LITEON HSDL-4420-011

HSDL-44xx IR Emitter Series
HSDL-54xx IR Detector Series
High-Performance IR Emitter and IR PIN Photodiode in
Subminiature SMT Package
Data Sheet
Description
Features
Flat Top Package
The HSDL-4400 Series of flat top IR emitters uses an
untinted, nondiffused, truncated lens to provide a
wide radiation pattern that is useful for short distance
communication where alignment of the emitter and
detector is not critical. The HSDL-5400 Series of flat
top IR detectors uses the same truncated lens design
as the HSDL-4400 Series of IR emitters with the
added feature of a black tint that acts as an optical
filter to reduce the effects of ambient light, such as
sun, incandescent and fluorescent light from
interfering with the IR signal.
• Subminiature flat top and dome package
Size – 2x2 mm
• IR emitter
875 nm TS AlGaAs
Intensity – 17 mW/sr
Speed – 40 ns
• Wide range of drive currents
500 µA to 500 mA
• IR detector
PIN photodiode
High sensitivity
Speed – 7.5 ns
• Flexible lead configurations
Surface mount or through hole
Dome Package
The HSDL-4420 Series of dome IR emitters uses an
untinted, nondiffused lens to provide a 24 degree
viewing angle with high on-axis intensity. The
HSDL-5420 Series of IR detectors uses the same lens
design as the HSDL-4420 IR emitter and optical filter
used in the HSDL-5400 IR detector.
Lead Configuration
All of these devices are made by encapsulating LED
and PIN photodiode chips on axial lead frames to
form molded epoxy subminiature packages. A variety
of lead configurations is available and includes:
surface mount gull wing, yoke lead, or Z-bend and
through hole lead bends at 2.54 mm (0.100 inch)
center spacing.
Technology
The subminiature solid state emitters utilize a highly
optimized LED material, transparent substrate
aluminum gallium arsenide, TS AlGaAs. This material
has a very high radiant efficiency, capable of producing high light output over a wide range of drive
currents and temperature.
Applications
• Short distance IR links
• IrDA compatible
• Small handheld devices
Pagers
Industrial handhelds
• Diffuse LANs
• Wireless audio
Device Selection Guide
IR Emitters
Part Number
HSDL-4400
HSDL-4420
Device Description[1]
LED, Flat Top, 110 deg
LED, Dome, 24 deg
Device Outline Drawing
A
B
IR Detectors
Part Number
HSDL-5400
HSDL-5420
Device Description[1]
PIN Photodiode, Flat Top, 110 deg
PIN Photodiode, Dome, 28 deg
Device Outline Drawing
C
D
Package Configuration Options
Option
Code
Package Configuration Description
011
Gull Wing Lead, Tape and Reel[2]
021
Yoke Lead, Tape and Reel[2]
031
Z-Bend, Tape and Reel[2]
1L1
2.54 mm (0.100 in) Center Long Leads; 10.4 mm (0.410 in)
Lead Spacing
1S1
Short Leads; 3.7 mm (0.145 in)
No Option
Straight Leads[3]
Surface Mount Lead
Thru Hole Lead
Prototyping
Package
Outline Drawing
E, J, M
F, K, M
G, L, M
H
I
A, B, C, D
Notes:
1. IR Emitters have untinted, nondiffused lenses and IR Detectors have black tinted, nondiffused lenses.
2. Emitters and detectors are supplied in 12 mm embossed tape on 178 mm (7 inch) diameter reels, with 1500 units per reel. Minimum order quantity
and order increment are in quantity of reels only.
3. Emitters and detectors are supplied in bulk form in bags of 50 units.
4. The HSDL-44xx and HSDL-54xx families are not designed to be used in medical devices with life support functions or in safety equipment (or similar
applications where components failures would result in loss of life or physical harm), eg. in automotive, medical or airline industries.
2
Package Dimensions
(A) Flat Top Emitters
0.50 (0.020) REF.
