AGILENT HSDL-4400

High-Performance IR Emitter
and IR PIN Photodiode in
Subminiature SMT Package
HSDL-44xx IR Emitter
Series
HSDL-54xx IR Detector
Series
Technical Data
Features
Description
• Subminiature Flat Top and
Dome Package
Size – 2x2 mm
• IR Emitter
875 nm TS AlGaAs
Intensity – 17 mW/sr
Speed – 40 ns
• Wide Range of Drive
Currents
500 µA to 500 mA
• IR Detector
PIN Photodiode
High Sensitivity
Speed – 7.5 ns
• Flexible Lead
Configurations
Surface Mount or
Through Hole
Flat Top Package
The HSDL-4400 Series of flat top
IR emitters use an untinted,
nondiffused, truncated lens to
provide a wide radiation pattern
that is useful for short distance
communication where alignment
of the emitter and detector is not
critical. The HSDL-5400 Series of
flat top IR detectors uses the
same truncated lens design as the
HSDL-4400 Series of IR emitters
with the added feature of a black
tint that acts as an optical filter to
reduce the effects of ambient
light, such as sun, incandescent
and fluorescent light from
interfering with the IR signal.
Applications
• Short Distance IR Links
• IrDA Compatible
• Small Handheld Devices
Pagers
Industrial Handhelds
• Diffuse LANs
• Wireless Audio
Dome Package
The HSDL-4420 Series of dome
IR emitters uses an untinted,
nondiffused lens to provide a 24
degree viewing angle with high
on-axis intensity. The HSDL-5420
Series of IR detectors uses the
same lens design as the HSDL4420 IR emitter and optical filter
used in the HSDL-5400 IR
detector.
Lead Configuration
All of these devices are made by
encapsulating LED and PIN
photodiode chips on axial lead
frames to form molded epoxy
subminiature packages. A variety
of lead configurations is available
and includes: surface mount gull
wing, yoke lead, or Z-bend and
through hole lead bends at 2.54
mm (0.100 inch) center spacing.
Technology
The subminiature solid state
emitters utilize a highly optimized
LED material, transparent substrate aluminum gallium arsenide,
TS AlGaAs. This material has a
very high radiant efficiency,
capable of producing high light
output over a wide range of drive
currents and temperature.
2
Device Selection Guide
IR Emitters
Part Number
HSDL-4400
HSDL-4420
Device Description[1]
LED, Flat Top, 110 deg
LED, Dome, 24 deg
Device Outline Drawing
A
B
Device Description[1]
PIN Photodiode, Flat Top, 110 deg
PIN Photodiode, Dome, 28 deg
Device Outline Drawing
C
D
IR Detectors
Part Number
HSDL-5400
HSDL-5420
Package Configuration Options
Option Code
011
021
031
1L1
1S1
No Option
Package Configuration Description
Gull Wing Lead, Tape and Reel[2]
Surface
Yoke Lead, Tape and Reel[2]
Mount Lead
Z-Bend, Tape and Reel[2]
2.54 mm (0.100 in)
Long Leads;
Thru Hole
Center Lead Spacing
10.4 mm (0.410 in)
Lead
Short Leads;
3.7 mm (0.145 in)
[3]
Straight Leads
Prototyping
Package Outline
Drawing
E, J, M
F, K, M
G, L, M
H
I
A, B, C, D
Notes:
1. IR Emitters have untinted, nondiffused lenses and IR Detectors have black tinted, nondiffused lenses.
2. Emitters and detectors are supplied in 12 mm embossed tape on 178 mm (7 inch) diameter reels, with 1500 units
per reel. Minimum order quantity and order increment are in quantity of reels only.
3. Emitters and detectors are supplied in bulk form in bags of 50 units.
4. The HSDL-44xx and HSDL-54xx families are not designed to be used in medical devices with life support functions
or in safety equipment (or similar applications where components failures would result in loss of life or physical
harm), eg. in automotive, medical or airline industries.
