AGILENT AMMP-6220-BLK

Agilent AMMP-6220
6-20 GHz Low Noise Amplifier
Data Sheet
Features
• 5x5 mm surface mount package
• Broad Band performance 6-20 GHz
• Low 2.5 dB typical noise figure
• High 22 dB typical gain
• 50 W input and output match
• Single 3 V (55 mA) supply bias
Description
Agilent’s AMMP-6220 is a high gain,
low-noise amplifier that operates
from 6 GHz to 20 GHz. The LNA is
designed to be a easy-to-use component for any surface mount PCB
application. The broad and unconditionally stable performance makes
this LNA ideal for primary, subsequential or driver low noise gain
stages. Intended applications include microwave radios, 802.16,
automotive radar, VSAT, and satellite receivers. Since one part can
cover several bands, the AMMP-6220
can reduce part inventory and increase volume purchase options. The
LNA has integrated 50 W I/O match,
DC blocking, self-bias and choke to
eliminate complex tuning and as-
sembly processes typically required by hybrid (discrete-FET)
amplifiers. The package is full
SMT compatible with backside
grounding and I/O to simplify
assembly.
Applications
• Microwave radio systems
• Satellite VSAT, DBS up/down link
• LMDS & Pt-Pt mmW Long Haul
• Broadband Wireless Access (including 802.16 and 802.20 WiMax)
• WLL and MMDS loops
• Commercial grade military
Functional Diagram
1
2
3
8
4
100 pF
7
100 pF
6
PIN
1
2
3
4
5
6
7
8
FUNCTION
Vd
RFout
RFin
5
PACKAGE
BASE
GND
Attention: Observe precautions for handling electrostatic sensitive devices.
ESD Machine Model (Class 1A)
ESD Human Body Model (Class 0)
Refer to Agilent Application Note A004R: Electrostatic Discharge Damage and Control.
AMMP-6220 Absolute Maximum Ratings [1]
Symbol
Vd
Id
Pin
Tch
Parameters/Conditions
Positive Drain Voltage
Drain Current
CW Input Power
Operating Channel Temp.
Units
V
mA
dBm
°C
Min.
Max.
7
100
15
+150
Tstg
Tmax
Storage Case Temp.
Maximum Assembly Temp.
(60 sec max.)
°C
°C
-65
+150
+300
Note:
1. Operation in excess of any one of these conditions may result in permanent damage to this device.
AMMP-6220 DC Specifications/Physical Properties [1]
Symbol Parameters and Test Conditions
Id
Drain Supply Current (under any
RF power drive and temperature)
(Vd = 3.0 V)
qch-b
Thermal Resistance[2]
(Backside temperature, Tb = 25°C)
Units
mA
Min.
°C/W
Typ.
55
Max.
70
27
Notes:
1. Ambient operational temperature TA = 25°C unless otherwise noted.
2. Channel-to-backside Thermal Resistance (T channel (T c) = 34°C) as measured using infrared
microscopy. Thermal Resistance at backside temperature (Tb ) = 25°C calculated from measured
data.
AMMP-6220 RF Specifications [3, 4, 6]
TA= 25°C, Vd = 3.0 V, Id(Q) = 55 mA, Zo = 50 W
Symbol
Gain
NF
P-1dB
OIP3
RLin
RLout
Isol
Parameters and Test Conditions
Small-signal Gain[5]
Noise Figure into 50 W[5]
Output Power at 1dB Gain Compression
Third Order Intercept Point;
∆f = 100 MHz; Pin = -20 dBm
Input Return Loss
Output Return Loss
Reverse Isolation
Units
dB
dB
dBm
dBm
Typical
22
2.5
+10
+20
Sigma
0.5
0.2
0.8
1.1
dB
dB
dB
-12
-16
-45
0.3
0.7
0.5
Notes:
3. Small/Large -signal data measured in a fully de-embedded test fixture form TA = 25°C.
4. Pre-assembly into package performance verified 100% on-wafer per AMMC-6220 published specifications.
5. This final package part performance is verified by a functional test correlated to actual performance at one or more frequencies.
6. Specifications are derived from measurements in a 50 W test environment. Aspects of the amplifier performance may be improved over a more
narrow bandwidth by application of additional conjugate, linearity, or low noise (Gopt) matching.
2
AMMP-6220 Typical Performances (TA = 25°C, Vd =3 V, ID = 55 mA, Zin = Zout = 50 W unless otherwise stated)
Note: These measurements are in 50 W test environment. Aspects of the amplifier performance may be improved over a narrower bandwidth by
application of additional conjugate, linearity or low noise (Gopt) matching.
