DATA SHEET SHEET DATA BIPOLAR ANALOG INTEGRATED CIRCUIT µPC3206GR 50dB AGC AMP + VIDEO AMP DESCRIPTION The µPC3206GR is Silicon monolithic IC designed for Digital DBS and Digital CATV receivers. This IC consists of a two stage gain control amplifier and a wideband linear video amplifier. This IC is packaged in 20-pin SSOP. Therefore, it can make RF block small. FEATURES • Broadband AGC dynamic range 50 dB (MIN.) • Supply voltage 5V • Packaged in 20-pin SSOP suitable for high-density surface mount APPLICATIONS • Digital DBS receiver • STB of digital CATV ORDERING INFORMATION Part Number µPC3206GR-E1 Package Supplying Form 20-pin plastic SSOP (225 mil) Embossed tape 12 mm wide. Pin 1 indicates pull-out direction of tape. Qty 2.5 kp/reel. To order evaluation samples, please contact your local NEC office. (Part number for sample order : µPC3206GR) Caution electro-static sensitive device The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. P13710EJ3V0DS00 (3rd edition) Date Published October 1999 N CP(K) Printed in Japan The mark shows major revised points. © 1998, 1999 µPC3206GR INTERNAL BLOCK DIAGRAM AND PIN CONFIGULATION (Top View) AGC GND1 1 AGC IN1 AGC Amp1 20 AGC OUT1 2 19 AGC IN2 VAGC 3 18 AGC VCC1 AGC VCC1 4 17 AGC OUT2 AGC Amp2 BPCAP 5 16 AGC GND2 BPCAP 6 15 INA G1A 7 14 INB G1B 8 13 VAMP VCC2 12 VAMP OUT1 11 VAMP OUT2 VAMP GND1 9 VAMP GND2 10 VIDEO Amp TYPICAL APPLICATION LPF µ PC2799GR RF IN HPF µ PC3206GR µ PC1686GV 1st IF 2nd IF SAW SAW A/D Video Amp. QAM Demo. &FEC DUAL PLL 2 Data Sheet P13710EJ3V0DS00 µPC3206GR PIN FUNCTIONS Pin No. Pin Name 1 AGC GND1 2 AGC IN 1 Pin Voltage TYP.(V) 0 Note 1 1.02 Function and Explanation Equivalent Circuit Ground pin of AGC amplifier1. Form a ground pattern as wide as possible to maintain the minimum impedance. Signal input pin to AGC amplifier. 4 AGC Control VAGC 0 to 5 4 AGC VCC1 5 5 BPCAP4 2.61 Gain control pin. This pin’s bias govern the AGC output level. Minimum gain at VAGC = 0 V Maximum gain at VAGC = 5 V Recommended to use by dividing AGC voltage with externally resistor (ex.100 kΩ). AGC Control 3 Bypass pin of AGC amplifier1 and 2. Refer to Equivalent circuit of pin1 and pin2. Gain control pin of video amplifier. Maximum gain at G1A – G1B = short. Minimum gain at G1A – G1B = open. Gain is able to adjust by inserting arbitrary resistor between 7pin and 8pin. Refer to Equivalent circuit of pin14 and pin15. 2.61 BPCAP2 4 Power supply pin of AGC amplifier1. Must be connected bypass capacitor to minimize ground impedance. Note 1 6 6 2 1.02 3 5 2.84 Note 1 2.49 7 G1A Note 2 G1B Note 2 1.72 3.34 8 1.72 3.34 9 VAMP GND1 0 10 VAMP GND2 0 11 VAMP OUT2 2.52 Note 2 12 VAMP OUT1 4.92 Ground pin of video amplifier. Form a ground pattern as wide as possible to maintain the minimum impedance. Signal output pin of video amplifier. In case of RL = 1 kΩ, single-end output voltage equal 2VP-P. 13 12 11 REG 2.52 Note 2 4.92 Notes 1. above : VAGC = VCC1 2. above : VCC2 = 5 V below : VAGC = 0 V below : VCC2 = 9 V Data Sheet P13710EJ3V0DS00 3 µPC3206GR Pin No. Pin Name 13 VAMP VCC2 14 INB Pin Voltage TYP.(V) 5 to 9 Note 2 2.49 Function and Explanation Equivalent Circuit Power supply pin of video amplifier. Must be connected bypass capacitor to minimize ground impedance. Signal input pin to video amplifier. 