1.14 (0.045)
1.40 (0.055)
0.58 (0.023)
0.43 (0.017)
1.40 (0.055)
1.65 (0.065)
11.68 (0.460)
10.67 (0.420)
BOTH SIDES
1.91 (0.075)
2.41 (0.095)
0.76 (0.030) MAX.
CATHODE
2.08 (0.082)
2.34 (0.092)
CATHODE
STRIPE
NOTE 4
1.65 (0.065)
DIA.
1.91 (0.075)
1.91 (0.075)
2.16 (0.085)
0.18 (0.007)
0.23 (0.009)
0.20 (0.008) MAX.
(B) Dome Emitters
0.76 (0.030)
R.
0.89 (0.035)
0.18 (0.007)
0.23 (0.009)
0.94 (0.037)
1.24 (0.049)
2.03 (0.080)
1.78 (0.070)
2.92 (0.115)
MAX.
2.08 (0.082)
2.34 (0.092)
0.63 (0.025)
0.38 (0.015)
0.79 (0.031)
0.53 (0.021)
CATHODE
STRIPE
NOTE 4
1.91 (0.075)
2.16 (0.085)
0.50 (0.020) REF.
NOTE 3
ANODE
11.68 (0.460)
10.67 (0.420)
BOTH SIDES
0.46 (0.018)
0.56 (0.022)
CATHODE
1.65 (0.065)
DIA.
1.91 (0.075)
0.20 (0.008) MAX.
0.25 (0.010) MAX.*
NOTE 2
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO ANODE LEAD.
3. LEAD POLARITY FOR THESE TS AlGaAs SUBMINIATURE LAMPS IS OPPOSITE TO THE
LEAD POLARITY OF SUBMINIATURE LAMPS USING OTHER LED TECHNOLOGIES.
4. CATHODE STRIPE MARKING IS DARK BLUE.
3
NOTE 3
ANODE
0.46 (0.018)
0.56 (0.022)
0.25 (0.010) MAX.*
NOTE 2
(C) Flat Top Detectors
0.50 (0.020) REF.
1.40 (0.055)
1.65 (0.065)
CATHODE
1.14 (0.045)
1.40 (0.055)
0.58 (0.023)
0.43 (0.017)
11.68 (0.460)
10.67 (0.420)
BOTH SIDES
1.91 (0.075)
2.41 (0.095)
0.76 (0.030) MAX.
ANODE
2.08 (0.082)
2.34 (0.092)
CATHODE
STRIPE
NOTE 3
0.18 (0.007)
0.23 (0.009)
1.65 (0.065)
DIA.
1.91 (0.075)
1.91 (0.075)
2.16 (0.085)
0.20 (0.008) MAX.
(D) Dome Detectors
0.76 (0.030)
R.
0.89 (0.035)
0.18 (0.007)
0.23 (0.009)
0.94 (0.037)
1.24 (0.049)
2.03 (0.080)
1.78 (0.070)
2.92 (0.115)
MAX.
2.08 (0.082)
2.34 (0.092)
0.63 (0.025)
0.38 (0.015)
0.79 (0.031)
0.53 (0.021)
CATHODE
STRIPE
NOTE 3
1.91 (0.075)
2.16 (0.085)
0.50 (0.020) REF.
CATHODE
11.68 (0.460)
10.67 (0.420)
BOTH SIDES
ANODE
0.46 (0.018)
0.56 (0.022)
1.65 (0.065)
DIA.
1.91 (0.075)
0.20 (0.008) MAX.
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.
3. CATHODE STRIPE MARKING IS DARK BLUE.
4
0.25 (0.010) MAX.*
NOTE 2
0.46 (0.018)
0.56 (0.022)
0.25 (0.010) MAX.*
NOTE 2
Package Dimensions
The following notes affect the
package outline drawings E
through I.
1. The pinout represents the
HSDL-54xx IR detectors
where the protruding support
tab is closest to the anode
lead. While the pinout is
reversed for the HSDL-44xx
IR emitters where the protruding support tab is closest
to the cathode lead.
