IRF4905 TO-220AB l l l l l l l Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175°C Operating Temperature Fast Switching P-Channel Fully Avalanche Rated Power MOSFET Description D The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. VDSS = -55V RDS(on) = 0.02Ω G ID = -74A S Absolute Maximum Ratings ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ TSTG Parameter Max. Continuous Drain Current, VGS @ -10V Continuous Drain Current, VGS @ -10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw -74 -52 -260 200 1.3 ± 20 930 -38 20 -5.0 -55 to + 175 Units A W W/°C V mJ A mJ V/ns °C 300 (1.6mm from case ) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS RθJA 2014-8-10 Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient 1 Typ. Max. Units ––– 0.50 ––– 0.75 ––– 62 °C/W www.kersemi.com IRF4905 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Q gs Q gd t d(on) tr t d(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. -55 ––– ––– -2.0 21 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– -0.05 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 18 99 61 96 IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance ––– 4.5 LS Internal Source Inductance ––– 7.5 Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– ––– ––– 3400 1400 640 V(BR)DSS ∆V(BR)DSS/∆TJ I GSS Max. Units Conditions ––– V VGS = 0V, ID = -250µA ––– V/°C Reference to 25°C, I D = -1mA 0.02 Ω VGS = -10V, ID = -38A -4.0 V VDS = VGS , ID = -250µA ––– S VDS = -25V, I D = -38A -25 VDS = -55V, VGS = 0V µA -250 VDS = -44V, VGS = 0V, T J = 150°C 100 V GS = 20V nA -100 VGS = -20V 180 ID = -38A 32 nC VDS = -44V 86 V GS = -10V, See Fig. 6 and 13 ––– VDD = -28V ––– I D = -38A ns ––– RG = 2.5Ω ––– RD = 0.72Ω, See Fig. 10 Between lead, ––– 6mm (0.25in.) nH G from package ––– and center of die contact ––– VGS = 0V ––– pF VDS = -25V ––– ƒ = 1.0MHz, See Fig. 5 D S Source-Drain Ratings and Characteristics IS ISM VSD t rr Q rr t on Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– -74 showing the A G integral reverse ––– ––– -260 p-n junction diode. S ––– ––– -1.6 V TJ = 25°C, IS = -38A, V GS = 0V ––– 89 130 ns TJ = 25°C, IF = -38A ––– 230 350 µC di/dt = -100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) Starting TJ = 25°C, L = 1.3mH ISD ≤ -38A, di/dt ≤ -270A/µs, VDD ≤ V(BR)DSS , TJ ≤ 175°C Pulse width ≤ 300µs; duty cycle ≤ 2%. RG = 25Ω, IAS = -38A. (See Figure 12) 2014-8-10 2 www.kersemi.com IRF4905 1000 1000 VGS - 15V - 10V - 8.0V - 7.0V - 6.0V - 5.5V - 5.0V BOTT OM - 4. 5V VGS - 15V - 10V - 8.0V - 7.0V - 6.0V - 5.5V - 5.0V BOTT OM - 4. 5V TOP -ID , D ra in -to -S o u rc e C u rre n t (A ) -ID , D ra in -to -S o u rce C u rre n t (A ) TOP 100 10 -4.5 V 2 0µ s PU LS E W ID TH T c = 2 5°C A 1 0.1 1 10 100 -4.5 V 10 20 µ s PU LSE W ID TH TC = 1 75°C 1 100 0.1 -VD S , Drain-to-Source Voltage (V) R D S (o n ) , D ra in -to -S o u rc e O n R e si sta n ce (N o rm a li ze d ) -I D , D rain -to- S our ce C urr ent ( A ) 2.0 TJ = 2 5 °C 100 TJ = 1 7 5 °C 10 V DS = -2 5 V 2 0 µ s P U L S E W ID T H 5 6 7 8 9 10 I D = -6 4A 1.5 1.0 0.5 VG S = -10 V 0.0 A -60 -40 -20 0 20 40 60 80 A 100 120 140 160 180 T J , Junction T em perature (°C ) -VG S , Ga te-to-S o urce V oltage (V ) Fig 3. Typical Transfer Characteristics 2014-8-10 A 100 Fig 2. Typical Output Characteristics 1000 4 10 -VD S , Drain-to-Source V oltage (V ) Fig 1. Typical Output Characteristics 1 1 Fig 4. Normalized On-Resistance Vs. Temperature 3 www.kersemi.com IRF4905 V GS C is s C rs s C o ss C , C a p a c ita n c e (p F ) 6000 20 = 0 V, f = 1M H z = C gs + C gd , Cds SH O RTE D = C gd = C ds + C g d -V G S , G a te -to -S o u rce V o lta g e (V ) 7000 5000 C is s 4000 C o ss 3000 2000 C rs s 1000 0 10 VDS = - 44V VDS = - 28V 16 12 8 4 FOR TE ST C IR C U IT SE E FIG U R E 1 3 0 A 1 I D = -3 8A 0 100 -VD S , Drain-to-Source V oltage (V) 80 