HOLTEK HT82M99EE_08

HT82M99EE/HT82M99AE
USB Mouse Encoder 8-Bit MCU
Technical Document
· Tools Information
· FAQs
· Application Note
Features
· Flexible total solution for applications that combine
· 128´8 data EEPROM
PS/2 and low-speed USB interface, such as mice,
joysticks, and many others
· 6MHz/12MHz internal CPU clock
· 4-level stacks
· USB Specification Compliance
· Two 7-bit indirect addressing registers
- Conforms to USB specification V2.0
- Conforms to USB HID specification V2.0
· One 16-bit programmable timer counter with
overflow interrupt (shared with PA7, vector 0CH)
· Supports 1 Low-speed USB control endpoint and
· One USB interrupt input (vector 04H)
1 interrupt endpoint
· HALT function and wake-up feature reduce
· Each endpoint has 8 bytes FIFO
power consumption
· Integrated USB transceiver
· PA0~PA7, PB4 and PB7 support wake-up function
· 3.3V regulator output
· Internal Power-On reset (POR)
· External 6MHz or 12MHz ceramic resonator or
· Watchdog Timer (WDT)
crystal
· 12 I/O ports
· 8-bit RISC microcontroller, with 2K´14 program
· 20-pin SSOP package
memory (000H~7FFH)
· 96 bytes RAM (20H~7FH)
General Description
There are two dice in the HT82M99EE/HT82M99AE
package: one is the HT82M99EE/HT82M99AE MCU,
the other is a 128´8 bits EEPROM used for data memory purpose. The two dice are wire-bonded to form
HT82M99EE/HT82M99AE.
The USB MCU HT82M99EE/HT82M99AE are suitable
for USB mouse devices. It consists of a Holtek high performance 8-bit MCU core for control unit, built-in USB
SIE, 2K´14 program memory and 96 bytes data RAM.
The mask version HT82M99AE is fully pin and functionally
compatible with the OTP version HT82M99EE device.
Rev. 1.50
1
December 22, 2008
HT82M99EE/HT82M99AE
Block Diagram
U S B D + /C L K
U S B D -/D A T A
V 3 3 O
U S B 1 .1
P S 2
B P
In te rru p t
C ir c u it
S T A C K
P ro g ra m
R O M
P ro g ra m
C o u n te r
M
T M R L
T M R H
U
fS
/4
Y S
P A 7 /T M R
X
T M R C
IN T C
E N /D IS
W D T S
In s tr u c tio n
R e g is te r
M
M P
U
X
W D T P r e s c a le r
D a ta
M e m o ry
P A C
P A
M U X
In s tr u c tio n
D e c o d e r
P O R T A
P B C
T im in g
G e n e ra to r
O S C 2
O S
R
V
V
C 1
E S
D D
S S
A L U
S T A T U S
P B
P O R T B
W D T
M
U
S Y S C L K /4
X
W D T O S C
P A 0 ~ P A 6
P A 7 /T M R
P B 2 ~ P B 3
P B 4 /S D A
P B 7 /S C L
S h ifte r
A C C
Pin Assignment
V S S
1
2 0
O S C I
V 3 3 O
2
1 9
O S C O
U S B D + /C L K
3
1 8
V D D
U S B D -/D A T A
4
1 7
P A 7 /T M R
R E S
5
1 6
P A 6
P A 0
6
1 5
P A 5
P A 1
7
1 4
P A 4
P B 2
8
1 3
P A 3
P B 3
9
1 2
P A 2
1 0
1 1
P B 7 /S C L
P B 4 /S D A
H T 8 2 M 9 9 E E /H T 8 2 M 9 9 A E
2 0 S S O P -A
Rev. 1.50
2
December 22, 2008
HT82M99EE/HT82M99AE
Pin Description
Pin Name
PA0~PA6
PA7/TMR
PB2~PB3
I/O
ROM Code
Option
Description
Bidirectional 8-bit input/output port. Each bit can be configured as a
wake-up input by ROM code option. The input or output mode is controlled by PAC (PA control register).
Pull-low
Pull-high resistor options: PA0~PA7
Pull-high
Pull-low resistor options: PA0~PA3
I/O
Wake-up
CMOS/NMOS/PMOS options: PA0~PA7
CMOS/NMOS/PMOS
Falling edge wake-up options: PA0~PA1, PA4~PA7
Rising and falling edge wake-up options: PA2~PA3
PA7 is wire-bonded with TMR
I/O
Pull-high
Pull-low
Bidirectional 8-bit input/output port. Software instructions determine the
CMOS output or Schmitt trigger input with pull-high resistor (determined
by pull-high options).
Pull-low resistor for options: PB2, PB3
Bidirectional 8-bit input/output port. Software instructions determine the
CMOS output or Schmitt trigger input with pull-high resistor (determined
by pull-high options).
Falling edge wake-up options: PB4, PB7
PB4 is wire-bonded with SDA pad of the Data EEPROM
PB7 is wire-bonded with SCL pad of the Data EEPROM
PB4/SDA,
PB7/SCL
I/O
Pull-high
Wake-up
VSS
¾
¾
Negative power supply, ground
RES
I
¾
Schmitt trigger reset input. Active low.
VDD
¾
¾
Positive power supply
V33O
O
¾
3.3V regulator output
USBD+/CLK
I/O
¾
USBD+ or PS2 CLK I/O line
USB or PS2 function is controlled by software control register
USBD-/DATA
I/O
¾
USBD- or PS2 DATA I/O line
USB or PS2 function is controlled by software control register
OSCI
OSCO
I
O
¾
OSCI, OSCO are connected to a 6MHz or 12MHz crystal/resonator (determined by software instructions) for the internal system clock.
Absolute Maximum Ratings
Supply Voltage ...........................VSS-0.3V to VSS+6.0V
Storage Temperature ............................-50°C to 125°C
Input Voltage..............................VSS-0.3V to VDD+0.3V
Operating Temperature...............................0°C to 70°C
Note: These are stress ratings only. Stresses exceeding the range specified under ²Absolute Maximum Ratings² may
cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed
in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.
Rev. 1.50
3
December 22, 2008
HT82M99EE/HT82M99AE
D.C. Characteristics
Symbol
Parameter
Ta=25°C
Test Conditions
VDD
Conditions
¾
Min.
Typ.
Max.
Unit
3.3
¾
5.5
V
¾
7
9
mA
¾
¾
500
mA
¾
¾
300
mA
¾
¾
30
mA
¾
¾
20
mA
VDD
Operating Voltage
¾
IDD
Operating Current (6MHz Crystal)
5V
No load, fSYS=6MHz
ISTB1
Standby Current (WDT Enabled)
5V
ISTB2
Standby Current (WDT Disabled)
5V
No load, system HALT,
USB suspend
ISTB3
Standby Current (WDT Enabled)
5V
ISTB4
Standby Current (WDT Disabled)
5V
No load, system HALT,
input/output mode,
set SUSPEND2 [1CH].4
VIL1
Input Low Voltage for I/O Ports
5V
¾
0
¾
0.8
V
VIH1
Input High Voltage for I/O Ports
5V
¾
2
¾
5
V
VIL2
Input Low Voltage (RES)
5V
¾
0
¾
0.4VDD
V
VIH2
Input High Voltage (RES)
5V
¾
0.9VDD
¾
VDD
V
IOL1
Output Sink Current for PA4~PA7,
PB4, PB7
5V
VOL=0.4V
2
4
¾
mA
IOH1
Output Source Current for PA4~PA7,
PB4, PB7
5V
VOH=3.4V
-2.5
-4
¾
mA
IOL2
Output Sink Current for PA0~PA3,
PB2~PB3
5V
VOL=0.4V
10
15
¾
mA
IOH2
Output Source Current for PA0~PA3,
PB2~PB3
5V
VOH=3.4V
8
12
¾
mA
RPD
Pull-down Resistance for PA0~PA3,
PB2~PB3
5V
¾
10
30
50
kW
RPH1
Pull-high Resistance for DATA*
¾
¾
1.3
1.5
2.0
kW
RPH2
Pull-high Resistance for CLK
¾
¾
2.0
4.7
6.0
kW
RPH3
Pull-high Resistance for PA0~PA7,
PB2~PB4, PB7
¾
¾
30
50
70
kW
VLVR
Low Voltage Reset
5V
¾
2.4
2.7
3
V
Note: ²*² The DATA pull-high must be implemented by the external 1.5kW
A.C. Characteristics
Symbol
Parameter
Ta=25°C
Test Conditions
VDD
Conditions
Min.
Typ.
Max.
Unit
fSYS
System Clock (Crystal OSC)
5V
¾
6
¾
12
MHz
fRCSYS
RC Clock with 8-bit Prescaler
Register
5V
¾
0
32
¾
kHz
tWDT
Watchdog Time-out Period
(System Clock)
¾
Without WDT prescaler
1024
¾
¾
tRCSYS
tRF
USBD+, USBD- Rising & falling Time
¾
¾
75
¾
300
ns
tRES
¾
1
¾
¾
ms
¾
1024
¾
tSYS
¾
5
10
ms
External Reset Low Pulse Width
¾
tSST
System Start-up Timer Period
¾
tOSC
Crystal Setup
¾
Wake-up from HALT
¾
Note: Power-on period=tWDT+tSST+tOSC
WDT Time-out in normal mode=1/fRCSYS´256´WDTS+tWDT
WDT Time-out in HALT mode=1/fRCSYS´256´WDTS+tSST+tOSC
Rev. 1.50
4
December 22, 2008
HT82M99EE/HT82M99AE
EEPROM A.C. Characteristics
Symbol
Ta=25°C
Parameter
Remark
Standard Mode*
VCC=5V±10%
Min.
Max.
Min.
Max.
Unit
fSK
Clock Frequency
¾
¾
100
¾
400
kHz
tHIGH
Clock High Time
¾
4000
¾
600
¾
ns
tLOW
Clock Low Time
¾
4700
¾
1200
¾
ns
tr
SDA and SCL Rise Time
Note
¾
1000
¾
300
ns
tf
SDA and SCL Fall Time
Note
¾
300
¾
300
ns
tHD:STA
START Condition Hold Time
After this period the first
clock pulse is generated
4000
¾
600
¾
ns
tSU:STA
START Condition Setup Time
Only relevant for repeated
START condition
4000
¾
600
¾
ns
tHD:DAT
Data Input Hold Time
¾
0
¾
0
¾
ns
tSU:DAT
Data Input Setup Time
¾
200
¾
100
¾
ns
tSU:STO
STOP Condition Setup Time
¾
4000
¾
600
¾
ns
tAA
Output Valid from Clock
¾
¾
3500
¾
900
ns
4700
¾
1200
¾
ns
¾
100
¾
50
ns
¾
5
¾
5
ms
tBUF
Bus Free Time
Time in which the bus must
be free before a new transmission can start
tSP
Input Filter Time Constant
(SDA and SCL Pins)
Noise suppression time
tWR
Write Cycle Time
¾
Note: These parameters are periodically sampled but not 100% tested
* The standard mode means VCC=2.2V to 5.5V
For relative timing, refer to timing diagrams
Rev. 1.50
5
December 22, 2008
HT82M99EE/HT82M99AE
Functional Description
Execution Flow
After accessing a program memory word to fetch an instruction code, the contents of the program counter are
incremented by one. The program counter then points to
the memory word containing the next instruction code.
The system clock for the microcontroller is derived from
either 6MHz or 12MHz crystal oscillator, which used a
frequency that is determined by the SCLKSEL bit of the
SCC Register. The default system frequency is 12MHz.
The system clock is internally divided into four nonoverlapping clocks. One instruction cycle consists of
four system clock cycles.
When executing a jump instruction, conditional skip execution, loading to the PCL register, performing a subroutine call or return from subroutine, initial reset,
internal interrupt, external interrupt or return from interrupts, the PC manipulates the program transfer by loading the address corresponding to each instruction.
Instruction fetching and execution are pipelined in such
a way that a fetch takes an instruction cycle while decoding and execution takes the next instruction cycle.
However, the pipelining scheme causes each instruction to be effectively executed in a cycle. If an instruction
changes the program counter, two cycles are required to
complete the instruction.
The conditional skip is activated by instructions. Once
the condition is met, the next instruction, fetched during
the current instruction execution, is discarded and a
dummy cycle replaces it to get the proper instruction.
Otherwise proceed with the next instruction.
The lower byte of the program counter (PCL) is a readable and writeable register (06H). Moving data into the
PCL performs a short jump. The destination will be
within the current program ROM page.
Program Counter - PC
The program counter (PC) controls the sequence in
which the instructions stored in the program ROM are
executed and its contents specify a full range of program memory.
S y s te m
C lo c k
T 1
T 2
T 3
T 4
T 1
When a control transfer takes place, an additional
dummy cycle is required.