2. The protruding support tab of
the HSDL-54xx is connected
to the cathode lead. While the
protruding support tab of the
HSDL-44xx is connected to
the anode lead.
(E) Gull Wing Lead, Option 011
0.76 (0.030)
MAX.
(F) “Yoke” Lead, Options 021
0.76 (0.030) MAX.
ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)
5
(G) Z-Bend Lead, Options 031
0.76 (0.030) MAX.
(H) Thru Hole Lead Option 1L1
(I) Thru Hole Lead Option 1S1
6
Package Dimensions: Surface Mount Tape and Reel Options
(J) 12 mm Tape and Reel, Gull Wing Lead, Option 011
GULL WING LEAD
SUBMINIATURE PACKAGE
7
NOTES:
1. EMPTY COMPONENT POCKETS SEALED WITH TOP COVER TAPE.
2. 7 INCH REEL – 1500 PIECES PER REEL.
3. MINIMUM LEADER LENGTH AT EITHER END OF THE TAPE IS 500 mm.
4. THE MAXIMUM NUMBER OF CONSECUTIVE MISSING DEVICES IS TWO.
5. IN ACCORDANCE WITH ANSI/EIA RS-481 SPECIFICATIONS, THE
CATHODE IS ORIENTED TOWARDS THE TAPE SPROCKETS HOLE.
(K) 12 mm Tape and Reel, “Yoke” Lead, Option 021
“YOKE” LEAD
SUBMINIATURE PACKAGE
8
(L) 12 mm Tape and Reel, Z-Bend Lead, Option 031
Z-BEND LEAD
SUBMINIATURE PACKAGE
9
(M) 12 mm Tape and Reel
Convective IR Reflow Soldering
For information on IR reflow
soldering, refer to Application
Note 1060, Surface Mounting
SMT LED Components.
10
HSDL-44xx Absolute Maximum Ratings
Parameter
Peak Forward Current (Duty Factor = 20%,
Pulse Width = 100 µs)
DC Forward Current
Power Dissipation
Reverse Voltage (IR = 100 µA)
Transient Forward Current (10 µs Pulse)
Operating Temperature
Storage Temperature
Junction Temperature
Lead Solder Temperature
[1.6 mm (0.063 in.) from body]
Reflow Soldering Temperatures
Convection IR
Vapor Phase
Symbol
IFPK
IFDC
PDISS
VR
IFTR
TO
TS
TJ
Min.
Max.
500
Unit
mA
Ref.
Fig. 7, 8
100
100
Fig. 6
1.0
85
100
110
260/5 s
mA
mW
V
A
°C
°C
°C
°C
235/90 s
215/180 s
°C
°C
Fig. 20
5
-40
-55
[1]
Note:
1. The transient peak current in the maximum nonrecurring peak current the device can withstand without damaging the LED die and the wire bonds.
HSDL-44xx Electrical Characteristics at TA = 25°C
Parameter
Forward Voltage
Symbol
VF
Forward Voltage
Temperature Coefficient
Series Resistance
Diode Capacitance
Reverse Voltage
Thermal Resistance,
Junction to Pin
∆VF/∆T
11
RS
CO
VR
Rqjp
Min.
1.30
5
Typ.
1.50
2.15
-2.1
-2.1
2
50
20
170
Max.
1.70
Unit
V
mV/°C
Ω
pF
V
°C/W
Condition
IFDC = 50 mA
IFPK = 250 mA
IFDC = 50 mA
IFDC = 100 mA
IFDC = 100 mA
0 V, 1 MHz
IR = 100 µA
Ref.
Fig. 2
Fig. 3
HSDL-44XX Optical Characteristics at TA = 25°C
Parameter
Radiant On-Axis Intensity
HSDL-4400
HSDL-4420
Radiant On-Axis Intensity
Temperature Coefficient
Viewing Angle
HSDL-4400
HSDL-4420
Peak Wavelength
Peak Wavelength
Temperature Coefficient
Spectral Width at FWHM
Optical Rise and Fall
Times, 10%-90%
Bandwidth
12
Symbol
Min.
