KERSEMI SIHFZ24

IRFZ24, SiHFZ24
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Dynamic dV/dt Rating
60
RDS(on) ()
VGS = 10 V
• 175 °C Operating Temperature
0.10
Qg (Max.) (nC)
25
• Fast Switching
Qgs (nC)
5.8
• Ease of Paralleling
Qgd (nC)
11
• Simple Drive Requirements
Configuration
Single
• Compliant to RoHS Directive 2002/95/EC
D
DESCRIPTION
Third generation Power MOSFETs from Vishay provide the
designer with the best combination of fast switching,
ruggedized device design, low on-resistance and
cost-effectiveness.
The TO-220AB package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 W. The low thermal resistance
and low package cost of the TO-220AB contribute to its
wide acceptance throughout the industry.
TO-220AB
G
G
D
S
S
N-Channel MOSFET
ORDERING INFORMATION
Package
TO-220AB
IRFZ24PbF
Lead (Pb)-free
SiHFZ24-E3
IRFZ24
SnPb
SiHFZ24
ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)
PARAMETER
SYMBOL
LIMIT
Drain-Source Voltage
VDS
60
Gate-Source Voltage
VGS
± 20
Continuous Drain Current
Pulsed Drain
VGS at 10 V
TC = 25 °C
TC = 100 °C
Currenta
ID
IDM
Linear Derating Factor
Single Pulse Avalanche
Energyb
Maximum Power Dissipation
Peak Diode Recovery
TC = 25 °C
dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
Mounting Torque
for 10 s
6-32 or M3 screw
UNIT
V
17
12
A
68
0.40
W/°C
EAS
100
mJ
PD
60
W
dV/dt
4.5
V/ns
TJ, Tstg
- 55 to + 175
300d
°C
10
lbf · in
1.1
N·m
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. VDD = 25 V, starting TJ = 25 °C, L = 403 μH, Rg = 25 , IAS = 17 A (see fig. 12).
c. ISD  17 A, dI/dt  140 A/μs, VDD  VDS, TJ  175 °C.
d. 1.6 mm from case.
www.kersemi.com
1
IRFZ24, SiHFZ24
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
62
Case-to-Sink, Flat, Greased Surface
RthCS
0.50
-
Maximum Junction-to-Case (Drain)
RthJC
-
2.5
UNIT
°C/W
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
VDS
VGS = 0 V, ID = 250 μA
60
-
-
V
VDS/TJ
Reference to 25 °C, ID = 1 mA
-
0.061
-
V/°C
VGS(th)
VDS = VGS, ID = 250 μA
2.0
-
4.0
V
Gate-Source Leakage
IGSS
VGS = ± 20 V
-
-
± 100
nA
Zero Gate Voltage Drain Current
IDSS
VDS = 60 V, VGS = 0 V
-
-
25
VDS = 48 V, VGS = 0 V, TJ = 150 °C
-
-
250
Drain-Source On-State Resistance
Forward Transconductance
RDS(on)
gfs
ID = 10 Ab
VGS = 10 V
VDS = 25 V, ID = 10 A
μA
-
-
0.10

5.5
-
-
S
-
640
-
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Total Gate Charge
Qg
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5
VGS = 10 V
ID = 17 A, VDS = 48 V,
see fig. 6 and 13b
-
360
-
-
79
-
-
-
25
-
-
5.8
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
-
-
11
Turn-On Delay Time
td(on)
-
13
-
tr
-
58
-
-
25
-
-
42
-
-
4.5
-
-
7.5
-
-
-
17
-
-
68
Rise Time
Turn-Off Delay Time
td(off)
Fall Time
tf
Internal Drain Inductance
LD
Internal Source Inductance
LS
VDD = 30 V, ID = 17 A,
Rg = 18 , RD = 1.7 , see fig. 10b
Between lead,
6 mm (0.25") from
package and center of
die contact
D
pF
nC
ns
nH
G
S
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
A
G
S
TJ = 25 °C, IS = 17 A, VGS = 0 Vb
TJ = 25 °C, IF = 17 A, dI/dt = 100 A/s
-
-
1.5
V
-
88
180
ns
-
0.29
0.64
nC
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width  300 μs; duty cycle  2 %.
www.kersemi.com
2
D
IRFZ24, SiHFZ24
Fig. 1 - Typical Output Characteristics, TC = 25 °C
Fig. 2 - Typical Output Characteristics, TC = 175 °C
Fig. 3 - Typical Transfer Characteristics
Fig. 4 - Normalized On-Resistance vs. Temperature
www.kersemi.com
3
IRFZ24, SiHFZ24
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
Fig. 7 - Typical Source-Drain Diode Forward Voltage
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
Fig. 8 - Maximum Safe Operating Area
www.kersemi.com
4
IRFZ24, SiHFZ24
RD
VDS
VGS
D.U.T.
RG
+
- VDD
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
Fig. 10a - Switching Time Test Circuit
VDS
90 %
10 %
VGS
td(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
tr
td(off) tf
Fig. 10b - Switching Time Waveforms
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.kersemi.com
5
IRFZ24, SiHFZ24
L
Vary tp to obtain
required IAS
VDS
VDS
tp
VDD
D.U.T.A
RG
+
-
I AS
V DD
VDS
10 V
0.01 Ω
tp
Fig. 12a - Unclamped Inductive Test Circuit
IAS
Fig. 12b - Unclamped Inductive Waveforms
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Current regulator
Same type as D.U.T.
50 kΩ
QG
10 V
12 V
0.2 µF
0.3 µF
QGS
QGD
+
D.U.T.
VG
-
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.kersemi.com
6
Fig. 13b - Gate Charge Test
VDS
IRFZ24, SiHFZ24
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T.
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
Rg
•
•
•
•
+
dV/dt controlled by Rg
Driver same type as D.U.T.
ISD controlled by duty factor “D”
D.U.T. - device under test
+
-
VDD
Driver gate drive
P.W.
Period
D=
P.W.
Period
VGS = 10 Va
D.U.T. lSD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
Inductor current
VDD
Body diode forward drop
Ripple ≤ 5 %
ISD
Note
a. VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
www.kersemi.com
7