AGILENT AMMC-5026

Agilent AMMC-5026
2–35 GHz GaAs MMIC
Traveling Wave Amplifier
Data Sheet
Features
• Frequency range: 2 – 35 GHz
• Gain: 10.5 dB
• Gain flatness: ± 0.8 dB
• Return loss:
Input 17 dB, Output: 15 dB
• Output power (P-1dB):
24 dBm at 10 GHz
23 dBm at 20 GHz
22 dBm at 26 GHz
• Noise figure (6–19 GHz): ≤ 4 dB
Chip Size:
3050 x 840 µm (119 x 33 mils)
Chip Size Tolerance:
±10 µm (±0.4 mils)
Chip Thickness:
100 ± 10 µm (4 ± 0.4 mils)
Pad Dimensions:
75 x 75 µm (2.9 ± 0.4 mils)
Description
The AMMC-5026 is a broadband
PHEMT GaAs MMIC Traveling
Wave Amplifier (TWA) designed
for medium output power and
high gain over the full 2 GHz to
35 GHz frequency range. The
design employs a 6-section
cascode connected FET structure
to provide flat gain and medium
power as well as uniform group
delay.
Applications
• Broadband gain block
• Broadband driver amplifier
• 10 Gb/s Fiber Optics
Absolute Maximum Ratings [1]
Symbol
Parameters/Conditions
Units
Min.
Max.
Vdd
Positive Drain Voltage
V
10
Idd
Total Drain Current
mA
450
Vg1
First Gate Voltage
V
-5
Ig1
First Gate Current
mA
-9
+5
Vg2
Second Gate Voltage
V
-3
+3.5
Ig2
Second Gate Current
mA
-10
Pin
CW Input Power
dBm
Tch
Channel Temperature
°C
Tb
Operating Backside Temperature
°C
-55
Tstg
Storage Temperature
°C
-65
Tmax
Max. Assembly Temp (60 sec max)
°C
23
+150
+165
+300
Notes:
1. Operation in excess of any one of these conditions may result in permanent damage to this device.
AMMC-5026 DC Specifications/Physical Properties[1]
Symbol
Parameters and Test Conditions
Units
Min.
Typ.
Max.
Idss
Saturated Drain Current (Vdd =7 V, Vg1 =0 V, Vg2 =open circuit)
mA
250
350
450
Vp1
First Gate Pinch-off Voltage (Vdd =7 V, Idd =0.1 Idss, Vg2 =open circuit)
V
-1.2
Vg2
Second Gate Self-bias Voltage (Vdd =7 V, Idd =150 mA, Vg2 =open circuit)
V
3.5
Idsoff
(Vg1)
First Gate Pinch-off Current
(Vdd=7 V, Vg1=3.5 V, Vg2=open circuit)
mA
75
θch-b
Thermal Resistance[2] (Backside temperature, Tb = 25°C)
°C/W
28
Notes:
1. Backside temperature Tb = 25°C unless otherwise noted.
2. Channel-to-backside Thermal Resistance (θch-b) = 38°C/W at Tchannel (Tc) = 150°C as measured using the liquid crystal method. Thermal Resistance at
backside temperature (Tb) = 25°C calculated from measured data.
RF Specifications[3,4] (Vdd = 7V, Idd (Q) = 150 mA, Zin = Z0 = 50Ω)
Symbol
|S21|
2
∆|S21|
RLin
RLout
|S12|
2
2
Parameters and Test Conditions
Units
Min.
Typ.
Max.
Small-signal Gain
dB
8.5
10.5
12.5
Small-signal Gain Flatness
dB
±0.75
±1.5
Input Return Loss
dB
13
17
Output Return Loss
dB
12
15
Isolation
dB
23
26
22
24
P-1dB
Output Power @ 1 dB Gain Compression
f = 10 GHz
dBm
Psat
Saturated Output Power
f = 10 GHz
dBm
26
dBm
31
dB
dB
3.6
4.3
rd
OIP3
Output 3 Order Intercept Point,
RFin1 = RFin2 = - 20 dBm, f = 10 GHz, ∆f = 2 MHz
NF
Noise Figure
H2
Second Harmonic (Pin = 12 dBm at 10 GHz)
dBc
-20
-17.5
H3
Third Harmonic (Pin = 12 dBm at 10 GHz)
dBc
-30
-28
f = 10 GHz
f = 20 GHz
Notes:
3. Data measured in wafer form, Tchuck = 25°C.
4. 100% on wafer RF test is done at frequency = 2, 10, 22, 26.5, and 35 GHz, except as noted.
