AGILENT HSDL-4220

H
High-Performance T-13/4 (5 mm)
TS AlGaAs Infrared (875 nm)
Lamp
Technical Data
Features
• Very High Power TS AlGaAs
Technology
• 875 nm Wavelength
• T-13/4 Package
• Low Cost
• Very High Intensity:
HSDL-4220 - 38 mW/sr
HSDL-4230 - 75 mW/sr
• Choice of Viewing Angle:
HSDL-4220 - 30°
HSDL-4230 - 17°
• Low Forward Voltage for
Series Operation
• High Speed: 40 ns Rise Times
HSDL-4200 Series
HSDL-4220 30°
HSDL-4230 17°
• Copper Leadframe for
Improved Thermal and
Optical Characteristics
Applications
• Compatible with IrDA SIR
Standard
• IR Audio
• IR Telephones
• High Speed IR
Communications
IR LANs
IR Modems
IR Dongles
• Industrial IR Equipment
• IR Portable Instruments
• Interfaces with Crystal
Semiconductor CS8130
Infrared Transceiver
Description
Package Dimensions
8.70 ± 0.20
(0.343 ± 0.008)
5.00 ± 0.20
(0.197 ± 0.008)
1.14 ± 0.20
(0.045 ± 0.008)
2.35
MAX.
(0.093)
0.70
MAX.
(0.028)
31.4 MIN.
(1.23)
CATHODE
0.50 ± 0.10 SQUARE
(0.020 ± 0.004)
1.27 NOM.
(0.050)
5.80 ± 0.20
(0.228 ± 0.008)
CATHODE
2.54 NOM.
(0.100)
4-48
The HSDL-4200 series of emitters
are the first in a sequence of
emitters that are aimed at high
power, low forward voltage, and
high speed. These emitters utilize
the Transparent Substrate, double
heterojunction, Aluminum Gallium Arsenide (TS AlGaAs) LED
technology. These devices are
optimized for speed and efficiency
at emission wavelengths of 875
nm. This material produces high
radiant efficiency over a wide
range of currents up to 500 mA
peak current. The HSDL-4200
series of emitters are available in
a choice of viewing angles, the
HSDL-4230 at 17° and the
HSDL-4220 at 30°. Both lamps
are packaged in clear T-13/4
(5 mm) packages.
5964-9642E
The package design of these
emitters is optimized for efficient
power dissipation. Copper
leadframes are used to obtain
better thermal performance than
the traditional steel leadframes.
The wide angle emitter, HSDL4220, is compatible with the IrDA
SIR standard and can be used
with the HSDL-1000 integrated
SIR transceiver.
Absolute Maximum Ratings
Parameter
Symbol
Min
Max
Unit
Reference
[2], Fig. 2b
Duty Factor = 20%
Pulse Width = 100 µs
[2]
[1], Fig. 2a
Peak Forward Current
IFPK
500
mA
Average Forward Current
DC Forward Current
Power Dissipation
Reverse Voltage (IR = 100 µA)
Transient Forward Current (10 µs Pulse)
Operating Temperature
Storage Temperature
LED Junction Temperature
Lead Soldering Temperature
[1.6 mm (0.063 in.) from body]
IFAVG
IFDC
PDISS
VR
IFTR
TO
TS
TJ
100
100
260
mA
mA
mW
V
A
°C
°C
°C
°C
5
0
-20
1.0
70
85
110
260 for
5 seconds
[3]
Notes:
1. Derate linearly as shown in Figure 4.
2. Any pulsed operation cannot exceed the Absolute Max Peak Forward Current as specified in Figure 5.
3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and
the wire bonds.
