AGILENT HSDL-4420

H
High-Performance IR Emitter
and IR PIN Photodiode in
Subminiature SMT Package
HSDL-44XX IR Emitter
Series
HSDL-54XX IR Detector
Series
Technical Data
Features
Description
• Subminiature Flat Top and
Dome Package
Size – 2x2 mm
• IR Emitter
875 nm TS AlGaAs
Intensity – 17 mW/sr
Speed – 40 ns
• Wide Range of Drive
Currents
500 µA to 500 mA
• IR Detector
PIN Photodiode
High Sensitivity
Speed – 7.5 ns
• Flexible Lead
Configurations
Surface Mount or
Through Hole
Flat Top Package
The HSDL-4400 Series of flat top
IR emitters use an untinted,
nondiffused, truncated lens to
provide a wide radiation pattern
that is useful for short distance
communication where alignment
of the emitter and detector is not
critical. The HSDL-5400 Series of
flat top IR detectors uses the
same truncated lens design as the
HSDL-4400 Series of IR emitters
with the added feature of a black
tint that acts as an optical filter to
reduce the effects of ambient
light, such as sun, incandescent
and fluorescent light from
interfering with the IR signal.
Applications
• Short Distance IR Links
• IrDA Compatible
• Small Handheld Devices
Pagers
Industrial Handhelds
• Diffuse LANs
• Wireless Audio
4-68
Dome Package
The HSDL-4420 Series of dome
IR emitters uses an untinted,
nondiffused lens to provide a 24
degree viewing angle with high
on-axis intensity. The HSDL-5420
Series of IR detectors uses the
same lens design as the HSDL4420 IR emitter and optical filter
used in the HSDL-5400 IR
detector.
Lead Configuration
All of these devices are made by
encapsulating LED and PIN
photodiode chips on axial lead
frames to form molded epoxy
subminiature packages. A variety
of lead configurations is available
and includes: surface mount gull
wing, yoke lead, or Z-bend and
through hole lead bends at 2.54
mm (0.100 inch) center spacing.
Technology
The subminiature solid state
emitters utilize a highly optimized
LED material, transparent substrate aluminum gallium arsenide,
TS AlGaAs. This material has a
very high radiant efficiency,
capable of producing high light
output over a wide range of drive
currents and temperature.
5964-9018E
Device Selection Guide
IR Emitters
Part Number
HSDL-4400
HSDL-4420
Device Description[1]
LED, Flat Top, 110 deg
LED, Dome, 24 deg
Device Outline Drawing
A
B
Device Description[1]
PIN Photodiode, Flat Top, 110 deg
PIN Photodiode, Dome, 28 deg
Device Outline Drawing
C
D
IR Detectors
Part Number
HSDL-5400
HSDL-5420
Package Configuration Options
Option Code
011
021
031
1L1
1S1
No Option
Package Configuration Description
Gull Wing Lead, Tape and Reel[2]
Surface
Yoke Lead, Tape and Reel[2]
[2]
Mount
Lead
Z-Bend, Tape and Reel
2.54 mm (0.100 in)
Long Leads;
Thru Hole
Center Lead Spacing
10.4 mm (0.410 in)
Lead
Short Leads;
3.7 mm (0.145 in)
[3]
Straight Leads
Prototyping
Package Outline
Drawing
E, J, M
F, K, M
G, L, M
H
I
A, B, C, D
Notes:
1. IR Emitters have untinted, nondiffused lenses and IR Detectors have black tinted, nondiffused lenses.
2. Emitters and detectors are supplied in 12 mm embossed tape on 178 mm (7 inch) diameter reels, with 1500 units
per reel. Minimum order quantity and order increment are in quantity of reels only.
3. Emitters and detectors are supplied in bulk form in bags of 50 units.
4-69
Package Dimensions
(A) Flat Top Emitters
0.50 (0.020) REF.
0.58 (0.023)
0.43 (0.017)
1.14 (0.045)
1.40 (0.055)
1.40 (0.055)
1.65 (0.065)
NOTE 3
ANODE
11.68 (0.460)
10.67 (0.420)
BOTH SIDES
1.91 (0.075)
2.41 (0.095)
0.76 (0.030) MAX.
CATHODE
CATHODE
STRIPE
NOTE 3
2.08 (0.082)
2.34 (0.092)
1.65 (0.065)
DIA.
1.91 (0.075)
0.18 (0.007)
0.23 (0.009)
1.91 (0.075)
2.16 (0.085)
0.20 (0.008) MAX.
(B) Dome Emitters
0.76 (0.030)
R.