3
Package Dimensions
(A) Flat Top Emitters
0.50 (0.020) REF.
1.14 (0.045)
1.40 (0.055)
0.58 (0.023)
0.43 (0.017)
1.40 (0.055)
1.65 (0.065)
11.68 (0.460)
10.67 (0.420)
BOTH SIDES
1.91 (0.075)
2.41 (0.095)
0.76 (0.030) MAX.
CATHODE
2.08 (0.082)
2.34 (0.092)
CATHODE
STRIPE
NOTE 4
1.65 (0.065)
DIA.
1.91 (0.075)
1.91 (0.075)
2.16 (0.085)
0.18 (0.007)
0.23 (0.009)
0.20 (0.008) MAX.
(B) Dome Emitters
0.76 (0.030)
R.
0.89 (0.035)
0.18 (0.007)
0.23 (0.009)
0.94 (0.037)
1.24 (0.049)
2.03 (0.080)
1.78 (0.070)
2.92 (0.115)
MAX.
2.08 (0.082)
2.34 (0.092)
0.63 (0.025)
0.38 (0.015)
0.79 (0.031)
0.53 (0.021)
CATHODE
STRIPE
NOTE 4
1.91 (0.075)
2.16 (0.085)
0.50 (0.020) REF.
NOTE 3
ANODE
11.68 (0.460)
10.67 (0.420)
BOTH SIDES
0.46 (0.018)
0.56 (0.022)
CATHODE
1.65 (0.065)
DIA.
1.91 (0.075)
0.20 (0.008) MAX.
0.25 (0.010) MAX.*
NOTE 2
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO ANODE LEAD.
3. LEAD POLARITY FOR THESE TS AlGaAs SUBMINIATURE LAMPS IS OPPOSITE TO THE
LEAD POLARITY OF SUBMINIATURE LAMPS USING OTHER LED TECHNOLOGIES.
4. CATHODE STRIPE MARKING IS DARK BLUE.
NOTE 3
ANODE
0.46 (0.018)
0.56 (0.022)
0.25 (0.010) MAX.*
NOTE 2
4
(C) Flat Top Detectors
0.50 (0.020) REF.
1.40 (0.055)
1.65 (0.065)
CATHODE
1.14 (0.045)
1.40 (0.055)
0.58 (0.023)
0.43 (0.017)
11.68 (0.460)
10.67 (0.420)
BOTH SIDES
1.91 (0.075)
2.41 (0.095)
0.76 (0.030) MAX.
ANODE
2.08 (0.082)
2.34 (0.092)
CATHODE
STRIPE
NOTE 3
0.18 (0.007)
0.23 (0.009)
1.65 (0.065)
DIA.
1.91 (0.075)
1.91 (0.075)
2.16 (0.085)
0.20 (0.008) MAX.
(D) Dome Detectors
0.76 (0.030)
R.
0.89 (0.035)
0.18 (0.007)
0.23 (0.009)
0.94 (0.037)
1.24 (0.049)
2.03 (0.080)
1.78 (0.070)
2.92 (0.115)
MAX.
2.08 (0.082)
2.34 (0.092)
0.63 (0.025)
0.38 (0.015)
0.79 (0.031)
0.53 (0.021)
CATHODE
STRIPE
NOTE 3
1.91 (0.075)
2.16 (0.085)
0.50 (0.020) REF.
CATHODE
11.68 (0.460)
10.67 (0.420)
BOTH SIDES
ANODE
0.46 (0.018)
0.56 (0.022)
1.65 (0.065)
DIA.
1.91 (0.075)
0.20 (0.008) MAX.
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.
3. CATHODE STRIPE MARKING IS DARK BLUE.
0.25 (0.010) MAX.*
NOTE 2
0.46 (0.018)
0.56 (0.022)
0.25 (0.010) MAX.*
NOTE 2
5
Package Dimensions
The following notes affect the
package outline drawings E
through I.
1. The pinout represents the
HSDL-54xx IR detectors where
the protruding support tab is
closest to the anode lead.