T 2
T 3
T 4
T 1
T 2
T 3
T 4
O S C 2 ( R C o n ly )
P C
P C
P C + 1
F e tc h IN S T (P C )
E x e c u te IN S T (P C -1 )
P C + 2
F e tc h IN S T (P C + 1 )
E x e c u te IN S T (P C )
F e tc h IN S T (P C + 2 )
E x e c u te IN S T (P C + 1 )
Execution Flow
Mode
Program Counter
*10
*9
*8
*7
*6
*5
*4
*3
*2
*1
*0
Initial Reset
0
0
0
0
0
0
0
0
0
0
0
USB Interrupt
0
0
0
0
0
0
0
0
1
0
0
Timer/Event Counter Overflow
0
0
0
0
0
0
0
1
1
0
0
Skip
Program Counter+2
Loading PCL
*10
*9
*8
@7
@6
@5
@4
@3
@2
@1
@0
Jump, Call Branch
#10
#9
#8
#7
#6
#5
#4
#3
#2
#1
#0
Return from Subroutine
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
S0
Program Counter
Note: *10~*0: Program counter bits
S10~S0: Stack register bits
#10~#0: Instruction code bits
Rev. 1.50
@7~@0: PCL bits
6
December 22, 2008
HT82M99EE/HT82M99AE
ROM data by two table read instructions: ²TABRDC²
and ²TABRDL², transfer the contents of the
lower-order byte to the specified data memory, and
the higher-order byte to TBLH (08H).
The three methods are shown as follows:
Program Memory - ROM
The program memory is used to store the program instructions which are to be executed. It also contains
data, table, and interrupt entries, and is organized into
2048´14 bits, addressed by the program counter and table pointer.
¨
The instructions ²TABRDC [m]² (the current page,
one page=256words), where the table locations is
defined by TBLP (07H) in the current page. And the
ROM code option TBHP is disabled (default).
¨
The instructions ²TABRDC [m]², where the table locations is defined by registers TBLP (07H) and
TBHP (01FH). And the ROM code option TBHP is
enabled.
¨
The instructions ²TABRDL [m]², where the table locations is defined by Registers TBLP (07H) in the
last page (0700H~07FFH).
Certain locations in the program memory are reserved
for special usage:
· Location 000H
This area is reserved for program initialization. After a
chip reset, the program always begins execution at location 000H.
· Location 004H
This area is reserved for the USB interrupt service
program. If the USB interrupt is activated, the interrupt
is enabled and the stack is not full, the program begins
execution at location 004H.
Only the destination of the lower-order byte in the table is well-defined, the other bits of the table word are
transferred to the lower portion of TBLH, and the remaining 1-bit words are read as ²0². The Table
Higher-order byte register (TBLH) is read only. The table pointer (TBLP, TBHP) is a read/write register (07H,
1FH), which indicates the table location. Before accessing the table, the location must be placed in the
TBLP and TBHP (If the OTP option TBHP is disabled,
the value in TBHP has no effect). The TBLH is read
only and cannot be restored. If the main routine and
the ISR (Interrupt Service Routine) both employ the
table read instruction, the contents of the TBLH in the
main routine are likely to be changed by the table read
instruction used in the ISR. Errors can occur. In other
words, using the table read instruction in the main routine and the ISR simultaneously should be avoided.
However, if the table read instruction has to be applied
in both the main routine and the ISR, the interrupt
should be disabled prior to the table read instruction. It
will not be enabled until the TBLH has been backed
up. All table related instructions require two cycles to
complete the operation. These areas may function as
normal program memory depending on the requirements.
Once TBHP is enabled, the instruction ²TABRDC [m]²
reads the ROM data as defined by TBLP and TBHP
value. Otherwise, the ROM code option TBHP is disabled, the instruction ²TABRDC [m]² reads the ROM
data as defined by TBLP and the current program
counter bits.
· Location 00CH
This location is reserved for the Timer/Event Counter
interrupt service program. If a timer interrupt results
from a Timer/Event Counter overflow, and the interrupt is enabled and the stack is not full, the program
begins execution at location 00CH.
· Table location
Any location in the program memory can be used as
look-up tables. There are three method to read the
0 0 0 H
D e v ic e In itia liz a tio n P r o g r a m
0 0 4 H
U S B In te r r u p t S u b r o u tin e
0 0 C H
T im e r /E v e n t C o u n te r
In te r r u p t S u b r o u tin e
P ro g ra m
M e m o ry
n 0 0 H
L o o k - u p T a b le ( 2 5 6 W o r d s )
n F F H
L o o k - u p T a b le ( 2 5 6 W o r d s )
7 F F H
1 4 B its
N o te : n ra n g e s fro m
0 to 7
Program Memory
Instruction
Table Location
*10
*9
*8
*7
*6
*5
*4
*3
*2
*1
*0
TABRDC [m]
P10
P9
P8
@7
@6
@5
@4
@3
@2
@1
@0
TABRDL [m]
1
1
1
@7
@6
@5
@4
@3
@2
@1
@0
Table Location
Note: *10~*0: Table location bits
P10~P8: Current program counter bits when TBHP is disabled
@7~@0: TBLP bits
Rev. 1.50
TBHP register bit2~bit0 when TBHP is enabled
7
December 22, 2008
HT82M99EE/HT82M99AE
B a n k 0
Stack Register - STACK
0 0 H
This is a special part of the memory which is used to
save the contents of the program counter only. The
stack is organized into 4 levels and is neither part of the
data nor part of the program space, and is neither readable nor writeable. The activated level is indexed by the
stack pointer (SP) and is neither readable nor writeable.
At a subroutine call or interrupt acknowledge signal, the
contents of the program counter are pushed onto the
stack. At the end of a subroutine or an interrupt routine,
signaled by a return instruction (RET or RETI), the program counter is restored to its previous value from the
stack. After a chip reset, the SP will point to the top of the
stack.
In d ir e c t A d d r e s s in g R e g is te r 0
0 1 H
M P 0
0 2 H
In d ir e c t A d d r e s s in g R e g is te r 1
0 3 H
M P 1
0 4 H
B P
0 5 H
A C C
0 6 H
P C L
0 7 H
T B L P
0 8 H
T B L H
0 9 H
W D T S
0 A H
S T A T U S
0 B H
IN T C
0 C H
0 D H
0 E H
If the stack is full and a non-masked interrupt takes
place, the interrupt request flag will be recorded but the
acknowledge signal will be inhibited. When the stack
pointer is decremented (by RET or RETI), the interrupt
will be serviced. This feature prevents stack overflow allowing the programmer to use the structure more easily.
In a similar case, if the stack is full and a ²CALL² is subsequently executed, stack overflow occurs and the first
entry will be lost (only the most recent 4 return addresses are stored).
0 F H
T M R H
1 0 H
T M R L
1 1 H
T M R C
1 2 H
P A
1 3 H
P A C
1 4 H
P B
1 5 H
P B C
1 6 H
1 7 H
1 8 H
1 9 H
Data Memory - RAM for Bank 0
The data memory is designed with 96´8 bits. The data
memory is divided into two functional groups: special
function registers and general purpose data memory
(96´8). Most are read/write, but some are read only.
U S C
1 B H
U S R
1 C H
S C C
1 D H
1 E H
The unused space before 20H is reserved for future expanded usage and reading these locations will get
²00H². The general purpose data memory, addressed
from 20H to 7FH, is used for data and control information under instruction commands.
1 F H
2 0 H
T B H P
G e n e ra l P u rp o s e
D A T A M E M O R Y
(9 6 B y te s )
All of the data memory areas can handle arithmetic,
logic, increment, decrement and rotate operations directly. Except for some dedicated bits, each bit in the
data memory can be set and reset by ²SET [m].i² and
²CLR [m].i². They are also indirectly accessible through
memory pointer registers (MP0 or MP1).
Rev. 1.50
1 A H
7 F H
Bank 0 RAM Mapping
8
December 22, 2008
HT82M99EE/HT82M99AE
Data Memory - RAM for Bank 1
Indirect Addressing Register
The special function registers used in the USB interface
are located in RAM Bank1. In order to access Bank1
register, only the Indirect addressing pointer MP1 can
be used and the Bank register BP should be set to 1.
The RAM bank 1 mapping is as shown.
Locations 00H and 02H are indirect addressing registers that are not physically implemented. Any read/write
operation on [00H] ([02H]) will access the data memory
pointed to by MP0 (MP1). Reading location 00H (02H)
indirectly will return the result 00H. Writing indirectly results in no operation.
B a n k 1
0 0 H
In d ir e c t A d d r e s s in g R e g is te r 0
0 1 H
M P 0
0 2 H
In d ir e c t A d d r e s s in g R e g is te r 1
0 3 H
M P 1
0 4 H
B P
0 5 H
A C C
0 6 H
P C L
0 7 H
T B L P
0 8 H
T B L H
The indirect addressing pointer (MP0) always points to
Bank0 RAM addresses no matter the value of Bank
Register (BP).
The indirect addressing pointer (MP1) can access
Bank0 or Bank1 RAM data according to the value of BP
which is set to ²0² or ²1² respectively.
The memory pointer registers (MP0 and MP1) are 7-bit
registers.
0 9 H
W D T S
0 A H
S T A T U S
0 B H
IN T C
Accumulator
The accumulator is closely related to ALU operations. It
is also mapped to location 05H of the data memory and
can carry out immediate data operations. The data
movement between two data memory locations must
pass through the accumulator.
0 C H
0 D H
0 E H
0 F H
T M R H
1 0 H
T M R L
1 1 H
T M R C
Arithmetic and Logic Unit - ALU
1 2 H
P A
1 3 H
P A C
1 4 H
P B
This circuit performs 8-bit arithmetic and logic operations. The ALU provides the following functions:
1 5 H
P B C
· Arithmetic operations (ADD, ADC, SUB, SBC, DAA)
1 6 H
· Logic operations (AND, OR, XOR, CPL)
1 7 H
· Rotation (RL, RR, RLC, RRC)
1 8 H
· Increment and Decrement (INC, DEC)
1 9 H
1 A H
· Branch decision (SZ, SNZ, SIZ, SDZ ....)
U S C
1 B H
U S R
1 C H
S C C
The ALU not only saves the results of a data operation
but also changes the status register.
1 D H
Status Register - STATUS
1 E H
1 F H
2 0 H
T B H P
4 1 H
P ip e _ c tr l
4 2 H
A W R
4 3 H
S T A L L
4 4 H
4 5 H
P IP E
4 6 H
4 7 H
M IS C
4 8 H
4 9 H
This 8-bit register (0AH) contains the zero flag (Z), carry
flag (C), auxiliary carry flag (AC), overflow flag (OV),
power down flag (PDF), and watchdog time-out flag
(TO). It also records the status information and controls
the operation sequence.
With the exception of the TO and PDF flags, bits in the
status register can be altered by instructions like most
other registers. Any data written into the status register
will not change the TO or PDF flag. In addition, operations related to the status register may give different results from those intended.
S IE S
F IF O
0
F IF O
1
Bank 1 RAM Mapping
Address 00~1FH in RAM Bank0 and Bank1 are located
in the same Registers
Rev. 1.50
9
December 22, 2008
HT82M99EE/HT82M99AE
Bit No.
Label
Function
0
C
C is set if an operation results in a carry during an addition operation or if a borrow does not
take place during a subtraction operation; otherwise C is cleared. C is also affected by a rotate
through carry instruction.
1
AC
AC is set if an operation results in a carry out of the low nibbles in addition or no borrow from
the high nibble into the low nibble in subtraction; otherwise AC is cleared.
2
Z
Z is set if the result of an arithmetic or logic operation is zero; otherwise Z is cleared.
3
OV
OV is set if an operation results in a carry into the highest-order bit but not a carry out of the
highest-order bit, or vice versa; otherwise OV is cleared.
4
PDF
PDF is cleared by a system power-up or executing the ²CLR WDT² instruction. PDF is set by
executing the ²HALT² instruction.
5
TO
TO is cleared by a system power-up or executing the ²CLR WDT² or ²HALT² instruction. TO is
set by a WDT time-out.
6~7
¾
Unused bit, read as ²0²
Status (0AH) Register
rupt requires servicing within the service routine, the
EMI bit and the corresponding bit of the INTC may be
set to allow interrupt nesting. If the stack is full, the interrupt request will not be acknowledged, even if the related interrupt is enabled, until the SP is decremented. If
immediate service is desired, the stack must be prevented from becoming full.
The TO flag can be affected only by a system power-up,
a WDT time-out or executing the ²CLR WDT² or ²HALT²
instruction. The PDF flag can be affected only by executing the ²HALT² or ²CLR WDT² instruction or during a
system power-up.
The Z, OV, AC and C flags generally reflect the status of
the latest operations.
All these kinds of interrupts have a wake-up capability.
As an interrupt is serviced, a control transfer occurs by
pushing the program counter onto the stack, followed by
a branch to a subroutine at a specified location in the
program memory. Only the program counter is pushed
onto the stack. If the contents of the register or status
register (STATUS) are altered by the interrupt service
program which corrupts the desired control sequence,
the contents should be saved in advance.
In addition, upon entering the interrupt sequence or executing a subroutine call, the status register will not be
automatically pushed onto the stack. If the contents of
the status are important and if the subroutine can corrupt the status register, precautions must be taken to
save it properly.
Interrupt
The device provides an external interrupt and internal
timer/event counter interrupts. The Interrupt Control
Register (INTC;0BH) contains the interrupt control bits
to set the enable/disable and the interrupt request flags.
The USB interrupts are triggered by the following USB
events and the related interrupt request flag (USBF; bit
4 of the INTC) will be set.
· Access of the corresponding USB FIFO from PC
Once an interrupt subroutine is serviced, all the other interrupts will be blocked (by clearing the EMI bit). This
scheme may prevent any further interrupt nesting. Other
interrupt requests may occur during this interval but only
the interrupt request flag is recorded. If a certain inter-
· The USB suspend signal from PC
· The USB resume signal from PC
· USB Reset signal
Bit No.