Electrical Characteristics at 25°C
Parameter
Forward Voltage
Forward Voltage
Temperature Coefficient
Series Resistance
Diode Capacitance
Reverse Voltage
Thermal Resistance,
Junction to Pin
Symbol
Min
Typ
Max
Unit
Condition
Reference
VF
1.30
1.40
1.50
1.67
2.15
-2.1
-2.1
2.8
40
20
110
1.70
1.85
V
IFDC = 50 mA
IFDC = 100 mA
IFPK = 250 mA
IFDC = 50 mA
IFDC = 100 mA
IFDC = 100 mA
0 V, 1 MHz
IR = 100 µA
Fig. 2a
∆V/∆T
RS
CO
VR
Rθjp
5
mV/°C
ohms
pF
V
°C/W
Fig. 2b
Fig. 2c
4-49
Optical Characteristics at 25°C
Parameter
Symbol
Radiant Optical Power
HSDL-4220
Min
PO
HSDL-4230
IE
HSDL-4230
IE
Radiant On-Axis Intensity
Temperature Coefficient
Viewing Angle
HSDL-4220
HSDL-4230
Peak Wavelength
Peak Wavelength
Temperature Coefficient
Spectral Width–at FWHM
Optical Rise and Fall
Times, 10%-90%
Bandwidth
22
38
76
190
75
150
375
-0.35
-0.35
39
∆IE /∆T
2θ1/2
2θ1/2
λPK
∆λ/∆T
Max
19
38
16
32
PO
Radiant On-Axis Intensity
HSDL-4220
Typ
860
30
17
875
0.25
Condition
mW
IFDC = 50 mA
IFDC = 100 mA
IFDC = 50 mA
IFDC = 100 mA
mW
60
131
mW/sr
mW/sr
%/°C
895
IFDC = 50 mA
IFDC = 100 mA
IFPK = 250 mA
IFDC = 50 mA
IFDC = 100 mA
IFPK = 250 mA
IFDC = 50 mA
IFDC = 100 mA
Reference
Fig. 3a
Fig. 3b
Fig. 3a
Fig. 3b
deg
deg
nm
nm/°C
IFDC = 50 mA
IFDC = 50 mA
IFDC = 50 mA
IFDC = 50 mA
Fig. 6
Fig. 7
Fig. 1
∆λ
tr/tf
37
40
nm
ns
IFDC = 50 mA
IFDC = 50 mA
Fig. 1
fc
9
MHz
IF = 50 mA
± 10 mA
Fig. 8
Ordering Information
4-50
Unit
Part Number
Lead Form
Shipping Option
HSDL-4220
HSDL-4230
Straight
Straight
Bulk
Bulk
1.0
0.5
850
TA = 25 °C
100
10
1
950
900
0
λ – WAVELENGTH – nm
2.0
1.5
IFDC = 50 mA
1.4
IFDC = 1 mA
1.0
-20
0
40
20
1.2
0.8
0.4
0
80
60
TA = 25 °C
1.6
0
20
40
60
80
100
IFDC – DC FORWARD CURRENT – mA
Figure 2c. Forward Voltage vs
Ambient Temperature.
Figure 3a. Relative Radiant Intensity
vs. DC Forward Current.
IFDC – MAX. DC FORWARD CURRENT – mA
IFPK – PEAK FORWARD CURRENT – mA
TA – AMBIENT TEMPERATURE – °C
RθJA = 300 °C/W
100
80
RθJA = 400 °C/W
60
RθJA = 500 °C/W
40
20
0
0
10
20
30
40
50 60
1
0
70
80
TA – AMBIENT TEMPERATURE – °C
Figure 4. Maximum DC Forward
Current vs. Ambient Temperature.
Derated Based on TJMAX = 110°C.
0.5
1.0
1.5
2.0
2.5
3.0
2.0
NORMALIZED RADIANT INTENSITY
IFDC = 100 mA
RELATIVE RADIANT INTENSITY
(NORMALIZED AT 50 mA)
TA = 25 °C
1.2
10
Figure 2b. Peak Forward Current vs.
Forward Voltage.
2.0
1.6
TA = 25 °C
100
VF – FORWARD VOLTAGE – V
Figure 2a. DC Forward Current vs.
Forward Voltage.
2.0
1.8
1,000
VF – FORWARD VOLTAGE – V
Figure 1. Relative Radiant Intensity
vs. Wavelength.
VF – FORWARD VOLTAGE – V
1.0
0.5
IFPK – PEAK FORWARD CURRENT – mA
TA = 25 °C
IFDC = 50 mA
0
800
1,000
IFDC – DC FORWARD CURRENT – mA
RELATIVE RADIANT INTENSITY
1.5
NORMALIZED TO IFPK = 250 mA
1.5
VALID FOR PULSE
WIDTH = 1.6 µs
TO 100 µs
1.0
0.5
0
0
100
200
300
400
500
IFPK – PEAK FORWARD CURRENT – mA
Figure 3b. Normalized Radiant
Intensity vs. Peak Forward Current.
1,000
TA = 25 °C
PULSE WIDTH < 100 µs
100
0.01
0.1
1
DUTY FACTOR
Figure 5. Maximum Peak Forward
Current vs. Duty Factor.
4-51
RELATIVE RADIANT INTENSITY
1.0
TA = 25 °C
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
100°90° 80° 70° 60° 50° 40° 30° 20° 10° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°100°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
Figure 6. Relative Radiant Intensity vs.
Angular Displacement HSDL-4220.
RELATIVE RADIANT INTENSITY
1.0
TA = 25 °C
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
100°90° 80° 70° 60° 50° 40° 30° 20° 10° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°100°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
RELATIVE RADIANT INTENSITY – dB
Figure 7. Relative Radiant Intensity vs.
Angular Displacement HSDL-4230.
2
1
TA = 25 °C
0
-1
-2
-3
-4
9 MHz
-5
-6
-7
-8
-9
-10
1E+5
1E+6
1E+7
1E+8
f – FREQUENCY – Hz
Figure 8. Relative Radiant Intensity
vs. Frequency.
Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in
Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs
I-008, I-009, I-015 for more information.
4-52