7 15 13 14 8 4.13 15 INA Note 2 2.49 REG 4.13 16 17 AGC GND2 AGC OUT2 Note 1 0 1.69 Ground pin of AGC amplifier2. Form a ground pattern as wide as possible to maintain the minimum impedance. 18 17 Signal output pin of AGC amplifier2. 3.31 18 19 AGC VCC1 5 Signal input pin of AGC amplifier2. AGC IN2 Note 1 Power supply pin of AGC amplifier2. Must be connected bypass capacitor to minimize ground impedance. 1.01 18 AGC Control 5 6 19 1.01 20 Signal output pin of AGC amplifier1. AGC OUT1 Note 1 4 1.71 20 3.35 Notes 1. above : VAGC = VCC1 2. above : VCC2 = 5 V 4 below : VAGC = 0 V below : VCC2 = 9 V Data Sheet P13710EJ3V0DS00 µPC3206GR ABSOLUTE MAXIMUM RATINGS (TA = 25 °C unless otherwise specified) Parameter Symbol Conditions Rating Unit Supply Voltage 1 VCC1 MIXER Block 6.0 V Supply Voltage 2 VCC2 Video Amp Block 6.0 V AGC Control Voltage VAGC 6.0 V +10 dBm 433 mW Maximum Input Power Pin (MAX.) TA = 85 °C Note Power Dissipation PD Operating Ambient Temperature TA –40 to +85 °C Storage Temperature Tstg –55 to +150 °C Rating Unit 6.0 V 11.0 V 6.0 V +10 dBm 500 mW Parameter Symbol Conditions Supply Voltage 1 VCC1 MIXER Block Supply Voltage 2 VCC2 Video Amp Block AGC Control Voltage VAGC Maximum Input Power Pin (MAX.) TA = 75 °C Note Power Dissipation PD Operating Ambient Temperature TA –40 to +75 °C Storage Temperature Tstg –55 to +150 °C Note Mounted on 50 × 50 × 1.6 mm double epoxy glass board. RECOMMENDED OPERATING RANGE Parameter Supply Voltage 1 Symbol MIN. TYP. MAX. Unit VCC1 4.5 5.0 5.5 V VCC2 4.5 9.0 10.0 V Operating Ambient Temperature 1 Note 1 TA1 –40 +25 +85 °C Operating Ambient Temperature 2 Note 2 TA2 –40 +25 +75 °C Supply Voltage 2 Notes 1. VCC1 = VCC2 = 4.5 to 5.5 V 2. VCC1 = 4.5 to 5.5 V, VCC2 = 4.5 to 10 V Data Sheet P13710EJ3V0DS00 5 µPC3206GR ELECTRICAL CHARACTERISTICS (TA = 25 °C) Parameter Symbol Test Conditions MIN. TYP. MAX. Unit AGC Amplifier Block (VCC1 = 5 V, fin = 100 MHz, RL = 560 Ω) Circuit Current 1 ICC1 no input signal, VAGC = 5 V Note 1 11 16 22 mA Circuit Current 2 ICC2 no input signal, VAGC = 0 V Note 1 15 22 32 mA Bandwidth 1 BW1 Maximum gain (VAGC = 5 V), Pin = –60 dBm Note 2, 3 100 220 – MHz Bandwidth 2 BW2 Minimum gain (VAGC = 0 V), Pin = –15 dBm 500 – – MHz Note 3 Maximum Gain 1 GMAX1 Pin = –60 dBm, VAGC = 5 V Note 3 36 38.5 41 dB Minimum Gain 1 GMIN2 Pin = –15 dBm, VAGC = 0 V Note 3 – –28 –15 dB Gain Control Range GCR Pin = –35 dBm , VAGC = 0 to 5V Note 3 50 – – dB Maximum Output Power Po (sat) VAGC = 5 V, Pin = 0 dBm Note 3 0 2 – dBm Video Amplifier Block (VCC2 = 9 V, fin = 100 MHz, RL = 1 kΩ) Circuit Current 3 ICC3 no input signal Note 4 16 24 34.5 mA Differential Gain 1 G1 G1A-G1B pins:short Note 5 160 260 400 V/V Differential Gain 2 G2 G1A-G1B pins:open Note 5 22 25 30 V/V Video Amplifier Block (VCC2 = 5 V, fin = 100 MHz, RL = 1 kΩ) Circuit Current 4 ICC4 no input signal Note 4 8 12.5 18 mA Differential Gain 3 G3 G1A-G1B pins:short Note 5 80 140 230 V/V Differential Gain 4 G4 G1A-G1B pins:open Note 5 16 22 30 V/V – 100 – MHz Video Amplifier Block (VCC2 = 5 V, 9 V Common, fin = 100 MHz, RL = 1 kΩ, single-ended) Bandwidth 1 BWG1 G1A-G1B pins:short Notes 1. By