Label
Function
0
EMI
Controls the master (global) interrupt (1=enable; 0=disable)
1
EUI
Controls the USB interrupt (1=enable; 0= disable)
2, 5, 7
¾
Unused bit, read as ²0²
3
ETI
Controls the Timer/Event Counter interrupt (1=enable; 0=disable)
4
USBF
6
TF
USB interrupt request flag (1=active; 0=inactive)
Internal timer/event counter request flag (1:active; 0:inactive)
INTC (0BH) Register
Rev. 1.50
10
December 22, 2008
HT82M99EE/HT82M99AE
When the interrupt is enabled, the stack is not full and
the external interrupt is active, a subroutine call to location 04H will occur. The interrupt request flag (USBF)
and EMI bits will be cleared to disable other interrupts.
original control sequence will be damaged once the
²CALL² operates in the interrupt subroutine.
Oscillator Configuration
There is an oscillator circuit in the microcontroller.
When the PC Host access the FIFO of the HT82M99EE/
HT82M99AE, the corresponding request bit of the USR
is set, and a USB interrupt is triggered. So user can easily decide which FIFO is accessed. When the interrupt
has been served, the corresponding bit should be
cleared by firmware. When the HT82M99EE/
HT82M99AE receives a USB Suspend signal from the
Host PC, the suspend line (bit0 of the USC) of the
HT82M99EE/HT82M99AE is set and a USB interrupt is
also triggered.
O S C 1
O S C 2
C r y s ta l O s c illa to r
System Oscillator
This oscillator is designed for system clocks. The HALT
mode stops the system oscillator and ignores an external signal to conserve power.
When the HT82M99EE/HT82M99AE receives a Resume signal from the Host PC, the resume line (bit3 of
the USC) of the HT82M99EE/HT82M99AE are set and
a USB interrupt is triggered.
A crystal across OSC1 and OSC2 is needed to provide
the feedback and phase shift required for the oscillator.
No other external components are required. In stead of
a crystal, a resonator can also be connected between
OSC1 and OSC2 to get a frequency reference, but two
external capacitors in OSC1 and OSC2 are required.
Whenever a USB reset signal is detected, the USB interrupt is triggered and URST_Flag bit of the USC register is set. When the interrupt has been served, the bit
should be cleared by firmware.
The HT82M99EE/HT82M99AE can operate in 6MHz or
12MHz system clocks. In order to make sure that the
USB SIE functions properly, user should correctly configure the SCLKSEL bit of the SCC Register. The default
system clock is 12MHz.
The internal timer/even counter interrupt is initialized by
setting the timer/event counter interrupt request flag (;bit
6 of the INTC), caused by a timer overflow. When the interrupt is enabled, the stack is not full and the TF is set, a
subroutine call to location 0CH will occur. The related interrupt request flag (TF) will be reset and the EMI bit
cleared to disable further interrupts.
The WDT oscillator is a free running on-chip RC oscillator, and no external components are required. Even if
the system enters the power down mode, the system
clock is stopped, but the WDT oscillator still works within
a period of approximately 31ms. The WDT oscillator can
be disabled by ROM code option to conserve power.
During the execution of an interrupt subroutine, other interrupt acknowledge signals are held until the ²RETI² instruction is executed or the EMI bit and the related
interrupt control bit are set to 1 (if the stack is not full). To
return from the interrupt subroutine, ²RET² or ²RETI²
may be invoked. RETI will set the EMI bit to enable an
interrupt service, but RET will not.
Watchdog Timer - WDT
The WDT clock source is implemented by a dedicated
RC oscillator (WDT oscillator), or instruction clock (system clock divided by 4), determine by ROM code option.
This timer is designed to prevent a software malfunction
or sequence from jumping to an unknown location with
unpredictable results. The Watchdog Timer can be disabled by ROM code option. If the Watchdog Timer is disabled, all the executions related to the WDT result in no
operation.
Interrupts, occurring in the interval between the rising
edges of two consecutive T2 pulses, will be serviced on
the latter of the two T2 pulses, if the corresponding interrupts are enabled. In the case of simultaneous requests
the following table shows the priority that is applied.
These can be masked by resetting the EMI bit.
Interrupt Source
Priority
Vector
USB interrupt
1
04H
Timer/Event Counter overflow
2
0CH
Once the internal WDT oscillator (RC oscillator with a
period of 31ms/5V normally) is selected, it is first divided
by 256 (8-stage) to get the nominal time-out period of
8ms/5V. This time-out period may vary with temperatures, VDD and process variations. By invoking the
WDT prescaler, longer time-out periods can be realized.
Writing data to WS2, WS1, WS0 (bits 2, 1, 0 of the
WDTS) can give different time-out periods. If WS2,
WS1, and WS0 are all equal to 1, the division ratio is up
to 1:128, and the maximum time-out period is 1s/5V. If
the WDT oscillator is disabled, the WDT clock may still
Once the interrupt request flags (TF, USBF) are set, they
will remain in the INTC register until the interrupts are serviced or cleared by a software instruction. It is recommended that a program does not use the ²CALL
subroutine² within the interrupt subroutine. Interrupts often occur in an unpredictable manner or need to be serviced immediately in some applications. If only one stack
is left and enabling the interrupt is not well controlled, the
Rev. 1.50
11
December 22, 2008
HT82M99EE/HT82M99AE
S y s te m
C lo c k /4
R O M
C o d e
O p tio n
S e le c t
W D T
O S C
W D T P r e s c a le r
8 - b it C o u n te r
7 - b it C o u n te r
8 -to -1 M U X
W S 0 ~ W S 2
W D T T im e - o u t
Watchdog Timer
oscillator remains running (if the WDT oscillator is selected).
· The contents of the on-chip RAM and registers remain
unchanged.
come from the instruction clock and operates in the
same manner except that in the HALT state the WDT
may stop counting and lose its protecting purpose. In
this situation the logic can only be restarted by external
logic. The high nibble and bit 3 of the WDTS are reserved for user defined flags, which can only be set to
²10000² (WDTS.7~WDTS.3).
· The WDT and WDT prescaler will be cleared and re-
counted again (if the WDT clock is from the WDT oscillator).
· All of the I/O ports remain in their original status.
If the device operates in a noisy environment, using the
on-chip 32kHz RC oscillator (WDT OSC) is strongly recommended, since the HALT will stop the system clock.
WS2
WS1
WS0
Division Ratio
0
0
0
1:1
0
0
1
1:2
0
1
0
1:4
0
1
1
1:8
1
0
0
1:16
1
0
1
1:32
1
1
0
1:64
1
1
1
1:128
· The PDF flag is set and the TO flag is cleared.
The system can leave the HALT mode by means of an
external reset, an interrupt, an external falling edge signal on port A or a WDT overflow. An external reset
causes a device initialization and the WDT overflow performs a ²warm reset². After the TO and PDF flags are
examined, the cause for chip reset can be determined.
The PDF flag is cleared by a system power-up or executing the ²CLR WDT² instruction and is set when executing the ²HALT² instruction. The TO flag is set if the
WDT time-out occurs, and causes a wake-up that only
resets the program counter and SP; the others remain in
their original status.
WDTS (09H) Register
The port A wake-up and interrupt methods can be considered as a continuation of normal execution. Each bit
in port A can be independently selected to wake-up the
device by mask option. Awakening from an I/O port stimulus, the program will resume execution of the next instruction. If it awakens from an interrupt, two sequence
may occur. If the related interrupt is disabled or the interrupt is enabled but the stack is full, the program will resume execution at the next instruction. If the interrupt is
enabled and the stack is not full, the regular interrupt response takes place. If an interrupt request flag is set to
²1² before entering the HALT mode, the wake-up function of the related interrupt will be disabled. Once a
wake-up event occurs, it takes 1024 tSYS (system clock
period) to resume normal operation. In other words, a
dummy period will be inserted after a wake-up. If the
wake-up results from an interrupt acknowledge signal,
the actual interrupt subroutine execution will be delayed
by one or more cycles. If the wake-up results in the next
instruction execution, this will be executed immediately
after the dummy period is finished.
The WDT overflow under normal operation will initialize
a ²chip reset² and set the status bit ²TO². But in the
HALT mode, the overflow will initialize a ²warm reset²
and only the program counter and SP are reset to zero.
To clear the contents of the WDT (including the WDT
prescaler), three methods are adopted; external reset (a
low level to RES), software instruction and a ²HALT² instruction. The software instruction include ²CLR WDT²
and the other set - ²CLR WDT1² and ²CLR WDT2². Of
these two types of instruction, only one can be active depending on the ROM code option - ²CLR WDT times selection option². If the ²CLR WDT² is selected (i.e.
CLRWDT times is equal to one), any execution of the
²CLR WDT² instruction will clear the WDT. In the case
that ²CLR WDT² and ²CLR WDT² are chosen (i.e.
CLRWDT times is equal to two), these two instructions
must be executed to clear the WDT; otherwise, the WDT
may reset the chip as a result of time-out.
Power Down Operation - HALT
To minimize power consumption, all the I/O pins should
be carefully managed before entering the HALT status.
The HALT mode is initialized by the ²HALT² instruction
and results in the following:
· The system oscillator will be turned off but the WDT
Rev. 1.50
12
December 22, 2008
HT82M99EE/HT82M99AE
Reset
The functional unit chip reset status are shown below.
There are four ways in which a reset can occur:
· RES reset during normal operation
· RES reset during HALT
· WDT time-out reset during normal operation
· USB reset
The WDT time-out during HALT is different from other
chip reset conditions, since it can perform a ²warm re set² that resets only the program counterand SP, leaving
the other circuits in their original state. Some registers
remain unchanged during other reset conditions. Most
registers are reset to the ²initial condition² when the reset conditions are met. By examining the PDF and TO
flags, the program can distinguish between different
²chip resets².
TO
PDF
0
0
RES reset during power-up
0
0
RES reset during normal operation
0
0
RES wake-up HALT
1
u
WDT time-out during normal operation
1
1
WDT wake-up HALT
Program Counter
000H
Interrupt
Disable
Prescaler
Clear
WDT
Clear. After master reset,
WDT begins counting
Timer/event Counter Off
Input/output Ports
Input mode
Stack Pointer
Points to the top of the stack
V
D D
RESET Conditions
R E S
Reset Circuit
Note: ²u² stands for ²unchanged²
To guarantee that the system oscillator is started and
stabilized, the SST (System Start-up Timer) provides an
extra delay of 1024 system clock pulses when the system resets (power-up, WDT time-out or RES reset) or
the system awakes from the HALT state.
H A L T
O S C 1
V D D
tS
C o ld
R e s e t
S S T
1 0 - b it R ip p le
C o u n te r
S y s te m
R E S
R e s e t
R E S
When a system reset occurs, the SST delay is added
during the reset period. Any wake-up from HALT will enable the SST delay.
R e s e t
S T
Reset Configuration
S S T T im e - o u t
C h ip
W a rm
W D T
R e s e t
Reset Timing Chart
Rev. 1.50
13
December 22, 2008
HT82M99EE/HT82M99AE
The registers status are summarized in the following table.
Reset
(Power On)
WDT
Time-out
(Normal
Operation)
RES Reset
(Normal
Operation)
RES Reset
(HALT)
WDT
Time-Out
(HALT)*
USB-Reset
(Normal)
USB-Reset
(HALT)
TMRH
xxxx xxxx
0000 0000
0000 0000
0000 0000
uuuu uuuu
uuuu uuuu
uuuu uuuu
TMRL
xxxx xxxx
0000 0000
0000 0000
0000 0000
uuuu uuuu
uuuu uuuu
uuuu uuuu
TMRC
00-0 1---
00-0 1---
00-0 1---
00-0 1---
uu-u u---
00-0 1---
00-0 1---
000H
000H
000H
000H
000H
000H
000H
MP0
1xxx xxxx
1uuu uuuu
1uuu uuuu
1uuu uuuu
1uuu uuuu
1uuu uuuu
1uuu uuuu
MP1
1xxx xxxx
1uuu uuuu
1uuu uuuu
1uuu uuuu
1uuu uuuu
1uuu uuuu
1uuu uuuu
ACC
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
TBLP
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
TBLH
-xxx xxxx
-uuu uuuu
-uuu uuuu
-uuu uuuu
-uuu uuuu
-uuu uuuu
-uuu uuuu
STATUS
--00 xxxx
--1u uuuu
--00 uuuu
--00 uuuu
--11 uuuu
--uu uuuu
--01 uuuu
INTC
-000 0000
-000 0000
--00 uuuu
-000 0000
-uuu uuuu
-000 0000
-000 0000
WDTS
1000 0111
1000 0111
1000 0111
1000 0111
uuuu uuuu
1000 0111
1000 0111
Register
Program
Counter
PA
1111 1111
1111 1111
1111 1111
1111 1111
uuuu uuuu
1111 1111
1111 1111
PAC
1111 1111
1111 1111
1111 1111
1111 1111
uuuu uuuu
1111 1111
1111 1111
PB
1xx1 11xx
1xx1 11xx
1xx1 11xx
1xx1 11xx
uuuu uuuu
1xx1 11xx
1xx1 11xx
PBC
1xx1 11xx
1xx1 11xx
1xx1 11xx
1xx1 11xx
uuuu uuuu
1xx1 11xx
1xx1 11xx
AWR
0000 0000
uuuu uuuu
0000 0000
0000 0000
uuuu uuuu
0000 0000
0000 0000
PIPE
0000 0000
uuuu uuuu
0000 0000
0000 0000
uuuu uuuu
0000 0000
0000 0000
STALL
0000 0000
uuuu uuuu
0000 0000
0000 0000
uuuu uuuu
0000 0000
0000 0000
SIES
0000 0000
uuuu uuuu
0000 0000
0000 0000
uuuu uuuu
0000 0000
0000 0000
MISC
0000 0000
uuuu uuuu
0000 0000
0000 0000
uuuu uuuu
0000 0000
0000 0000
FIFO0
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
0000 0000
0000 0000
FIFO1
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
0000 0000
0000 0000
USC
11xx 0000
uuxx uuuu
11xx 0000
11xx 0000
uuxx uuuu
1100 0u00
1100 0u00
USR
0100 0000
uuuu uuuu
0100 0000
0100 0000
uuuu uuuu
u1uu 0000
u1uu 0000
SCC
0000 0000
uuuu uuuu
0000 0000
0000 0000
uuuu uuuu
uu00 u000
uu00 u000
Note: ²*² stands for ²warm reset²
²u² stands for ²unchanged²
²x² stands for ²unknown²
Rev. 1.50
14
December 22, 2008
HT82M99EE/HT82M99AE
Timer/Event Counter
nal (TMR) pin. The timer mode functions as a normal
timer with the clock source coming from the fSYS/4
(Timer). The pulse width measurement mode can be
used to count the high or low level duration of the external signal (TMR). The counting is based on the fSYS/4.