0.89 (0.035)
0.18 (0.007)
0.23 (0.009)
0.94 (0.037)
1.24 (0.049)
2.03 (0.080)
1.78 (0.070)
2.92 (0.115)
MAX.
2.08 (0.082)
2.34 (0.092)
0.50 (0.020) REF.
0.63 (0.025)
0.38 (0.015)
0.79 (0.031)
0.53 (0.021)
CATHODE
STRIPE
NOTE 3
1.91 (0.075)
2.16 (0.085)
NOTE 3
ANODE
11.68 (0.460)
10.67 (0.420)
BOTH SIDES
CATHODE
1.65 (0.065)
DIA.
1.91 (0.075)
0.20 (0.008) MAX.
0.46 (0.018)
0.56 (0.022)
0.25 (0.010) MAX.*
NOTE 2
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO ANODE LEAD.
3. LEAD POLARITY FOR THESE TS AlGaAs SUBMINIATURE LAMPS IS OPPOSITE TO THE
LEAD POLARITY OF SUBMINIATURE LAMPS USING OTHER LED TECHNOLOGIES.
CATHODE STRIPE MARKING IS BLACK.
4-70
0.46 (0.018)
0.56 (0.022)
0.25 (0.010) MAX.*
NOTE 2
(C) Flat Top Detectors
0.50 (0.020) REF.
CATHODE
0.58 (0.023)
0.43 (0.017)
1.14 (0.045)
1.40 (0.055)
1.40 (0.055)
1.65 (0.065)
11.68 (0.460)
10.67 (0.420)
BOTH SIDES
1.91 (0.075)
2.41 (0.095)
0.76 (0.030) MAX.
ANODE
CATHODE
STRIPE
NOTE 3
2.08 (0.082)
2.34 (0.092)
1.65 (0.065)
DIA.
1.91 (0.075)
0.18 (0.007)
0.23 (0.009)
1.91 (0.075)
2.16 (0.085)
0.20 (0.008) MAX.
0.46 (0.018)
0.56 (0.022)
0.25 (0.010) MAX.*
NOTE 2
(D) Dome Detectors
0.76 (0.030)
R.
0.89 (0.035)
0.18 (0.007)
0.23 (0.009)
0.94 (0.037)
1.24 (0.049)
2.03 (0.080)
1.78 (0.070)
2.92 (0.115)
MAX.
2.08 (0.082)
2.34 (0.092)
0.63 (0.025)
0.38 (0.015)
0.79 (0.031)
0.53 (0.021)
CATHODE
STRIPE
NOTE 3
1.91 (0.075)
2.16 (0.085)
0.50 (0.020) REF.
CATHODE
11.68 (0.460)
10.67 (0.420)
BOTH SIDES
ANODE
1.65 (0.065)
DIA.
1.91 (0.075)
0.20 (0.008) MAX.
0.46 (0.018)
0.56 (0.022)
0.25 (0.010) MAX.*
NOTE 2
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.
3. CATHODE STRIPE MARKING IS SILVER.
4-71
Package Dimensions
The following notes affect the
package outline drawings E
through I.
1. The pinout represents the
HSDL-54XX IR detectors
where the protruding support
tab is closest to the anode
lead. While the pinout is
reversed for the HSDL-44XX
IR emitters where the protruding support tab is closest
to the cathode lead.
2. The protruding support tab of
the HSDL-54XX is connected
to the cathode lead. While the
protruding support tab of the
HSDL-44XX is connected to
the anode lead.
(E) Gull Wing Lead, Option 011
0.76 (0.030) MAX.
(F) “Yoke” Lead, Options 021
0.76 (0.030) MAX.
ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)
4-72
(G) Z-Bend Lead, Options 031
0.76 (0.030) MAX.
(H) Thru Hole Lead Option 1L1
(I) Thru Hole Lead Option 1S1
4-73
Package Dimensions: Surface Mount Tape and Reel Options
(J) 12 mm Tape and Reel, Gull Wing Lead, Option 011
GULL WING LEAD
SUBMINIATURE PACKAGE
NOTES:
1. EMPTY COMPONENT POCKETS SEALED WITH TOP COVER TAPE.
2. 7 INCH REEL – 1500 PIECES PER REEL.
3. MINIMUM LEADER LENGTH AT EITHER END OF THE TAPE IS 500 mm.
4. THE MAXIMUM NUMBER OF CONSECUTIVE MISSING DEVICES IS TWO.
5. IN ACCORDANCE WITH ANSI/EIA RS-481 SPECIFICATIONS, THE
CATHODE IS ORIENTED TOWARDS THE TAPE SPROCKETS HOLE.