measurement circuit 1 2. –3 dB down from gain at 5 MHz 3. By measurement circuit 2 4. By measurement circuit 3 5. By measurement circuit 4 6 Data Sheet P13710EJ3V0DS00 Note 2, 5 µPC3206GR STANDARD CHARACTERISTICS (FOR REFERENCE) (TA = 25 °C) Parameter Symbol Test Conditions Reference Values Unit Note 1 5.5 dB fin2 = 106 MHz, Maximum Gain (VAGC = 5 V) Note 2 +4.5 dBm AGC Amplifier Block (VCC1 = 5 V, fin = 100 MHz, RL = 560 Ω) Noise Figure Output Intercept Point NF OIP3 Maximum Gain (VAGC = 5 V) Video Amplifier Block (VCC2 = 9 V, fin = 100 MHz, RL = 1 kΩ) Output Voltage Vout single-ended Note 3 2 VP-P Single-end Gain 1 Avs1 G1A-G1B pins:short Note 3 130 V/V Single-end Gain 2 Avs2 G1A-G1B pins:open Note 3 12 V/V Input Intercept Point 1 IIP31 fin2 = 106 MHz, G1A-G1B pins:short –16 dBm Note 3 fin2 = 106 MHz, G1A-G1B pins:open 4 dBm Note 3 Input Intercept Point 2 IIP32 Video Amplifier Block (VCC2 = 5 V, fin = 100 MHz, RL = 1 kΩ) Single-end Gain 3 Avs3 G1A-G1B pins:short Note 3 70 V/V Single-end Gain 4 Avs4 G1A-G1B pins:open Note 3 11 V/V Input Intercept Point 3 IIP33 fin2 = 106 MHz, G1A-G1B pins:short –15 dBm Note 3 fin2 = 106 MHz, G1A-G1B pins:open 2 dBm Note 3 VAGC = 5 V, VCC2 = 5 V, G1A-G1B pins:short 76 dB Note 4 VAGC = 5 V, VCC2 = 5 V, G1A-G1B pins:open 62 dB Note 4 VAGC = 0 V, VCC2 = 5 V, G1A-G1B pins:short 10 dB Note 4 VAGC = 5 V, VCC2 = 9 V, G1A-G1B pins:short 80 dB Note 4 VAGC = 5 V, VCC2 = 9 V, G1A-G1B pins:open 63 dB Note 4 VAGC = 0 V, VCC2 = 9 V, G1A-G1B pins:short 14 dB Note 4 Input Intercept Point 4 IIP34 Total Block (VCC1 = 5 V, fin = 100 MHz, RL = 1 kΩ) Maximum Gain 2 Maximum Gain 3 Minimum Gain 2 Maximum Gain 4 Maximum Gain 5 Minimum Gain 3 GMAX2 GMAX3 GMIN2 GMAX4 GMAX5 GMIN3 Notes 1. By measurement circuit 5 2. By measurement circuit 2 3. By measurement circuit 4 4. By measurement circuit 6 Data Sheet P13710EJ3V0DS00 7 µPC3206GR TYPICAL CHARACTERISTICS (TA = 25 °C) CIRCUIT CURRENT vs. SUPPLY VOLTAGE GAIN vs. AGC VOLTAGE 40 50 fin = 100 MHz RL = 560 Ω 40 measurement circuit2 30 30 AGC (VAGC = 0 V) 25 20 20 Gain (dB) Circuit Current ICC (mA) No input signal measurement 35 circuit1, 3 Video Amp. 15 10 0 -10 10 AGC (VAGC = VCC1) 5 VCC1 = 4.5 V VCC1 = 5.0 V VCC1 = 5.5 V -20 -30 0 0 2 6 4 8 10 0 12 1 2 Supply Voltage VCC (V) GAIN vs. INPUT FREQUENCY 25 5 6 GAIN vs. INPUT FREQUENCY Gain (50 Ω/560 Ω) (dB) Gain (50 Ω/560 Ω) (dB) 4 -20 VCC1 = VAGC = 5 V Pin = -60 dBm measurement circuit2 Note1 20 3 AGC Voltage VAGC (V) 15 10 VCC1 = 5 V VAGC = 0 V Pin = -15 dBm measurement circuit2 Note1 -30 -40 -50 5 -60 0 0 100 300 200 400 500 0 100 Input Frequency fin (MHz) OUTPUT POWER vs. INPUT POWER -10 -20 -30 -40 -50 -60 VCC1 = 4.5 V VCC1 = 5.0 V VCC1 = 5.5 V -50 -40 -30 -20 400 500 -10 0 -20 -30 VAGC = 0 V fin = 100 MHz RL = 560 Ω measurement circuit2 Note2 -40 -50 -60 -70 VCC1 = 4.5 V VCC1 = 5.0 V VCC1 = 5.5 V -80 -90 -35 -25 Input Power Pin (dBm) -15 -5 Input Power Pin (dBm) Notes 1. Gain = (Gain at Spectrum Analyzer) + 20 log (560 Ω/50 Ω) 2. Output Power = (Output Power at Spectrum Analyzer) + 10 log (560 Ω/50 Ω) 8 300 OUTPUT POWER vs. INPUT POWER -10 VAGC = VCC1 fin = 100 MHz RL = 560 Ω measurement circuit2 Note2 Output Power Pout (50 Ω/560 Ω) (dBm) Output Power Pout (50 Ω/560 