A timer/event counter (TMR) is implemented in the
microcontroller.
The timer/event counter contains a 16-bit programmable count-up counter and the clock may come from an
external source or from the system clock divided by 4.
In the event count or timer mode, once the timer/event
counter starts counting, it will count from the current
contents in the timer/event counter to FFFFH. Once
overflow occurs, the counter is reloaded from the
timer/event counter preload register and generates the
interrupt request flag (TF; bit 6 of the INTC) at the same
time.
Using the internal clock source, there is only 1 reference
time-base for the timer/event counter. The internal clock
source is coming from fSYS/4. The external clock input
allows the user to count external events, measure time
intervals or pulse widths.
There are 3 registers related to the timer/event counter;
TMRH (0FH), TMRL (10H), TMRC (11H). Writing TMRL
will only put the written data to an internal lower-order
byte buffer (8 bits) and writing TMRH will transfer the
specified data and the contents of the lower-order byte
buffer to TMRH and TMRL preload registers, respectively. The timer/event counter preload register is
changed by each writing TMRH operations. Reading
TMRH will latch the contents of TMRH and TMRL counters to the destination and the lower-order byte buffer,
respectively. Reading the TMRL will read the contents of
the lower-order byte buffer. The TMRC is the
timer/event counter control register, which defines the
operating mode, counting enable or disable and active
edge.
In the pulse width measurement mode with the TON and
TE bits equal to one, once the TMR has received a transient from low to high (or high to low if the TE bit is ²0²) it
will start counting until the TMR returns to the original
level and resets the TON. The measured result will remain in the timer/event counter even if the activated
transient occurs again. In other words, only one cycle
measurement can be done. Until setting the TON, the
cycle measurement will function again as long as it receives further transient pulse. Note that, in this operating mode, the timer/event counter starts counting not
according to the logic level but according to the transient
edges. In the case of counter overflows, the counter is
reloaded from the timer/event counter preload register
and issues the interrupt request just like the other two
modes. To enable the counting operation, the timer ON
bit (TON; bit 4 of TMRC) should be set to 1. In the pulse
width measurement mode, the TON will be cleared au-
The TM0, TM1 bits define the operating mode. The
event count mode is used to count external events,
which means that the clock source comes from an exterBit No.
Label
0~2, 5
¾
Unused bit, read as ²0²
3
TE
Defines the TMR active edge of the timer/event counter
(0=active on low to high; 1=active on high to low)
4
TON
Enable/disable the timer counting (0=disable; 1=enable)
TM0
TM1
Defines the operating mode
01=Event count mode (external clock)
10=Timer mode (internal clock)
11=Pulse width measurement mode
00=Unused
6
7
Function
TMRC (11H) Register
D a ta B u s
fS
Y S /4
T M 1
T M 0
T M R
1 6 B its
T im e r /E v e n t C o u n te r
P r e lo a d R e g is te r
R e lo a d
T E
T M 1
T M 0
T O N
L o w B y te
B u ffe r
P u ls e W id th
M e a s u re m e n t
M o d e C o n tro l
1 6 B its
T im e r /E v e n t C o u n te r
(T M R H /T M R L )
O v e r flo w
to In te rru p t
Timer/Event Counter
Rev. 1.50
15
December 22, 2008
HT82M99EE/HT82M99AE
control. To function as an input, the corresponding latch
of the control register must write a ²1². The input source
also depends on the control register. If the control register bit is ²1², the input will read the pad state. If the control register bit is ²0², the contents of the latches will
move to the internal bus. The latter is possible in the
²read-modify-write² instruction. For output function,
CMOS/NMOS/PMOS configurations can be selected
(NMOS and PMOS are available for PA only). These
control registers are mapped to locations 13H and 15H.
tomatically after the measurement cycle is completed.
But in the other two modes the TON can only be reset by
instructions. The overflow of the timer/event counter is
one of the wake-up sources. No matter what the operation mode is, writing a ²0² to ET can disable the corresponding interrupt services.
In the case of timer/event counter OFF condition, writing
data to the timer/event counter preload register will also
reload that data to the timer/event counter. But if the
timer/event counter is turned on, data written to it will
only be kept in the timer/event counter preload register.
The timer/event counter will still operate until overflow
occurs (a timer/event counter reloading will occur at the
same time). When the timer/event counter (reading
TMR) is read, the clock will be blocked to avoid errors.
As clock blocking may result in a counting error, this
must be taken into consideration by the programmer.
After a chip reset, these input/output lines remain at high
levels or in a floating state (depending on the
pull-high/low options). Each bit of these input/output
latches can be set or cleared by ²SET [m].i² and ²CLR
[m].i² (m=12H or 14H) instructions.
Some instructions first input data and then follow the
output operations. For example, ²SET [m].i², ²CLR
[m].i², ²CPL [m]², ²CPLA [m]² read the entire port states
into the CPU, execute the defined operations
(bit-operation), and then write the results back to the
latches or the accumulator.
Input/Output Ports
There are 12 bidirectional input/output lines in the
microcontroller, labeled from PA to PB, which are
mapped to the data memory of [12H] and [14H] respectively. All of these I/O ports can be used for input and
output operations. For input operation, these ports are
non-latching, that is, the inputs must be ready at the T2
rising edge of instruction ²MOV A,[m]² (m=12H or 14H).
For output operation, all the data is latched and remains
unchanged until the output latch is rewritten.
Each line of port A has the capability of waking-up the
device.
There are pull-high/low (PA only) options available for
I/O lines. Once the pull-high/low option of an I/O line is
selected, the I/O line have pull-high/low resistor. Otherwise, the pull-high/low resistor is absent. It should be
noted that a non-pull-high/low I/O line operating in input
mode will cause a floating state.
Each I/O line has its own control register (PAC and PBC)
to control the input/output configuration. With this control register, CMOS/NMOS/PMOS output or Schmitt
trigger input with or without pull-high/low resistor structures can be reconfigured dynamically under software
It is recommended that unused or not bonded out I/O
lines should be set as output pins by software instruction
to avoid consuming power under input floating state.
V
D a ta B u s
W r ite C o n tr o l R e g is te r
C o n tr o l B it
Q
D
C K
P u ll- h ig h
Q
S
C h ip R e s e t
R e a d C o n tr o l R e g is te r
W r ite D a ta R e g is te r
P o rt O u tp u t
C o n fig u r a tio n
R e a d D a ta R e g is te r
P A
P B
P B
P B
D a ta B it
Q
D
C K
S
D D
0 ~
2 ~
4 /S
7 /S
P A
P B
D
C
L
A
3
7
Q
P u ll- lo w
M
U
X
P A W a k e -u p
P A 7 /T M R
P A W a k e - u p O p tio n
Input/Output Ports
Rev. 1.50
16
December 22, 2008
HT82M99EE/HT82M99AE
Low Voltage Reset - LVR
The relationship between VDD and VLVR is shown below.
The microcontroller contains a low voltage reset circuit
in order to monitor the supply voltage of the device. If the
supply voltage of the device drops to within the range of
0.9V~VLVR such as might occur when changing the battery, the LVR will automatically reset the device internally.
V D D
5 .5 V
The LVR includes the following specifications:
2 .7 V
V
O P R
5 .5 V
V
2 .4 V
· For a valid LVR signal, a low voltage (0.9V~VLVR) must
exist for more than 1ms. If the low voltage state does
not exceed 1ms, the LVR will ignore it and will not perform a reset function.
0 .9 V
· The LVR uses the ²OR² function with the external
Note: VOPR is the voltage range for proper chip operation at 6MHz or 12MHz system clock.
RES signal to perform a chip reset.
V
L V R
D D
5 .5 V
V
L V R
L V R
D e te c t V o lta g e
0 .9 V
0 V
R e s e t S ig n a l
N o r m a l O p e r a tio n
R e s e t
R e s e t
*1
*2
Low Voltage Reset
Note: *1: To make sure that the system oscillator has stabilized, the SST provides an extra delay of 1024 system
clock pulses before entering the normal operation.
*2: A low voltage has to exist for more than 1ms, after that 1ms delay, the device enters a reset mode.
Rev. 1.50
17
December 22, 2008
HT82M99EE/HT82M99AE
Data EEPROM Functional Description
· Serial clock (SCL)
Device Addressing
The SCL input is used for positive edge clock data into
each EEPROM device and negative edge clock data
out of each device.
The 1K EEPROM devices all require an 8-bit device address word following a start condition to enable the chip
for a read or write operation. The device address word
consist of a mandatory one, zero sequence for the first
four most significant bits (refer to the diagram showing
the Device Address). This is common to all the
EEPROM device.
· Serial data (SDA)
The SDA pin is bidirectional for serial data transfer.
The pin is open-drain driven and may be wired-OR
with any number of other open-drain or open collector
devices.
The next three bits are the fixed to be ²0².
The 8th bit of device address is the read/write operation
select bit. A read operation is initiated if this bit is high
and a write operation is initiated if this bit is low.
Memory Organization
· 1K Serial EEPROM
Internally organized with 128 8-bit words, the 1K requires an 8-bit data word address for random word addressing.
If the comparison of the device address succeed the
EEPROM will output a zero at ACK bit. If not, the chip will
return to a standby state.
Device Operations
1
· Clock and data transition
Data transfer may be initiated only when the bus is not
busy. During data transfer, the data line must remain
stable whenever the clock line is high. Changes in
data line while the clock line is high will be interpreted
as a START or STOP condition.
0
1
0
0
0
0
R /W
D e v ic e A d d r e s s
Write Operations
· Byte write
A write operation requires an 8-bit data word address
following the device address word and acknowledgment. Upon receipt of this address, the EEPROM will
again respond with a zero and then clock in the first
8-bit data word. After receiving the 8-bit data word, the
EEPROM will output a zero and the addressing device, such as a microcontroller, must terminate the
write sequence with a stop condition. At this time the
EEPROM enters an internally-timed write cycle to the
non-volatile memory. All inputs are disabled during
this write cycle and EEPROM will not respond until the
write is completed (refer to Byte write timing).
· Start condition
A high-to-low transition of SDA with SCL high is a start
condition which must precede any other command
(refer to Start and Stop Definition Timing diagram).
· Stop condition
A low-to-high transition of SDA with SCL high is a stop
condition. After a read sequence, the stop command
will place the EEPROM in a standby power mode (refer to Start and Stop Definition Timing Diagram).
· Acknowledge
All addresses and data words are serially transmitted
to and from the EEPROM in 8-bit words. The
EEPROM sends a zero to acknowledge that it has received each word. This happens during the ninth
clock cycle.
· Acknowledge polling
To maximise bus throughput, one technique is to allow
the master to poll for an acknowledge signal after the
start condition and the control byte for a write command have been sent. If the device is still busy implementing its write cycle, then no ACK will be returned.
The master can send the next read/write command
when the ACK signal has finally been received.
D a ta a llo w e d
to c h a n g e
S D A
S C L
S ta rt
c o n d itio n
A d d re s s o r
a c k n o w le d g e
v a lid
N o A C K
s ta te
S to p
c o n d itio n
D e v ic e a d d r e s s
S D A
W o rd a d d re s s
D A T A
S
S ta rt
P
R /W
A C K
A C K
A C K
S to p
Byte Write Timing
Rev. 1.50
18
December 22, 2008
HT82M99EE/HT82M99AE
last byte of the current page to the first byte of the
same page. Once the device address with the
read/write select bit set to one is clocked in and acknowledged by the EEPROM, the current address
data word is serially clocked out. The microcontroller
should respond a No ACK (High) signal and following
stop condition (refer to Current read timing).
S e n d W r ite C o m m a n d
S e n d S to p C o n d itio n
to In itia te W r ite C y c le
S e n d S ta rt
· Random read
S e n d C o tr o ll B y te
w ith R /W = 0
(A C K = 0 )?
A random read requires a dummy byte write sequence
to load in the data word address which is then clocked
in and acknowledged by the EEPROM. The
microcontroller must then generate another start condition. The microcontroller now initiates a current address read by sending a device address with the
read/write select bit high. The EEPROM acknowledges the device address and serially clocks out the
data word. The microcontroller should respond with a
²no ACK² signal (high) followed by a stop condition.