2
AMMC-5026 Typical Performance (Tchuck = 25°C, Vdd = 7 V, Idd = 150 mA, Vg2 = Open, Z0 = 50Ω)
0
15
RETURN LOSS (dB)
GAIN (dB)
5
0
-5
-10
-15
-20
-25
-10
5
10
15
20
25
30
35
40
19
16
10
0
5
10
15
20
25
30
35
40
0
5
10
FREQUENCY (GHz)
FREQUENCY (GHz)
160
30
35
40
30
6
IP3 (dBm)
NOISE FIGURE (dB)
25
40
7
80
20
Figure 3. Output Power at P1dB and P3dB.
8
120
15
FREQUENCY (GHz)
Figure 2. Input and Output Return Loss.
Figure 1. Gain.
tg (pS)
22
13
-30
0
P1dB
P3dB
25
P1dB, P3dB (dBm)
-5
10
-15
28
S11(dB)
S22(dB)
5
20
10
4
40
0
3
0
0
5
10
15
20
25
FREQUENCY (GHz)
Figure 4. Group Delay.
3
30
35
40
2
0
5
10
15
20
25
FREQUENCY (GHz)
Figure 5. Noise Figure.
30
35
40
-10
0
5
10
15
20
25
30
35
40
FREQUENCY (GHz)
Figure 6. Output 3rd Order Intercept Point.
AMMC-5026 Typical Performance (Tchuck = 25°C, Vdd = 8 V, Idd = 150 mA, Vg2 = Open, Z0 = 50Ω)
0
15
RETURN LOSS (dB)
GAIN (dB)
5
0
-5
-10
-15
-20
-25
-10
5
10
15
20
25
30
35
40
5
10
80
7
20
25
30
35
40
60
20
15
20
25
30
35
5
0
5
10
15
20
25
30
35
40
NF (dB)
6
0
10
15
2
20
25
30
FREQUENCY (GHz)
Figure 13. Gain vs. Temperature.
4
35
40
40
20
10
0
0
5
10
15
20
-10
0
5
10
15
20
25
30
35
40
Figure 12. Output 3rd Order Intercept Point.
4
5
35
FREQUENCY (GHz)
NF @ 25°C
NF @ -40°C
NF @ 85°C
8
S21(dB) 25°C
S21(dB) -40°C
S21(dB) 80°C
30
0
10
5
25
4
Figure 11. Noise Figure.
10
20
30
FREQUENCY (GHz)
15
15
Figure 9. Output Power at P1dB and P3dB.
6
2
40
Figure 10. Group Delay.
0
10
40
FREQUENCY (GHz)
-5
5
FREQUENCY (GHz)
3
10
0
OIP3 (dBm)
NOISE FIGURE (dB)
tg (pS)
8
40
S21 (dB)
15
Figure 8. Input and Output Return Loss.
100
5
16
FREQUENCY (GHz)
Figure 7. Gain.
0
19
10
0
FREQUENCY (GHz)
0
22
13
-30
0
P1dB
P3dB
25
P1dB, P3dB (dBm)
-5
10
-15
28
S11(dB)
S22(dB)
25
30
35
FREQUENCY (GHz)
Figure 14. Noise Figure vs. Temperature.
40
AMMC-5026 Typical Scattering Parameters[1] (Tchuck = 25°C, Vdd = 7 V, Idd = 150 mA)
Freq.