At the time of this publication XX/96, Light Emitting Diodes (LEDs) that are contained in this product are regulated for
eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please
refer to Application Brief I-008 for more information.
4-74
(K) 12 mm Tape and Reel, “Yoke” Lead, Option 021
“YOKE” LEAD
SUBMINIATURE PACKAGE
4-75
(L) 12 mm Tape and Reel, Z-Bend Lead, Option 031
Z-BEND LEAD
SUBMINIATURE PACKAGE
4-76
(M) 12 mm Tape and Reel
4-77
HSDL-44XX Absolute Maximum Ratings
Parameter
Symbol
Peak Forward Current (Duty Factor = 20%,
Pulse Width = 100 µs)
Max.
Unit
Ref.
IFPK
500
mA
Fig. 7, 8
DC Forward Current
IFDC
100
mA
Fig. 6
Power Dissipation
PDISS
180
mW
Reverse Voltage (IR = 100 µA)
Min.
VR
Transient Forward Current (10 µs Pulse)
5
V
1.0
A
Operating Temperature
IFTR
TO
-40
85
°C
Storage Temperature
TS
-55
100
°C
Junction Temperature
Lead Solder Temperature
[1.6 mm (0.063 in.) from body]
TJ
110
260/5 s
°C
°C
235/90 s
215/180 s
°C
°C
Reflow Soldering Temperatures
Convection IR
Vapor Phase
[1]
Notes:
1. The transient peak current in the maximum nonrecurring peak current the device can withstand without damaging the LED die and
the wire bonds.
HSDL-44XX Electrical Characteristics at TA = 25°C
Parameter
Forward Voltage
Symbol
Min.
Typ.
Max.
Unit
Condition
Ref.
VF
1.30
1.40
1.50
1.67
2.15
1.70
1.85
V
IFDC = 50 mA
IFDC = 100 mA
IFPK = 250 mA
Fig. 2
Fig. 3
∆VF/∆T
-2.1
-2.1
mV/°C
IFDC = 50 mA
IFDC = 100 mA
Series Resistance
RS
2.8
Ω
IFDC = 100 mA
Diode Capacitance
CO
40
pF
0 V, 1 MHz
Reverse Voltage
VR
20
V
IR = 100 µA
170
°C/W
Forward Voltage
Temperature Coefficient
Thermal Resistance,
Junction to Pin
4-78
Rθjp
5
HSDL-44XX Optical Characteristics at TA = 25°C
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Ref.
Radiant Optical Power
HSDL-4400
PO
16
30
mW
IFDC = 50 mA
IFDC = 100 mA
HSDL-4420
PO
16
30
mW
IFDC = 50 mA
IFDC = 100 mA
Radiant On-Axis Intensity
HSDL-4400
IE
1
3
6
15
8
mW/sr
IFDC = 50 mA
IFDC = 100 mA
IFPK = 250 mA
Fig. 4, 5
HSDL-4420
IE
9
17
32
85
30
mW/sr
IFDC = 50 mA
IFDC = 100 mA
IFPK = 250 mA
Fig. 4, 5
∆IE /∆T
-0.35
-0.35
%/°C
IFDC = 50 mA
IFDC = 100 mA
HSDL-4400
2θ1/2
110
deg
IFDC = 50 mA
Fig. 9
HSDL-4420
2θ1/2
24
deg
IFDC = 50 mA
Fig. 10
nm
IFDC = 50 mA
Fig. 1
Radiant On-Axis Intensity
Temperature Coefficient
Viewing Angle
Peak Wavelength
λPK
860
875
895
Peak Wavelength
Temperature Coefficient
∆λ/∆T
0.25
nm/ °C
IFDC = 50 mA
Spectral Width at FWHM
∆λ
37
nm
IFDC = 50 mA
Optical Rise and Fall
Times, 10%-90%
tr/tf
40
ns
IFPK = 50 mA
fc
9
MHz
IFDC = 50 mA
± 10 mA
Bandwidth
Fig. 1
Fig. 11
4-79
HSDL-54XX Absolute Maximum Ratings
Parameter
Symbol
Max.
Unit
PDISS
150
mW
Reverse Voltage (IR = 100 µA)
VR
40
V
Operating Temperature
TO
-40
85
°C
Storage Temperature
TS
-55
100
°C
Junction Temperature
Lead Solder Temperature [1.6 mm (0.063 in.) from body]
TJ
110
260/5 s
°C
°C
235/90 s
215/180 s
°C
°C
Power Dissipation
Reflow Soldering Temperatures
Convection IR
Vapor Phase
Min.