(refer to Random read timing).
N o
Y e s
N e x t O p e r a tio n
Acknowledge Polling Flow
· Read operations
· Sequential read
The data EEPROM supports three read operations,
namely, current address read, random address read
and sequential read. During read operation execution,
the read/write select bit should be set to ²1².
Sequential reads are initiated by either a current address read or a random address read. After the
microcontroller receives a data word, it responds with an
acknowledgment. As long as the EEPROM receives an
acknowledgment, it will continue to increment the data
word address and serially clock out sequential data
words. When the memory address limit is reached, the
data word address will roll over and the sequential read
continues. The sequential read operation is terminated
when the microcontroller responds with a ²no ACK² signal (high) followed by a stop condition.
· Current address read
The internal data word address counter maintains the
last address accessed during the last read or write operation, incremented by one. This address stays valid
between operations as long as the chip power is maintained. The address roll over during read from the last
byte of the last memory page to the first byte of the
first page. The address roll over during write from the
D e v ic e a d d r e s s
S D A
D A T A
S to p
S
P
S ta rt
A C K
N o A C K
Current Read Timing
D e v ic e a d d r e s s
W o rd a d d re s s
S
S
S D A
D A T A
D e v ic e a d d r e s s
S ta rt
P
A C K
S ta rt
A C K
S to p
A C K
N o A C K
Random Read Timing
D e v ic e a d d r e s s
S D A
D A T A n
D A T A n + 1
S
S ta rt
D A T A n + x
S to p
P
A C K
A C K
N o A C K
Sequential Read Timing
Rev. 1.50
19
December 22, 2008
HT82M99EE/HT82M99AE
Data EEPROM Timing Diagrams
tf
tr
tL
S C L
tS
U
:S
tH
T A
tS
S D A
tH
IG H
O W
:S
D
T A
tH
D
:D
tS
A T
:D
U
A T
tS
U
tB
U F
:S
T O
P
tA
S D A
A
V a lid
O U T
V a lid
S C L
8 th b it
S D A
A C K
W o rd n
tW
R
S to p
C o n d itio n
S ta rt
C o n d itio n
Note: The write cycle time tWR is the time from a valid stop condition of a write sequence to the end of the valid start
condition of sequential command.
USB with MCU Interface
There are eight registers, including Pipe_ctrl, Address+Remote_WakeUp, STALL, PIPE, SIES, MISC, FIFO 0 and
FIFO 1 in this buffer function.
Register Name Pipe_ctrl Addr.+Remote
Mem. Addr.
41H
42H
Reserved Addr.
STALL
PIPE
SIES
MISC
FIFO 0
FIFO 1
43H
44H
45H
46H
48H
49H
Bank 1, Address 40H, 4AH, 4FH
Register Memory Mapping
Address+Remote_WakeUp register represents current address and remote wake-up function. The initial value is
²00000000² from MSB to LSB.
Register
Address
R/W
01000010B
R/W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Remote Wake-up Function
0: Not this function
1: The function exists
Address value
Default value=00000000
Address+Remote_WakeUp Register
The Pipe_ctrl, STALL and PIPE are bitmap ones. The Pipe_ctrl Register is used for configuring IN (Bit=1) or OUT
(Bit=0) Pipe and only for HT82M99AE body. The default is defined as IN Pipe. The PIPE register represents whether
the corresponding endpoint is accessed by host or not. After a USB interrupt signal is being sent out, the MCU can
check which endpoint had been accessed. This register is set only after the host accessed the corresponding endpoint.
The STALL register shows whether the corresponding endpoint works or not. As soon as the endpoint works improperly, the corresponding bit must be set. The bitmaps are listed as follows:
Register Name
R/W
Register
Address
Bit7~Bit2 Reserved
Bit 1
Bit 0
Default
Value
Pipe_ctrl
R/W
01000001B
¾
Pipe 1
Pipe 0
00000011
STALL
R/W
01000011B
¾
Pipe 1
Pipe 0
00000000
PIPE
R
01000100B
¾
Pipe 1
Pipe 0
00000000
STALL (43H) and PIPE (44H) Registers
Rev. 1.50
20
December 22, 2008
HT82M99EE/HT82M99AE
The SIES Register is used to indicate the present signal state which the USB SIE received and also determines
whether the USB SIE has to change the device address automatically.
Bit No.
Function
Read/Write
7
MNI
R/W
6~2
¾
¾
1
F0_ERR
R/W
0
Adr_set
R/W
Register Address
01000001B
SIES (45H) Registers Table
Function
Name
Read/Write
Description
Adr_set
R/W
This bit is used to configure the USB SIE to automatically change the device address with
the value of the Address+Remote_WakeUp Register (42H).
When this bit is set to 1 by F/W, the USB SIE will update the device address with the value
of the Address+Remote_WakeUp Register (42H) after the PC Host has successfully read
the data from the device by the IN operation. The USB SIE will clear the bit after updating
the device address.
Otherwise, when this bit is cleared to ²0², the USB SIE will update the device address immediately after an address is written to the Address+Remote_WakeUp Register (42H).
F0_Err
R/W
This bit is used to indicate when there are some errors that occurred when the FIFO0 is
accessed.
This bit is set by the USB SIE and cleared by F/W.
¾
¾
MNI
R/W
Unused bit, read as ²0²
This bit is for masking the NAK interrupt when MNI=²1², the default value=²0²
SIES Function Table
Rev. 1.50
21
December 22, 2008
HT82M99EE/HT82M99AE
The MISC register is actually a command + status to control the desired FIFO action and to show the status of the desired FIFO. Every bit¢s meaning and usage are listed as follows:
Bit No.
Function
Read/Write
7
Len0
R/W
6
Ready
R
5
Set CMD
R/W
4
Sel_pipe1
R/W
3
Sel_pipe0
R/W
2
Clear
R/W
1
Tx
R/W
0
Request
R/W
Register Address
01000110B
MISC (46H) Registers Table
Function
Name
Read/Write
Description
Request
R/W
After setting the other desired status, FIFO can be requested by setting this bit high active. After work has been done, this bit must be set low.
Tx
R/W
Represents the direction and transition end of the MCU accesses. When being set as
logic 1, the MCU wants to write data to FIFO. After work has been done, this bit must be
set to logic 0 before terminating the request to represent a transition end. For reading
action, this bit must be set to logic 0 to indicate that the MCU wants to read and must be
set to logic 1 after work is done.
Clear
R/W
Represents MCU clear requested FIFO, even if FIFO is not ready.
Sel_pipe1
Sel_pipe0
R/W
Determines which FIFO is desired, ²00² for FIFO 0, ²01² for FIFO 1
Set CMD
R/W
Shows that the data in FIFO is setup as command. This bit will be cleared by firmware.
So, even if the MCU is busy, nothing is missed by the SETUP command from the host.
Ready
R
Len0
R/W
Indicates that the desired FIFO is ready to work.
Indicates that the host sent a 0-sized packet to the MCU. This bit must be cleared by a
read action to the corresponding FIFO. Also, this bit will be cleared by the USB SIE after
the next valid SETUP token is received.
MISC Function Table
HT82M99EE/HT82M99AE allows a maximum of 8
bytes of data in each packet.
T h e H T 8 2 M 9 9 E E / H T 8 2 M 9 9 A E h a v e t w o 8´ 8
bidirectional FIFO for the two endpoints (control and Interrupt). User can easily read/write the FIFO data by accessing the corresponding FIFO pointer register
(FIFO0, FIFO1). The following are two examples for
reading and writing the FIFO data:
The HT82M99EE/HT82M99AE FIFO is written by
packet. To write to FIFO, the following should be followed:
· Select a set of FIFO, set in the write mode (MISC TX
HT82M99EE/HT82M99AE FIFO is read by packet. To
read from FIFO, the following should be followed:
bit = 1), and set the REQ bit to ²1²
· Check the ready bit until the status = 1
· Select one set of FIFO, set in the read mode (MISC
· Write through the FIFO pointer register and take down
TX bit = 0), and set the REQ bit to ²1².
the data number that has been written
· Check the ready bit until the status = 1
· Repeat steps 2 and 3 until writing is complete or the
· Read through the FIFO pointer register, and record
ready bit becomes 0 which indicates that the FIFO no
longer allows any data writing.
· Set MISC TX bit = 0
the data number that has been read.
· Repeat steps 2 and 3 until the ready bit becomes 0
· Clear the REQ bit to 0. Complete writing.
which indicates the end of the FIFO data reading.
· Set MISC TX bit = 1
User writes the data through the FIFO pointer register,
user has to record the number of bytes that have been
written. The HT82M99EE/HT82M99AE allows a maximum of 8 bytes of data in each packet.
· Clear the REQ bit to 0. Complete reading.
User reads the data through the FIFO pointer register,
user has to record the number of bytes to be read. The
Rev. 1.50
22
December 22, 2008
HT82M99EE/HT82M99AE
There are some timing constrains and usages illustrated here. By setting the MISC register, the MCU can perform reading, writing and clearing actions. There are some examples shown in the following table for endpoint FIFO reading, writing and clearing.
Actions
MISC Setting Flow and Status
Read FIFO0 sequence
00H®01H®delay of 2ms, check 41H®read* from FIFO0 register
and check if not ready (01H)®03H®02H
Write FIFO1 sequence
0AH®0BH®delay of 2ms, check 4BH®write* to FIFO1 register and
check if not ready (0BH)®09H®08H
Check whether FIFO0 can be read or not
00H®01H®delay of 2ms, check 41H (if ready) or 01H (if not ready)
®00H
Check whether FIFO1 can be written to or not
0AH®0BH®delay of 2ms, check 4BH (if ready) or 0BH (if not ready)
®0AH
Write 0-sized packet sequence to FIFO 0
02H®03H®delay of 2ms, check 43H®01H®00H
Note: *: There are 2ms gap existing between 2 reading actions or between 2 writing actions
Register Name
R/W
Register Address
Bit7~Bit0
FIFO 0
R/W
01001000B
Data7~Data0
FIFO 1
R/W
01001001B
Data7~Data0
FIFO Register Address Table
USB Active Pipe Timing
The USB active pipe accessed by the host cannot be used by the MCU simultaneously. When the host finishes its work,
the signal, a USB_INT will be produced to tell the MCU that the pipe can be used and the acted pipe No. will be shown
in the signal, ACT_PIPE as well. The timing is illustrated in the Figure below.
L a s t A c te d P ip e
A C T _ P IP E
U S B _ IN T
USB Active Pipe Timing
USB interrupt and the Resume line (bit 3 of the USC) is
set. In order to make the HT82M99EE/HT82M99AE
function properly, the programmer must set the
USBCKEN (bit 3 of the SCC) to 1 and clear the SUSP2
(bit4 of the SCC). Since the Resume signal will be
cleared before the Idle signal is sent out by the host and
the Suspend line (bit 0 of the USC) is going to ²0². So
when the MCU is detecting the Suspend line (bit0 of the
USC), the Resume line should be remembered and
taken into consideration.
Suspend Wake-Up and Remote Wake-Up
If there is no signal on the USB bus for over 3ms, the
HT82M99EE/HT82M99AE will go into a suspend mode.
The Suspend line (bit 0 of the USC) will be set to 1 and a
USB interrupt is triggered to indicate that the
HT82M99EE/HT82M99AE should jump to the suspend
state to meet the 500mA USB suspend current spec.
In order to meet the 500mA suspend current, the programmer should disable the USB clock by clearing the
USBCKEN (bit3 of the SCC) to ²0². The suspend current is 400mA.
After finishing the resume signal, the suspend line will
go inactive and a USB interrupt is triggered. The following is the timing diagram:
The user can also further decrease the suspend current
to 250mA by setting the SUSP2 (bit4 of the SCC). But if
the SUSP2 is set, the user has to make sure not to enable the LVR OPT option, otherwise the HT82M99EE/
HT82M99AE will be reset.
S U S P E N D
U S B R e s u m e S ig n a l
When the resume signal is sent out by the host, the
HT82M99EE/HT82M99AE will wake-up the MCU by
Rev. 1.50
U S B _ IN T
23
December 22, 2008
HT82M99EE/HT82M99AE
The device with remote wake-up function can wake-up
the USB Host by sending a wake-up pulse through
RMWK (bit 1 of USC). Once the USB Host receive the
wake-up signal from the HT82M99EE/HT82M99AE, it
will send a Resume signal to the device. The timing is as
follows:
SPS2 (bit 4 of the USR) and SUSB (bit 5 of the USR). If
SPS2=1, and SUSB=0, the HT82M99EE/HT82M99AE
is defined as PS2 interface, pin USBD- is now defined
as PS2 Data pin and USBD+ is now defined as PS2 Clk
pin. The user can easily read or write to the PS2 Data or
PS2 Clk pin by accessing the corresponding bit PS2DAI
(bit 4 of the USC), PS2CKI (bit 5 of the USC), PS2DAO
(bit 6 of the USC) and S2CKO (bit 7 of the USC) respectively.
To Configure the HT82M99EE/HT82M99AE as
PS2 Device
S U S P E N D
The user should make sure that in order to read the data
properly, the corresponding output bit must be set to ²1².
For example, if user wants to read the PS2 Data by
reading PS2DAI, the PS2DAO should be set to ²1². Otherwise it always read a ²0².