GHz
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
26.0
27.0
28.0
29.0
30.0
31.0
32.0
33.0
34.0
35.0
36.0
37.0
38.0
39.0
40.0
dB
S11
Mag
Ang
dB
S21
Mag
Ang
dB
S12
Mag
Ang
dB
S22
Mag
Ang
-24.93
-26.84
-25.16
-23.72
-22.99
-22.58
-21.97
-21.29
-20.67
-20.29
-20.47
-21.49
-23.65
-28.02
-39.49
-31.18
-24.21
-20.93
-18.20
-17.48
-17.43
-17.77
-18.27
-18.66
-18.56
-18.60
-19.07
-19.79
-18.63
-15.62
-13.40
-12.69
-14.73
-26.00
-14.82
-10.01
-9.81
-6.40
-4.23
0.06
0.05
0.06
0.07
0.07
0.07
0.08
0.09
0.09
0.10
0.09
0.08
0.07
0.04
0.01
0.03
0.06
0.09
0.12
0.13
0.13
0.13
0.12
0.12
0.12
0.12
0.11
0.10
0.12
0.17
0.21
0.23
0.18
0.05
0.18
0.32
0.32
0.48
0.61
-56
-18
-2
2
2
1
1
-3
-7
-16
-29
-43
-59
-81
-131
86
60
38
13
-17
-46
-81
-119
-161
156
112
66
9
-59
-116
-161
161
127
120
-157
172
161
157
135
9.89
9.50
9.14
8.90
8.81
8.87
9.04
9.24
9.42
9.53
9.56
9.52
9.46
9.40
9.36
9.41
9.52
9.68
9.79
9.94
10.02
10.07
10.06
10.04
10.08
10.20
10.46
10.75
10.99
11.07
10.93
10.79
10.78
10.83
10.24
8.79
6.12
-0.65
-7.76
3.12
2.98
2.87
2.79
2.76
2.78
2.83
2.90
2.96
2.99
3.01
2.99
2.97
2.95
2.94
2.95
2.99
3.05
3.09
3.14
3.17
3.19
3.18
3.18
3.19
3.24
3.33
3.45
3.54
3.58
3.52
3.46
3.46
3.48
3.25
2.75
2.02
0.93
0.41
130
112
94
77
60
42
24
5
-15
-35
-56
-76
-97
-117
-137
-157
-177
162
141
119
96
73
50
27
4
-19
-44
-70
-98
-127
-158
171
139
102
58
12
-42
-90
-109
-52.04
-48.40
-45.19
-43.10
-41.31
-40.00
-38.94
-38.13
-37.33
-36.65
-36.03
-35.34
-34.61
-33.89
-32.96
-32.22
-31.57
-30.96
-30.60
-30.17
-29.90
-29.74
-29.50
-29.24
-28.85
-28.34
-27.70
-27.23
-26.80
-26.67
-26.82
-26.97
-26.96
-26.76
-27.23
-28.38
-30.66
-36.71
-42.85
0.0025
0.0038
0.0055
0.0070
0.0086
0.0100
0.0113
0.0124
0.0136
0.0147
0.0158
0.0171
0.0186
0.0202
0.0225
0.0245
0.0264
0.0283
0.0295
0.0310
0.0320
0.0326
0.0335
0.0345
0.0361
0.0383
0.0412
0.0435
0.0457
0.0464
0.0456
0.0448
0.0449
0.0459
0.0435
0.0381
0.0293
0.0146
0.0072
-109
-131
-154
-174
164
143
122
103
84
66
49
32
14
-3
-22
-41
-62
-82
-104
-125
-147
-168
171
150
129
107
83
57
29
0
-29
-58
-89
-125
-169
146
91
44
18
-17.16
-15.78
-14.87
-14.55
-14.82
-15.68
-17.22
-19.41
-21.84
-22.43
-20.48
-18.32
-16.78
-15.83
-15.57
-15.93
-16.86
-18.63
-21.67
-27.56
-32.88
-24.55
-19.79
-17.19
-15.72
-15.10
-15.28
-16.61
-19.73
-24.26
-21.06
-17.40
-15.99
-17.25
-18.78
-16.58
-18.73
-13.68
-10.52
0.14
0.16
0.18
0.19
0.18
0.16
0.14
0.11
0.08
0.08
0.09
0.12
0.14
0.16
0.17
0.16
0.14
0.12
0.08
0.04
0.02
0.06
0.10
0.14
0.16
0.18
0.17
0.15
0.10
0.06
0.09
0.13
0.16
0.14
0.12
0.15
0.12
0.21
0.30
-126
-154
179
154
128
101
73
39
-6
-62
-110
-145
-172
165
144
125
107
91
78
74
142
171
163
150
135
119
104
89
80
102
136
133
118
107
120
125
125
154
139
Note:
1. Data obtained from on-wafer measurements.
5
AMMC-5026 Typical Scattering Parameters[1] (Tchuck = 25°C, Vdd = 8 V, Idd = 150 mA)
Freq.
