IRFZ24, SiHFZ24 Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Dynamic dV/dt Rating 60 RDS(on) () VGS = 10 V • 175 °C Operating Temperature 0.10 Qg (Max.) (nC) 25 • Fast Switching Qgs (nC) 5.8 • Ease of Paralleling Qgd (nC) 11 • Simple Drive Requirements Configuration Single • Compliant to RoHS Directive 2002/95/EC D DESCRIPTION Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-220AB package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220AB contribute to its wide acceptance throughout the industry. TO-220AB G G D S S N-Channel MOSFET ORDERING INFORMATION Package TO-220AB IRFZ24PbF Lead (Pb)-free SiHFZ24-E3 IRFZ24 SnPb SiHFZ24 ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted) PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 60 Gate-Source Voltage VGS ± 20 Continuous Drain Current Pulsed Drain VGS at 10 V TC = 25 °C TC = 100 °C Currenta ID IDM Linear Derating Factor Single Pulse Avalanche Energyb Maximum Power Dissipation Peak Diode Recovery TC = 25 °C dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw UNIT V 17 12 A 68 0.40 W/°C EAS 100 mJ PD 60 W dV/dt 4.5 V/ns TJ, Tstg - 55 to + 175 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = 25 V, starting TJ = 25 °C, L = 403 μH, Rg = 25 , IAS = 17 A (see fig. 12). c. ISD 17 A, dI/dt 140 A/μs, VDD VDS, TJ 175 °C. d. 1.6 mm from case. www.kersemi.com 1 IRFZ24, SiHFZ24 THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 2.5 UNIT °C/W SPECIFICATIONS (TJ = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 μA 60 - - V VDS/TJ Reference to 25 °C, ID = 1 mA - 0.061 - V/°C VGS(th) VDS = VGS, ID = 250 μA 2.0 - 4.0 V Gate-Source Leakage IGSS VGS = ± 20 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 60 V, VGS = 0 V - - 25 VDS = 48 V, VGS = 0 V, TJ = 150 °C - - 250 Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs ID = 10 Ab VGS = 10 V VDS = 25 V, ID = 10 A μA - - 0.10 5.5 - - S - 640 - Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Total Gate Charge Qg VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 VGS = 10 V ID = 17 A, VDS = 48 V, see fig. 6 and 13b - 360 - - 79 - - - 25 - - 5.8 Gate-Source Charge Qgs Gate-Drain Charge Qgd - - 11 Turn-On Delay Time td(on) - 13 - tr - 58 - - 25 - - 42 - - 4.5 - - 7.5 - - - 17 - - 68 Rise Time Turn-Off Delay Time td(off) Fall Time tf Internal Drain Inductance LD Internal Source Inductance LS VDD = 30 V, ID = 17 A, Rg = 18 , RD = 1.7 , see fig. 10b Between lead, 6 mm (0.25") from package and center of die contact D pF nC ns nH G S Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode A G S TJ = 25 °C, IS = 17 A, VGS = 0 Vb TJ = 25 °C, IF = 17 A, dI/dt = 100 A/s - - 1.5 V - 88 180 ns - 0.29 0.64 nC Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width 300 μs; duty cycle 2 %. www.kersemi.com 2 D IRFZ24, SiHFZ24 Fig. 1 - Typical Output Characteristics, TC = 25 °C Fig. 2 - Typical Output Characteristics, TC = 175 °C Fig. 3 - Typical Transfer Characteristics Fig. 4 - Normalized On-Resistance vs. Temperature www.kersemi.com 3 IRFZ24, SiHFZ24 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 7 - Typical Source-Drain Diode Forward Voltage Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage Fig. 8 - Maximum Safe Operating Area www.kersemi.com 4 IRFZ24, SiHFZ24 RD VDS VGS D.U.T. RG + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % Fig. 10a - Switching Time Test Circuit VDS 90 % 10 % VGS td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature tr td(off) tf Fig. 10b - Switching Time Waveforms Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case www.kersemi.com 5 IRFZ24, SiHFZ24 L Vary tp to obtain required IAS VDS VDS tp VDD D.U.T.A RG + - I AS V DD VDS 10 V 0.01 Ω tp Fig. 12a - Unclamped Inductive Test Circuit IAS Fig. 12b - Unclamped Inductive Waveforms Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG 10 V 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.kersemi.com 6 Fig. 13b - Gate Charge Test VDS IRFZ24, SiHFZ24 Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - Rg • • • • + dV/dt controlled by Rg Driver same type as D.U.T. ISD controlled by duty factor “D” D.U.T. - device under test + - VDD Driver gate drive P.W. Period D= P.W. Period VGS = 10 Va D.U.T. lSD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Inductor current VDD Body diode forward drop Ripple ≤ 5 % ISD Note a. VGS = 5 V for logic level devices Fig. 14 - For N-Channel www.kersemi.com 7