0
0
25
-10
20
-5
10
S11 (dB)
15
S21 (dB)
S21 (dB)
-20
-30
-10
-40
-15
5
0
-50
4
6
8
10
12
14
16
18
20
-60
22
4
6
8
10
12
14
16
18
20
12
14
16
18
20
22
25
20
-10
OP-1dB & OIP3 (dBm)
3.0
2.5
NF (dB)
S22 (dB)
10
3.5
-5
-15
2.0
1.5
-20
1.0
-25
15
10
P-1dB
5
OIP3
0.5
4
6
8
10
12
14
16
20
18
0
22
6
10
8
12
14
16
18
0
20
Figure 4. Output return loss.
30
0
25
-10
+25°C
8
10
12
14
16
FREQUENCY (GHz)
Figure 7. Gain over temperature.
18
20
20
-40°C
+85°C
+85°C
-30
-10
-40
-15
-50
+85°C
6
18
+25°C
-5
-40°C
4
16
+25°C
S11 (dB)
S12 (dB)
15
14
0
-20
20
12
Figure 6. Typical power, OP-1dB and OIP3.
-40°C
5
10
8
FREQUENCY (GHz)
Figure 5. Noise figure.
10
6
FREQUENCY (GHz)
FREQUENCY (GHz)
S21 (dB)
8
Figure 3. Input return loss.
4.0
0
3
6
FREQUENCY (GHz)
Figure 2. Isolation.
Figure 1. Gain.
0
4
FREQUENCY (GHz)
FREQUENCY (GHz)
-30
-20
22
22
-60
4
6
8
10
12
14
16
18
FREQUENCY (GHz)
Figure 8. Isolation over temperature.
20
22
-20
4
6
8
10
12
14
16
18
20
22
FREQUENCY (GHz)
Figure 9. Input return loss over temperature.
AMMP-6220 Typical Performances (TA = 25°C, Vd = 3 V, ID = 55 mA, Zin = Zout = 50 W unless otherwise stated)
Note: These measurements are in 50 W test environment. Aspects of the amplifier performance may be improved over a narrower bandwidth by application of additional conjugate, linearity or low noise (Gopt) matching.
4.0
0
-5
3.5
-40°C
-10
+25°C
-40°C
3.0
+85°C
+85°C
+85°C
58
Idd (mA)
-15
2.0
1.5
-20
-40°C
60
2.5
NF (dB)
S22 (dB)
62
+25°C
+25°C
56
54
1.0
-25
-30
52
0.5
4
6
8
10
12
14
16
18
20
0
22
6
10
8
12
14
16
18
50
3.0
20
3.5
Figure 10. Output return loss over temperature.
Figure 12. Bias current over temperature.
0
0
3V
3V
-10
20
4V
-30
5V
-10
-40
3V
-15
4V
5
S11 (dB)
S12 (dB)
S21 (dB)
10
4V
-5
5V
-20
15
5.0
Vdd (V)
Figure 11. NF over temperature.
25
4.5
4.0
FREQUENCY (GHz)
FREQUENCY (GHz)
-50
5V
0
4
6
8
10
12
14
16
18
20
-60
22
4
6
8
FREQUENCY (GHz)
10
12
14
16
18
20
-20
22
4
6
8
Figure 13. Gain over Vdd.
Figure 14. Isolation over Vdd.
0
10
12
14
16
18
20
22
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 15. Input RL over Vdd.
25
3.0
3V
4V
-5
2.5
20
5V
-15
-20
OIP3 (dBm)
2.0
NF (dB)
S22 (dB)
-10
1.5
15
10
3V
3V
1.0
4V
4V
-25
-30
0.5
4
6
8
10
12
14
16
18
20
22
FREQUENCY (GHz)
Figure 16. Output return loss over temperature.
4
0
5V
6
8
10
12
14
16
FREQUENCY (GHz)
Figure 17. Noise figure over Vdd.
18
5V
5
20
0
6
8
10
12
14
16
FREQUENCY (GHz)
Figure 18. OIP3 over Vdd.