120 160 A 200 Q G , Total G ate C harge (nC) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000 1000 OPE R ATIO N IN TH IS A RE A LIMITE D BY R D S(o n) -I D , D ra in C u rre n t (A ) -IS D , R e ve rse D ra in C u rre n t (A ) 40 100 T J = 17 5°C T J = 25 °C 10 VG S = 0 V 1 0.4 0.6 0.8 1.0 1.2 1.4 1.6 A 1.8 100µ s 1m s 10 10m s T C = 2 5°C T J = 1 75°C Sin gle Pu lse 1 1 A 10 100 -VD S , Drain-to-Source V oltage (V ) -VS D , S ource-to-Drain V oltage (V ) Fig 7. Typical Source-Drain Diode Forward Voltage 2014-8-10 100 Fig 8. Maximum Safe Operating Area 4 www.kersemi.com IRF4905 80 RD VDS I D , Drain Current (A) VGS 60 D.U.T. RG + VDD -10V 40 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 10a. Switching Time Test Circuit 20 td(on) tr t d(off) tf VGS 10% 0 25 50 75 100 125 TC , Case Temperature 150 175 ( ° C) 90% Fig 9. Maximum Drain Current Vs. Case Temperature VDS Fig 10b. Switching Time Waveforms (Z thJC ) 1 D = 0.50 Thermal Response 0.20 0.1 0.10 PDM 0.05 t1 0.02 0.01 0.01 0.00001 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.01 0.1 1 t1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 2014-8-10 5 www.kersemi.com IRF4905 2500 D .U .T RG IA S - 20V tp E A S , S in g le P u ls e A va la n c h e E n e rg y (m J) L VDS VD D A D R IV E R 0 .0 1 Ω 15V Fig 12a. Unclamped Inductive Test Circuit TO P BOT TO M 2000 1500 1000 500 0 A 25 I AS ID -1 6A - 27A -38 A 50 75 100 125 150 175 Starting TJ , Junction T emperature (°C) Fig 12c. Maximum Avalanche Energy Vs. Drain Current tp V(BR)DSS Fig 12b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50KΩ QG 12V .3µF -10V QGS QGD D.U.T. +VDS VGS VG -3mA IG Charge ID Current Sampling Resistors Fig 13a. Basic Gate Charge Waveform 2014-8-10 .2µF Fig 13b. Gate Charge Test Circuit 6 www.kersemi.com IRF4905 Peak Diode Recovery dv/dt Test Circuit + D.U.T* Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + • dv/dt controlled by RG • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test RG VGS * + - VDD Reverse Polarity of D.U.T for P-Channel Driver Gate Drive P.W. Period D= P.W. Period [VGS=10V ] *** D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode [ VDD] Forward Drop Inductor Curent Ripple ≤ 5% [ ISD] *** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 14. For P-Channel HEXFETS 2014-8-10 7 www.kersemi.com IRF4905 Package Outline TO-220AB Outline Dimensions are shown in millimeters (inches) 2 . 8 7 ( .1 1 3 ) 2 . 6 2 ( .1 0 3 ) 1 0 . 5 4 (. 4 1 5 ) 1 0 . 2 9 (. 4 0 5 ) -B - 3 . 7 8 (. 1 4 9 ) 3 . 5 4 (. 1 3 9 ) 4 . 6 9 ( .1 8 5 ) 4 . 2 0 ( .1 6 5 ) -A - 1 .3 2 (. 0 5 2 ) 1 .2 2 (. 0 4 8 ) 6 . 4 7 (. 2 5 5 ) 6 . 1 0 (. 2 4 0 ) 4 1 5 . 2 4 ( .6 0 0 ) 1 4 . 8 4 ( .5 8 4 ) L E A D A S S IG N M E N T S 1 - G A TE 2 - D R AIN 3 - SO URCE 4 - D R AIN 1 . 1 5 ( .0 4 5 ) M IN 1 2 3 1 4 . 0 9 (.5 5 5 ) 1 3 . 4 7 (.5 3 0 ) 4 . 0 6 (. 1 6 0 ) 3 . 5 5 (. 1 4 0 ) 3X 3X 1 .4 0 (. 0 5 5 ) 1 .1 5 (. 0 4 5 ) 0 . 9 3 ( .0 3 7 ) 0 . 6 9 ( .0 2 7 ) 0 .3 6 (. 0 1 4 ) 3X M B A 2 . 5 4 ( .1 0 0 ) 2X NO TE S : 1 D I M E N S IO N I N G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 . 2 C O N T R O L L I N G D IM E N S IO N : I N C H M 0 . 5 5 (. 0 2 2 ) 0 . 4 6 (. 0 1 8 ) 2 .9 2 (. 1 1 5 ) 2 .6 4 (. 1 0 4 ) 3 O U T L IN E C O N F O R M S T O J E D E C O U T L I N E T O -2 2 0 A B . 4 H E A T S IN K & L E A D M E A S U R E M E N T S D O N O T IN C L U D E B U R R S . Part Marking Information TO-220AB E XPLE AM PLE N 1010 IRF 1010 E X AM : T:HI TSHIISS AISN AIRF S ELY MB LY W ITWH ITAHS SAESMB T DE CO DE 9B 1M LO TLOCO 9B 1M 2014-8-10 A INRTE T ION IN TE NARTNA ION AL AL T IF IER R ECRTEC IF IER F 1010 IR F IR 1010 LO GO LO GO 9246 9246 9B 9B1M 1M S SBEM A S SAEM LYB LY LO T CO DE LO T CO DE 8 A P A RT NU P A RT NU M BEMRBE R D A TE D A TE C ODCEOD E (Y YW (Y YW W ) W ) = AYE Y Y Y=Y YE R AR W WW =W W= EW EKE EK www.kersemi.com