Typ.
Max.
Unit
Condition
Ref.
IE
1
8
mW/sr
9
30
mW/sr
IFDC = 50 mA
IFDC = 100 mA
IFPK = 250 mA
IFDC = 50 mA
IFDC = 100 mA
IFPK = 250 mA
IFDC = 50 mA
IFDC = 100 mA
Fig. 4, 5
IE
3
6
15
17
32
85
-0.35
-0.35
deg
deg
nm
nm/°C
IFDC = 50 mA
IFDC = 50 mA
IFDC = 50 mA
IFDC = 50 mA
Fig. 9
Fig. 10
Fig. 1
∆IE/∆T
2q1/2
2q1/2
lPK
∆l/∆T
850
110
24
875
0.25
%/°C
900
Fig. 4, 5
∆l
tr/tf
37
40
nm
ns
IFDC = 50 mA
IFPK = 50 mA
Fig. 1
fc
9
MHz
IFDC = 50 mA
± 10 mA
Fig. 11
HSDL-54xx Absolute Maximum Ratings
Parameter
Power Dissipation
Reverse Voltage (IR = 100 µA)
Operating Temperature
Storage Temperature
Junction Temperature
Lead Solder Temperature [1.6 mm (0.063 in.) from body]
Reflow Soldering Temperatures
Convection IR
Vapor Phase
Symbol
PDISS
VR
TO
TS
TJ
Min.
-40
-55
HSDL-54xx Electrical Characteristics at TA = 25°C
Parameter
Symbol
Min.
Forward Voltage
VF
Breakdown Voltage
VBR
Typ.
0.8
Reverse Dark Current
ID
1
Series Resistance
RS
2000
Ω
Diode Capacitance
CO
5
pF
Open Circuit Voltage
VOC
375
mV
Temperature Coefficient of VOC
∆VOC/∆T
-2.2
mV/K
Short Circuit Current
HSDL-5400
HSDL-5420
Temperature Coefficient of ISC
ISC
∆ISC/∆T
1.6
4.3
0.16
µA
µA
%/K
Thermal Resistance,
Junction to Pin
Rqjp
170
°C/W
13
Max.
40
Unit
V
V
5
nA
Max.
150
40
85
100
110
260/5 s
Unit
mW
V
°C
°C
°C
°C
235/90 s
215/180 s
°C
°C
Condition
IFDC = 1 mA
IR = 100 µA,
Ee = 0 mW/cm2
VR = 5 V,
Ee = 0 mW/cm2
VR = 5 V,
Ee = 0 mW/cm2
VR = 0 V,
Ee = 0 mW/cm2
f = 1 MHz
Ee = 1 mW/cm2
lPK = 875 nm
Ee = 1 mW/cm2
lPK = 875 nm
Ee = 1 mW/cm2
lPK = 875 nm
Ee = 1 mW/cm2
lPK = 875 nm
Ref.
Fig. 12
Fig. 16
HSDL-54xx Optical Characteristics at TA = 25°C
Parameter
Photocurrent
HSDL-5400
HSDL-5420
Temperature Coefficient of IPH
Radiant Sensitive Area
Absolute Spectral Sensitivity
Symbol
Min.
Typ.
IPH
0.8
3.0
µA
∆IPH/∆T
1.6
6.0
0.1
A
S
0.15
0.5
mm2
A/W
2q1/2
110
28
875
deg
Viewing Angle
HSDL-5400
HSDL-5420
Wavelength of Peak Sensitivity
lPK
Spectral Bandwidth
∆l
Quantum Efficiency
h
Noise Equivalent Power
NEP
Detectivity
D
Optical Rise and Fall Times, 10%-90%
Bandwidth
14
Max.