HSDL-54XX Electrical Characteristics at TA = 25°C
Parameter
Symbol
Forward Voltage
VF
Breakdown Voltage
VBR
Min.
Typ.
Max.
1.80
40
Condition
V
IFDC = 50 mA
V
IR = 100 µA,
Ee = 0 mW/cm2
nA
VR = 5 V,
Ee = 0 mW/cm2
Reverse Dark Current
ID
1
Series Resistance
RS
2000
Ω
VR = 5 V,
Ee = 0 mW/cm2
Diode Capacitance
CO
5
pF
VR = 0 V,
Ee = 0 mW/cm2
f = 1 MHz
Open Circuit Voltage
VOC
375
mV
Ee = 1 mW/cm2
λPK = 875 nm
-2.2
mV/K
Ee = 1 mW/cm2
λPK = 875 nm
Temperature Coefficient of VOC ∆VOC/∆T
Short Circuit Current
ISC
HSDL-5400
1.6
µA
HSDL-5420
4.3
µA
∆ISC/∆T
0.16
%/K
Rθjp
170
°C/W
Temperature Coefficient of ISC
Thermal Resistance,
Junction to Pin
4-80
5
Unit
Ee = 1 mW/cm2
λPK = 875 nm
Ee = 1 mW/cm2
λPK = 875 nm
Ref.
Fig. 12
Fig. 16
HSDL-54XX Optical Characteristics at TA = 25°C
Parameter
Unit
Condition
1.6
6.0
µA
Ee = 1 mW/cm2
λPK = 875 nm
VR = 5 V
Fig. 14,
15
∆IPH/∆T
0.1
%/K
Ee = 1 mW/cm2
λPK = 875 nm
VR = 5 V
Fig. 13
Radiant Sensitive Area
A
0.15
mm2
Absolute Spectral Sensitivity
S
0.5
A/W
2θ1/2
110
28
deg
Wavelength of Peak
Sensitivity
λPK
875
nm
Ee = 1 mW/cm2
VR = 5 V
Fig. 17
Spectral Bandwidth
∆λ
7701000
nm
Ee = 1 mW/cm2
VR = 5 V
Fig. 17
Quantum Efficiency
η
70
%
Ee = 1 mW/cm2
λPK = 875 nm,
VR = 5 V
NEP
6.2 x
10-15
W/Hz1/2
VR = 5 V
λPK = 875 nm
D
6.3 x
1012
cm*
Hz1/2/W
VR = 5 V
λPK = 875 nm
tr /tf
7.5
ns
VR = 5 V
RL = 1 kΩ
λPK = 875 nm
fc
50
MHz
VR = 5 V
RL = 1 kΩ
λPK = 875 nm
Photocurrent
HSDL-5400
HSDL-5420
Temperature Coefficient
of IPH
Viewing Angle
HSDL-5400
HSDL-5420
Noise Equivalent Power
Detectivity
Optical Rise and Fall Times,
10%-90%
Bandwidth
Symbol
IPH
Min.
0.8
3.0
Typ.
Max.
Ref.
Ee = 1 mW/cm2
λPK = 875 nm
VR = 5 V
Fig. 18
Fig. 19
4-81
1.0
0.5
850
950
900
TA = 25 °C
100
10
1
0
0.5
λ – WAVELENGTH – nm
1.5
2.0
2.5
NORMALIZED RADIANT INTENSITY
PULSE WIDTHS < 100 µs
TA = 25°C
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0
0
200
100
300
400
500
0.10
0.01
0.1
1
10
IFPK – FORWARD CURRENT – mA
Figure 4. Normalized Radiant
Intensity vs. Peak Forward Current.
Figure 5. Normalized Radiant
Intensity vs. Peak Forward Current
(0 to 10 mA).
IFPK – PEAK FORWARD CURRENT – mA
IFPK – PEAK FORWARD CURRENT – mA
500
DUTY FACTOR
7%
10 %
20 %
50 %
300
200
100
0
0.01
0.1
1
tPW – PULSE WIDTH – ms
Figure 7. Maximum Peak Forward
Current vs. Duty Factor.
4-82
1.4
1.2
10
500
DUTY FACTOR
10 %
20 %
50 %
300
10 %
20 %
200
50 %
100
PULSE WIDTHS < 100 µs
0
-40
-20
0
20
40
60
80
100
TA – AMBIENT TEMPERATURE – °C
Figure 8. Maximum Peak Forward
Current vs. Ambient Temperature.
Derated Based on TJMAX = 110°C.
