H High-Performance IR Emitter and IR PIN Photodiode in Subminiature SMT Package HSDL-44XX IR Emitter Series HSDL-54XX IR Detector Series Technical Data Features Description • Subminiature Flat Top and Dome Package Size – 2x2 mm • IR Emitter 875 nm TS AlGaAs Intensity – 17 mW/sr Speed – 40 ns • Wide Range of Drive Currents 500 µA to 500 mA • IR Detector PIN Photodiode High Sensitivity Speed – 7.5 ns • Flexible Lead Configurations Surface Mount or Through Hole Flat Top Package The HSDL-4400 Series of flat top IR emitters use an untinted, nondiffused, truncated lens to provide a wide radiation pattern that is useful for short distance communication where alignment of the emitter and detector is not critical. The HSDL-5400 Series of flat top IR detectors uses the same truncated lens design as the HSDL-4400 Series of IR emitters with the added feature of a black tint that acts as an optical filter to reduce the effects of ambient light, such as sun, incandescent and fluorescent light from interfering with the IR signal. Applications • Short Distance IR Links • IrDA Compatible • Small Handheld Devices Pagers Industrial Handhelds • Diffuse LANs • Wireless Audio 4-68 Dome Package The HSDL-4420 Series of dome IR emitters uses an untinted, nondiffused lens to provide a 24 degree viewing angle with high on-axis intensity. The HSDL-5420 Series of IR detectors uses the same lens design as the HSDL4420 IR emitter and optical filter used in the HSDL-5400 IR detector. Lead Configuration All of these devices are made by encapsulating LED and PIN photodiode chips on axial lead frames to form molded epoxy subminiature packages. A variety of lead configurations is available and includes: surface mount gull wing, yoke lead, or Z-bend and through hole lead bends at 2.54 mm (0.100 inch) center spacing. Technology The subminiature solid state emitters utilize a highly optimized LED material, transparent substrate aluminum gallium arsenide, TS AlGaAs. This material has a very high radiant efficiency, capable of producing high light output over a wide range of drive currents and temperature. 5964-9018E Device Selection Guide IR Emitters Part Number HSDL-4400 HSDL-4420 Device Description[1] LED, Flat Top, 110 deg LED, Dome, 24 deg Device Outline Drawing A B Device Description[1] PIN Photodiode, Flat Top, 110 deg PIN Photodiode, Dome, 28 deg Device Outline Drawing C D IR Detectors Part Number HSDL-5400 HSDL-5420 Package Configuration Options Option Code 011 021 031 1L1 1S1 No Option Package Configuration Description Gull Wing Lead, Tape and Reel[2] Surface Yoke Lead, Tape and Reel[2] [2] Mount Lead Z-Bend, Tape and Reel 2.54 mm (0.100 in) Long Leads; Thru Hole Center Lead Spacing 10.4 mm (0.410 in) Lead Short Leads; 3.7 mm (0.145 in) [3] Straight Leads Prototyping Package Outline Drawing E, J, M F, K, M G, L, M H I A, B, C, D Notes: 1. IR Emitters have untinted, nondiffused lenses and IR Detectors have black tinted, nondiffused lenses. 