Ω) (dBm) 0 200 Input Frequency fin (MHz) Data Sheet P13710EJ3V0DS00 5 15 µPC3206GR TYPICAL CHARACTERISTICS (TA = 25 °C) DIFFERENTIAL GAIN vs. INPUT FREQUENCY 450 300 Differential Gain Gvideo (V/V) 350 250 200 150 100 VCC2 = 8 V VCC2 = 9 V VCC2 = 10 V 50 0 0 50 fin = 100 MHz RL = 1 kΩ G1A-G1B = OPEN measurement circuit4 35 30 25 20 15 10 VCC2 = 8 V VCC2 = 9 V VCC2 = 10 V 5 0 100 150 200 0 250 50 100 150 200 250 Input Frequency fin (MHz) Input Frequency fin (MHz) DIFFERENTIAL GAIN vs. INPUT FREQUENCY DIFFERENTIAL GAIN vs. INPUT FREQUENCY 250 40 fin = 100 MHz RL = 1 kΩ G1A-G1B = SHORT measurement circuit4 200 fin = 100 MHz RL = 1 kΩ G1A-G1B = OPEN measurement circuit4 35 Differential Gain Gvideo (V/V) Differential Gain Gvideo (V/V) 400 Differential Gain Gvideo (V/V) DIFFERENTIAL GAIN vs. INPUT FREQUENCY 40 fin = 100 MHz RL = 1 kΩ G1A-G1B = SHORT measurement circuit4 150 100 30 25 20 15 10 50 VCC2 = 4.5 V VCC2 = 5.0 V VCC2 = 5.5 V 0 0 50 0 100 150 200 0 250 150 200 Input Frequency fin (MHz) OUTPUT POWER vs. INPUT POWER 250 0 -10 VCC2 = 9 V -20 VCC2 = 5 V -25 fin = 100 MHz RL = 1 kΩ G1A-G1B = SHORT measurement circuit4 Note -30 -35 -40 -30 -20 -10 0 Output Power Pout (50 Ω/1 kΩ) (dBm) Output Power Pout (50 Ω/1 kΩ) (dBm) 100 Input Frequency fin (MHz) -5 -40 -50 50 OUTPUT POWER vs. INPUT POWER 0 -15 VCC2 = 4.5 V VCC2 = 5.0 V VCC2 = 5.5 V 5 -10 VCC2 = 5 V -20 VCC2 = 9 V -30 -40 fin = 100 MHz RL = 1 kΩ G1A-G1B = OPEN measurement circuit4 Note -50 -60 -50 -40 Input Power Pin (dBm) -30 -20 -10 0 10 Input Power Pin (dBm) Note Output Power = (Output Power at Spectrum Analyzer) + 10 log (1 kΩ/50 Ω) Data Sheet P13710EJ3V0DS00 9 µPC3206GR STANDARD CHARACTERISTICS (TA = 25 °C) NOISE FIGURE vs. INPUT FREQUENCY OUTPUT POWER vs. INPUT POWER 10 VAGC = VCC1 9 RL = 560 Ω measurement 8 circuit5 -10 VAGC = 3.25 V -20 VAGC = 5 V Noise Figure NF (dB) Output Power Pout (50 Ω/560 Ω) (dBm) 0 -30 -40 VAGC = 0 V -50 -60 VAGC = 2.8 V VCC1 = 5 V fin = 100 MHz RL = 560 Ω measurement circuit2 Note -70 -80 VAGC = 2 V -90 -60 -40 -20 0 20 7 6 5 4 3 2 0 10 3rd ORDER INTERMODULATION DISTORTION Output Power Pout (50 Ω/560 Ω) (dBm) 0 -20 -40 -60 -100 -50 VCC1 = VAGC = 5 V fin1 = 100 MHz fin2 = 106 MHz RL = 560 Ω measurement circuit2 Note -45 -40 -35 -30 -25 –20 Input Power Pin (dBm) Note Output Power = (Output Power at Spectrum Analyzer) + 10 log (560 Ω/50 Ω) 10 100 Input Frequency fin (MHz) Input Power Pin (dBm) -80 VCC1 = 4.5 V VCC1 = 5.0 V VCC1 = 5.5 V 1 Data Sheet P13710EJ3V0DS00 1000 µPC3206GR STANDARD CHARACTERISTICS (TA = 25 °C) 3rd ORDER INTERMODULATION DISTORTION 0 -10 -10 Output Power Pout (50 Ω/1 kΩ) (dBm) Output Power Pout (50 Ω/1 kΩ) (dBm) 3rd ORDER INTERMODULATION DISTORTION 0 -20 -30 -40 -50 VCC2 = 9 V fin = 100 MHz fin2 = 106 MHz RL = 1 kΩ G1A-G1B = SHORT measurement circuit4 Note -60 -70 -80 -90 -50 -40 -30 -20 -20 -30 -40 -50 VCC2 = 5 V fin = 100 MHz fin2 = 106 MHz RL = 1 kΩ G1A-G1B = SHORT measurement circuit4 Note -60 -70 -80 -90 -50 -10 -40 Input Power Pin (dBm) -10 -10 -20 -30 -40 VCC2 = 9 V fin = 100 MHz fin2 = 106 MHz RL = 1 kΩ G1A-G1B = OPEN measurement circuit4 Note -60 -70 -80 -90 -25 -20 -15 -10 -20 -10 3rd ORDER INTERMODULATION DISTORTION 0 Output Power Pout (50 Ω/1 kΩ) (dBm) Output