18
20
AMMP-6220 Typical Scattering Parameters[1] (TA = 25°C, Vd = 3 V, Zo = 50 W)
S11
S21
S12
S22
Freq GHz
DB
Mag
Phase
dB
Mag
Phase
dB
Mag
Phase
dB
Mag
Phase
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0
19.5
20.0
20.5
21.0
21.5
22.0
22.5
23.0
23.5
24.0
24.5
25.0
-1.46
-1.03
-0.40
-4.65
-1.67
-1.39
-2.80
-1.59
-4.66
-8.62
-11.96
-14.57
-15.90
-16.48
-16.49
-16.53
-16.56
-16.19
-15.63
-14.36
-13.22
-12.30
-11.45
-10.83
-10.47
-10.32
-10.53
-10.62
-10.79
-10.97
-11.25
-11.47
-12.36
-13.30
-13.86
-13.77
-12.94
-11.42
-9.73
-8.00
-6.54
-5.44
-5.12
-4.72
-4.17
-3.40
-2.65
0.845
0.888
0.955
0.585
0.825
0.851
0.724
0.832
0.585
0.370
0.252
0.187
0.160
0.150
0.150
0.149
0.149
0.155
0.165
0.191
0.218
0.242
0.268
0.287
0.299
0.305
0.297
0.294
0.289
0.283
0.274
0.267
0.241
0.217
0.203
0.205
0.225
0.268
0.326
0.398
0.471
0.534
0.554
0.581
0.618
0.675
0.737
65.6
-4.4
-83.9
-150.2
153.6
72.8
18.7
-65.0
-144.6
148.4
93.4
48.4
12.5
-21.7
-58.8
-100.8
-147.1
161.1
108.2
54.8
3.0
-50.7
-102.0
-154.6
153.2
101.7
52.2
8.9
-33.2
-67.4
-109.8
-152.2
168.0
132.5
99.5
67.3
32.0
-6.3
-49.1
-94.4
-140.6
173.4
128.5
86.1
44.3
0.9
-44.6
-28.9
-10.6
6.1
10.6
6.2
16.6
19.6
22.8
23.5
23.6
23.6
23.3
23.2
23.1
23.1
23.2
23.2
23.3
23.4
23.6
23.8
23.7
23.7
23.6
23.2
22.7
22.3
22.1
21.9
21.5
21.4
21.0
20.9
20.6
20.4
20.1
19.8
19.4
18.5
18.2
17.7
16.9
16.3
15.3
13.7
12.6
11.6
0.036
0.292
2.027
3.420
2.051
6.764
9.563
13.836
15.077
15.218
15.198
14.717
14.575
14.429
14.408
14.455
14.462
14.624
14.926
15.226
15.497
15.483
15.450
15.143
14.518
13.724
13.168
12.858
12.536
11.970
11.796
11.331
11.208
10.720
10.474
10.158
9.847
9.413
8.500
8.140
7.703
7.055
6.535
5.881
4.894
4.288
3.822
-62.0
-147.1
96.8
-71.3
-104.2
-178.3
93.3
9.3
-72.4
-145.1
150.4
90.5
33.6
-20.9
-74.7
-126.9
-178.2
131.2
80.4
29.4
-20.8
-72.0
-122.8
-173.1
135.7
87.2
38.7
-8.5
-56.2
-102.6
-151.3
162.1
115.8
69.0
21.3
-25.9
-74.5
-121.1
-169.0
142.8
93.3
45.0
-3.1
-54.0
-102.8
-147.1
168.3
-60
-51
-46
-56
-61
-49
-45
-44
-50
-55
-58
-54
-52
-51
-47
-47
-46
-45
-43
-44
-42
-41
-41
-40
-40
-39
-40
-40
-42
-40
-39
-38
-38
-38
-38
-39
-38
-39
-39
-40
-40
-41
-43
-45
-47
-49
-50
0.001
0.003
0.005
0.001
0.001
0.003
0.005
0.006
0.003
0.002
0.001
0.002
0.002
0.003
0.004
0.004
0.005
0.006
0.007
0.006
0.008
0.008
0.008
0.010
0.009
0.010
0.009
0.009
0.008
0.009
0.011
0.012
0.012
0.012
0.012
0.011
0.012
0.011
0.011
0.010
0.010
0.009
0.007
0.005
0.004
0.003
0.003
70.9
12.1
-72.