IFDC = 1 mA
0
20
40
60
80
120
100
Rθja = 220 °C/W
80
Rθja = 270 °C/W
Rθja = 370 °C/W
60
40
20
0
-40
-20
0
20
40
60
80
100
TA – AMBIENT TEMPERATURE – °C
Figure 6. Maximum DC Forward
Current vs. Ambient Temperature.
Derated Based on TJMAX = 110°C.
600
400
IFDC = 50 mA
Figure 3. Forward Voltage vs Ambient
Temperature.
TA = 25°C
IFPK – PEAK FORWARD CURRENT – mA
400
1.6
TA – AMBIENT TEMPERATURE – °C
1.00
5.00
IFDC = 100 mA
1.0
-20
3.0
Figure 2. Peak Forward Current vs.
Forward Voltage.
4.50
4.00
1.8
VF – FORWARD VOLTAGE – V
Figure 1. Relative Radiant Intensity
vs. Wavelength.
NORMALIZED RADIANT INTENSITY
1.0
IFDC – MAXIMUM DC FORWARD CURRENT – mA
0
800
2.0
1,000
VF – FORWARD VOLTAGE – V
TA = 25 °C
IFDC = 50 mA
IFPK – PEAK FORWARD CURRENT – mA
RELATIVE RADIANT INTENSITY
1.5
RELATIVE RADIANT INTENSITY
1.0
IF = 50 mA
0.9
TA = 25°C
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-100°
-80°
-60°
-40°
-20°
0°
20°
40°
60°
80°
100°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
Figure 9. Relative Radiant Intensity vs. Angular Displacement
HSDL-4400.
RELATIVE RADIANT INTENSITY
1.0
0.9
IF = 50 mA
0.8
TA = 25°C
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-50°
-40°
-30°
-20°
-10°
0°
10°
20°
30°
40°
50°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
1
0
-1
-2
TA = 25°C
9 MHz
-3
-4
-5
-6
-7
-8
-9
-10
1E+5
1E+6
1E+7
1E+8
f – FREQUENCY – Hz
Figure 11. Relative Radiant Intensity
vs. Frequency.
1.40
10.000
NORMALIZED PHOTOCURRENT
RELATIVE RADIANT INTENSITY
2
ID – REVERSE DARK CURRENT – nA
Figure 10. Relative Radiant Intensity vs. Angular Displacement
HSDL-4420.
VR = 5 V
1.000
0.100
0.010
0.001
0
20
40
60
80
100
TA – AMBIENT TEMPERATURE – °C
Figure 12. Reverse Dark Current vs.
Ambient Temperature.
1.30
VR = 5 V
1.20
1.10
1.00
0.90
0.80
0.70
0.60
-40 -20
0
20
40
60
80 100
TA – AMBIENT TEMPERATURE – °C
Figure 13. Relative Reverse Light
Current vs. Ambient Temperature.
4-83
1.40
VR = 5 V
TA = 25°C
1
0.1
0.01
0.01
5
1.30
TA = 25°C
1.20
1.10
1.00
0.90
0.80
0.70
0.60
1
0.1
10
0
Ee – IRRADIANCE – mW/cm2
5
10
15
20
25
30
35
Ee = 0 mW/cm2
f = 1 MHz
TA = 25°C
4
3
2
1
0
0.1
40
1
VR – REVERSE VOLTAGE – V
Figure 14. Reverse Light Current vs.
Irradiance
10
Figure 16. Diode Capacitance vs.
Reverse Voltage.
NORMALIZED PHOTOCURRENT
1.0
VR = 5 V
1.0
TA = 25°C
0.8
0.6
0.4
0.2
0
700 750 800 850 900 950 1000 1050 1100
100
VR – REVERSE VOLTAGE – V
Figure 15. Reverse Light Current vs.
Reverse Voltage.
1.2
NORMALIZED PHOTOCURRENT
CO – DIODE CAPACITANCE – pF
NORMALIZED PHOTOCURRENT
NORMALIZED PHOTOCURRENT
10
VR = 5 V
0.9
TA = 25°C
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-100°
-80°
-60°
-40°
-20°
0°
20°
40°
60°
80°
100°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
λ – WAVELENGTH – nm
Figure 17. Relative Spectral
Sensitivity vs. Wavelength.
Figure 18. Relative Radiant Intensity vs. Angular Displacement.
HSDL-5400.
NORMALIZED PHOTOCURRENT
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-50°
-40°
-30°
-20°
-10°
0°
10°
20°
30°
40°
50°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
Figure 19. Relative Radiant Intensity vs. Angular Displacement.
HSDL-5420.
Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in
Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs
I-008, I-009, I-015 for more information.
4-84