Power Pout (50 Ω/1 kΩ) (dBm) 3rd ORDER INTERMODULATION DISTORTION 0 -50 -30 Input Power Pin (dBm) -5 -20 -30 -40 -50 VCC2 = 5 V fin = 100 MHz fin2 = 106 MHz RL = 1 kΩ G1A-G1B = OPEN measurement circuit4 Note -60 -70 -80 0 -90 -25 Input Power Pin (dBm) -20 -15 -10 -5 0 Input Power Pin (dBm) Note Output Power = (Output Power at Spectrum Analyzer) + 10 log (1 kΩ/50 Ω) Data Sheet P13710EJ3V0DS00 11 µPC3206GR STANDARD CHARACTERISTICS (TA = 25 °C) GAIN vs. INPUT FREQUENCY 80 80 60 60 VCC1 = 5 V VCC2 = 9 V VAGC = 5 V fin1 = 100 MHz RL = 1 kΩ 20 G1A-G1B = SHORT measurement circuit6 0 0 100 Gain (dB) 100 40 200 300 400 500 VCC1 = 5 V VCC2 = 5 V VAGC = 5 V fin1 = 100 MHz RL = 1 kΩ 20 G1A-G1B = SHORT measurement circuit6 0 0 100 40 400 Input Frequency fin (MHz) GAIN vs. INPUT FREQUENCY 70 70 60 60 50 50 40 VCC1 = 5 V 30 VCC2 = 9 V VAGC = 3 V fin1 = 100 MHz 20 RL = 1 kΩ G1A-G1B 10 = SHORT measurement circuit6 0 0 100 40 30 20 10 0 200 300 400 0 500 100 200 300 400 500 Input Frequency fin (MHz) GAIN vs. INPUT FREQUENCY 25 20 20 15 15 Gain (dB) 25 VCC1 = 5 V 10 VCC2 = 9 V VAGC = 0 V fin1 = 100 MHz RL = 1 kΩ 5 G1A-G1B = SHORT measurement circuit6 0 0 100 500 VCC1 = 5 V VCC2 = 5 V VAGC = 3 V fin1 = 100 MHz RL = 1 kΩ G1A-G1B = SHORT measurement circuit6 GAIN vs. INPUT FREQUENCY Gain (dB) 300 Input Frequency fin (MHz) Input Frequency fin (MHz) VCC1 = 5 V VCC2 = 5 V VAGC = 0 V fin1 = 100 MHz RL = 1 kΩ G1A-G1B = SHORT measurement circuit6 10 5 0 200 300 400 500 0 100 200 300 Input Frequency fin (MHz) Input Frequency fin (MHz) 12 200 GAIN vs. INPUT FREQUENCY Gain (dB) Gain (dB) Gain (dB) GAIN vs. INPUT FREQUENCY 100 Data Sheet P13710EJ3V0DS00 400 500 µPC3206GR STANDARD CHARACTERISTICS (TA = 25 °C) GAIN vs. INPUT FREQUENCY 80 60 60 40 VCC1 = 5 V VCC2 = 9 V VAGC = 5 V fin1 = 100 MHz 20 RL = 1 kΩ G1A-G1B = OPEN measurement circuit6 0 0 100 Gain (dB) Gain (dB) GAIN vs. INPUT FREQUENCY 80 200 300 400 500 40 VCC1 = 5 V VCC2 = 5 V VAGC = 5 V fin1 = 100 MHz 20 RL = 1 kΩ G1A-G1B = OPEN measurement circuit6 0 0 100 Input Frequency fin (MHz) 300 400 500 GAIN vs. INPUT FREQUENCY 40 30 30 Gain (dB) Gain (dB) GAIN vs. INPUT FREQUENCY 40 20 VCC1 = 5 V VCC2 = 9 V VAGC = 3 V fin1 = 100 MHz 10 RL = 1 kΩ G1A-G1B = OPEN measurement circuit6 0 0 100 200 Input Frequency fin (MHz) VCC1 = 5 V VCC2 = 5 V VAGC = 3 V fin1 = 100 MHz RL = 1 kΩ G1A-G1B = OPEN measurement circuit6 20 10 0 200 300 400 500 0 Input Frequency fin (MHz) 100 200 300 400 500 Input Frequency fin (MHz) Data Sheet P13710EJ3V0DS00 13 µPC3206GR STANDARD CHARACTERISTICS (TA = 25 °C) 3rd ORDER INTERMODULATION DISTORTION 3rd ORDER INTERMODULATION DISTORTION 0 Output Power Pout (50 Ω/1 kΩ) (dBm) Output Power Pout (50 Ω/1 kΩ) (dBm) 0 -10 -20 -30 VCC1 = 5 V VCC2 = 9 V VAGC = 5 V fin1 = 100 MHz fin2 = 106 MHz RL = 1 kΩ G1A-G1B = SHORT measurement circuit6 Note -40 -50 -60 -70 -65 -60 -55 -10 -20 -30 -40 -50 -60 -70 -50 VCC1 = 5 V VCC2 = 5 V VAGC = 5 V fin1 = 100 MHz fin2 = 106 MHz RL = 1 kΩ G1A-G1B = SHORT measurement circuit6 Note -65 -60 -55 -50 Input Power Pin (dBm) Input Power Pin (dBm) 3rd ORDER INTERMODULATION DISTORTION Output Power Pout (50 Ω/1 kΩ) (dBm) 0 -20 -40 VCC1 = 5 V VCC2 = 9 V VAGC = 0 V fin1 = 100 MHz fin2 = 106 MHz RL = 1 kΩ G1A-G1B = SHORT measurement circuit6 Note -60 -80 -15 -10 -5 0 5 Input Power Pin (dBm) 3rd ORDER INTERMODULATION DISTORTION 3rd ORDER INTERMODULATION DISTORTION 0 -20 -40 VCC1 = 5 V VCC2 = 9 V VAGC = 5 V fin1 = 100 MHz fin2 = 106 MHz RL = 1 kΩ G1A-G1B = OPEN measurement circuit6 Note -60 -80 -60 -50 -40 -30 Output Power Pout (50 Ω/1 kΩ) (dBm) Output Power Pout (50 Ω/1 kΩ) (dBm) 0 -20 -40 -60 -80 -60 Input Power Pin (dBm) -50 -40 Input Power Pin (dBm) Note Output Power = (Output Power at Spectrum Analyzer) + 10 log (1 kΩ/50 Ω) 14 VCC1 = 5 V VCC2 = 5 V VAGC = 5 V fin1 = 100 MHz fin2 = 106 MHz RL = 1 kΩ G1A-G1B = OPEN measurement circuit6 Note Data Sheet P13710EJ3V0DS00 -30 µPC3206GR STANDARD CHARACTERISTICS (TA = 25 °C) NOISE FIGURE vs. INPUT FREQUENCY 10 9 9 8 8 Noise Figure NF (dB) Noise Figure NF (dB) NOISE FIGURE vs. INPUT FREQUENCY 10 7 6 5 4 3 2 1 VCC1 = 5 V VCC2 = 9 V VAGC = 5 V RL = 1 kΩ G1A-G1B = SHORT measurement circuit7 0 10 100 1000 7 6 5 4 VCC1 = 5 V VCC2 = 5 V 3 VAGC = 5 V RL = 1 kΩ 2 G1A-G1B = SHORT 1 measurement circuit7 0 10 Input Frequency fin (MHz) 9 9 8 8 Noise Figure NF (dB) Noise Figure NF (dB) 10 7 6 5 3 2 1 VCC1 = 5 V VCC2 = 9 V VAGC = 5 V RL = 1 kΩ G1A-G1B = OPEN measurement circuit7 0 10 100 1000 NOISE FIGURE vs. INPUT FREQUENCY NOISE FIGURE vs. INPUT FREQUENCY 10 4 100 Input Frequency fin (MHz) 1000 7 6 5 4 VCC1 = 5 V VCC2 = 5 V 3 VAGC = 5 V RL = 1 kΩ 2 G1A-G1B = OPEN 1 measurement circuit7 0 10 100 1000 Input Frequency fin (MHz) Input Frequency fin (MHz) Data Sheet P13710EJ3V0DS00 15 µPC3206GR INPUT IMPEDANCE (2 PIN) MARKER Zin 1 45 MHz 938.4 Ω – j604.8 Ω 2 100 MHz 434.7 Ω – j573.8 Ω 3 250 MHz 122.5 Ω – j324.9 Ω Conditions TA = 25°C VCC1 = 5 V 1 2 3 START STOP 0.045000000 GHz 0.250000000 GHz OUTPUT IMPEDANCE (20 PIN) MARKER 2 3 16 1 45 MHz 19.86 Ω + 3.83 Ω 2 100 MHz 20.28 Ω + 9.26 Ω 3 250 MHz 22.28 Ω + 22.48 Ω Conditions TA = 25°C VCC1 = 5 V 1 START STOP Zout 0.045000000 GHz 0.250000000 GHz Data Sheet P13710EJ3V0DS00 µPC3206GR INPUT IMPEDANCE (19 PIN) MARKER Zin 1 45 MHz 965.8 Ω – j601.2 Ω 2 100 MHz 446.6 Ω – j661.8 Ω 3 250 MHz 126.8 Ω – j312.4 Ω Conditions TA = 25°C VCC1 = 5 V 1 2 3 START STOP 0.045000000 GHz 0.250000000 GHz OUTPUT IMPEDANCE (17 PIN) MARKER 2 3 ZOUT 1 45 MHz 10.32 Ω + j2.88 Ω 2 100 MHz 10.86 Ω + j6.42 Ω 3 250 MHz 12.67 Ω + j15.39 Ω Conditions TA = 25°C VCC1 = 5 V 1 START STOP 0.045000000 GHz 0.250000000 GHz Data Sheet P13710EJ3V0DS00 17 µPC3206GR INPUT IMPEDANCE (15 PIN) (i) TA = 25°C, VCC2 = 5 V MARKER Zin 1 45 MHz 840.0 Ω – j2560 Ω 2 100 MHz 50.19 Ω – j1259 Ω 3 250 MHz 52.03 Ω – j475.6 Ω 1 2 3 START STOP 0.045000000 GHz 0.250000000 GHz (ii) TA = 25°C, VCC2 = 9 V MARKER 1 2 3 START STOP 18 0.045000000 GHz 0.250000000 GHz Data Sheet P13710EJ3V0DS00 Zin 1 45 MHz 478.3 Ω – j3091 Ω 2 100 MHz 106.13 Ω – j1368 Ω 3 250 MHz 55.11 Ω – j501.3 Ω µPC3206GR OUTPUT IMPEDANCE (12 PIN) (i) TA = 25°C, VCC2 = 5 V, 11 pin is grounded through 50 Ω resistor. MARKER Zout 1 45 MHz 9.88 Ω + j6.25 Ω 2 100 MHz 14.21 Ω + j11.78 Ω 3 250 MHz 23.64 Ω + j15.73 Ω 2 3 1 START STOP 0.045000000 GHz 0.250000000 GHz (ii) TA = 25°C, VCC2 = 9 V, 11 pin is grounded through 50 Ω resistor. MARKER Zout 1 45 MHz 7.36 Ω + j4.85 Ω 2 100 MHz 10.50 Ω + j9.58 Ω 3 250 MHz 19.37 Ω + j13.70 Ω 2 3 1 START STOP 0.045000000 GHz 0.250000000 GHz Data Sheet P13710EJ3V0DS00 19 µPC3206GR THERMAL CHARACTERISTICS (FOR REFERENCE) CIRCUIT CURRENT vs. AMBIENT TEMPERATURE (AGC BLOCK) CIRCUIT CURRENT vs. AMBIENT TEMPERATURE (VIDEO AMP BLOCK) 30 30 25 Circuit Current ICC (mA) Circuit Current ICC (mA) no input signal VCC1 = 5 V measurement 25 circuit1 VAGC = 0 V 20 15 VAGC = 5 V 10 5 0 -50 no input signal measurement circuit3 VCC2 = 9 V 20 15 VCC2 = 5 V 10 5 -25 0 25 50 75 0 -50 100 -25 Ambient Temperature TA (°C) OUTPUT POWER vs. INPUT POWER 100 OUTPUT POWER vs. INPUT POWER -20 -30 -40 TA = -40 °C TA = +25 °C TA = +85 °C -40 -30 -20 -10 0 Output Power Pout (50 Ω/560 Ω) (dBm) Output Power Pout (50 Ω/560 Ω) (dBm) 75 VCC1 = 5 V VAGC = 0 V -20 fin = 100 MHz RL = 560 Ω -30 measurement circuit2 Note -40 -50 -60 -70 TA = -40 °C TA = +25 °C TA = +85 °C -80 -90 -35 -25 Input Power Pin (dBm) -15 -5 Input Power Pin (dBm) Note Output Power = (Output Power at Spectrum Analyzer) + 10 log (560 Ω/50 Ω) 20 50 -10 VCC1 = 5 V VAGC = VCC1 fin = 100 MHz -10 RL = 560 Ω measurement circuit2 Note -50 25 Ambient Temperature TA (°C) 0 -50 -60 0 Data Sheet P13710EJ3V0DS00 5 15 µPC3206GR THERMAL CHARACTERISTICS (FOR REFERENCE) DIFFERENTIAL GAIN vs. INPUT FREQUENCY DIFFERENTIAL GAIN vs. INPUT FREQUENCY 450 350 300 Differential Gain Gvideo (V/V) 400 Differential Gain Gvideo (V/V) 250 VCC2 = 9 V fin = 100 MHz RL = 1 kΩ G1A-G1B = SHORT measurement circuit4 250 200 150 100 VCC2 = 5 V fin = 100 MHz RL = 1 kΩ G1A-G1B = SHORT measurement circuit4 200 150 100 50 TA = -40 °C TA = +25 °C TA = +85 °C 50 0 0 50 TA = -40 °C TA = +25 °C TA = +85 °C 0 100 150 200 250 0 50 100 150 200 250 Input Frequency fin (MHz) Input Frequency fin (MHz) GAIN vs. AGC VOLTAGE 50 VCC1 = 5 V fin = 100 MHz 40 RL = 560 Ω measurement 30 circuit2 Gain (dB) 20 10 0 -10 TA = -40 °C TA = +25 °C TA = +85 °C -20 -30 0 1 2 3 4 5 6 AGC Voltage VAGC (V) Data Sheet P13710EJ3V0DS00 21 µPC3206GR MEASUREMENT CIRCUIT 1 200 1 AGC Amp1 20 0.022 µ F 4700pF IN 1µ F VCC1 19 3 18 0.1 µ F 100 k VAGC 2 100 k 0.022 µ F 1µ F 0.022 µ F 0.1 µ F 0.022 µ F 0.1 µ F 4 VCC1 0.1 µ F 17 AGC Amp2 510 5 16 6 15 7 14 8 9 1µ F 0.1 µ F AGC OUT 13 VIDEO Amp 12 10 11 MEASUREMENT CIRCUIT 2 Note SG1 (50 Ω) SG2 (50 Ω) 200 1 MIXPAD 1µ F VCC1 20 0.022 µ F 4700pF 2 19 3 18 0.1 µ F 100 k VAGC AGC Amp1 100 k 1µ F 0.022 µ F 0.022 µ F 0.1 µ F 0.022 µ F 0.1 µ F 4 510 5 16 6 15 7 14 8 13 VIDEO Amp 10 12 11 Note In the case of measurement of IM3 22 0.1 µ F 17 AGC Amp2 9 1µ F Data Sheet P13710EJ3V0DS00 0.1 µ F VCC1 Spectrum Analyzer (50 Ω) µPC3206GR MEASUREMENT CIRCUIT 3 1 AGC Amp1 20 2 19 3 18 4 17 AGC Amp2 5 16 0.1 µ F 6 IN1 15 51 open /short 7 14 8 13 1000pF 9 VIDEO Amp VCC2 0.022 µ F OUT1 12 0.022 µ F 950 10 OUT2 11 0.022 µ F 950 MEASUREMENT CIRCUIT 4 1 AGC Amp1 20 2 19 3 18 4 17 Note SG1 (50 Ω) AGC Amp2 5 16 6 15 SG2 (50 Ω) 0.1 µ F MIXPAD 51 7 open /short 14 1000pF 8 9 13 VIDEO Amp 0.022 µ F 12 0.022 µ F 10 950 11 VCC2 Spectrum Analyzer (50 Ω) 0.022 µ F 1k Note In the case of measurement of IM3 Data Sheet P13710EJ3V0DS00 23 µPC3206GR MEASUREMENT CIRCUIT 5 NF METER Noise Source 200 1 AGC Amp1 20 0.022 µ F 1µ F VCC1 19 3 18 0.1 µ F 100 k VAGC 4700pF 2 100 k 1µ F 0.022 µ F 0.022 