Preliminary Technical Information IXXH30N60B3D1 XPTTM 600V IGBT GenX3TM w/ Diode VCES IC110 VCE(sat) tfi(typ) Extreme Light Punch Through IGBT for 5-30 kHz Switching = = ≤ = 600V 30A 1.85V 125ns TO-247 AD Symbol Test Conditions Maximum Ratings VCES VCGR TJ = 25°C to 175°C TJ = 25°C to 175°C, RGE = 1MΩ 600 600 V V VGES VGEM Continuous Transient ±20 ±30 V V IC25 IC110 IF110 ICM TC TC TC TC 60 30 30 115 A A A A IA EAS TC = 25°C TC = 25°C 20 250 A mJ SSOA (RBSOA) VGE = 15V, TVJ = 150°C, RG = 10Ω Clamped Inductive Load ICM = 48 @VCE ≤ VCES A tsc (SCSOA) VGE = 15V, VCE = 360V, TJ = 150°C RG = 82Ω, Non Repetitive 10 μs PC TC = 25°C = 25°C = 110°C = 110°C = 25°C, 1ms Md Maximum Lead Temperature for Soldering 1.6 mm (0.062in.) from Case for 10s Mounting Torque W -55 ... +175 175 -55 ... +175 °C °C °C 300 260 °C °C 1.13/10 Nm/lb.in. 6 g Weight Tab E C = Collector Tab = Collector Features z 270 C G = Gate E = Emitter z z TJ TJM Tstg TL TSOLD G z z z Optimized for 5-30kHz Switching Square RBSOA Anti-Parallel Ultra Fast Diode Avalanche Capability Short Circuit Capability International Standard Package Advantages z z z z High Power Density 175°C Rated Extremely Rugged Low Gate Drive Requirement Applications Symbol Test Conditions (TJ = 25°C, Unless Otherwise Specified) Characteristic Values Min. Typ. Max. BVCES IC = 250μA, VGE = 0V 600 VGE(th) IC = 250μA, VCE = VGE 3.0 ICES VCE = VCES, VGE = 0V VCE = 0V, VGE = ±20V VCE(sat) IC = 24A, VGE = 15V, Note 1 TJ = 150°C © 2013 IXYS CORPORATION, All Rights Reserved z V 5.5 V 100 μA 1 mA TJ = 150°C IGES z 1.66 1.97 ±100 nA 1.85 V V z z z z z z Power Inverters UPS Motor Drives SMPS PFC Circuits Battery Chargers Welding Machines Lamp Ballasts DS100334A(01/13) IXXH30N60B3D1 Symbol Test Conditions (TJ = 25°C Unless Otherwise Specified) Characteristic Values Min. Typ. Max. gfs 8 IC = 24A, VCE = 10V, Note 1 Cies Coes Cres VCE = 25V, VGE = 0V, f = 1MHz Qg(on) Qge Qgc IC = 24A, VGE = 15V, VCE = 0.5 • VCES td(on) tri Eon td(off) tfi Eoff td(on) tri Eon td(off) tfi Eoff Inductive load, TJ = 25°C IC = 24A, VGE = 15V VCE = 400V, RG = 10Ω Note 2 Inductive load, TJ = 150°C IC = 24A, VGE = 15V VCE = 400V, RG = 10Ω Note 2 RthJC RthCS TO-247 (IXXH) Outline 14 S 1185 137 25 pF pF pF 39 9 17 nC nC nC 23 36 0.55 97 125 0.50 ns ns mJ ns ns mJ 150 0.80 23 34 1.10 112 180 0.70 ns ns mJ ns ns mJ 0.21 0.55 °C/W °C/W 1 2 ∅P 3 e Terminals: 1 - Gate 3 - Emitter Dim. Millimeter Min. Max. A 4.7 5.3 A1 2.2 2.54 A2 2.2 2.6 b 1.0 1.4 b1 1.65 2.13 b2 2.87 3.12 C .4 .8 D 20.80 21.46 E 15.75 16.26 e 5.20 5.72 L 19.81 20.32 L1 4.50 ∅P 3.55 3.65 Q 5.89 6.40 R 4.32 5.49 S 6.15 BSC 2 - Collector Inches Min. Max. .185 .209 .087 .102 .059 .098 .040 .055 .065 .084 .113 .123 .016 .031 .819 .845 .610 .640 0.205 0.225 .780 .800 .177 .140 .144 0.232 0.252 .170 .216 242 BSC Reverse Diode (FRED) Symbol Test Conditions (TJ = 25°C Unless Otherwise Specified) Characteristic Values Min. Typ. Max. VF IF = 30A, VGE = 0V, Note 1 TJ = 150°C 1.6 IRM trr TJ = 100°C IF = 30A, VGE = 0V, -diF/dt = 100A/μs, TJ = 100°C VR = 100V IF = 1A, VGE = 0V, -diF/dt = 100A/μs, VR = 30V 100 25 RthJC Notes: 2.7 V V 4 A ns ns 0.9 °C/W 1. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%. 2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG. PRELIMINARY TECHNICAL INFORMATION The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice. IXYS Reserves the Right to Change Limits, Test Conditions,and Dimensions. IXYS MOSFETs and IGBTs are covered 4,835,592 by one or more of the following U.S. patents: 4,860,072 4,881,106 4,931,844 5,017,508 5,034,796 5,049,961 5,063,307 5,187,117 5,237,481 5,381,025 5,486,715 6,162,665 6,259,123 B1 6,306,728 B1 6,404,065 B1 6,534,343 6,583,505 6,683,344 6,727,585 7,005,734 B2 6,710,405 B2 6,759,692 7,063,975 B2 6,710,463 6,771,478 B2 7,071,537 7,157,338B2 IXXH30N60B3D1 Fig. 2. Extended Output Characteristics @ T J = 25ºC Fig. 1. Output Characteristics @ T J = 25ºC 50 VGE = 15V 14V 13V 45 40 VGE = 15V 120 12V 100 14V 11V 30 IC - Amperes IC - Amperes 35 10V 25 20 15 10 80 13V 12V 60 9V 40 8V 20 11V 10V 9V 8V 6V 30 5 7V 0 0 0.5 1 1.5 2 2.5 0 3 0 5 10 15 50 2.0 VGE = 15V 14V 13V 12V 40 VGE = 15V 1.8 VCE(sat) - Normalized 45 35 11V 30 25 10V 20 9V 15 10 8V 5 7V 5V 0 0.5 1 1.5 2 2.5 3 I C = 48A I C = 24A I C = 12A 1.6 1.4 1.2 1.0 0.8 0 25 Fig. 4. Dependence of VCE(sat) on Junction Temperature Fig. 3. Output Characteristics @ T J = 150ºC IC - Amperes 20 VCE - Volts VCE - Volts 0.6 -50 3.5 -25 0 25 VCE - Volts 50 75 100 125 150 175 TJ - Degrees Centigrade Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage Fig. 6. Input Admittance 60 8 TJ = 25ºC 7 50 40 IC - Amperes VCE - Volts 6 5 4 I C = 48A 30 TJ = 150ºC 25ºC 20 3 - 40ºC 24A 10 12A 2 1 0 8 9 10 11 12 VGE - Volts © 2013 IXYS CORPORATION, All Rights Reserved 13 14 15 4 5 6 7 8 VGE - Volts 9 10 11 12 IXXH30N60B3D1 Fig. 7. Transconductance Fig. 8. Gate Charge 22 16 TJ = - 40ºC 20 18 16 25ºC 12 14 150ºC 10 VGE - Volts g f s - Siemens VCE = 300V 14 12 10 8 6 I C = 24A I G = 10mA 8 6 4 4 2 2 0 0 0 5 10 15 20 25 30 35 40 45 50 55 0 60 5 10 15 20 25 30 35 40 QG - NanoCoulombs IC - Amperes Fig. 10. Reverse-Bias Safe Operating Area Fig. 9. Capacitance 55 10,000 50 f = 1 MHz 40 1,000 IC - Amperes Capacitance - PicoFarads 45 Cies Coes 100 35 30 25 20 15 Cres 10 5 0 100 10 0 5 10 15 20 25 30 35 TJ = 150ºC RG = 10Ω dv / dt < 10V / ns 40 200 VCE - Volts 300 400 500 600 VCE - Volts Fig. 11. Forward-Bias Safe Operating Area Fig. 12. Maximum Transient Thermal Impedance 1000 1 VCE(sat) Limit 25µs 10 100µs 1 0.1 0.01 1ms TJ = 175ºC TC = 25ºC Single Pulse DC 0.1 1 Z(th)JC - ºC / W ID - Amperes 100 10 100 10ms 1000 VDS - Volts IXYS Reserves the Right to Change Limits, Test Conditions,and Dimensions. 0.001 0.00001 0.0001 0.001 0.01 Pulse Width - Second 0.1 1 IXXH30N60B3D1 Fig. 14. Inductive Switching Energy Loss vs. Collector Current Fig. 13. Inductive Switching Energy Loss vs. Gate Resistance 2.0 Eon - --- 4.0 TJ = 150ºC , VGE = 15V 1.2 2.5 1.0 2.0 0.8 1.5 I C 0.8 1.5 0.6 1.0 TJ = 25ºC 0.4 = 24A 0.6 2.0 TJ = 150ºC 0.5 1.0 0.4 0.2 0.5 10 20 30 40 50 60 70 0.0 10 80 15 20 25 RG - Ohms tfi 2.5 0.8 1.5 0.6 1.0 I C = 24A 0.4 75 100 180 200 I C = 24A 160 150 I 50 10 20 30 40 tfi td(off) - - - - 140 100 TJ = 25ºC IC - Amperes © 2013 IXYS CORPORATION, All Rights Reserved 50 140 100 120 90 I C = 48A 60 80 70 40 60 60 45 