While the pinout is reversed
for the HSDL-44xx IR emitters
where the protruding support
tab is closest to the cathode
lead.
2. The protruding support tab of
the HSDL-54xx is connected
to the cathode lead. While the
protruding support tab of the
HSDL-44xx is connected to
the anode lead.
(E) Gull Wing Lead, Option 011
0.76 (0.030) MAX.
(F) “Yoke” Lead, Options 021
0.76 (0.030) MAX.
ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)
6
(G) Z-Bend Lead, Options 031
0.76 (0.030) MAX.
(H) Thru Hole Lead Option 1L1
(I) Thru Hole Lead Option 1S1
7
Package Dimensions: Surface Mount Tape and Reel Options
(J) 12 mm Tape and Reel, Gull Wing Lead, Option 011
GULL WING LEAD
SUBMINIATURE PACKAGE
NOTES:
1. EMPTY COMPONENT POCKETS SEALED WITH TOP COVER TAPE.
2. 7 INCH REEL – 1500 PIECES PER REEL.
3. MINIMUM LEADER LENGTH AT EITHER END OF THE TAPE IS 500 mm.
4. THE MAXIMUM NUMBER OF CONSECUTIVE MISSING DEVICES IS TWO.
5. IN ACCORDANCE WITH ANSI/EIA RS-481 SPECIFICATIONS, THE
CATHODE IS ORIENTED TOWARDS THE TAPE SPROCKETS HOLE.
8
(K) 12 mm Tape and Reel, “Yoke” Lead, Option 021
“YOKE” LEAD
SUBMINIATURE PACKAGE
9
(L) 12 mm Tape and Reel, Z-Bend Lead, Option 031
Z-BEND LEAD
SUBMINIATURE PACKAGE
10
(M) 12 mm Tape and Reel
11
HSDL-44xx Absolute Maximum Ratings
Parameter
Peak Forward Current (Duty Factor = 20%,
Pulse Width = 100 µs)
Symbol
IFPK
Min.
Max.
500
Unit
mA
Ref.
Fig. 7, 8
100
100
mA
mW
Fig. 6
V
A
°C
DC Forward Current
Power Dissipation
IFDC
PDISS
Reverse Voltage (IR = 100 µA)
Transient Forward Current (10 µs Pulse)
Operating Temperature
VR
IFTR
TO
-40
1.0
85
Storage Temperature
TS
-55
100
°C
Junction Temperature
Lead Solder Temperature
[1.6 mm (0.063 in.) from body]
Reflow Soldering Temperatures
Convection IR
Vapor Phase
TJ
110
260/5 s
°C
°C
235/90 s
215/180 s
°C
°C
5
[1]
Fig. 20
Note:
1. The transient peak current in the maximum nonrecurring peak current the device can withstand without damaging the LED die and
the wire bonds.
HSDL-44xx Electrical Characteristics at TA = 25°C
Parameter
Forward Voltage
Symbol
Min.
Typ.
Max.
Unit
Condition
Ref.
VF
1.30
1.50
2.15
1.70
V
IFDC = 50 mA
IFPK = 250 mA
Fig. 2
Fig. 3
∆VF/∆T
-2.1
-2.1
mV/°C
IFDC = 50 mA
IFDC = 100 mA
Series Resistance
RS
2
Ω
IFDC = 100 mA
Diode Capacitance
CO
50
pF
0 V, 1 MHz
20
V
IR = 100 µA
170
°C/W
Forward Voltage
Temperature Coefficient
Reverse Voltage
Thermal Resistance,
Junction to Pin
VR
Rθjp
5
12
HSDL-44XX Optical Characteristics at TA = 25°C
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Ref.