Unit
%/K
nm
7701000
70
nm
W/Hz1/2
tr/tf
6.2 x
10-15
6.3 x
1012
7.5
cm*
Hz1/2/W
ns
fc
50
MHz
%
Condition
Ee = 1 mW/cm2
lPK = 875 nm
VR = 5 V
Ee = 1 mW/cm2
lPK = 875 nm
VR = 5 V
Ref.
Fig 14,
15
Fig. 13
Ee = 1 mW/cm2
lPK = 875 nm
VR = 5 V
Ee = 1 mW/cm2
VR = 5 V
Ee = 1 mW/cm2
VR = 5 V
Ee = 1 mW/cm2
lPK = 875 nm,
VR = 5 V
VR = 5 V
lPK = 875 nm
VR = 5 V
lPK = 875 nm
VR = 5 V
RL = 1 kΩ
lPK = 875 nm
VR = 5 V
RL = 1 kΩ
lPK = 875 nm
Fig. 18
Fig. 19
Fig. 17
Fig. 17
1.0
0.5
900
850
950
TA = 25 °C
100
10
1
0
0.5
λ – WAVELENGTH – nm
2.0
2.5
5.00
NORMALIZED RADIANT INTENSITY
PULSE WIDTHS < 100 µs
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0
0
200
100
300
400
500
0.10
0.01
0.1
1
10
IFPK – FORWARD CURRENT – mA
Figure 4. Normalized radiant intensity vs.
peak forward current.
Figure 5. Normalized radiant intensity vs.
peak forward current (0 to 10 mA).
IFPK – PEAK FORWARD CURRENT – mA
IFPK – PEAK FORWARD CURRENT – mA
500
DUTY FACTOR
7%
10 %
20 %
50 %
300
200
100
0
0.01
0.1
1
10
tPW – PULSE WIDTH – ms
Figure 7. Maximum peak forward current vs.
duty factor.
15
1.4
1.2
500
DUTY FACTOR
10 %
20 %
50 %
300
10 %
20 %
200
50 %
100
PULSE WIDTHS < 100 µs
0
-40
-20
0
20
40
60
80
IFDC = 1 mA
0
20
40
60
80
120
100
Rθja = 220 °C/W
80
Rθja = 270 °C/W
Rθja = 370 °C/W
60
40
20
0
-40
-20
0
20
40
60
80
100
TA – AMBIENT TEMPERATURE – °C
Figure 8. Maximum peak forward current vs.
ambient temperature. Derated based on
TJMAX = 110°C.
100
TA – AMBIENT TEMPERATURE – °C
Figure 6. Maximum DC forward current vs.
ambient temperature. Derated based on
TJMAX = 110°C.
600
400
IFDC = 50 mA
Figure 3. Forward voltage vs. ambient
temperature.
TA = 25°C
IFPK – PEAK FORWARD CURRENT – mA
400
1.6
TA – AMBIENT TEMPERATURE – °C
1.00
TA = 25°C
IFDC = 100 mA
1.0
-20
3.0
Figure 2. Peak forward current vs. forward
voltage.
4.50
4.00
1.8
VF – FORWARD VOLTAGE – V
Figure 1. Relative radiant intensity vs.
wavelength.
NORMALIZED RADIANT INTENSITY
1.5
1.0
IFDC – MAXIMUM DC FORWARD CURRENT – mA
0
800
2.0
1,000
VF – FORWARD VOLTAGE – V
TA = 25 °C
IFDC = 50 mA
IFPK – PEAK FORWARD CURRENT – mA
RELATIVE RADIANT INTENSITY
1.5
RELATIVE RADIANT INTENSITY
1.0
IF = 50 mA
0.9
TA = 25°C
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-100°
-80°
-60°
-40°
-20°
0°
20°
40°
60°
80°
100°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
Figure 9. Relative radiant intensity vs. angular displacement HSDL-4400.