2. Emitters and detectors are supplied in 12 mm embossed tape on 178 mm (7 inch) diameter reels, with 1500 units per reel. Minimum order quantity and order increment are in quantity of reels only. 3. Emitters and detectors are supplied in bulk form in bags of 50 units. 4-69 Package Dimensions (A) Flat Top Emitters 0.50 (0.020) REF. 0.58 (0.023) 0.43 (0.017) 1.14 (0.045) 1.40 (0.055) 1.40 (0.055) 1.65 (0.065) NOTE 3 ANODE 11.68 (0.460) 10.67 (0.420) BOTH SIDES 1.91 (0.075) 2.41 (0.095) 0.76 (0.030) MAX. CATHODE CATHODE STRIPE NOTE 3 2.08 (0.082) 2.34 (0.092) 1.65 (0.065) DIA. 1.91 (0.075) 0.18 (0.007) 0.23 (0.009) 1.91 (0.075) 2.16 (0.085) 0.20 (0.008) MAX. (B) Dome Emitters 0.76 (0.030) R. 0.89 (0.035) 0.18 (0.007) 0.23 (0.009) 0.94 (0.037) 1.24 (0.049) 2.03 (0.080) 1.78 (0.070) 2.92 (0.115) MAX. 2.08 (0.082) 2.34 (0.092) 0.50 (0.020) REF. 0.63 (0.025) 0.38 (0.015) 0.79 (0.031) 0.53 (0.021) CATHODE STRIPE NOTE 3 1.91 (0.075) 2.16 (0.085) NOTE 3 ANODE 11.68 (0.460) 10.67 (0.420) BOTH SIDES CATHODE 1.65 (0.065) DIA. 1.91 (0.075) 0.20 (0.008) MAX. 0.46 (0.018) 0.56 (0.022) 0.25 (0.010) MAX.* NOTE 2 NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES). 2. PROTRUDING SUPPORT TAB IS CONNECTED TO ANODE LEAD. 3. LEAD POLARITY FOR THESE TS AlGaAs SUBMINIATURE LAMPS IS OPPOSITE TO THE LEAD POLARITY OF SUBMINIATURE LAMPS USING OTHER LED TECHNOLOGIES. CATHODE STRIPE MARKING IS BLACK. 4-70 0.46 (0.018) 0.56 (0.022) 0.25 (0.010) MAX.* NOTE 2 (C) Flat Top Detectors 0.50 (0.020) REF. CATHODE 0.58 (0.023) 0.43 (0.017) 1.14 (0.045) 1.40 (0.055) 1.40 (0.055) 1.65 (0.065) 11.68 (0.460) 10.67 (0.420) BOTH SIDES 1.91 (0.075) 2.41 (0.095) 0.76 (0.030) MAX. ANODE CATHODE STRIPE NOTE 3 2.08 (0.082) 2.34 (0.092) 1.65 (0.065) DIA. 1.91 (0.075) 0.18 (0.007) 0.23 (0.009) 1.91 (0.075) 2.16 (0.085) 0.20 (0.008) MAX. 0.46 (0.018) 0.56 (0.022) 0.25 (0.010) MAX.* NOTE 2 (D) Dome Detectors 0.76 (0.030) R. 0.89 (0.035) 0.18 (0.007) 0.23 (0.009) 0.94 (0.037) 1.24 (0.049) 2.03 (0.080) 1.78 (0.070) 2.92 (0.115) MAX. 2.08 (0.082) 2.34 (0.092) 0.63 (0.025) 0.38 (0.015) 0.79 (0.031) 0.53 (0.021) CATHODE STRIPE NOTE 3 1.91 (0.075) 2.16 (0.085) 0.50 (0.020) REF. CATHODE 11.68 (0.460) 10.67 (0.420) BOTH SIDES ANODE 1.65 (0.065) DIA. 1.91 (0.075) 0.20 (0.008) MAX. 0.46 (0.018) 0.56 (0.022) 0.25 (0.010) MAX.* NOTE 2 NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES). 2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD. 3. CATHODE STRIPE MARKING IS SILVER. 4-71 Package Dimensions The following notes affect the package outline drawings E through I. 1. The pinout represents the HSDL-54XX IR detectors where the protruding support tab is closest to the anode lead. While the pinout is reversed for the HSDL-44XX IR emitters where the protruding support tab is closest to the cathode lead. 2. The protruding support tab of the HSDL-54XX is connected to the cathode lead. While the protruding support tab of the HSDL-44XX is connected to the anode lead. (E) Gull Wing Lead, Option 011 0.76 (0.030) MAX. (F) “Yoke” Lead, Options 021 0.76 (0.030) MAX. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES) 4-72 (G) Z-Bend Lead, Options 031 0.76 (0.030) MAX. (H) Thru Hole Lead Option 1L1 (I) Thru Hole Lead Option 1S1 4-73 Package Dimensions: Surface Mount Tape and Reel Options (J) 12 mm Tape and Reel, Gull Wing Lead, Option 011 GULL WING LEAD SUBMINIATURE PACKAGE NOTES: 1. EMPTY COMPONENT POCKETS SEALED WITH TOP COVER TAPE. 2. 7 INCH REEL – 1500 PIECES PER REEL. 3. MINIMUM LEADER LENGTH AT EITHER END OF THE TAPE IS 500 mm. 4. THE MAXIMUM NUMBER OF CONSECUTIVE MISSING DEVICES IS TWO. 5. IN ACCORDANCE WITH ANSI/EIA RS-481 SPECIFICATIONS, THE CATHODE IS ORIENTED TOWARDS THE TAPE SPROCKETS HOLE. At the time of this publication XX/96, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Brief I-008 for more information. 4-74 (K) 12 mm Tape and Reel, “Yoke” Lead, Option 021 “YOKE” LEAD SUBMINIATURE PACKAGE 4-75 (L) 12 mm Tape and Reel, Z-Bend Lead, Option 031 Z-BEND LEAD SUBMINIATURE PACKAGE 4-76 (M) 12 mm Tape and Reel 4-77 HSDL-44XX Absolute Maximum Ratings Parameter Symbol Peak Forward Current (Duty Factor = 20%, Pulse Width = 100 µs) Max. Unit Ref. IFPK 500 mA Fig. 7, 8 DC Forward Current IFDC 100 mA Fig. 6 Power Dissipation PDISS 180 mW Reverse Voltage (IR = 100 µA) Min. VR Transient Forward Current (10 µs Pulse) 5 V 1.0 A Operating Temperature IFTR TO -40 85 °C Storage Temperature TS -55 100 °C Junction Temperature Lead Solder Temperature [1.6 mm (0.063 in.) from body] TJ 110 260/5 s °C °C 235/90 s 215/180 s °C °C Reflow Soldering Temperatures Convection IR Vapor Phase [1] Notes: 1. The transient peak current in the maximum nonrecurring peak current the device can withstand without damaging the LED die and the wire bonds. HSDL-44XX Electrical Characteristics at TA = 25°C Parameter Forward Voltage Symbol Min. Typ. Max. Unit Condition Ref. VF 1.30 1.40 1.50 1.67 2.15 1.70 1.85 V IFDC = 50 mA IFDC = 100 mA IFPK = 250 mA Fig. 2 Fig. 3 ∆VF/∆T -2.1 -2.1 mV/°C IFDC = 50 mA IFDC = 100 mA Series Resistance RS 2.8 Ω IFDC = 100 mA Diode Capacitance CO 40 pF 0 V, 1 MHz Reverse Voltage VR 20 V IR = 100 µA 170 °C/W Forward Voltage Temperature Coefficient Thermal Resistance, Junction to Pin 4-78 Rθjp 5 HSDL-44XX Optical Characteristics at TA = 25°C Parameter Symbol Min. Typ. Max. Unit Condition Ref. Radiant Optical Power HSDL-4400 PO 16 30 mW IFDC = 50 mA IFDC = 100 mA HSDL-4420 PO 16 30 mW IFDC = 50 mA IFDC = 100 mA Radiant On-Axis Intensity HSDL-4400 IE 1 3 6 15 8 mW/sr IFDC = 50 mA IFDC = 100 mA IFPK = 250 mA Fig. 4, 5 HSDL-4420 IE 9 17 32 85 30 mW/sr IFDC = 50 mA IFDC = 100 mA IFPK = 250 mA Fig. 4, 5 ∆IE /∆T -0.35 -0.35 %/°C IFDC = 50 mA IFDC = 100 mA HSDL-4400 2θ1/2 110 deg IFDC = 50 mA Fig. 9 HSDL-4420 2θ1/2 24 deg IFDC = 50 mA Fig. 10 nm IFDC = 50 mA Fig. 1 Radiant On-Axis Intensity Temperature Coefficient Viewing Angle Peak Wavelength λPK 860 875 895 Peak Wavelength Temperature Coefficient ∆λ/∆T 0.25 nm/ °C IFDC = 50 mA Spectral Width at FWHM ∆λ 37 nm IFDC = 50 mA Optical Rise and Fall Times, 10%-90% tr/tf 40 ns IFPK = 50 mA fc 9 MHz IFDC = 50 mA ± 10 mA Bandwidth Fig. 1 Fig. 11 4-79 HSDL-54XX Absolute Maximum Ratings Parameter