HSDL-4400
IE
1
3
6
15
8
mW/sr
IFDC = 50 mA
IFDC = 100 mA
IFPK = 250 mA
Fig. 4, 5
HSDL-4420
IE
9
17
32
85
30
mW/sr
IFDC = 50 mA
IFDC = 100 mA
IFPK = 250 mA
Fig. 4, 5
Radiant On-Axis Intensity
∆IE /∆T
-0.35
-0.35
%/°C
IFDC = 50 mA
IFDC = 100 mA
HSDL-4400
2θ1/2
110
deg
IFDC = 50 mA
Fig. 9
HSDL-4420
2θ1/2
24
deg
IFDC = 50 mA
Fig. 10
Fig. 1
Radiant On-Axis Intensity
Temperature Coefficient
Viewing Angle
Peak Wavelength
λPK
nm
IFDC = 50 mA
Peak Wavelength
Temperature Coefficient
∆λ/∆T
0.25
nm/ °C
IFDC = 50 mA
Spectral Width at FWHM
∆λ
37
nm
IFDC = 50 mA
Optical Rise and Fall
Times, 10%-90%
tr/tf
40
ns
IFPK = 50 mA
fc
9
MHz
IFDC = 50 mA
± 10 mA
Bandwidth
850
875
900
Fig. 1
Fig. 11
13
HSDL-54xx Absolute Maximum Ratings
Parameter
Symbol
PDISS
Power Dissipation
Min.
Max.
150
Unit
mW
V
°C
Reverse Voltage (IR = 100 µA)
Operating Temperature
VR
TO
-40
40
85
Storage Temperature
TS
-55
100
°C
Junction Temperature
Lead Solder Temperature [1.6 mm (0.063 in.) from body]
TJ
110
260/5 s
°C
°C
235/90 s
215/180 s
°C
°C
Reflow Soldering Temperatures
Convection IR
Vapor Phase
HSDL-54xx Electrical Characteristics at TA = 25°C
Parameter
Symbol
Forward Voltage
VF
Breakdown Voltage
VBR
Min.
Typ.
Max.
0.8
Unit
Condition
V
IFDC = 1 mA
40
V
IR = 100 µA,
Ee = 0 mW/cm2
5
nA
VR = 5 V,
Ee = 0 mW/cm2
Reverse Dark Current
ID
1
Series Resistance
RS
2000
Ω
VR = 5 V,
Ee = 0 mW/cm2
Diode Capacitance
CO
5
pF
VR = 0 V,
Ee = 0 mW/cm2
f = 1 MHz
Open Circuit Voltage
VOC
375
mV
Ee = 1 mW/cm2
λPK = 875 nm
-2.2
mV/K
Ee = 1 mW/cm2
λPK = 875 nm
Temperature Coefficient of VOC ∆VOC/∆T
Short Circuit Current
ISC
HSDL-5400
1.6
µA
HSDL-5420
4.3
µA
∆ISC/∆T
0.16
%/K
Rθjp
170
°C/W
Temperature Coefficient of ISC
Thermal Resistance,
Junction to Pin
Ee = 1 mW/cm2
λPK = 875 nm
Ee = 1 mW/cm2
λPK = 875 nm
Ref.
Fig. 12
Fig. 16
14
HSDL-54xx Optical Characteristics at TA = 25 °C
Parameter
Photocurrent
HSDL-5400
HSDL-5420
Symbol
Min.
Typ.
IPH
0.8
3.0
Temperature Coefficient
of IPH
Unit
Condition
1.6
6.0
µA
Ee = 1 mW/cm2
λPK = 875 nm
VR = 5 V
Fig. 14,
15
∆IPH/∆T
0.1
%/K
Ee = 1 mW/cm2
λPK = 875 nm
VR = 5 V
Fig. 13
Radiant Sensitive Area
A
0.15
mm2
Absolute Spectral Sensitivity
S
0.5
A/W
2θ1/2
110
28
875
deg
nm
Ee = 1 mW/cm2
VR = 5 V
7701000
70
nm
Ee = 1 mW/cm2
VR = 5 V
Ee = 1 mW/cm2
λPK = 875 nm,
VR = 5 V
W/Hz1/2
tr /tf
6.2 x
10-15
6.3 x
1012
7.5
fc
50
MHz
Viewing Angle
HSDL-5400
HSDL-5420
Wavelength of Peak
Sensitivity
λPK
Spectral Bandwidth
∆λ
Quantum Efficiency
η
Noise Equivalent Power
Detectivity
Optical Rise and Fall Times,
10%-90%
Bandwidth
NEP
D
Max.
