IRF630, SiHF630 Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Dynamic dV/dt Rating 200 RDS(on) () VGS = 10 V • Repetitive Avalanche Rated 0.40 Qg (Max.) (nC) 43 • Fast Switching Qgs (nC) 7.0 • Ease of Paralleling 23 • Simple Drive Requirements Qgd (nC) Configuration Single DESCRIPTION Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-220AB package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220AB contribute to its wide acceptance throughout the industry. TO-220AB G D COMPLIANT • Compliant to RoHS Directive 2002/95/EC D G Available RoHS* S S N-Channel MOSFET ORDERING INFORMATION Package TO-220AB IRF630PbF SiHF630-E3 IRF630 SiHF630 Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted) PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 200 Gate-Source Voltage VGS ± 20 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID IDM Linear Derating Factor UNIT V 9.0 5.7 A 36 0.59 W/°C EAS 250 mJ Currenta IAR 9.0 A Repetitive Avalanche Energya EAR 7.4 mJ Single Pulse Avalanche Energyb Repetitive Avalanche Maximum Power Dissipation TC = 25 °C Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = 50 V, starting TJ = 25 °C, L = 4.6 mH, Rg = 25 , IAS = 9.0 A (see fig. 12). c. ISD 9.0 A, dI/dt 120 A/μs, VDD VDS, TJ 150 °C. d. 1.6 mm from case. www.kersemi.com PD 74 W dV/dt 5.0 V/ns TJ, Tstg - 55 to + 150 300d °C 10 lbf · in 1.1 N·m IRF630, SiHF630 THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 1.7 UNIT °C/W SPECIFICATIONS (TJ = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 μA 200 - - V VDS/TJ Reference to 25 °C, ID = 1 mA - 0.24 - V/°C VGS(th) VDS = VGS, ID = 250 μA 2.0 - 4.0 V Gate-Source Leakage IGSS VGS = ± 20 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 200 V, VGS = 0 V - - 25 VDS = 160 V, VGS = 0 V, TJ = 125 °C - - 250 Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs ID = 5.4 Ab VGS = 10 V VDS = 50 V, ID = 5.4 A μA - - 0.40 3.8 - - S - 800 - Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Total Gate Charge Qg Gate-Source Charge Qgs VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 VGS = 10 V ID = 5.9 A, VDS = 160 V, see fig. 6 and 13b - 240 - - 76 - - - 43 - - 7.0 pF nC Gate-Drain Charge Qgd - - 23 Turn-On Delay Time td(on) - 9.4 - - 28 - - 39 - - 20 - - 4.5 - - 7.5 - - - 9.0 - - 36 - - 2.0 - 170 340 ns - 1.1 2.2 nC Rise Time Turn-Off Delay Time tr td(off) Fall Time tf Internal Drain Inductance LD Internal Source Inductance LS VDD = 100 V, ID = 5.9 A, Rg = 12 , RD = 16 , see fig. 10b Between lead, 6 mm (0.25") from package and center of die contact D ns nH G S Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage IS ISM VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 9.0 A, VGS = 0 Vb TJ = 25 °C, IF = 5.9 A, dI/dt = 100 A/s V Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width 300 μs; duty cycle 2 %. www.kersemi.com IRF630, SiHF630 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) VGS 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom 4.5 V 101 100 4.5 V 20 µs Pulse Width TC = 25 °C 10-1 10-1 100 ID, Drain Current (A) 91031_02 4.5 V 100 20 µs Pulse Width TC = 150 °C 100 20 µs Pulse Width VDS = 50 V 101 5 6 7 8 9 10 VGS, Gate-to-Source Voltage (V) 91031_03 Fig. 3 - Typical Transfer Characteristics RDS(on), Drain-to-Source On Resistance (Normalized) VGS 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom 4.5 V 25 °C 100 4 Top 10-1 10-1 150 °C 10-1 Fig. 1 - Typical Output Characteristics, TC = 25 °C 101 101 101 VDS, Drain-to-Source Voltage (V) 91031_01 ID, Drain Current (A) ID, Drain Current (A) Top VDS, Drain-to-Source Voltage (V) 91031_04 3.0 2.5 ID = 5.9 A VGS = 10 V 2.0 1.5 1.0 0.5 0.0 - 60 - 40 - 20 0 20 40 60 80 100 120 140 160 TJ, Junction Temperature (°C) Fig. 2 -Typical Output Characteristics, TC = 150 °C Fig. 4 - Normalized On-Resistance vs. Temperature www.kersemi.com Capacitance (pF) 1600 VGS = 0 V, f = 1 MHz Ciss = Cgs + Cgd, Cds Shorted Crss = Cgd Coss = Cds + Cgd 1200 Ciss 800 Coss 400 Crss ISD, Reverse Drain Current (A) IRF630, SiHF630 101 150 °C 25 °C 100 VGS = 0 V 0 100 101 0.5 VDS, Drain-to-Source Voltage (V) 91031_05 VDS = 40 V 8 4 102 5 10 µs 2 10 100 µs 5 1 ms 2 10 ms 1 5 For test circuit see figure 13 0 91031_06 2 VDS = 100 V 0 10 20 30 1.5 Operation in this area limited by RDS(on) 5 ID, Drain Current (A) VGS, Gate-to-Source Voltage (V) 103 VDS = 160 V 12 1.3 1.1 Fig. 7 - Typical Source-Drain Diode Forward Voltage ID = 5.9 A 16 0.9 VSD, Source-to-Drain Voltage (V) 91031_07 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 20 0.7 40 2 0.1 50 QG, Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage TC = 25 °C TJ = 150 °C Single Pulse 0.1 91031_08 2 5 1 2 5 10 2 5 102 2 5 103 2 5 104 VDS, Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area www.kersemi.com IRF630, SiHF630 RD VDS 10 VGS 8 ID, Drain Current (A) D.U.T. RG + - VDD 10 V 6 Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 4 Fig. 10a - Switching Time Test Circuit 2 VDS 90 % 0 25 50 75 100 125 150 TC, Case Temperature (°C) 91031_09 10 % VGS Fig. 9 - Maximum Drain Current vs. Case Temperature td(on) td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (ZthJC) 10 0 − 0.5 1 0.2 PDM 0.1 0.05 0.1 t1 0.02 0.01 t2 Single Pulse (Thermal Response) Notes: 1. Duty Factor, D = t1/t2 2. Peak Tj = PDM x ZthJC + TC 10-2 10-5 10-4 10-3 10-2 0.1 1 10 t1, Rectangular Pulse Duration (s) 91031_11 Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS L Vary tp to obtain required IAS VDS tp VDD D.U.T. RG + - IAS V DD A VDS 10 V tp 0.01 Ω IAS Fig. 12a - Unclamped Inductive Test Circuit www.kersemi.com Fig. 12b - Unclamped Inductive Waveforms IRF630, SiHF630 EAS, Single Pulse Energy (mJ) 600 ID 4.0 A 5.7 A Bottom 9.0 A Top 500 400 300 200 100 0 VDD = 50 V 25 91031_12c 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG 10 V 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform Fig. 13b - Gate Charge Test Circuit www.kersemi.com IRF630, SiHF630 Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - Rg • • • • + dV/dt controlled by Rg Driver same type as D.U.T. ISD controlled by duty factor “D” D.U.T. - device under test + - VDD Driver gate drive P.W. Period D= P.W. Period VGS = 10 Va D.U.T. lSD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Inductor current Body diode forward drop Ripple ≤ 5 % Note a. VGS = 5 V for logic level devices Fig. 14 - For N-Channel www.kersemi.com VDD ISD TO-220AB MILLIMETERS A E F D H(1) Q ØP 3 2 L(1) 1 M* L b(1) INCHES DIM. MIN. MAX. MIN. MAX. A 4.25 4.65 0.167 0.183 b 0.69 1.01 0.027 0.040 b(1) 1.20 1.73 0.047 0.068 c 0.36 0.61 0.014 0.024 D 14.85 15.49 0.585 0.610 E 10.04 10.51 0.395 0.414 e 2.41 2.67 0.095 0.105 e(1) 4.88 5.28 0.192 0.208 F 1.14 1.40 0.045 0.055 H(1) 6.09 6.48 0.240 0.255 J(1) 2.41 2.92 0.095 0.115 L 13.35 14.02 0.526 0.552 0.150 L(1) 3.32 3.82 0.131 ØP 3.54 3.94 0.139 0.155 Q 2.60 3.00 0.102 0.118 ECN: X12-0208-Rev. N, 08-Oct-12 DWG: 5471 Notes * M = 1.32 mm to 1.62 mm (dimension including protrusion) Heatsink hole for HVM • Xi’an and Mingxin actual photo C b e J(1) e(1) www.kersemi.com