M in . 1 U S B C L K
R M W K
U S B R e s u m e S ig n a l
M in .2 .5 m s
If SPS2=0, and SUSB=1, the HT82M99EE/
HT82M99AE is defined as a USB interface. Both the
USBD- and USBD+ are driven by the USB SIE of the
HT82M99EE/HT82M99AE. User only writes or reads
the USB data through the corresponding FIFO.
U S B _ IN T
The HT82M99EE/HT82M99AE can be defined as a
USB interface or a PS2 interface by configuring the
Both SPS2 and SUSB default is ²0².
I/O Port Special Registers Definition
· Port-A (12H) - PA
Bit No.
Label
Read/Write
Option
Functions
0
PA0
R/W
¾
I/O (R/W) has pull-low and pull-high ROM code option.
Has falling edge wake-up ROM code option.
1
PA1
R/W
¾
I/O (R/W) has pull-low and pull-high option.
Has falling edge wake-up option.
2~3
PA2~PA3
R/W
¾
I/O (R/W) has pull-low and pull-high option.
Has falling edge and rising edge wake-up option.
4~6
PA4~PA6
R/W
¾
I/O (R/W) has pull-high option.
Has falling edge wake-up option.
7
PA7
R/W
¾
I/O (R/W) has pull-high option.
Has falling edge wake-up option, pin-shared with timer input pin.
PA (12H) Register
· Port-A Control (13H) - PAC
This port configure the input or output mode of Port-A
· Port-B Control (14H) - PB
Bit No.
Label
Read/Write
Option
Functions
0~1,
5~6
PB0~PB1,
PB5~PB6
¾
¾
Reserved bit.
2~3
PB2~PB3
R/W
¾
I/O (R/W), has pull-low and pull-high option.
4
PB4
R/W
¾
I/O (R/W), has pull-high option, can wake-up.
7
PB7
R/W
¾
I/O (R/W), has pull-high option and has wake-up capability.
PB (14H) Register
· Port-B Control (15H) - PBC
This port configures the input or output mode of Port-B for I/O mode
Rev. 1.50
24
December 22, 2008
HT82M99EE/HT82M99AE
USB/PS2 Status and Control Register - USC
Bit No.
Label
Read/Write
Option
Functions
0
PE0
R
SUSPEND
USB suspend mode status bit. When 1, indicates that the USB
system entry is in suspend mode.
1
PE1
W
RMOT_WK USB remote wake-up signal. The default value is ²0².
2
PE2
R/W
3
PE3
R
RESUME_O
4
PE4
R
PS2_DAI
USBD-/DATA input
5
PE5
R
PS2_CKI
USBD+/CLK input
6
PE6
W
PS2_DAO
Output for driving USBD-/DATA pin, when working under 3D
PS2 mouse function. The default value is ²1².
7
PE7
W
PS2_CKO
Output for driving USBD-/DATA pin, when working under 3D
PS2 mouse function. The default value is ²1².
URST_FLAG USB bus reset event flag. The default value is ²0².
When RESUME_OUT EVENT, RESUME_O is set to ²1².
The default value is ²0².
USC (0X1A) Register
Endpoint Interrupt Status Register - USR
The USR (USB endpoint interrupt status register) register is used to indicate which endpoint is accessed and to select
the serial bus (PS2 or USB). The endpoint request flags (EP0IF, EP1IF) are used to indicate which endpoints are accessed. If an endpoint is accessed, the related endpoint request flag will be set to ²1² and a USB interrupt will occur (If a
USB interrupt is enabled and the stack is not full). When the active endpoint request flag is served, the endpoint request
flag has to be cleared to ²0².
Bit No.
0
Label
PEC0
Read/Write
R/W
Option
Functions
EP0IF
When set to ²1², indicates an endpoint 0 interrupt event. Must
wait for the MCU to process the interrupt event and clear this
bit by firmware. This bit must be ²0², then the next interrupt
event will be processed. The default value is ²0².
When set to ²1², indicates an endpoint 1 interrupt event. Must
wait for the MCU to process the interrupt event, then clear this
bit by firmware. This bit must be ²0², then the next interrupt
event will be processed. The default value is ²0².
1
PEC1
R/W
EP1IF
2~3,
6
PEC2~PEC3,
PEC6
R/W
¾
4
PEC4
R/W
SELPS2
When set to ²1², indicates that the chip is working under PS2
mode. The default value is ²0².
5
PEC5
R/W
SELUSB
When set to ²1², indicates that the chip is working under USB
mode. The default value is ²0².
7
PEC7
R/W
USB_flag
This flag is used to show that the MCU is in USB mode (Bit=1).
This bit is R/W by FW and will be cleared to zero after power-on
reset. The default value is ²0².
Reserved bit, set to ²0²
USR (0X1B) Register
Rev. 1.50
25
December 22, 2008
HT82M99EE/HT82M99AE
Clock Control Register - SCC
There is a system clock control register implemented to select the clock used in the MCU. This register consists of USB
clock control bit (USBCKEN), second suspend mode control bit (SUSPEND2) and system clock selection (SCLKSEL).
Bit No.
2~0,
5
3
4
Label
PF2~PF0,
PF5
PF3
PF4
Read/Write
Option
Functions
R/W
¾
R/W
USBCKEN
R/W
This bit is used to reduce power consumption in the suspend
mode. In the normal mode this bit must be cleared to zero(DeSUSPEND2 fault=²0²). In the HALT mode this bit should be set high to reduce power consumption and LVR with no function. In the USB
mode this bit cannot be set high.
Reserved
USB clock control bit. When set to ²1², indicates a USBCK ON,
else USBCK OFF. The default value is ²0².
6
PF6
R/W
SCLKSEL
System clock 6MHz or 12MHz option, when working on external oscillator mode. The default value is ²0².
0: Operating at external 12MHz mode
1: Operating at external 6MHz mode
The default value is ²0².
7
PF7
R/W
PS2_flag
This flag is used to show that the MCU is in PS2 mode (Bit=1).
This bit is R/W by FW and will be cleared to zero after power-on
reset. The default value is ²0².
SCC (0X1C) Register
Table High Byte Pointer for Current Table Read - TBHP
Bit No.
Label
Read/Write
Option
2~0
PGC2~PG0
R/W
¾
Functions
Store current table read bit10~bit8 data
TBHP (0X1F) Register
Options
No.
Option
1
WDT clock source: RC (system/4) (default: T1)
2
WDT clock source: enable/disable for normal mode (default: disable)
3
PA0~PA7 ,PB4, PB7 wake-up by bit (PA2, PA3 both wake-up by falling or rising edge)
(default: non wake-up)
4
PA0~PA7 pull-high by bit (default: Pull-high)
5
PB pull-high by nibble (default: Pull-high)
6
2.7 V (error 0.3V) LVR enable/disable (default: enable)
7
PA0~PA3, PB2, PB3 Pull-low by bit (default: non pull-low 30kW)
8
²CLR WDT², 1 or 2 instructions
9
TBHP enable/disable (default: disable)
10
PA output mode (CMOS/NMOS/PMOS) by bit (default: CMOS)
Note: The LVR voltage is define as 2.7V±0.3V and default is enable.
Rev. 1.50
26
December 22, 2008
HT82M99EE/HT82M99AE
Application Circuits
Crystal or Ceramic Resonator for Multiple I/O Applications - HT82M99EE
5 W
V D D
U S B -
0 .1 m F
U S B +
*
*
3 3 W
1 0 m F
1 0 0 k W
*
V D D
0 .1 m F
V S S
5 W
1 M W ***
P B 7
2 2 p F
**
*
X 1
2 2 p F
0 .1 m F
1 0 k W
**
*
0 .1 m F
P A 0 ~ P A 7
P B 2 ~ P B 4
O S C 1
1 .5 k W
V 3 3 O
0 .1 m F
O S C 2
R E S
4 7 p F *
3 3 W
U S B D -/D A T A
*
*
4 7 p F *
V S S
*
H T 8 2 M 9 9 E E
4 7 p F
3 3 W
U S B D + /C L K
*
*
4 7 p F
Note: The resistance and capacitance for the reset circuit should be designed in such a way as to ensure that the VDD
is stable and remains within a valid operating voltage range before bringing RES to high.
X1 can use 6MHz or 12MHz, X1 as close OSC1 & OSC2 as possible
Components with * are used for EMC issue.
Components with ** are used for resonator only.
Components with *** are used for 12MHz application.
Crystal or Ceramic Resonator for Multiple I/O Applications - HT82M99AE
V D D
U S B -
V D D
1 0 m F
1 0 0 k W
P A 0 ~ P A 7
P B 2 ~ P B 4
0 .1 m F
U S B +
V S S
P B 7
2 2 p F
X 1
*
2 2 p F
O S C 1
V 3 3 O
1 .5 k W
0 .1 m F
O S C 2
*
R E S
U S B D -/D A T A
0 .1 m F
V S S
U S B D + /C L K
H T 8 2 M 9 9 A E
Note: X1 can use 6MHz or 12MHz, X1 as close OSC1 & OSC2 as possible
Components with * are used for resonator only.
Rev. 1.50
27
December 22, 2008
HT82M99EE/HT82M99AE
Instruction Set
subtract instruction mnemonics to enable the necessary
arithmetic to be carried out. Care must be taken to ensure correct handling of carry and borrow data when results exceed 255 for addition and less than 0 for
subtraction. The increment and decrement instructions
INC, INCA, DEC and DECA provide a simple means of
increasing or decreasing by a value of one of the values
in the destination specified.
Introduction
Central to the successful operation of any
microcontroller is its instruction set, which is a set of program instruction codes that directs the microcontroller to
perform certain operations. In the case of Holtek
microcontrollers, a comprehensive and flexible set of
over 60 instructions is provided to enable programmers
to implement their application with the minimum of programming overheads.
Logical and Rotate Operations
For easier understanding of the various instruction
codes, they have been subdivided into several functional groupings.
The standard logical operations such as AND, OR, XOR
and CPL all have their own instruction within the Holtek
microcontroller instruction set. As with the case of most
instructions involving data manipulation, data must pass
through the Accumulator which may involve additional
programming steps. In all logical data operations, the
zero flag may be set if the result of the operation is zero.
Another form of logical data manipulation comes from
the rotate instructions such as RR, RL, RRC and RLC
which provide a simple means of rotating one bit right or
left. Different rotate instructions exist depending on program requirements. Rotate instructions are useful for
serial port programming applications where data can be
rotated from an internal register into the Carry bit from
where it can be examined and the necessary serial bit
set high or low. Another application where rotate data
operations are used is to implement multiplication and
division calculations.
Instruction Timing
Most instructions are implemented within one instruction cycle. The exceptions to this are branch, call, or table read instructions where two instruction cycles are
required. One instruction cycle is equal to 4 system
clock cycles, therefore in the case of an 8MHz system
oscillator, most instructions would be implemented
within 0.5ms and branch or call instructions would be implemented within 1ms. Although instructions which require one more cycle to implement are generally limited
to the JMP, CALL, RET, RETI and table read instructions, it is important to realize that any other instructions
which involve manipulation of the Program Counter Low
register or PCL will also take one more cycle to implement. As instructions which change the contents of the
PCL will imply a direct jump to that new address, one
more cycle will be required. Examples of such instructions would be ²CLR PCL² or ²MOV PCL, A². For the
case of skip instructions, it must be noted that if the result of the comparison involves a skip operation then
this will also take one more cycle, if no skip is involved
then only one cycle is required.
Branches and Control Transfer
Program branching takes the form of either jumps to
specified locations using the JMP instruction or to a subroutine using the CALL instruction. They differ in the
sense that in the case of a subroutine call, the program
must return to the instruction immediately when the subroutine has been carried out. This is done by placing a
return instruction RET in the subroutine which will cause
the program to jump back to the address right after the
CALL instruction. In the case of a JMP instruction, the
program simply jumps to the desired location. There is
no requirement to jump back to the original jumping off
point as in the case of the CALL instruction. One special
and extremely useful set of branch instructions are the
conditional branches. Here a decision is first made regarding the condition of a certain data memory or individual bits. Depending upon the conditions, the program
will continue with the next instruction or skip over it and
jump to the following instruction. These instructions are
the key to decision making and branching within the program perhaps determined by the condition of certain input switches or by the condition of internal data bits.
Moving and Transferring Data
The transfer of data within the microcontroller program
is one of the most frequently used operations. Making
use of three kinds of MOV instructions, data can be
transferred from registers to the Accumulator and
vice-versa as well as being able to move specific immediate data directly into the Accumulator. One of the most
important data transfer applications is to receive data
from the input ports and transfer data to the output ports.
Arithmetic Operations
The ability to perform certain arithmetic operations and
data manipulation is a necessary feature of most
microcontroller applications. Within the Holtek
microcontroller instruction set are a range of add and
Rev. 1.50
28
December 22, 2008
HT82M99EE/HT82M99AE
Bit Operations
Other Operations
The ability to provide single bit operations on Data Memory is an extremely flexible feature of all Holtek
microcontrollers. This feature is especially useful for
output port bit programming where individual bits or port
pins can be directly set high or low using either the ²SET
[m].i² or ²CLR [m].i² instructions respectively. The feature removes the need for programmers to first read the
8-bit output port, manipulate the input data to ensure
that other bits are not changed and then output the port
with the correct new data. This read-modify-write process is taken care of automatically when these bit operation instructions are used.
In addition to the above functional instructions, a range
of other instructions also exist such as the ²HALT² instruction for Power-down operations and instructions to
control the operation of the Watchdog Timer for reliable
program operations under extreme electric or electromagnetic environments. For their relevant operations,
refer to the functional related sections.