GHz
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
26.0
27.0
28.0
29.0
30.0
31.0
32.0
33.0
34.0
35.0
36.0
37.0
38.0
39.0
40.0
dB
S11
Mag
Ang
dB
S21
Mag
Ang
dB
S12
Mag
Ang
dB
S22
Mag
Ang
-24.88
-26.86
-25.30
-23.94
-23.17
-22.72
-22.09
-21.42
-20.79
-20.42
-20.68
-21.76
-24.04
-28.68
-40.72
-30.52
-24.07
-21.00
-18.37
-17.78
-17.89
-18.34
-18.89
-19.20
-19.05
-19.12
-19.87
-20.78
-19.42
-16.18
-13.92
-13.31
-15.52
-23.72
-14.68
-10.47
-9.72
-6.77
-4.70
0.06
0.05
0.05
0.06
0.07
0.07
0.08
0.08
0.09
0.10
0.09
0.08
0.06
0.04
0.01
0.03
0.06
0.09
0.12
0.13
0.13
0.12
0.11
0.11
0.11
0.11
0.10
0.09
0.11
0.16
0.20
0.22
0.17
0.07
0.18
0.30
0.33
0.46
0.58
-57
-19
-2
2
2
1
1
-3
-7
-17
-30
-44
-61
-83
-151
86
58
36
12
-18
-49
-84
-123
-166
151
108
62
3
-67
-123
-166
158
129
144
-169
166
159
152
133
9.59
9.20
8.85
8.59
8.49
8.54
8.70
8.89
9.07
9.17
9.20
9.15
9.08
9.01
8.97
9.00
9.11
9.26
9.35
9.49
9.57
9.60
9.57
9.53
9.55
9.65
9.88
10.14
10.33
10.37
10.21
10.03
9.95
9.82
9.06
7.43
4.27
-2.02
-8.14
3.02
2.88
2.77
2.69
2.66
2.67
2.72
2.78
2.84
2.87
2.88
2.87
2.84
2.82
2.81
2.82
2.85
2.90
2.93
2.98
3.01
3.02
3.01
3.00
3.00
3.04
3.12
3.21
3.29
3.30
3.24
3.17
3.14
3.10
2.84
2.35
1.64
0.79
0.39
129
112
94
76
59
41
23
4
-16
-37
-58
-78
-99
-119
-139
-159
-180
159
137
115
93
70
46
23
0
-24
-49
-75
-103
-133
-164
165
132
95
52
6
-46
-88
-108
-51.70
-47.74
-45.04
-42.85
-41.11
-39.74
-38.56
-37.72
-37.02
-36.31
-35.60
-34.94
-34.20
-33.47
-32.62
-31.87
-31.28
-30.66
-30.26
-29.87
-29.53
-29.42
-29.17
-28.95
-28.57
-28.09
-27.47
-27.05
-26.69
-26.60
-26.76
-26.92
-26.97
-27.01
-27.64
-29.02
-31.77
-37.46
-42.97
0.0026
0.0041
0.0056
0.0072
0.0088
0.0103
0.0118
0.0130
0.0141
0.0153
0.0166
0.0179
0.0195
0.0212
0.0234
0.0255
0.0273
0.0293
0.0307
0.0321
0.0334
0.0338
0.0348
0.0357
0.0373
0.0394
0.0423
0.0444
0.0463
0.0468
0.0459
0.0451
0.0448
0.0446
0.0415
0.0354
0.0258
0.0134
0.0071
-109
-131
-153
-175
164
144
123
104
85
67
49
32
14
-3
-21
-41
-61
-81
-103
-124
-146
-168
172
151
130
108
84
58
30
1
-28
-57
-88
-124
-167
148
96
53
28
-17.27
-15.97
-15.10
-14.79
-15.05
-15.89
-17.37
-19.46
-21.68
-22.16
-20.38
-18.33
-16.84
-15.91
-15.67
-16.02
-16.95
-18.70
-21.76
-27.81
-34.56
-24.90
-19.97
-17.32
-15.83
-15.23
-15.44
-16.82
-20.01
-24.45
-21.24
-17.71
-16.44
-17.71
-18.68
-16.97
-18.00
-13.26
-10.51
0.14
0.16
0.18
0.18
0.18
0.16
0.14
0.11
0.08
0.08
0.10
0.12
0.14
0.16
0.16
0.16
0.14
0.12
0.08
0.04
0.02
0.06
0.10
0.14
0.16
0.17
0.17
0.14
0.10
0.06
0.09
0.13
0.15
0.13
0.12
0.14
0.13
0.22
0.30
-123
-152
-179
155
129
102
72
38
-7
-61
-108
-143
-171
166
145
125
107
91
77
69
146
175
165
151
136
120
105
90
81
103
136
133
119
111
123
127
136
151
138
Note:
1. Data obtained from on-wafer measurements.
6
Biasing and Operation
AMMC-5026 is biased with a
single positive drain supply (Vd)
and a negative gate supply (Vg1).