136.7
143.5
-86.3
140.2
26.4
-66.8
-116.2
153.4
89.9
33.2
-16.5
-46.2
-85.8
-121.8
-155.9
159.4
130.7
88.0
49.2
14.5
-26.9
-66.8
-104.7
-146.3
174.6
138.1
116.4
77.9
38.0
-5.3
-40.0
-82.3
-118.5
-161.5
162.1
124.7
79.8
35.1
2.9
-41.2
-84.6
-136.3
-162.8
134.1
-4.8
-9.6
-8.8
-6.3
-6.1
-9.3
-10.8
-15.5
-16.9
-16.7
-17.5
-19.5
-22.7
-24.6
-23.7
-21.9
-21.0
-21.3
-22.6
-23.8
-23.4
-21.3
-19.7
-17.8
-16.0
-14.4
-13.5
-13.2
-13.6
-12.7
-12.1
-12.1
-13.1
-14.2
-15.4
-16.5
-16.8
-16.8
-16.5
-16.1
-16.5
-17.3
-21.9
-18.0
-11.5
-9.0
-7.7
0.570
0.330
0.361
0.483
0.491
0.342
0.286
0.166
0.141
0.146
0.132
0.106
0.073
0.059
0.065
0.080
0.089
0.086
0.074
0.064
0.067
0.086
0.102
0.127
0.157
0.189
0.211
0.218
0.208
0.231
0.247
0.246
0.220
0.194
0.170
0.148
0.144
0.143
0.148
0.156
0.149
0.136
0.080
0.126
0.265
0.355
0.409
85.5
38.7
18.1
-46.1
-118.9
174.4
125.8
79.4
64.2
31.4
-8.7
-51.8
-103.7
-172.2
119.7
70.3
31.0
-3.6
-29.9
-46.2
-59.0
-90.7
-130.4
179.7
128.3
79.9
34.8
-4.6
-38.0
-65.0
-101.8
-140.0
179.3
139.1
94.9
44.7
-5.1
-51.5
-92.9
-132.8
-167.4
159.4
138.2
178.1
141.6
100.9
61.8
Note: Data obtained from ICM fixture measurements fully de-embedded to package edge.
INPUT REFERENCE
PLANE FOR
S-PARAMETERS
OUTPUT REFERENCE
PLANE FOR
S-PARAMETERS
(VIEW FROM
PACKAGE BOTTOM)
5
Biasing and Operation
The AMMC-6220 is normally
biased with a single positive drain
supply connected to both VD pin
through bypass capacitors as
shown in Figure 19. The recommended supply voltage is 3 V. It is
important to have 0.1 µF bypass
capacitor, and the capacitor
should be placed as close to the
component as possible.
The AMMC-6220 does not require
a negative gate voltage to bias any
of the three stages. No ground
wires are needed because all
ground connections are made
with plated through-holes to the
backside of the package.
VD (TYP. 3 V)
1
0.1 µF
2
3
RFin
RFout
8
4
100 pF
7
100 pF
6
5
PACKAGE
BASE
GND
Figure 19. Typical application.
Refer the Absolute Maximum
Ratings table for allowed DC and
thermal conditions.
VD
RFout
RFin
Figure 20. Simplified MMIC schematic.
Figure 21. Demonstration board (available upon request).
6
Outline Drawing
1
0.200
(5.08)
2
AMMP
XXXX
YWWDNN
8
7
Recommended SMT Attachment
The AMMP Packaged Devices are
compatible with high volume
surface mount PCB assembly
processes.
3
6
4
The PCB material and mounting
pattern, as defined in the data
sheet, optimizes RF performance
and is strongly recommended.
An electronic drawing of the land
pattern is available upon request
from Agilent Sales & Application
Engineering.
5
0.200 (5.08)
0.075 (1.91)
FRONT VIEW
SIDE VIEW
Figure 22.
0.114 (2.90)
0.011 (0.28)
0.018 (0.46)
0.014 (0.365)
3
2
1
0.016 (0.40)
0.126
(3.2)
8
4
0.059
(1.5)
0.100 (2.54)
0.012 (0.30)
0.029 (0.75)
5
6
7
0.016 (0.40)
0.028 (0.70)
0.100 (2.54)
0.93 (2.36)
BACK VIEW
NOTES:
1. INDICATES PIN 1
2. DIMENSIONS ARE IN INCHES (MILLIMETERS)
3. DIMENSIONAL TOLERANCES: 0.002 INCH (0.5mm)
Figure 23.
Suggested PCB Material and Land Pattern
0.093
(2.36)
0.010
(0.25)
0.011 (0.28)
0.016(0.40)
0.0095 (0.24)
0.016 (0.40)
0.126 (3.20) 0.059 (1.50) 0.020 (0.50)
0.012 (0.30)
GROUND VIAS SHOULD
BE SOLDER FILLED
0.018 (0.46)
0.0095 (0.024)
0.018 (0.46)
INCHES (MILLIMETERS).
MATERIAL IS ROGERS RO4350, 0.010-INCH THICK.
Figure 24.
7
0.114 (2.90)
Manual Assembly
1. Follow ESD precautions while
handling packages.
2. Handling should be along the
edges with tweezers.
3. Recommended attachment is
conductive solder paste.
Please see recommended solder reflow profile. Conductive
epoxy is not recommended.
Hand soldering is not recommended.