110 I C = 24A 80 80 40 160 100 100 20 t f i - Nanoseconds t f i - Nanoseconds 120 35 120 RG = 10Ω , VGE = 15V 25 50 75 100 TJ - Degrees Centigrade 125 60 150 t d(off) - Nanoseconds 180 t d(off) - Nanoseconds 140 TJ = 150ºC 30 td(off) - - - - VCE = 400V VCE = 400V 25 80 130 tfi 180 160 RG = 10Ω , VGE = 15V 20 70 200 180 15 60 Fig. 18. Inductive Turn-off Switching Times vs. Junction Temperature 300 10 50 RG - Ohms Fig. 17. Inductive Turn-off Switching Times vs. Collector Current 220 = 48A 100 TJ - Degrees Centigrade 260 C 120 0.0 150 125 250 VCE = 400V 140 0.5 0.2 td(off) - - - - t d(off) - Nanoseconds 2.0 E on - MilliJoules 1.0 50 50 TJ = 150ºC, VGE = 15V 200 I C = 48A t f i - Nanoseconds VCE = 400V 25 45 300 ---- RG = 10Ω , VGE = 15V 1.2 40 220 3.0 Eon 35 Fig. 16. Inductive Turn-off Switching Times vs. Gate Resistance 1.4 Eoff 30 IC - Amperes Fig. 15. Inductive Switching Energy Loss vs. Junction Temperature E off - MilliJoules Eon - MilliJoules 3.0 Eon - MilliJoules I C = 48A ---- VCE = 400V 3.5 1.4 Eon RG = 10Ω , VGE = 15V 1.0 VCE = 400V 1.6 2.5 Eoff Eoff - MilliJoules Eoff 1.8 Eoff - MilliJoules 1.2 4.5 IXXH30N60B3D1 Fig. 20. Inductive Turn-on Switching Times vs. Collector Current Fig. 19. Inductive Turn-on Switching Times vs. Gate Resistance tri 140 80 80 70 100 60 I 80 I 60 C C = 24A 50 = 48A 40 70 90 28 tri td(on) - - - - 27 RG = 10Ω , VGE = 15V VCE = 400V 26 I C = 48A 60 25 50 24 40 23 I C = 24A 30 22 20 25 50 75 100 t d(on) - Nanoseconds 70 15 20 25 30 35 IC - Amperes Fig. 21. Inductive Turn-on Switching Times vs. Junction Temperature 80 16 10 80 RG - Ohms t r i - Nanoseconds 18 10 60 24 20 10 50 TJ = 25ºC, 125ºC 30 20 40 26 22 20 30 28 VCE = 400V 40 20 20 td(on) - - - - 50 30 10 tri RG = 10Ω , VGE = 15V 60 40 0 30 125 21 150 TJ - Degrees Centigrade IXYS Reserves the Right to Change Limits, Test Conditions,and Dimensions. 40 45 50 t d(on) - Nanoseconds 70 t d(on) - Nanoseconds VCE = 400V 120 t r i - Nanoseconds td(on) - - - - TJ = 150ºC, VGE = 15V 90 t r i - Nanoseconds 160 IXXH30N60B3D1 1000 60 A 50 IF 30 TVJ = 100°C VR = 300V nC 800 Qr 30 15 400 20 10 TVJ = 25°C 200 10 0 IF= 60A IF= 30A IF= 15A 20 IF= 60A IF= 30A IF= 15A 600 TVJ =100°C 25 IRM 40 TVJ =150°C TVJ= 100°C VR = 300V A 0 1 2 5 0 100 3 V A/μs 1000 -diF/dt VF 90 2.0 trr Kf 400 600 A/μs 800 1000 -diF/dt 1.00 TVJ = 100°C IF = 30A V V FR 15 IF = 60A IF = 30A IF = 15A 80 200 20 TVJ = 100°C VR = 300V ns 0 Fig. 24. Peak Reverse Current IRM Versus -diF/dt Fig. 23. Reverse Recovery Charge Qr Versus -diF/dt Fig. 22. Forward Current IF Versus VF 1.5 0 μs tfr 0.75 tfr VFR 1.0 10 0.50 5 0.25 IRM 0.0 70 Qr 0.5 0 40 80 120 °C 160 60 0 200 T VJ 400 600 800 A/μs 1000 0 0 200 400 -diF/dt Fig. 25. Dynamic Parameters Qr, IRM Versus TVJ Fig. 26. Recovery Time trr Versus -diF/dt 0.00 600 A/μs 800 1000 diF/dt Fig. 28. Peak Forward Voltage VFR and tfr Versus diF/dt 1 K/W Constants for ZthJC calculation: i 0.1 1 2 3 Z thJC Rthi (K/W) ti (s) 0.502 0.193 0.205 0.0052 0.0003 0.0162 0.01 0.001 0.00001 DSEP 29-06 0.0001 0.001 0.01 0.1 t s 1 Fig. 28. Transient Thermal Resistance Junction to Case © 2013 IXYS CORPORATION, All Rights Reserved IXYS REF: IXX_30N60B3D1(4D)05-06-11