%
cm*
Hz1/2/W
ns
Ref.
Ee = 1 mW/cm2
λPK = 875 nm
VR = 5 V
VR = 5 V
λPK = 875 nm
VR = 5 V
λPK = 875 nm
VR = 5 V
RL = 1 kΩ
λPK = 875 nm
VR = 5 V
RL = 1 kΩ
λPK = 875 nm
Fig. 18
Fig. 19
Fig. 17
Fig. 17
1.0
0.5
0
800
850
950
900
2.0
1,000
TA = 25 °C
100
10
1
0
0.5
λ – WAVELENGTH – nm
1.0
1.5
2.0
2.5
NORMALIZED RADIANT INTENSITY
PULSE WIDTHS < 100 µs
TA = 25°C
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0
0
100
200
300
400
500
0.10
0.01
0.1
1
10
Figure 5. Normalized Radiant
Intensity vs. Peak Forward Current
(0 to 10 mA).
IFPK – PEAK FORWARD CURRENT – mA
IFPK – PEAK FORWARD CURRENT – mA
IFPK – FORWARD CURRENT – mA
Figure 4. Normalized Radiant
Intensity vs. Peak Forward Current.
500
DUTY FACTOR
7%
10 %
20 %
50 %
300
200
100
0
0.01
0.1
1
tPW – PULSE WIDTH – ms
Figure 7. Maximum Peak Forward
Current vs. Duty Factor.
1.4
1.2
10
500
DUTY FACTOR
10 %
20 %
50 %
300
10 %
20 %
200
50 %
100
PULSE WIDTHS < 100 µs
0
-40
-20
0
20
40
60
80
100
TA – AMBIENT TEMPERATURE – °C
Figure 8. Maximum Peak Forward
Current vs. Ambient Temperature.
Derated Based on T JMAX = 110°C.
IFDC = 1 mA
0
20
40
60
80
120
100
Rθja = 220 °C/W
80
Rθja = 270 °C/W
Rθja = 370 °C/W
60
40
20
0
-40
-20
0
20
40
60
80
100
TA – AMBIENT TEMPERATURE – °C
Figure 6. Maximum DC Forward
Current vs. Ambient Temperature.
Derated Based on TJMAX = 110°C.
600
400
IFDC = 50 mA
Figure 3. Forward Voltage vs Ambient
Temperature.
TA = 25°C
IFPK – PEAK FORWARD CURRENT – mA
400
1.6
TA – AMBIENT TEMPERATURE – °C
1.00
5.00
IFDC = 100 mA
1.0
-20
3.0
Figure 2. Peak Forward Current vs.
Forward Voltage.
4.50
4.00
1.8
VF – FORWARD VOLTAGE – V
Figure 1. Relative Radiant Intensity
vs. Wavelength.
NORMALIZED RADIANT INTENSITY
VF – FORWARD VOLTAGE – V
TA = 25 °C
IFDC = 50 mA
IFDC – MAXIMUM DC FORWARD CURRENT – mA
RELATIVE RADIANT INTENSITY
1.5
IFPK – PEAK FORWARD CURRENT – mA
15
16
RELATIVE RADIANT INTENSITY
1.0
IF = 50 mA
0.9
TA = 25°C
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-100°
-80°
-60°
-40°
-20°
0°
20°
40°
60°
80°
100°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
Figure 9. Relative Radiant Intensity vs. Angular Displacement
HSDL-4400.
RELATIVE RADIANT INTENSITY
1.0
0.9
IF = 50 mA
0.8
TA = 25°C
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-50°
-40°
-30°
-20°
-10°
0°
10°
20°
30°
40°
50°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
1
0
-1
-2
TA = 25°C
9 MHz
-3
-4
-5
-6
-7
-8
-9
-10
1E+5
1E+6
1E+7
1E+8
f – FREQUENCY – Hz
Figure 11. Relative Radiant Intensity
vs. Frequency.