µ F 0.1 µ F 0.022 µ F 0.1 µ F 4 VCC1 0.1 µ F 17 AGC Amp2 16 6 15 7 14 8 0.1 µ F 510 5 9 1µ F 13 VIDEO Amp 12 10 11 MEASUREMENT CIRCUIT 6 200 1 1µ F 4700pF 2 19 3 18 0.1 µ F 100 k VCC1 20 0.022 µ F SG1 (50 Ω) VAGC AGC Amp1 100 k 0.022 µ F 1µ F 0.022 µ F 0.1 µ F 0.022 µ F 0.1 µ F open /short 4 1µ F 0.1 µ F 17 AGC Amp2 0.1 µ F 510 5 16 6 15 7 14 8 13 1000pF 9 VIDEO Amp 0.022 µ F 12 0.022 µ F 950 10 11 0.022 µ F 1k 24 VCC1 Data Sheet P13710EJ3V0DS00 VCC2 Spectrum Analyzer (50 Ω) µPC3206GR MEASUREMENT CIRCUIT 7 NOISE SOURCE NF METER 200 1 AGC Amp1 20 0.022 µ F 1µ F VCC1 19 3 18 0.1 µ F 100 k VAGC 4700pF 2 100 k 0.022 µ F 1µ F 0.022 µ F 0.1 µ F 0.022 µ F 0.1 µ F open /short 4 1µ F 0.1 µ F VCC1 17 AGC Amp2 0.1 µ F 510 5 16 6 15 7 14 8 13 1000pF 9 VIDEO Amp 0.022 µ F VCC2 12 0.022 µ F 950 10 11 0.022 µ F 1k Data Sheet P13710EJ3V0DS00 25 µPC3206GR ILLUSTRATION OF THE EVALUATION BOARD FOR MEASUREMENT CIRCUIT6 AGC IN AGC OUT VDEO IN VCC VAGC 1 µF 1 µF 100 k 0.1µ 0.022µ 4700 P 1µ 200 100 k 0.022 µ VCC 0.022 µ 0.1 µ 0.1 µ 510 1000 P 0.022µ 0.1 µ 0.1 µ 0.022 µ short/open 0.022 µ 950 0.022 µ VCC 950 NEC µ PC3206 FXTR VDEO OUT Notes on evaluation board (1) GND pattern on rear side 26 (2) : Through hole (3) : represents cutout Data Sheet P13710EJ3V0DS00 VDEO OUT µPC3206GR PACKAGE DIMENSIONS 20 PIN PLASTIC SSOP (225 mil) (UNIT: mm) 20 11 detail of lead end +7˚ 3˚–3˚ 1 10 6.7 ± 0.3 6.4 ± 0.2 1.8 MAX. 4.4 ± 0.1 1.5 ± 0.1 1.0 ± 0.2 0.5 ± 0.2 0.15 0.65 +0.10 0.22 –0.05 0.15 +0.10 –0.05 0.575 MAX. 0.10 M 0.1 ± 0.1 NOTE Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition. Data Sheet P13710EJ3V0DS00 27 µPC3206GR NOTE ON CORRECT USE (1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesires osillation). (3) Keep the track length of the ground pins as short as possible. (4) A low pass filter must be attached to VCC line. (5) A matching circuit must be externally attached to output port. RECOMMENDED SOLDERING CONDITIONS This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative. Soldering Method Soldering Conditions Recommended Condition Symbol Infrared Reflow Package peak temperature: 235°C or below Time: 30 seconds or less (at 210°C) Note Count: 3, Exposure limit : None IR35-00-3 VPS Package peak temperature: 215°C or below Time: 40 seconds or less (at 200°C) Note Count: 3, Exposure limit : None VP15-00-3 Partial Heating Pin temperature: 300°C Time: 3 seconds or less (per side of device) Note Exposure limit : None – Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period. Caution Do not use different soldering methods together (except for partial heating). For details of the recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E). 28 Data Sheet P13710EJ3V0DS00 µPC3206GR [MEMO] Data Sheet P13710EJ3V0DS00 29 µPC3206GR [MEMO] 30 Data Sheet P13710EJ3V0DS00 µPC3206GR [MEMO] Data Sheet P13710EJ3V0DS00 31 µPC3206GR • The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. • No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. • NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. • Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information. • While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. • NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. M7 98. 8