The recommended bias conditions for the HMMC-5026 is Vdd =
7 V and Idd = 150 mA for best
overall performance. Open
circuit is the default setting for
the Vg2 biasing.
Figure 17 shows a typical bonding configuration for the 2 to
35 GHz operations. In this case,
auxiliary drain and Vg1 capacitors (>0.5 µF) are used for low
frequency (below 2 GHz) performance. Input and output RF
ports are DC coupled; therefore,
DC decoupling capacitors are
required if there are DC paths.
The auxiliary gate and drain
contacts are used for low frequency performance extension
below 1 GHz. When used, these
contacts must be AC coupled
only. (Do not attempt to apply
bias to these pads.)
Ground connections are made
with plated through-holes to the
backside of the device.
Vd
Assembly Techniques
The chip should be attached
directly to the ground plane
using either a fluxless AuSn
solder preform or electrically
conductive epoxy[1]. For conductive epoxy, the amount should be
just enough to provide a thin
fillet around the bottom perimeter of the die. The ground plane
should be free of any residue that
may jeopardize electrical or
mechanical attachment. Caution
should be taken to not exceed the
Absolute Maximum Rating for
assembly temperature and time.
Thermosonic wedge bonding is
the preferred method for wire
attachment to the bond pads. The
RF connections should be kept as
short as possible to minimize
inductance. Gold mesh[2] or
double-bonding with 0.7 mil gold
wire is recommended.
Mesh can be attached using a
2 mil round tracking tool and a
tool force of approximately
22 grams with an ultrasonic
power of roughly 55 dB for a
duration of 76 ± 8 mS. A guided
wedge at an ultrasonic power
level of 64 dB can be used for the
0.7 mil wire. The recommended
wire bond stage temperature is
150 ± 2°C.
The chip is 100 mm thick and
should be handled with care.
This MMIC has exposed air
bridges on the top surface.
Handle at edges or with a custom
collet (do not pick up die with
vacuum on die center.)
This MMIC is also static sensitive
and ESD handling precautions
should be taken.
For more information, see
Agilent Application Note 54
“GaAs MMIC ESD, Die Attach
and Bonding Guidelines.”
Notes:
1. Ablebond 84-1 LM1 silver
epoxy is recommended.
2. Buckbee-Mears Corporation,
St. Paul, MN, 800-262-3824.
RF Output
Aux Vd
Aux Vg2
RF Input
Vg1
Figure 15. AMMC-5026 Schematic.
7
Aux Vg1
89
2964
(RF Output Pad)
750
(Vd)
840
(±10 µm)
587
(Aux Vd)
505
318
(Aux Vg2)
252
2323
(Vg1)
89 (RF Input Pad)
2563
(Aux Vg1)
3050 (± 10 µm)
Notes:
All dimensions in microns.
Rectangular Pad Dim: 75 x 75 µm
Figure 16. AMMC-5026 Bonding Pad Locations. (dimensions in micrometers)
1.5 mil dia.Gold Wire Bond
to ≥15 nF DC Feedthru
≥68 pF Capacitor
4 nH Inductor
(1.0 mil Gold Wire Bond
with length of 200 mils)
Input and Output Thin Film
Circuit with ≥8 pF
DC Blocking Capacitor
Gold Plated Shim
2.0 mil
nom. gap
Vd
IN
OUT
HMMC-5026
2.0 mil
nom. gap
Vg
Bonding Island
0.7 mil dia. Gold Bond Wire
(Length Not important)
1.5 mil dia.Gold Wire Bond
to ≥15 nF DC Feedthru
Figure 17. AMMC-5026 Assembly Diagram.
www.agilent.com/semiconductors
For product information and a complete list of
distributors, please go to our web site.
For technical assistance call:
Americas/Canada: +1 (800) 235-0312 or
(916) 788-6763
Europe: +49 (0) 6441 92460
China: 10800 650 0017
Hong Kong: (65) 6756 2394
India, Australia, New Zealand: (65) 6755 1939
Japan: (+81 3) 3335-8152(Domestic/International), or
0120-61-1280(Domestic Only)
Korea: (65) 6755 1989
Singapore, Malaysia, Vietnam, Thailand, Philippines,
Indonesia: (65) 6755 2044
Taiwan: (65) 6755 1843
Data subject to change.
Copyright © 2004 Agilent Technologies, Inc.
April 6, 2004
5988-9882EN
2951