KERSEMI SIHF630

IRF630, SiHF630
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Dynamic dV/dt Rating
200
RDS(on) ()
VGS = 10 V
• Repetitive Avalanche Rated
0.40
Qg (Max.) (nC)
43
• Fast Switching
Qgs (nC)
7.0
• Ease of Paralleling
23
• Simple Drive Requirements
Qgd (nC)
Configuration
Single
DESCRIPTION
Third generation Power MOSFETs from Vishay provide the
designer with the best combination of fast switching,
ruggedized device design, low on-resistance and
cost-effectiveness.
The TO-220AB package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 W. The low thermal resistance
and low package cost of the TO-220AB contribute to its
wide acceptance throughout the industry.
TO-220AB
G
D
COMPLIANT
• Compliant to RoHS Directive 2002/95/EC
D
G
Available
RoHS*
S
S
N-Channel MOSFET
ORDERING INFORMATION
Package
TO-220AB
IRF630PbF
SiHF630-E3
IRF630
SiHF630
Lead (Pb)-free
SnPb
ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)
PARAMETER
SYMBOL
LIMIT
Drain-Source Voltage
VDS
200
Gate-Source Voltage
VGS
± 20
Continuous Drain Current
VGS at 10 V
TC = 25 °C
TC = 100 °C
Pulsed Drain Currenta
ID
IDM
Linear Derating Factor
UNIT
V
9.0
5.7
A
36
0.59
W/°C
EAS
250
mJ
Currenta
IAR
9.0
A
Repetitive Avalanche Energya
EAR
7.4
mJ
Single Pulse Avalanche Energyb
Repetitive Avalanche
Maximum Power Dissipation
TC = 25 °C
Peak Diode Recovery dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
Mounting Torque
for 10 s
6-32 or M3 screw
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. VDD = 50 V, starting TJ = 25 °C, L = 4.6 mH, Rg = 25 , IAS = 9.0 A (see fig. 12).
c. ISD  9.0 A, dI/dt  120 A/μs, VDD  VDS, TJ  150 °C.
d. 1.6 mm from case.
www.kersemi.com
PD
74
W
dV/dt
5.0
V/ns
TJ, Tstg
- 55 to + 150
300d
°C
10
lbf · in
1.1
N·m
IRF630, SiHF630
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
62
Case-to-Sink, Flat, Greased Surface
RthCS
0.50
-
Maximum Junction-to-Case (Drain)
RthJC
-
1.7
UNIT
°C/W
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
VDS
VGS = 0 V, ID = 250 μA
200
-
-
V
VDS/TJ
Reference to 25 °C, ID = 1 mA
-
0.24
-
V/°C
VGS(th)
VDS = VGS, ID = 250 μA
2.0
-
4.0
V
Gate-Source Leakage
IGSS
VGS = ± 20 V
-
-
± 100
nA
Zero Gate Voltage Drain Current
IDSS
VDS = 200 V, VGS = 0 V
-
-
25
VDS = 160 V, VGS = 0 V, TJ = 125 °C
-
-
250
Drain-Source On-State Resistance
Forward Transconductance
RDS(on)
gfs
ID = 5.4 Ab
VGS = 10 V
VDS = 50 V, ID = 5.4 A
μA
-
-
0.40

3.8
-
-
S
-
800
-
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Total Gate Charge
Qg
Gate-Source Charge
Qgs
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5
VGS = 10 V
ID = 5.9 A, VDS = 160 V,
see fig. 6 and 13b
-
240
-
-
76
-
-
-
43
-
-
7.0
pF
nC
Gate-Drain Charge
Qgd
-
-
23
Turn-On Delay Time
td(on)
-
9.4
-
-
28
-
-
39
-
-
20
-
-
4.5
-
-
7.5
-
-
-
9.0
-
-
36
-
-
2.0
-
170
340
ns
-
1.1
2.2
nC
Rise Time
Turn-Off Delay Time
tr
td(off)
Fall Time
tf
Internal Drain Inductance
LD
Internal Source Inductance
LS
VDD = 100 V, ID = 5.9 A,
Rg = 12 , RD = 16 , see fig. 10b
Between lead,
6 mm (0.25") from
package and center of
die contact
D
ns
nH
G
S
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
Pulsed Diode Forward Currenta
Body Diode Voltage
IS
ISM
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
S
TJ = 25 °C, IS = 9.0 A, VGS = 0 Vb
TJ = 25 °C, IF = 5.9 A, dI/dt = 100 A/s
V
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width  300 μs; duty cycle  2 %.