RELATIVE RADIANT INTENSITY
1.0
0.9
IF = 50 mA
0.8
TA = 25°C
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-50°
-40°
-30°
-20°
-10°
0°
10°
20°
30°
40°
50°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
TA = 25°C
9 MHz
-4
-5
-6
-7
-8
-9
-10
1E+5
1E+6
1E+7
f – FREQUENCY – Hz
Figure 11. Relative radiant intensity vs.
frequency.
16
1E+8
10.000
1.40
NORMALIZED PHOTOCURRENT
RELATIVE RADIANT INTENSITY
2
1
0
-1
-2
-3
ID – REVERSE DARK CURRENT – nA
Figure 10. Relative radiant intensity vs. angular displacement HSDL-4420.
VR = 5 V
1.000
0.100
0.010
0.001
0
20
40
60
80
100
TA – AMBIENT TEMPERATURE – °C
Figure 12. Reverse dark current vs. ambient
temperature.
1.30
VR = 5 V
1.20
1.10
1.00
0.90
0.80
0.70
0.60
-40
-20
0
20
40
60
80 100
TA – AMBIENT TEMPERATURE – °C
Figure 13. Relative reverse light current vs.
ambient temperature.
1.40
NORMALIZED PHOTOCURRENT
NORMALIZED PHOTOCURRENT
10
VR = 5 V
TA = 25°C
1
0.1
0.01
0.01
1.30
TA = 25°C
1.20
1.10
1.00
0.90
0.80
0.70
0.60
0.1
1
10
0
Ee – IRRADIANCE – mW/cm2
15
20
25
30
35
40
Figure 15. Reverse light current vs. reverse
voltage.
1.2
Ee = 0 mW/cm2
f = 1 MHz
TA = 25°C
4
3
2
1
1
10
VR – REVERSE VOLTAGE – V
Figure 16. Diode capacitance vs. reverse
voltage.
100
NORMALIZED PHOTOCURRENT
5
CO – DIODE CAPACITANCE – pF
10
VR – REVERSE VOLTAGE – V
Figure 14. Reverse light current vs. irradiance
0
0.1
5
1.0
VR = 5 V
TA = 25°C
0.8
0.6
0.4
0.2
0
700 750 800 850 900 950 1000 1050 1100
λ – WAVELENGTH – nm
Figure 17. Relative spectral sensitivity vs.
wavelength.
At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are
regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization
(CENELEC) EN60825-1. Please refer to Application Brief I-008 for more information.
17
NORMALIZED PHOTOCURRENT
1.0
VR = 5 V
0.9
TA = 25°C
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-100°
-80°
-60°
-40°
-20°
0°
20°
40°
60°
80°
100°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
Figure 18. Relative radiant intensity vs. angular displacement.
HSDL-5400.
NORMALIZED PHOTOCURRENT
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-50°
-40°
-30°
-20°
-10°
0°
10°
20°
30°
40°
50°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
Figure 19. Relative radiant intensity vs. angular displacement.
HSDL-5420.
18
MAX. 260°C
T – TEMPERATURE – (°C)
255
R3
R4
230
220
200
R2
180
60 sec.
MAX.
ABOVE
220°C
160
R1
120
R5
80
25
0
50
100
150
200
250
300
t-TIME (SECONDS)
P1
HEAT
UP
Process Zone
Heat Up
Solder Paste Dry
Solder Reflow
Cool Down
P2
SOLDER PASTE DRY
Symbol
P1, R1
P2, R2
P3, R3
P3, R4
P4, R5
P3
SOLDER
REFLOW
P4
COOL
DOWN
DT
25°C to 160°C
160°C to 200°C
200°C to 255°C (260°C at 10 seconds max)
255°C to 200°C
200°C to 25°C
Figure 20. Evaluation soldering profiles (polyled).
For company and product information, please go to our web site: WWW.liteon.com or
http://optodatabook.liteon.com/databook/databook.aspx
Data subject to change. Copyright © 2007 Lite-On Technology Corporation. All rights reserved.
Maximum DT/Dtime
4°C/s
0.5°C/s
4°C/s
-6°C/s
-6°C/s