H High-Performance T-13/4 (5 mm) TS AlGaAs Infrared (875 nm) Lamp Technical Data Features • Very High Power TS AlGaAs Technology • 875 nm Wavelength • T-13/4 Package • Low Cost • Very High Intensity: HSDL-4220 - 38 mW/sr HSDL-4230 - 75 mW/sr • Choice of Viewing Angle: HSDL-4220 - 30° HSDL-4230 - 17° • Low Forward Voltage for Series Operation • High Speed: 40 ns Rise Times HSDL-4200 Series HSDL-4220 30° HSDL-4230 17° • Copper Leadframe for Improved Thermal and Optical Characteristics Applications • Compatible with IrDA SIR Standard • IR Audio • IR Telephones • High Speed IR Communications IR LANs IR Modems IR Dongles • Industrial IR Equipment • IR Portable Instruments • Interfaces with Crystal Semiconductor CS8130 Infrared Transceiver Description Package Dimensions 8.70 ± 0.20 (0.343 ± 0.008) 5.00 ± 0.20 (0.197 ± 0.008) 1.14 ± 0.20 (0.045 ± 0.008) 2.35 MAX. (0.093) 0.70 MAX. (0.028) 31.4 MIN. (1.23) CATHODE 0.50 ± 0.10 SQUARE (0.020 ± 0.004) 1.27 NOM. (0.050) 5.80 ± 0.20 (0.228 ± 0.008) CATHODE 2.54 NOM. (0.100) 4-48 The HSDL-4200 series of emitters are the first in a sequence of emitters that are aimed at high power, low forward voltage, and high speed. These emitters utilize the Transparent Substrate, double heterojunction, Aluminum Gallium Arsenide (TS AlGaAs) LED technology. These devices are optimized for speed and efficiency at emission wavelengths of 875 nm. This material produces high radiant efficiency over a wide range of currents up to 500 mA peak current. The HSDL-4200 series of emitters are available in a choice of viewing angles, the HSDL-4230 at 17° and the HSDL-4220 at 30°. Both lamps are packaged in clear T-13/4 (5 mm) packages. 5964-9642E The package design of these emitters is optimized for efficient power dissipation. Copper leadframes are used to obtain better thermal performance than the traditional steel leadframes. The wide angle emitter, HSDL4220, is compatible with the IrDA SIR standard and can be used with the HSDL-1000 integrated SIR transceiver. Absolute Maximum Ratings Parameter Symbol Min Max Unit Reference [2], Fig. 2b Duty Factor = 20% Pulse Width = 100 µs [2] [1], Fig. 2a Peak Forward Current IFPK 500 mA Average Forward Current DC Forward Current Power Dissipation Reverse Voltage (IR = 100 µA) Transient Forward Current (10 µs Pulse) Operating Temperature Storage Temperature LED Junction Temperature Lead Soldering Temperature [1.6 mm (0.063 in.) from body] IFAVG IFDC PDISS VR IFTR TO TS TJ 100 100 260 mA mA mW V A °C °C °C °C 5 0 -20 1.0 70 85 110 260 for 5 seconds [3] Notes: 1. Derate linearly as shown in Figure 4. 2. Any pulsed operation cannot exceed the Absolute Max Peak Forward Current as specified in Figure 5. 3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and the wire bonds. Electrical Characteristics at 25°C Parameter Forward Voltage Forward Voltage Temperature Coefficient Series Resistance Diode Capacitance Reverse Voltage Thermal Resistance, Junction to Pin Symbol Min Typ Max Unit Condition Reference VF 1.30 1.40 1.50 1.67 2.15 -2.1 -2.1 2.8 40 20 110 1.70 1.85 V IFDC = 50 mA IFDC = 100 mA IFPK = 250 mA IFDC = 50 mA IFDC = 100 mA IFDC = 100 mA 0 V, 1 MHz IR = 100 µA Fig. 2a ∆V/∆T RS CO VR Rθjp 5 mV/°C ohms pF V °C/W Fig. 2b Fig. 2c 4-49 Optical Characteristics at 25°C Parameter Symbol Radiant Optical Power HSDL-4220 Min PO HSDL-4230 IE