IRFBE30, SiHFBE30 FEATURES PRODUCT SUMMARY VDS (V) • Dynamic dV/dt Rating 800 RDS(on) (Ω) VGS = 10 V RoHS* Qg (Max.) (nC) 78 • Fast Switching Qgs (nC) 9.6 • Ease of Paralleling 45 • Simple Drive Requirements Qgd (nC) Configuration Single DESCRIPTION TO-220 Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. G S D COMPLIANT • Lead (Pb)-free Available D G Available • Repetitive Avalanche Rated 3.0 S N-Channel MOSFET ORDERING INFORMATION Package TO-220 IRFBE30PbF SiHFBE30-E3 IRFBE30 SiHFBE30 Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 800 Gate-Source Voltage VGS ± 20 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID IDM Linear Derating Factor Energyb UNIT V 4.1 2.6 A 16 1.0 W/°C mJ EAS 260 Repetitive Avalanche Currenta IAR 4.1 A Repetitive Avalanche Energya EAR 13 mJ PD 125 W dV/dt 2.0 V/ns TJ, Tstg - 55 to + 150 Single Pulse Avalanche Maximum Power Dissipation Peak Diode Recovery TC = 25 °C dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = 50 V, starting TJ = 25 °C, L = 29 mH, RG = 25 Ω, IAS = 4.1 A (see fig. 12). c. ISD ≤ 4.1 A, dI/dt ≤ 100 A/µs, VDD ≤ 600, TJ ≤ 150 °C. d. 1.6 mm from case. www.kersemi.com 1 IRFBE30, SiHFBE30 THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 1.0 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 µA 800 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.9 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.0 V Gate-Source Leakage IGSS VGS = ± 20 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 800 V, VGS = 0 V - - 100 VDS = 640 V, VGS = 0 V, TJ = 125 °C - - 500 µA - - 3.0 Ω gfs VDS = 100 V, ID = 2.5 Ab 2.5 - - S Input Capacitance Ciss VGS = 0 V, - 1300 - Output Capacitance Coss VDS = 25 V, - 310 - Reverse Transfer Capacitance Crss f = 1.0 MHz, see fig. 5 - 190 - Total Gate Charge Qg - - 78 - - 9.6 Drain-Source On-State Resistance Forward Transconductance RDS(on) ID = 2.5 Ab VGS = 10 V Dynamic Gate-Source Charge Qgs VGS = 10 V ID = 4.1 A, VDS = 400 V, see fig. 6 and 13b pF nC Gate-Drain Charge Qgd - - 45 Turn-On Delay Time td(on) - 12 - - 33 - - 82 - - 30 - - 4.5 - - 7.5 - - - 4.1 - - 16 - - 1.8 V - 480 720 ns - 1.8 2.7 µC Rise Time Turn-Off Delay Time Fall Time tr td(off) VDD = 400 V, ID = 4.1 A RG = 12 Ω, RD = 95 Ω, see fig. 10b tf Internal Drain Inductance LD Internal Source Inductance LS Between lead, 6 mm (0.25") from package and center of die contact D ns nH G S Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode A G S TJ = 25 °C, IS = 4.1 A, VGS = 0 Vb TJ = 25 °C, IF = 4.1 A, dI/dt = 100 A/µsb Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. www.kersemi.com 2 D IRFBE30, SiHFBE30 Fig. 1 - Typical Output Characteristics, TC = 25 °C Fig. 3 - Typical Transfer Characteristics Fig. 2 - Typical Output Characteristics, TC = 150 °C Fig. 4 - Normalized On-Resistance vs. Temperature www.kersemi.com 3 IRFBE30, SiHFBE30 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 7 - Typical Source-Drain Diode Forward Voltage Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage Fig. 8 - Maximum Safe Operating Area www.kersemi.com 4 IRFBE30, SiHFBE30 RD VDS VGS D.U.T. RG + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % Fig. 10a - Switching Time Test Circuit VDS 90 % 10 % VGS td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case L Vary tp to obtain required IAS VDS VDS tp VDD D.U.T RG + - IAS V DD VDS 10 V tp 0.01 Ω IAS Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms www.kersemi.com 5 IRFBE30, SiHFBE30 Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG 10 V 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.kersemi.com 6 Fig. 13b - Gate Charge Test Circuit IRFBE30, SiHFBE30 Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel www.kersemi.com 7