1.40
10.000
NORMALIZED PHOTOCURRENT
RELATIVE RADIANT INTENSITY
2
ID – REVERSE DARK CURRENT – nA
Figure 10. Relative Radiant Intensity vs. Angular Displacement
HSDL-4420.
VR = 5 V
1.000
0.100
0.010
0.001
0
20
40
60
80
100
TA – AMBIENT TEMPERATURE – °C
Figure 12. Reverse Dark Current vs.
Ambient Temperature.
1.30
VR = 5 V
1.20
1.10
1.00
0.90
0.80
0.70
0.60
-40
-20
0
20
40
60
80 100
TA – AMBIENT TEMPERATURE – °C
Figure 13. Relative Reverse Light
Current vs. Ambient Temperature.
17
1.40
NORMALIZED PHOTOCURRENT
NORMALIZED PHOTOCURRENT
10
VR = 5 V
TA = 25°C
1
0.1
0.01
0.01
1.30
TA = 25°C
1.20
1.10
1.00
0.90
0.80
0.70
0.60
0.1
10
1
0
Ee – IRRADIANCE – mW/cm2
15
20
25
30
35
40
Figure 15. Reverse Light Current vs.
Reverse Voltage.
1.2
Ee = 0 mW/cm2
f = 1 MHz
TA = 25°C
4
3
2
1
1
10
VR – REVERSE VOLTAGE – V
Figure 16. Diode Capacitance vs.
Reverse Voltage.
100
NORMALIZED PHOTOCURRENT
5
CO – DIODE CAPACITANCE – pF
10
VR – REVERSE VOLTAGE – V
Figure 14. Reverse Light Current vs.
Irradiance
0
0.1
5
VR = 5 V
1.0
TA = 25°C
0.8
0.6
0.4
0.2
0
700 750 800 850 900 950 1000 1050 1100
λ – WAVELENGTH – nm
Figure 17. Relative Spectral
Sensitivity vs. Wavelength.
At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye
safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please
refer to Application Brief I-008 for more information.
18
NORMALIZED PHOTOCURRENT
1.0
VR = 5 V
0.9
TA = 25°C
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-100°
-80°
-60°
-40°
-20°
0°
20°
40°
60°
80°
100°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
Figure 18. Relative Radiant Intensity vs. Angular Displacement.
HSDL-5400.
NORMALIZED PHOTOCURRENT
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-50°
-40°
-30°
-20°
-10°
0°
10°
20°
30°
40°
50°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
Figure 19. Relative Radiant Intensity vs. Angular Displacement.
HSDL-5420.
250
NORMAL COQ
TEMPERATURE (°C)
200
150
EVALUATION
100
50
0
0
50
100
150
200
250
300
350
TIME (s)
Figure 20. Evaluation Soldering Profiles (Polyled).
Ramp Up Rate (25°C - 125°C)
Peak Temperature
Temperature Maintained Above 183°C
Ramp Down Rate (170 °C - 50 °C)
= 2 to 3°C/s
= 230 ± 5°C for 10 s
= 60 s to 150 s
= 3 to 4°C/s
400
www.agilent.com/semiconductors
For product information and a complete list of
distributors, please go to our web site.
For technical assistance call:
Americas/Canada: +1 (800) 235-0312 or
(408) 654-8675
Europe: +49 (0) 6441 92460
China: 10800 650 0017
Hong Kong: (+65) 271 2451
India, Australia, New Zealand: (+65) 271 2394
Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only)
Korea: (+65) 271 2194
Malaysia, Singapore: (+65) 271 2054
Taiwan: (+65) 271 2654
Data subject to change.
Copyright © 2002 Agilent Technologies, Inc.
Obsoletes 5988-2425EN
January 17, 2002
5988-5284EN