN− I 3 Negative LVDS differential data inputs. RxOUT O 21 TTL level data outputs. RxCLK IN+ I 1 Positive LVDS differential clock input. RxCLK IN− I 1 Negative LVDS differential clock input. 13 www.national.com DS90CR215/DS90CR216 Applications Information (Continued) DS90CR216 Pin Descriptions — Channel Link Receiver (Continued) I/O No. RxCLK OUT Pin Name O 1 TTL level clock output. The rising edge acts as data strobe. Pin name RxCLK OUT. Description PWR DWN I 1 TTL level input. When asserted (low input) the receiver outputs are low. V CC I 4 Power supply pins for TTL outputs. GND I 5 Ground pins for TTL outputs. PLL V CC I 1 Power supply for PLL. PLL GND 1 2 Ground pin for PLL. LVDS V CC I 1 Power supply pin for LVDS inputs. LVDS GND I 3 Ground pins for LVDS inputs. The Channel Link devices are intended to be used in a wide variety of data transmission applications. Depending upon the application the interconnecting media may vary. For example, for lower data rate (clock rate) and shorter cable lengths ( < 2m), the media electrical performance is less critical. For higher speed/long distance applications the media’s performance becomes more critical. Certain cable constructions provide tighter skew (matched electrical length between the conductors and pairs). Twin-coax for example, has been demonstrated at distances as great as 5 meters and with the maximum data transfer of 1.38 Gbit/s. Additional applications information can be found in the following National Interface Application Notes: AN = #### also employ an overall shield surrounding all cable pairs regardless of the cable type. This overall shield results in improved transmission parameters such as faster attainable speeds, longer distances between transmitter and receiver and reduced problems associated with EMS or EMI. The high-speed transport of LVDS signals has been demonstrated on several types of cables with excellent results. However, the best overall performance has been seen when using Twin-Coax cable. Twin-Coax has very low cable skew and EMI due to its construction and double shielding. All of the design considerations discussed here and listed in the supplemental application notes provide the subsystem communications designer with many useful guidelines. It is recommended that the designer assess the tradeoffs of each application thoroughly to arrive at a reliable and economical cable solution. Topic AN-1041 Introduction to Channel Link AN-1035 PCB Design Guidelines for LVDS and Link Devices AN-806 Transmission Line Theory AN-905 Transmission Line Calculations and Differential Impedance AN-916 Cable Information BOARD LAYOUT To obtain the maximum benefit from the noise and EMI reductions of LVDS, attention should be paid to the layout of differential lines. Lines of a differential pair should always be adjacent to eliminate noise interference from other signals and take full advantage of the noise canceling of the differential signals. The board designer should also try to maintain equal length on signal traces for a given differential pair. As with any high speed design, the impedance discontinuities should be limited (reduce the numbers of vias and no 90 degree angles on traces). Any discontinuities which do occur on one signal line should be mirrored in the other line of the differential pair. Care should be taken to ensure that the differential trace impedance match the differential impedance of the selected physical media (this impedance should also match the value of the termination resistor that is connected across the differential pair at the receiver’s input). Finally, the location of the CHANNEL LINK TxOUT/RxIN pins should be as close as possible to the board edge so as to eliminate excessive pcb runs. All of these considerations will limit reflections and crosstalk which adversely effect high frequency performance and EMI. CABLES A cable interface between the transmitter and receiver needs to support the differential LVDS pairs. The 21-bit CHANNEL LINK chipset (DS90CR215/216) requires four pairs of signal wires and the 28-bit CHANNEL LINK chipset (DS90CR285/ 286) requires five pairs of signal wires. The ideal cable/ connector interface would have a constant 100Ω differential impedance throughout the path. It is also recommended that cable skew remain below 150 ps (@ 66 MHz clock rate) to maintain a sufficient data sampling window at the receiver. In addition to the four or five cable pairs that carry data and clock, it is recommended to provide at least one additional conductor (or pair) which connects ground between the transmitter and receiver. This low impedance ground provides a common mode return path for the two devices. Some of the more commonly used cable types for point-to-point applications include flat ribbon, flex, twisted pair and TwinCoax. All are available in a variety of configurations and options. Flat ribbon cable, flex and twisted pair generally perform well in short point-to-point applications while TwinCoax is good for short and long applications. When using ribbon cable, it is recommended to place a ground line between each differential pair to act as a barrier to noise coupling between adjacent pairs. For Twin-Coax cable applications, it is recommended to utilize a shield on each cable pair. All extended point-to-point applications should