4. Apply solder paste using a
stencil printer or dot placement. The volume of solder
paste will be dependent on
PCB and component layout
and should be controlled to
ensure consistent mechanical
and electrical performance.
5. Follow solder paste and
vendor’s recommendations
when developing a solder
reflow profile. A standard
profile will have a steady ramp
up from room temperature to
the pre-heat temperature to
avoid damage due to thermal
shock.
6. Packages have been qualified to
withstand a peak temperature
of 260°C for 20 seconds. Verify
that the profile will not expose
device beyond these limits.
Stencil Design Guidelines
A properly designed solder screen
or stencil is required to ensure
optimum amount of solder paste
is deposited onto the PCB pads.
The recommended stencil layout
is shown in Figure 26. The stencil
has a solder paste deposition
opening approximately 70% to
90% of the PCB pad. Reducing
stencil opening can potentially
generate more voids underneath.
On the other hand, stencil openings larger than 100% will lead to
excessive solder paste smear or
bridging across the I/O pads.
Considering the fact that solder
paste thickness will directly affect
the quality of the solder joint, a
good choice is to use a laser cut
stencil composed of 0.127 mm
(5 mils) thick stainless steel which
is capable of producing the required fine stencil outline. The
combined PCB and stencil layout
is shown in Figure 27.
300
PEAK = 250 ± 5°C
250
TEMPERATURE (°C)
Solder Reflow Profile
The most commonly used solder
reflow method is accomplished in
a belt furnace using convection
heat transfer. The suggested
reflow profile for automated
reflow processes is shown in
Figure 25. This profile is designed
to ensure reliable finished joints.
However, the profile indicated in
Figure 25 will vary among different solder pastes from different
manufacturers and is shown here
for reference only.
MELTING POINT = 218°C
200
150
100
50
RAMP 1
0
PREHEAT
0
50
RAMP 2
100
REFLOW
150
200
250
300
TIME (SECONDS)
Figure 25. Suggested lead-free reflow profile for SnAgCu solder paste.
0.70
0.60
1.60
0.9550
0.95
0.36
1.80
0.36
0.27
0.36
0.40
4x – R0.14
Figure 26. Stencil outline drawing (mm).
0.40
0.46
0.60
0.67
0.36
0.40
3.20 1.80
0.40
0.30
0.36
1.60
2.90
Figure 27. Combined PCB and stencil layouts (mm).
8
COOLING
STENCIL
OPENING
0.27
AMMP-6220 Part Number Ordering Information
Part Number
AMMP-6220-BLK
AMMP-6220-TR1
AMMP-6220-TR2
Devices Per Container
10
100
500
Container
Antistatic bag
7” Reel
7” Reel
Device Orientation (Top View)
4 mm
12 mm
AMMP
XXXX
AMMP
XXXX
AMMP
XXXX
Carrier Tape and Pocket Dimensions
4.00 ± 0.10
SEE NOTE #2
∅1.55 ± 0.05
2.00 ± 0.05
B
R 0.50 TYP.
Ao
1.75 ± 0.10
5.50 ± 0.05
12.00 ± 0.10
Bo
Bo
A
Ko
A
B
8.00 ± 0.10
SECTION B-B
∅1.50 (MIN.)
Ko
Ao
0.30 ± 0.05
SECTION A-A
NOTES:
1. Ao AND Bo MEASURED AT 0.3 mm ABOVE BASE OF POCKET.
2. 10 PITCHES CUMULATIVE TOLERANCE IS ± 0.2 mm.
3. DIMENSIONS ARE IN MILLIMETERS (mm).
9
Ao:
Bo:
Ko:
PITCH:
WIDTH:
5.30
5.30
2.20
8.00
12.00
Ao
Bo
Ko
5.20
5.20
2.10
NOM. 5.30
5.30
2.20
MAX. 5.40
5.40
2.30
MIN.
www.agilent.com/semiconductors
For product information and a complete list of
distributors, please go to our web site.
For technical assistance call:
Americas/Canada: +1 (800) 235-0312 or
(916) 788-6763
Europe: +49 (0) 6441 92460
China: 10800 650 0017
Hong Kong: (+65) 6756 2394
India, Australia, New Zealand: (+65) 6755 1939
Japan: (+81 3) 3335-8152 (Domestic/International), or 0120-61-1280 (Domestic Only)
Korea: (+65) 6755 1989
Singapore, Malaysia, Vietnam, Thailand,
Philippines, Indonesia: (+65) 6755 2044
Taiwan: (+65) 6755 1843
Data subject to change.
Copyright © 2005 Agilent Technologies, Inc.
February 14, 2005
5989-2278EN