Symbol Max. Unit PDISS 150 mW Reverse Voltage (IR = 100 µA) VR 40 V Operating Temperature TO -40 85 °C Storage Temperature TS -55 100 °C Junction Temperature Lead Solder Temperature [1.6 mm (0.063 in.) from body] TJ 110 260/5 s °C °C 235/90 s 215/180 s °C °C Power Dissipation Reflow Soldering Temperatures Convection IR Vapor Phase Min. HSDL-54XX Electrical Characteristics at TA = 25°C Parameter Symbol Forward Voltage VF Breakdown Voltage VBR Min. Typ. Max. 1.80 40 Condition V IFDC = 50 mA V IR = 100 µA, Ee = 0 mW/cm2 nA VR = 5 V, Ee = 0 mW/cm2 Reverse Dark Current ID 1 Series Resistance RS 2000 Ω VR = 5 V, Ee = 0 mW/cm2 Diode Capacitance CO 5 pF VR = 0 V, Ee = 0 mW/cm2 f = 1 MHz Open Circuit Voltage VOC 375 mV Ee = 1 mW/cm2 λPK = 875 nm -2.2 mV/K Ee = 1 mW/cm2 λPK = 875 nm Temperature Coefficient of VOC ∆VOC/∆T Short Circuit Current ISC HSDL-5400 1.6 µA HSDL-5420 4.3 µA ∆ISC/∆T 0.16 %/K Rθjp 170 °C/W Temperature Coefficient of ISC Thermal Resistance, Junction to Pin 4-80 5 Unit Ee = 1 mW/cm2 λPK = 875 nm Ee = 1 mW/cm2 λPK = 875 nm Ref. Fig. 12 Fig. 16 HSDL-54XX Optical Characteristics at TA = 25°C Parameter Unit Condition 1.6 6.0 µA Ee = 1 mW/cm2 λPK = 875 nm VR = 5 V Fig. 14, 15 ∆IPH/∆T 0.1 %/K Ee = 1 mW/cm2 λPK = 875 nm VR = 5 V Fig. 13 Radiant Sensitive Area A 0.15 mm2 Absolute Spectral Sensitivity S 0.5 A/W 2θ1/2 110 28 deg Wavelength of Peak Sensitivity λPK 875 nm Ee = 1 mW/cm2 VR = 5 V Fig. 17 Spectral Bandwidth ∆λ 7701000 nm Ee = 1 mW/cm2 VR = 5 V Fig. 17 Quantum Efficiency η 70 % Ee = 1 mW/cm2 λPK = 875 nm, VR = 5 V NEP 6.2 x 10-15 W/Hz1/2 VR = 5 V λPK = 875 nm D 6.3 x 1012 cm* Hz1/2/W VR = 5 V λPK = 875 nm tr /tf 7.5 ns VR = 5 V RL = 1 kΩ λPK = 875 nm fc 50 MHz VR = 5 V RL = 1 kΩ λPK = 875 nm Photocurrent HSDL-5400 HSDL-5420 Temperature Coefficient of IPH Viewing Angle HSDL-5400 HSDL-5420 Noise Equivalent Power Detectivity Optical Rise and Fall Times, 10%-90% Bandwidth Symbol IPH Min. 0.8 3.0 Typ. Max. Ref. Ee = 1 mW/cm2 λPK = 875 nm VR = 5 V Fig. 18 Fig. 19 4-81 1.0 0.5 850 950 900 TA = 25 °C 100 10 1 0 0.5 λ – WAVELENGTH – nm 1.5 2.0 2.5 NORMALIZED RADIANT INTENSITY PULSE WIDTHS < 100 µs TA = 25°C 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0 0 200 100 300 400 500 0.10 0.01 0.1 1 10 IFPK – FORWARD CURRENT – mA Figure 4. Normalized Radiant Intensity vs. Peak Forward Current. Figure 5. Normalized Radiant Intensity vs. Peak Forward Current (0 to 10 mA). IFPK – PEAK FORWARD CURRENT – mA IFPK – PEAK FORWARD CURRENT – mA 500 DUTY FACTOR 7% 10 % 20 % 50 % 300 200 100 0 0.01 0.1 1 tPW – PULSE WIDTH – ms Figure 7. Maximum Peak Forward Current vs. Duty Factor. 4-82 1.4 1.2 10 500 DUTY FACTOR 10 % 20 % 50 % 300 10 % 20 % 200 50 % 100 PULSE WIDTHS < 100 µs 0 -40 -20 0 20 40 60 80 100 TA – AMBIENT TEMPERATURE – °C Figure 8. Maximum Peak Forward Current vs. Ambient Temperature. Derated Based on TJMAX = 110°C. IFDC = 1 mA 0 20 40 60 80 120 100 Rθja = 220 °C/W 80 Rθja = 270 °C/W Rθja = 370 °C/W 60 40 20 0 -40 -20 0 20 40 60 80 100 TA – AMBIENT TEMPERATURE – °C Figure 6. Maximum DC Forward Current vs. Ambient Temperature. Derated Based on TJMAX = 110°C. 600 400 IFDC = 50 mA Figure 3. Forward Voltage vs Ambient Temperature. TA = 25°C IFPK – PEAK FORWARD CURRENT – mA 400 1.6 TA – AMBIENT TEMPERATURE – °C 1.00 5.00 IFDC = 100 mA 1.0 -20 3.0 Figure 2. Peak Forward Current vs. Forward Voltage. 