Instruction Set Summary
The following table depicts a summary of the instruction
set categorised according to function and can be consulted as a basic instruction reference using the following listed conventions.
Table Read Operations
Table conventions:
Data storage is normally implemented by using registers. However, when working with large amounts of
fixed data, the volume involved often makes it inconvenient to store the fixed data in the Data Memory. To overcome this problem, Holtek microcontrollers allow an
area of Program Memory to be setup as a table where
data can be directly stored. A set of easy to use instructions provides the means by which this fixed data can be
referenced and retrieved from the Program Memory.
Mnemonic
x: Bits immediate data
m: Data Memory address
A: Accumulator
i: 0~7 number of bits
addr: Program memory address
Description
Cycles
Flag Affected
1
1Note
1
1
1Note
1
1
1Note
1
1Note
1Note
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
C
1
1
1
1Note
1Note
1Note
1
1
1
1Note
1
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
1
1Note
1
1Note
Z
Z
Z
Z
Arithmetic
ADD A,[m]
ADDM A,[m]
ADD A,x
ADC A,[m]
ADCM A,[m]
SUB A,x
SUB A,[m]
SUBM A,[m]
SBC A,[m]
SBCM A,[m]
DAA [m]
Add Data Memory to ACC
Add ACC to Data Memory
Add immediate data to ACC
Add Data Memory to ACC with Carry
Add ACC to Data memory with Carry
Subtract immediate data from the ACC
Subtract Data Memory from ACC
Subtract Data Memory from ACC with result in Data Memory
Subtract Data Memory from ACC with Carry
Subtract Data Memory from ACC with Carry, result in Data Memory
Decimal adjust ACC for Addition with result in Data Memory
Logic Operation
AND A,[m]
OR A,[m]
XOR A,[m]
ANDM A,[m]
ORM A,[m]
XORM A,[m]
AND A,x
OR A,x
XOR A,x
CPL [m]
CPLA [m]
Logical AND Data Memory to ACC
Logical OR Data Memory to ACC
Logical XOR Data Memory to ACC
Logical AND ACC to Data Memory
Logical OR ACC to Data Memory
Logical XOR ACC to Data Memory
Logical AND immediate Data to ACC
Logical OR immediate Data to ACC
Logical XOR immediate Data to ACC
Complement Data Memory
Complement Data Memory with result in ACC
Increment & Decrement
INCA [m]
INC [m]
DECA [m]
DEC [m]
Rev. 1.50
Increment Data Memory with result in ACC
Increment Data Memory
Decrement Data Memory with result in ACC
Decrement Data Memory
29
December 22, 2008
HT82M99EE/HT82M99AE
Mnemonic
Description
Cycles
Flag Affected
Rotate Data Memory right with result in ACC
Rotate Data Memory right
Rotate Data Memory right through Carry with result in ACC
Rotate Data Memory right through Carry
Rotate Data Memory left with result in ACC
Rotate Data Memory left
Rotate Data Memory left through Carry with result in ACC
Rotate Data Memory left through Carry
1
1Note
1
1Note
1
1Note
1
1Note
None
None
C
C
None
None
C
C
Move Data Memory to ACC
Move ACC to Data Memory
Move immediate data to ACC
1
1Note
1
None
None
None
Clear bit of Data Memory
Set bit of Data Memory
1Note
1Note
None
None
Jump unconditionally
Skip if Data Memory is zero
Skip if Data Memory is zero with data movement to ACC
Skip if bit i of Data Memory is zero
Skip if bit i of Data Memory is not zero
Skip if increment Data Memory is zero
Skip if decrement Data Memory is zero
Skip if increment Data Memory is zero with result in ACC
Skip if decrement Data Memory is zero with result in ACC
Subroutine call
Return from subroutine
Return from subroutine and load immediate data to ACC
Return from interrupt
2
1Note
1note
1Note
1Note
1Note
1Note
1Note
1Note
2
2
2
2
None
None
None
None
None
None
None
None
None
None
None
None
None
Read table (current page) to TBLH and Data Memory
Read table (last page) to TBLH and Data Memory
2Note
2Note
None
None
No operation
Clear Data Memory
Set Data Memory
Clear Watchdog Timer
Pre-clear Watchdog Timer
Pre-clear Watchdog Timer
Swap nibbles of Data Memory
Swap nibbles of Data Memory with result in ACC
Enter power down mode
1
1Note
1Note
1
1
1
1Note
1
1
None
None
None
TO, PDF
TO, PDF
TO, PDF
None
None
TO, PDF
Rotate
RRA [m]
RR [m]
RRCA [m]
RRC [m]
RLA [m]
RL [m]
RLCA [m]
RLC [m]
Data Move
MOV A,[m]
MOV [m],A
MOV A,x
Bit Operation
CLR [m].i
SET [m].i
Branch
JMP addr
SZ [m]
SZA [m]
SZ [m].i
SNZ [m].i
SIZ [m]
SDZ [m]
SIZA [m]
SDZA [m]
CALL addr
RET
RET A,x
RETI
Table Read
TABRDC [m]
TABRDL [m]
Miscellaneous
NOP
CLR [m]
SET [m]
CLR WDT
CLR WDT1
CLR WDT2
SWAP [m]
SWAPA [m]
HALT
Note: 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required,
if no skip takes place only one cycle is required.
2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.
3. For the ²CLR WDT1² and ²CLR WDT2² instructions the TO and PDF flags may be affected by
the execution status. The TO and PDF flags are cleared after both ²CLR WDT1² and
²CLR WDT2² instructions are consecutively executed. Otherwise the TO and PDF flags
remain unchanged.
Rev. 1.50
30
December 22, 2008
HT82M99EE/HT82M99AE
Instruction Definition
ADC A,[m]
Add Data Memory to ACC with Carry
Description
The contents of the specified Data Memory, Accumulator and the carry flag are added. The
result is stored in the Accumulator.
Operation
ACC ¬ ACC + [m] + C
Affected flag(s)
OV, Z, AC, C
ADCM A,[m]
Add ACC to Data Memory with Carry
Description
The contents of the specified Data Memory, Accumulator and the carry flag are added. The
result is stored in the specified Data Memory.
Operation
[m] ¬ ACC + [m] + C
Affected flag(s)
OV, Z, AC, C
ADD A,[m]
Add Data Memory to ACC
Description
The contents of the specified Data Memory and the Accumulator are added. The result is
stored in the Accumulator.
Operation
ACC ¬ ACC + [m]
Affected flag(s)
OV, Z, AC, C
ADD A,x
Add immediate data to ACC
Description
The contents of the Accumulator and the specified immediate data are added. The result is
stored in the Accumulator.
Operation
ACC ¬ ACC + x
Affected flag(s)
OV, Z, AC, C
ADDM A,[m]
Add ACC to Data Memory
Description
The contents of the specified Data Memory and the Accumulator are added. The result is
stored in the specified Data Memory.
Operation
[m] ¬ ACC + [m]
Affected flag(s)
OV, Z, AC, C
AND A,[m]
Logical AND Data Memory to ACC
Description
Data in the Accumulator and the specified Data Memory perform a bitwise logical AND operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²AND² [m]
Affected flag(s)
Z
AND A,x
Logical AND immediate data to ACC
Description
Data in the Accumulator and the specified immediate data perform a bitwise logical AND
operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²AND² x
Affected flag(s)
Z
ANDM A,[m]
Logical AND ACC to Data Memory
Description
Data in the specified Data Memory and the Accumulator perform a bitwise logical AND operation. The result is stored in the Data Memory.
Operation
[m] ¬ ACC ²AND² [m]
Affected flag(s)
Z
Rev. 1.50
31
December 22, 2008
HT82M99EE/HT82M99AE
CALL addr
Subroutine call
Description
Unconditionally calls a subroutine at the specified address. The Program Counter then increments by 1 to obtain the address of the next instruction which is then pushed onto the
stack. The specified address is then loaded and the program continues execution from this
new address. As this instruction requires an additional operation, it is a two cycle instruction.
Operation
Stack ¬ Program Counter + 1
Program Counter ¬ addr
Affected flag(s)
None
CLR [m]
Clear Data Memory
Description
Each bit of the specified Data Memory is cleared to 0.
Operation
[m] ¬ 00H
Affected flag(s)
None
CLR [m].i
Clear bit of Data Memory
Description
Bit i of the specified Data Memory is cleared to 0.
Operation
[m].i ¬ 0
Affected flag(s)
None
CLR WDT
Clear Watchdog Timer
Description
The TO, PDF flags and the WDT are all cleared.
Operation
WDT cleared
TO ¬ 0
PDF ¬ 0
Affected flag(s)
TO, PDF
CLR WDT1
Pre-clear Watchdog Timer
Description
The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunction with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Repetitively executing this instruction without alternately executing CLR WDT2 will have no
effect.
Operation
WDT cleared
TO ¬ 0
PDF ¬ 0
Affected flag(s)
TO, PDF
CLR WDT2
Pre-clear Watchdog Timer
Description
The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunction with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect. Repetitively executing this instruction without alternately executing CLR WDT1 will have no
effect.
Operation
WDT cleared
TO ¬ 0
PDF ¬ 0
Affected flag(s)
TO, PDF
Rev. 1.50
32
December 22, 2008
HT82M99EE/HT82M99AE
CPL [m]
Complement Data Memory
Description
Each bit of the specified Data Memory is logically complemented (1¢s complement). Bits
which previously contained a 1 are changed to 0 and vice versa.
Operation
[m] ¬ [m]
Affected flag(s)
Z
CPLA [m]
Complement Data Memory with result in ACC
Description
Each bit of the specified Data Memory is logically complemented (1¢s complement). Bits
which previously contained a 1 are changed to 0 and vice versa. The complemented result
is stored in the Accumulator and the contents of the Data Memory remain unchanged.
Operation
ACC ¬ [m]
Affected flag(s)
Z
DAA [m]
Decimal-Adjust ACC for addition with result in Data Memory
Description
Convert the contents of the Accumulator value to a BCD ( Binary Coded Decimal) value resulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or
if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble
remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of
6 will be added to the high nibble. Essentially, the decimal conversion is performed by adding 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C
flag may be affected by this instruction which indicates that if the original BCD sum is
greater than 100, it allows multiple precision decimal addition.
Operation
[m] ¬ ACC + 00H or
[m] ¬ ACC + 06H or
[m] ¬ ACC + 60H or
[m] ¬ ACC + 66H
Affected flag(s)
C
DEC [m]
Decrement Data Memory
Description
Data in the specified Data Memory is decremented by 1.
Operation
[m] ¬ [m] - 1
Affected flag(s)
Z
DECA [m]
Decrement Data Memory with result in ACC
Description
Data in the specified Data Memory is decremented by 1. The result is stored in the Accumulator. The contents of the Data Memory remain unchanged.
Operation
ACC ¬ [m] - 1
Affected flag(s)
Z
HALT
Enter power down mode
Description
This instruction stops the program execution and turns off the system clock. The contents
of the Data Memory and registers are retained. The WDT and prescaler are cleared. The
power down flag PDF is set and the WDT time-out flag TO is cleared.
Operation
TO ¬ 0
PDF ¬ 1
Affected flag(s)
TO, PDF
Rev. 1.50
33
December 22, 2008
HT82M99EE/HT82M99AE
INC [m]
Increment Data Memory
Description
Data in the specified Data Memory is incremented by 1.
Operation
[m] ¬ [m] + 1
Affected flag(s)
Z
INCA [m]
Increment Data Memory with result in ACC
Description
Data in the specified Data Memory is incremented by 1. The result is stored in the Accumulator. The contents of the Data Memory remain unchanged.
Operation
ACC ¬ [m] + 1
Affected flag(s)
Z
JMP addr
Jump unconditionally
Description
The contents of the Program Counter are replaced with the specified address. Program
execution then continues from this new address. As this requires the insertion of a dummy
instruction while the new address is loaded, it is a two cycle instruction.
Operation
Program Counter ¬ addr
Affected flag(s)
None
MOV A,[m]
Move Data Memory to ACC
Description
The contents of the specified Data Memory are copied to the Accumulator.
Operation
ACC ¬ [m]
Affected flag(s)
None
MOV A,x
Move immediate data to ACC
Description
The immediate data specified is loaded into the Accumulator.
Operation
ACC ¬ x
Affected flag(s)
None
MOV [m],A
Move ACC to Data Memory
Description
The contents of the Accumulator are copied to the specified Data Memory.
Operation
[m] ¬ ACC
Affected flag(s)
None
NOP
No operation
Description
No operation is performed. Execution continues with the next instruction.
Operation
No operation
Affected flag(s)
None
OR A,[m]
Logical OR Data Memory to ACC
Description
Data in the Accumulator and the specified Data Memory perform a bitwise logical OR operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²OR² [m]
Affected flag(s)
Z
Rev. 1.50
34
December 22, 2008
HT82M99EE/HT82M99AE
OR A,x
Logical OR immediate data to ACC
Description
Data in the Accumulator and the specified immediate data perform a bitwise logical OR operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²OR² x
Affected flag(s)
Z
ORM A,[m]
Logical OR ACC to Data Memory
Description
Data in the specified Data Memory and the Accumulator perform a bitwise logical OR operation. The result is stored in the Data Memory.
Operation
[m] ¬ ACC ²OR² [m]
Affected flag(s)
Z
RET
Return from subroutine
Description
The Program Counter is restored from the stack. Program execution continues at the restored address.