www.national.com UNUSED INPUTS All unused inputs at the TxIN inputs of the transmitter must be tied to ground. All unused outputs at the RxOUT outputs of the receiver must then be left floating. TERMINATION Use of current mode drivers requires a terminating resistor across the receiver inputs. The CHANNEL LINK chipset will normally require a single 100Ω resistor between the true and complement lines on each differential pair of the receiver input. The actual value of the termination resistor should be 14 as PECL. Surface mount resistors are recommended to avoid the additional inductance that accompanies leaded resistors. These resistors should be placed as close as possible to the receiver input pins to reduce stubs and effectively terminate the differential lines. (Continued) selected to match the differential mode characteristic impedance (90Ω to 120Ω typical) of the cable. Figure 19 shows an example. No additional pull-up or pull-down resistors are necessary as with some other differential technologies such 01290924 FIGURE 19. LVDS Serialized Link Termination nect skew (∆t of one differential pair to another) and clock jitter will all reduce the available window for sampling the LVDS serial data streams. Care must be taken to ensure that the clock input to the transmitter be a clean low noise signal. Individual bypassing of each VCC to ground will minimize the noise passed on to the PLL, thus creating a low jitter LVDS clock. These measures provide more margin for channel-tochannel skew and interconnect skew as a part of the overall jitter/skew budget. DECOUPLING CAPACITORS Bypassing capacitors are needed to reduce the impact of switching noise which could limit performance. For a conservative approach three parallel-connected decoupling capacitors (Multi-Layered Ceramic type in surface mount form factor) between each VCC and the ground plane(s) are recommended. The three capacitor values are 0.1 µF, 0.01µF and 0.001 µF. An example is shown in Figure 20. The designer should employ wide traces for power and ground and ensure each capacitor has its own via to the ground plane. If board space is limiting the number of bypass capacitors, the PLL VCC should receive the most filtering/ bypassing. Next would be the LVDS VCC pins and finally the logic VCC pins. COMMON MODE vs. DIFFERENTIAL MODE NOISE MARGIN The typical signal swing for LVDS is 300 mV centered at +1.2V. The CHANNEL LINK receiver supports a 100 mV threshold therefore providing approximately 200 mV of differential noise margin. Common mode protection is of more importance to the system’s operation due to the differential data transmission. LVDS supports an input voltage range of Ground to +2.4V. This allows for a ± 1.0V shifting of the center point due to ground potential differences and common mode noise. POWER SEQUENCING AND POWERDOWN MODE Outputs of the CNANNEL LINK transmitter remain in TRISTATE until the power supply reaches 2V. Clock and data outputs will begin to toggle 10 ms after VCC has reached 3V and the Powerdown pin is above 1.5V. Either device may be placed into a powerdown mode at any time by asserting the Powerdown pin (active low). Total power dissipation for each device will decrease to 5 µW (typical). The CHANNEL LINK chipset is designed to protect itself from accidental loss of power to either the transmitter or receiver. If power to the transmit board is lost, the receiver clocks (input and output) stop. The data outputs (RxOUT) retain the states they were in when the clocks stopped. When the receiver board loses power, the receiver inputs are shorted to V CC through an internal diode. Current is limited (5 mA per input) by the fixed current mode drivers, thus avoiding the potential for latchup when powering the device. 01290925 FIGURE 20. CHANNEL LINK Decoupling Configuration CLOCK JITTER The CHANNEL LINK devices employ a PLL to generate and recover the clock transmitted across the LVDS interface. The width of each bit in the serialized LVDS data stream is one-seventh the clock period. For example, a 66 MHz clock has a period of 15 ns which results in a data bit width of 2.16 ns. Differential skew (∆t within one differential pair), intercon- 15 www.national.com DS90CR215/DS90CR216 Applications Information DS90CR215/DS90CR216 Applications Information (Continued) 01290926 FIGURE 21. Single-Ended and Differential Waveforms www.national.com 16 inches (millimeters) unless otherwise noted Order Number DS90CR215MTD or DS90CR216MTD NS Package Number MTD48 National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. For the most current product information visit us at www.national.com. LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. BANNED SUBSTANCE COMPLIANCE National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no ‘‘Banned Substances’’ as defined in CSP-9-111S2. Leadfree products are RoHS compliant. National Semiconductor Americas Customer Support Center Email: [email protected] Tel: 1-800-272-9959 www.national.com National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: [email protected] Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: [email protected] National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: [email protected] Tel: 81-3-5639-7560 DS90CR215/DS90CR216 +3.3V Rising Edge Data Strobe LVDS 21-Bit Channel Link-66 MHz Physical Dimensions