HSDL-4230 IE Radiant On-Axis Intensity Temperature Coefficient Viewing Angle HSDL-4220 HSDL-4230 Peak Wavelength Peak Wavelength Temperature Coefficient Spectral Width–at FWHM Optical Rise and Fall Times, 10%-90% Bandwidth 22 38 76 190 75 150 375 -0.35 -0.35 39 ∆IE /∆T 2θ1/2 2θ1/2 λPK ∆λ/∆T Max 19 38 16 32 PO Radiant On-Axis Intensity HSDL-4220 Typ 860 30 17 875 0.25 Condition mW IFDC = 50 mA IFDC = 100 mA IFDC = 50 mA IFDC = 100 mA mW 60 131 mW/sr mW/sr %/°C 895 IFDC = 50 mA IFDC = 100 mA IFPK = 250 mA IFDC = 50 mA IFDC = 100 mA IFPK = 250 mA IFDC = 50 mA IFDC = 100 mA Reference Fig. 3a Fig. 3b Fig. 3a Fig. 3b deg deg nm nm/°C IFDC = 50 mA IFDC = 50 mA IFDC = 50 mA IFDC = 50 mA Fig. 6 Fig. 7 Fig. 1 ∆λ tr/tf 37 40 nm ns IFDC = 50 mA IFDC = 50 mA Fig. 1 fc 9 MHz IF = 50 mA ± 10 mA Fig. 8 Ordering Information 4-50 Unit Part Number Lead Form Shipping Option HSDL-4220 HSDL-4230 Straight Straight Bulk Bulk 1.0 0.5 850 TA = 25 °C 100 10 1 950 900 0 λ – WAVELENGTH – nm 2.0 1.5 IFDC = 50 mA 1.4 IFDC = 1 mA 1.0 -20 0 40 20 1.2 0.8 0.4 0 80 60 TA = 25 °C 1.6 0 20 40 60 80 100 IFDC – DC FORWARD CURRENT – mA Figure 2c. Forward Voltage vs Ambient Temperature. Figure 3a. Relative Radiant Intensity vs. DC Forward Current. IFDC – MAX. DC FORWARD CURRENT – mA IFPK – PEAK FORWARD CURRENT – mA TA – AMBIENT TEMPERATURE – °C RθJA = 300 °C/W 100 80 RθJA = 400 °C/W 60 RθJA = 500 °C/W 40 20 0 0 10 20 30 40 50 60 1 0 70 80 TA – AMBIENT TEMPERATURE – °C Figure 4. Maximum DC Forward Current vs. Ambient Temperature. Derated Based on TJMAX = 110°C. 0.5 1.0 1.5 2.0 2.5 3.0 2.0 NORMALIZED RADIANT INTENSITY IFDC = 100 mA RELATIVE RADIANT INTENSITY (NORMALIZED AT 50 mA) TA = 25 °C 1.2 10 Figure 2b. Peak Forward Current vs. Forward Voltage. 2.0 1.6 TA = 25 °C 100 VF – FORWARD VOLTAGE – V Figure 2a. DC Forward Current vs. Forward Voltage. 2.0 1.8 1,000 VF – FORWARD VOLTAGE – V Figure 1. Relative Radiant Intensity vs. Wavelength. VF – FORWARD VOLTAGE – V 1.0 0.5 IFPK – PEAK FORWARD CURRENT – mA TA = 25 °C IFDC = 50 mA 0 800 1,000 IFDC – DC FORWARD CURRENT – mA RELATIVE RADIANT INTENSITY 1.5 NORMALIZED TO IFPK = 250 mA 1.5 VALID FOR PULSE WIDTH = 1.6 µs TO 100 µs 1.0 0.5 0 0 100 200 300 400 500 IFPK – PEAK FORWARD CURRENT – mA Figure 3b. Normalized Radiant Intensity vs. Peak Forward Current. 1,000 TA = 25 °C PULSE WIDTH < 100 µs 100 0.01 0.1 1 DUTY FACTOR Figure 5. Maximum Peak Forward Current vs. Duty Factor. 4-51 RELATIVE RADIANT INTENSITY 1.0 TA = 25 °C 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 100°90° 80° 70° 60° 50° 40° 30° 20° 10° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°100° θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE) Figure 6. Relative Radiant Intensity vs. Angular Displacement HSDL-4220. RELATIVE RADIANT INTENSITY 1.0 TA = 25 °C 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 100°90° 80° 70° 60° 50° 40° 30° 20° 10° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°100° θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE) RELATIVE RADIANT INTENSITY – dB Figure 7. Relative Radiant Intensity vs. Angular Displacement HSDL-4230. 2 1 TA = 25 °C 0 -1 -2 -3 -4 9 MHz -5 -6 -7 -8 -9 -10 1E+5 1E+6 1E+7 1E+8 f – FREQUENCY – Hz Figure 8. Relative Radiant Intensity vs. Frequency. Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs I-008, I-009, I-015 for more information. 4-52