Operation
Program Counter ¬ Stack
Affected flag(s)
None
RET A,x
Return from subroutine and load immediate data to ACC
Description
The Program Counter is restored from the stack and the Accumulator loaded with the
specified immediate data. Program execution continues at the restored address.
Operation
Program Counter ¬ Stack
ACC ¬ x
Affected flag(s)
None
RETI
Return from interrupt
Description
The Program Counter is restored from the stack and the interrupts are re-enabled by setting the EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending
when the RETI instruction is executed, the pending Interrupt routine will be processed before returning to the main program.
Operation
Program Counter ¬ Stack
EMI ¬ 1
Affected flag(s)
None
RL [m]
Rotate Data Memory left
Description
The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit
0.
Operation
[m].(i+1) ¬ [m].i; (i = 0~6)
[m].0 ¬ [m].7
Affected flag(s)
None
RLA [m]
Rotate Data Memory left with result in ACC
Description
The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit
0. The rotated result is stored in the Accumulator and the contents of the Data Memory remain unchanged.
Operation
ACC.(i+1) ¬ [m].i; (i = 0~6)
ACC.0 ¬ [m].7
Affected flag(s)
None
Rev. 1.50
35
December 22, 2008
HT82M99EE/HT82M99AE
RLC [m]
Rotate Data Memory left through Carry
Description
The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7
replaces the Carry bit and the original carry flag is rotated into bit 0.
Operation
[m].(i+1) ¬ [m].i; (i = 0~6)
[m].0 ¬ C
C ¬ [m].7
Affected flag(s)
C
RLCA [m]
Rotate Data Memory left through Carry with result in ACC
Description
Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces
the Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in
the Accumulator and the contents of the Data Memory remain unchanged.
Operation
ACC.(i+1) ¬ [m].i; (i = 0~6)
ACC.0 ¬ C
C ¬ [m].7
Affected flag(s)
C
RR [m]
Rotate Data Memory right
Description
The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into
bit 7.
Operation
[m].i ¬ [m].(i+1); (i = 0~6)
[m].7 ¬ [m].0
Affected flag(s)
None
RRA [m]
Rotate Data Memory right with result in ACC
Description
Data in the specified Data Memory and the carry flag are rotated right by 1 bit with bit 0 rotated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data
Memory remain unchanged.
Operation
ACC.i ¬ [m].(i+1); (i = 0~6)
ACC.7 ¬ [m].0
Affected flag(s)
None
RRC [m]
Rotate Data Memory right through Carry
Description
The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0
replaces the Carry bit and the original carry flag is rotated into bit 7.
Operation
[m].i ¬ [m].(i+1); (i = 0~6)
[m].7 ¬ C
C ¬ [m].0
Affected flag(s)
C
RRCA [m]
Rotate Data Memory right through Carry with result in ACC
Description
Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 replaces the Carry bit and the original carry flag is rotated into bit 7. The rotated result is
stored in the Accumulator and the contents of the Data Memory remain unchanged.
Operation
ACC.i ¬ [m].(i+1); (i = 0~6)
ACC.7 ¬ C
C ¬ [m].0
Affected flag(s)
C
Rev. 1.50
36
December 22, 2008
HT82M99EE/HT82M99AE
SBC A,[m]
Subtract Data Memory from ACC with Carry
Description
The contents of the specified Data Memory and the complement of the carry flag are subtracted from the Accumulator. The result is stored in the Accumulator. Note that if the result
of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or
zero, the C flag will be set to 1.
Operation
ACC ¬ ACC - [m] - C
Affected flag(s)
OV, Z, AC, C
SBCM A,[m]
Subtract Data Memory from ACC with Carry and result in Data Memory
Description
The contents of the specified Data Memory and the complement of the carry flag are subtracted from the Accumulator. The result is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is
positive or zero, the C flag will be set to 1.
Operation
[m] ¬ ACC - [m] - C
Affected flag(s)
OV, Z, AC, C
SDZ [m]
Skip if decrement Data Memory is 0
Description
The contents of the specified Data Memory are first decremented by 1. If the result is 0 the
following instruction is skipped. As this requires the insertion of a dummy instruction while
the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program
proceeds with the following instruction.
Operation
[m] ¬ [m] - 1
Skip if [m] = 0
Affected flag(s)
None
SDZA [m]
Skip if decrement Data Memory is zero with result in ACC
Description
The contents of the specified Data Memory are first decremented by 1. If the result is 0, the
following instruction is skipped. The result is stored in the Accumulator but the specified
Data Memory contents remain unchanged. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not
0, the program proceeds with the following instruction.
Operation
ACC ¬ [m] - 1
Skip if ACC = 0
Affected flag(s)
None
SET [m]
Set Data Memory
Description
Each bit of the specified Data Memory is set to 1.
Operation
[m] ¬ FFH
Affected flag(s)
None
SET [m].i
Set bit of Data Memory
Description
Bit i of the specified Data Memory is set to 1.
Operation
[m].i ¬ 1
Affected flag(s)
None
Rev. 1.50
37
December 22, 2008
HT82M99EE/HT82M99AE
SIZ [m]
Skip if increment Data Memory is 0
Description
The contents of the specified Data Memory are first incremented by 1. If the result is 0, the
following instruction is skipped. As this requires the insertion of a dummy instruction while
the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program
proceeds with the following instruction.
Operation
[m] ¬ [m] + 1
Skip if [m] = 0
Affected flag(s)
None
SIZA [m]
Skip if increment Data Memory is zero with result in ACC
Description
The contents of the specified Data Memory are first incremented by 1. If the result is 0, the
following instruction is skipped. The result is stored in the Accumulator but the specified
Data Memory contents remain unchanged. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not
0 the program proceeds with the following instruction.
Operation
ACC ¬ [m] + 1
Skip if ACC = 0
Affected flag(s)
None
SNZ [m].i
Skip if bit i of Data Memory is not 0
Description
If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two
cycle instruction. If the result is 0 the program proceeds with the following instruction.
Operation
Skip if [m].i ¹ 0
Affected flag(s)
None
SUB A,[m]
Subtract Data Memory from ACC
Description
The specified Data Memory is subtracted from the contents of the Accumulator. The result
is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will
be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.
Operation
ACC ¬ ACC - [m]
Affected flag(s)
OV, Z, AC, C
SUBM A,[m]
Subtract Data Memory from ACC with result in Data Memory
Description
The specified Data Memory is subtracted from the contents of the Accumulator. The result
is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will
be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.
Operation
[m] ¬ ACC - [m]
Affected flag(s)
OV, Z, AC, C
SUB A,x
Subtract immediate data from ACC
Description
The immediate data specified by the code is subtracted from the contents of the Accumulator. The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will
be set to 1.
Operation
ACC ¬ ACC - x
Affected flag(s)
OV, Z, AC, C
Rev. 1.50
38
December 22, 2008
HT82M99EE/HT82M99AE
SWAP [m]
Swap nibbles of Data Memory
Description
The low-order and high-order nibbles of the specified Data Memory are interchanged.
Operation
[m].3~[m].0 « [m].7 ~ [m].4
Affected flag(s)
None
SWAPA [m]
Swap nibbles of Data Memory with result in ACC
Description
The low-order and high-order nibbles of the specified Data Memory are interchanged. The
result is stored in the Accumulator. The contents of the Data Memory remain unchanged.
Operation
ACC.3 ~ ACC.0 ¬ [m].7 ~ [m].4
ACC.7 ~ ACC.4 ¬ [m].3 ~ [m].0
Affected flag(s)
None
SZ [m]
Skip if Data Memory is 0
Description
If the contents of the specified Data Memory is 0, the following instruction is skipped. As
this requires the insertion of a dummy instruction while the next instruction is fetched, it is a
two cycle instruction. If the result is not 0 the program proceeds with the following instruction.
Operation
Skip if [m] = 0
Affected flag(s)
None
SZA [m]
Skip if Data Memory is 0 with data movement to ACC
Description
The contents of the specified Data Memory are copied to the Accumulator. If the value is
zero, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the
program proceeds with the following instruction.
Operation
ACC ¬ [m]
Skip if [m] = 0
Affected flag(s)
None
SZ [m].i
Skip if bit i of Data Memory is 0
Description
If bit i of the specified Data Memory is 0, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two
cycle instruction. If the result is not 0, the program proceeds with the following instruction.
Operation
Skip if [m].i = 0
Affected flag(s)
None
TABRDC [m]
Read table (current page) to TBLH and Data Memory
Description
The low byte of the program code (current page) addressed by the table pointer (TBLP) is
moved to the specified Data Memory and the high byte moved to TBLH.
Operation
[m] ¬ program code (low byte)
TBLH ¬ program code (high byte)
Affected flag(s)
None
TABRDL [m]
Read table (last page) to TBLH and Data Memory
Description
The low byte of the program code (last page) addressed by the table pointer (TBLP) is
moved to the specified Data Memory and the high byte moved to TBLH.
Operation
[m] ¬ program code (low byte)
TBLH ¬ program code (high byte)
Affected flag(s)
None
Rev. 1.50
39
December 22, 2008
HT82M99EE/HT82M99AE
XOR A,[m]
Logical XOR Data Memory to ACC
Description
Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²XOR² [m]
Affected flag(s)
Z
XORM A,[m]
Logical XOR ACC to Data Memory
Description
Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR operation. The result is stored in the Data Memory.
Operation
[m] ¬ ACC ²XOR² [m]
Affected flag(s)
Z
XOR A,x
Logical XOR immediate data to ACC
Description
Data in the Accumulator and the specified immediate data perform a bitwise logical XOR
operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²XOR² x
Affected flag(s)
Z
Rev. 1.50
40
December 22, 2008
HT82M99EE/HT82M99AE
Package Information
20-pin SSOP (150mil) Outline Dimensions
1 1
2 0
A
B
1
1 0
C
C '
G
H
D
E
Symbol
Rev. 1.50
a
F
Dimensions in mil
Min.
Nom.
Max.
A
228
¾
244
B
150
¾
158
C
8
¾
12
C¢
335
¾
347
D
49
¾
65
E
¾
25
¾
F
4
¾
10
G
15
¾
50
H
7
¾
10
a
0°
¾
8°
41
December 22, 2008
HT82M99EE/HT82M99AE
Product Tape and Reel Specifications
Reel Dimensions
D
T 2
A
C
B
T 1
SSOP 20S (150mil)
Symbol
Description
Dimensions in mm
A
Reel Outer Diameter
330.0±1.0
B
Reel Inner Diameter
100.0±1.5
C
Spindle Hole Diameter
13.0+0.5/-0.2
D
Key Slit Width
T1
Space Between Flange
T2
Reel Thickness
Rev. 1.50
2.0±0.5
16.8+0.3/-0.2
22.2±0.2
42
December 22, 2008
HT82M99EE/HT82M99AE
Carrier Tape Dimensions
P 0
D
P 1
t
E
F
W
C
D 1
B 0
P
K 0
A 0
R e e l H o le
IC p a c k a g e p in 1 a n d th e r e e l h o le s
a r e lo c a te d o n th e s a m e s id e .
SSOP 20S (150mil)
Symbol
Description
W
Carrier Tape Width
P
Cavity Pitch
E
Perforation Position
Dimensions in mm
16.0+0.3/-0.1
8.0±0.1
1.75±0.10
F
Cavity to Perforation (Width Direction)
D
Perforation Diameter
1.5+0.1/-0.0
D1
Cavity Hole Diameter
1.50+0.25/-0.00
P0
Perforation Pitch
4.0±0.1
P1
Cavity to Perforation (Length Direction)
2.0±0.1
A0
Cavity Length
6.5±0.1
B0
Cavity Width
9.0±0.1
K0
Cavity Depth
2.3±0.1
7.5±0.1
t
Carrier Tape Thickness
0.30±0.05
C
Cover Tape Width
13.3±0.1
Rev. 1.50
43
December 22, 2008
HT82M99EE/HT82M99AE
Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw
Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)
Holtek Semiconductor Inc. (Shanghai Sales Office)
G Room, 3 Floor, No.1 Building, No.2016 Yi-Shan Road, Minhang District, Shanghai, China 201103
Tel: 86-21-5422-4590
Fax: 86-21-5422-4705
http://www.holtek.com.cn
Holtek Semiconductor Inc. (Shenzhen Sales Office)
5F, Unit A, Productivity Building, Gaoxin M 2nd, Middle Zone Of High-Tech Industrial Park, ShenZhen, China 518057
Tel: 86-755-8616-9908, 86-755-8616-9308
Fax: 86-755-8616-9722
Holtek Semiconductor Inc. (Beijing Sales Office)
Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031
Tel: 86-10-6641-0030, 86-10-6641-7751, 86-10-6641-7752
Fax: 86-10-6641-0125
Holtek Semiconductor Inc. (Chengdu Sales Office)
709, Building 3, Champagne Plaza, No.97 Dongda Street, Chengdu, Sichuan, China 610016
Tel: 86-28-6653-6590
Fax: 86-28-6653-6591
Holtek Semiconductor (USA), Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holtek.com
Copyright Ó 2008 by HOLTEK SEMICONDUCTOR INC.
The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable
without further modification, nor recommends the use of its products for application that may present a risk to human life
due to malfunction or otherwise. Holtek¢s products are not authorized for use as critical components in life support devices
or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information,
please visit our web site at http://www.holtek.com.tw.
Rev. 1.50
44
December 22, 2008