www.kersemi.com
IRF630, SiHF630
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
VGS
15 V
10 V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
Bottom 4.5 V
101
100
4.5 V
20 µs Pulse Width
TC = 25 °C
10-1
10-1
100
ID, Drain Current (A)
91031_02
4.5 V
100
20 µs Pulse Width
TC = 150 °C
100
20 µs Pulse Width
VDS = 50 V
101
5
6
7
8
9
10
VGS, Gate-to-Source Voltage (V)
91031_03
Fig. 3 - Typical Transfer Characteristics
RDS(on), Drain-to-Source On Resistance
(Normalized)
VGS
15 V
10 V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
Bottom 4.5 V
25 °C
100
4
Top
10-1
10-1
150 °C
10-1
Fig. 1 - Typical Output Characteristics, TC = 25 °C
101
101
101
VDS, Drain-to-Source Voltage (V)
91031_01
ID, Drain Current (A)
ID, Drain Current (A)
Top
VDS, Drain-to-Source Voltage (V)
91031_04
3.0
2.5
ID = 5.9 A
VGS = 10 V
2.0
1.5
1.0
0.5
0.0
- 60 - 40 - 20 0
20 40 60 80 100 120 140 160
TJ, Junction Temperature (°C)
Fig. 2 -Typical Output Characteristics, TC = 150 °C
Fig. 4 - Normalized On-Resistance vs. Temperature
www.kersemi.com
Capacitance (pF)
1600
VGS = 0 V, f = 1 MHz
Ciss = Cgs + Cgd, Cds Shorted
Crss = Cgd
Coss = Cds + Cgd
1200
Ciss
800
Coss
400
Crss
ISD, Reverse Drain Current (A)
IRF630, SiHF630
101
150 °C
25 °C
100
VGS = 0 V
0
100
101
0.5
VDS, Drain-to-Source Voltage (V)
91031_05
VDS = 40 V
8
4
102
5
10 µs
2
10
100 µs
5
1 ms
2
10 ms
1
5
For test circuit
see figure 13
0
91031_06
2
VDS = 100 V
0
10
20
30
1.5
Operation in this area limited
by RDS(on)
5
ID, Drain Current (A)
VGS, Gate-to-Source Voltage (V)
103
VDS = 160 V
12
1.3
1.1
Fig. 7 - Typical Source-Drain Diode Forward Voltage
ID = 5.9 A
16
0.9
VSD, Source-to-Drain Voltage (V)
91031_07
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
20
0.7
40
2
0.1
50
QG, Total Gate Charge (nC)
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
TC = 25 °C
TJ = 150 °C
Single Pulse
0.1
91031_08
2
5
1
2
5
10
2
5
102
2
5
103
2
5
104
VDS, Drain-to-Source Voltage (V)
Fig. 8 - Maximum Safe Operating Area
www.kersemi.com
IRF630, SiHF630
RD
VDS
10
VGS
8
ID, Drain Current (A)
D.U.T.
RG
+
- VDD
10 V
6
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
4
Fig. 10a - Switching Time Test Circuit
2
VDS
90 %
0
25
50
75
100
125
150
TC, Case Temperature (°C)
91031_09
10 %
VGS
Fig. 9 - Maximum Drain Current vs. Case Temperature
td(on)
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
Thermal Response (ZthJC)
10
0 − 0.5
1
0.2
PDM
0.1
0.05
0.1
t1
0.02
0.01
t2
Single Pulse
(Thermal Response)
Notes:
1. Duty Factor, D = t1/t2
2. Peak Tj = PDM x ZthJC + TC
10-2
10-5
10-4
10-3
10-2
0.1
1
10
t1, Rectangular Pulse Duration (s)
91031_11
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
VDS
L
Vary tp to obtain
required IAS
VDS
tp
VDD
D.U.T.
RG
+
-
IAS
V DD
A
VDS
10 V
tp
0.01 Ω
IAS
Fig. 12a - Unclamped Inductive Test Circuit
www.kersemi.com
Fig. 12b - Unclamped Inductive Waveforms
IRF630, SiHF630
EAS, Single Pulse Energy (mJ)
600
ID
4.0 A
5.7 A
Bottom 9.0 A
Top
500
400
300
200
100
0
VDD = 50 V
25
91031_12c
50
75
100
125
150
Starting TJ, Junction Temperature (°C)
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Current regulator
Same type as D.U.T.
50 kΩ
QG
10 V
12 V
0.2 µF
0.3 µF
QGS
QGD
+
D.U.T.
VG
-
VDS
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
Fig. 13b - Gate Charge Test Circuit
www.kersemi.com
IRF630, SiHF630
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T.
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
Rg
•
•
•
•
+
dV/dt controlled by Rg
Driver same type as D.U.T.
ISD controlled by duty factor “D”
D.U.T. - device under test
+
-
VDD
Driver gate drive
P.W.
Period
D=
P.W.
Period
VGS = 10 Va
D.U.T. lSD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
Inductor current
Body diode forward drop
Ripple ≤ 5 %
Note
a. VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
www.kersemi.com
VDD
ISD
TO-220AB
MILLIMETERS
A
E
F
D
H(1)
Q
ØP
3
2
L(1)
1
M*
L
b(1)
INCHES
DIM.
MIN.
MAX.
MIN.
MAX.
A
4.25
4.65
0.167
0.183
b
0.69
1.01
0.027
0.040
b(1)
1.20
1.73
0.047
0.068
c
0.36
0.61
0.014
0.024
D
14.85
15.49
0.585
0.610
E
10.04
10.51
0.395
0.414
e
2.41
2.67
0.095
0.105
e(1)
4.88
5.28
0.192
0.208
F
1.14
1.40
0.045
0.055
H(1)
6.09
6.48
0.240
0.255
J(1)
2.41
2.92
0.095
0.115
L
13.35
14.02
0.526
0.552
0.150
L(1)
3.32
3.82
0.131
ØP
3.54
3.94
0.139
0.155
Q
2.60
3.00
0.102
0.118
ECN: X12-0208-Rev. N, 08-Oct-12
DWG: 5471
Notes
* M = 1.32 mm to 1.62 mm (dimension including protrusion)
Heatsink hole for HVM
• Xi’an and Mingxin actual photo
C
b
e
J(1)
e(1)
www.kersemi.com