4.50 4.00 1.8 VF – FORWARD VOLTAGE – V Figure 1. Relative Radiant Intensity vs. Wavelength. NORMALIZED RADIANT INTENSITY 1.0 IFDC – MAXIMUM DC FORWARD CURRENT – mA 0 800 2.0 1,000 VF – FORWARD VOLTAGE – V TA = 25 °C IFDC = 50 mA IFPK – PEAK FORWARD CURRENT – mA RELATIVE RADIANT INTENSITY 1.5 RELATIVE RADIANT INTENSITY 1.0 IF = 50 mA 0.9 TA = 25°C 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -100° -80° -60° -40° -20° 0° 20° 40° 60° 80° 100° θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE) Figure 9. Relative Radiant Intensity vs. Angular Displacement HSDL-4400. RELATIVE RADIANT INTENSITY 1.0 0.9 IF = 50 mA 0.8 TA = 25°C 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -50° -40° -30° -20° -10° 0° 10° 20° 30° 40° 50° θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE) 1 0 -1 -2 TA = 25°C 9 MHz -3 -4 -5 -6 -7 -8 -9 -10 1E+5 1E+6 1E+7 1E+8 f – FREQUENCY – Hz Figure 11. Relative Radiant Intensity vs. Frequency. 1.40 10.000 NORMALIZED PHOTOCURRENT RELATIVE RADIANT INTENSITY 2 ID – REVERSE DARK CURRENT – nA Figure 10. Relative Radiant Intensity vs. Angular Displacement HSDL-4420. VR = 5 V 1.000 0.100 0.010 0.001 0 20 40 60 80 100 TA – AMBIENT TEMPERATURE – °C Figure 12. Reverse Dark Current vs. Ambient Temperature. 1.30 VR = 5 V 1.20 1.10 1.00 0.90 0.80 0.70 0.60 -40 -20 0 20 40 60 80 100 TA – AMBIENT TEMPERATURE – °C Figure 13. Relative Reverse Light Current vs. Ambient Temperature. 4-83 1.40 VR = 5 V TA = 25°C 1 0.1 0.01 0.01 5 1.30 TA = 25°C 1.20 1.10 1.00 0.90 0.80 0.70 0.60 1 0.1 10 0 Ee – IRRADIANCE – mW/cm2 5 10 15 20 25 30 35 Ee = 0 mW/cm2 f = 1 MHz TA = 25°C 4 3 2 1 0 0.1 40 1 VR – REVERSE VOLTAGE – V Figure 14. Reverse Light Current vs. Irradiance 10 Figure 16. Diode Capacitance vs. Reverse Voltage. NORMALIZED PHOTOCURRENT 1.0 VR = 5 V 1.0 TA = 25°C 0.8 0.6 0.4 0.2 0 700 750 800 850 900 950 1000 1050 1100 100 VR – REVERSE VOLTAGE – V Figure 15. Reverse Light Current vs. Reverse Voltage. 1.2 NORMALIZED PHOTOCURRENT CO – DIODE CAPACITANCE – pF NORMALIZED PHOTOCURRENT NORMALIZED PHOTOCURRENT 10 VR = 5 V 0.9 TA = 25°C 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -100° -80° -60° -40° -20° 0° 20° 40° 60° 80° 100° θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE) λ – WAVELENGTH – nm Figure 17. Relative Spectral Sensitivity vs. Wavelength. Figure 18. Relative Radiant Intensity vs. Angular Displacement. HSDL-5400. NORMALIZED PHOTOCURRENT 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -50° -40° -30° -20° -10° 0° 10° 20° 30° 40° 50° θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE) Figure 19. Relative Radiant Intensity vs. Angular Displacement. HSDL-5420. Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs I-008, I-009, I-015 for more information. 4-84