NEC UPC3206GR-E1

DATA SHEET
SHEET
DATA
BIPOLAR ANALOG INTEGRATED CIRCUIT
µPC3206GR
50dB AGC AMP + VIDEO AMP
DESCRIPTION
The µPC3206GR is Silicon monolithic IC designed for Digital DBS and Digital CATV receivers. This IC consists of
a two stage gain control amplifier and a wideband linear video amplifier.
This IC is packaged in 20-pin SSOP. Therefore, it can make RF block small.
FEATURES
•
Broadband AGC dynamic range
50 dB (MIN.)
•
Supply voltage
5V
•
Packaged in 20-pin SSOP suitable for high-density surface mount
APPLICATIONS
•
Digital DBS receiver
•
STB of digital CATV
ORDERING INFORMATION
Part Number
µPC3206GR-E1
Package
Supplying Form
20-pin plastic SSOP
(225 mil)
Embossed tape 12 mm wide.
Pin 1 indicates pull-out direction of tape.
Qty 2.5 kp/reel.
To order evaluation samples, please contact your local NEC office. (Part number for sample order : µPC3206GR)
Caution electro-static sensitive device
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for
availability and additional information.
Document No. P13710EJ3V0DS00 (3rd edition)
Date Published October 1999 N CP(K)
Printed in Japan
The mark
shows major revised points.
©
1998, 1999
µPC3206GR
INTERNAL BLOCK DIAGRAM AND PIN CONFIGULATION (Top View)
AGC GND1
1
AGC IN1
AGC Amp1
20
AGC OUT1
2
19
AGC IN2
VAGC
3
18
AGC VCC1
AGC VCC1
4
17
AGC OUT2
AGC Amp2
BPCAP
5
16
AGC GND2
BPCAP
6
15
INA
G1A
7
14
INB
G1B
8
13
VAMP VCC2
12
VAMP OUT1
11
VAMP OUT2
VAMP GND1
9
VAMP GND2
10
VIDEO
Amp
TYPICAL APPLICATION
LPF
µ PC2799GR
RF IN
HPF
µ PC3206GR
µ PC1686GV
1st IF
2nd IF
SAW
SAW
A/D
Video Amp.
QAM
Demo.
&FEC
DUAL
PLL
2
Data Sheet P13710EJ3V0DS00
µPC3206GR
PIN FUNCTIONS
Pin
No.
Pin Name
1
AGC
GND1
2
AGC IN 1
Pin
Voltage
TYP.(V)
0
Note 1
1.02
Function and Explanation
Equivalent Circuit
Ground pin of AGC amplifier1.
Form a ground pattern as wide as possible to
maintain the minimum impedance.
Signal input pin to AGC amplifier.
4
AGC
Control
VAGC
0 to 5
4
AGC VCC1
5
5
BPCAP4
2.61
Gain control pin.
This pin’s bias govern the AGC output level.
Minimum gain at VAGC = 0 V
Maximum gain at VAGC = 5 V
Recommended to use by dividing AGC voltage
with externally resistor (ex.100 kΩ).
AGC
Control
3
Bypass pin of AGC amplifier1 and 2.
Refer to Equivalent circuit of pin1 and
pin2.
Gain control pin of video amplifier.
Maximum gain at G1A – G1B = short.
Minimum gain at G1A – G1B = open.
Gain is able to adjust by inserting arbitrary
resistor between 7pin and 8pin.
Refer to Equivalent circuit of pin14
and pin15.
2.61
BPCAP2
4
Power supply pin of AGC amplifier1.
Must be connected bypass capacitor to
minimize ground impedance.
Note 1
6
6
2
1.02
3
5
2.84
Note 1
2.49
7
G1A
Note 2
G1B
Note 2
1.72
3.34
8
1.72
3.34
9
VAMP
GND1
0
10
VAMP
GND2
0
11
VAMP
OUT2
2.52
Note 2
12
VAMP
OUT1
4.92
Ground pin of video amplifier.
Form a ground pattern as wide as possible to
maintain the minimum impedance.
Signal output pin of video amplifier.
In case of RL = 1 kΩ, single-end output voltage
equal 2VP-P.
13
12
11
REG
2.52
Note 2
4.92
Notes 1. above : VAGC = VCC1
2. above : VCC2 = 5 V
below : VAGC = 0 V
below : VCC2 = 9 V
Data Sheet P13710EJ3V0DS00
3
µPC3206GR
Pin
No.
Pin Name
13
VAMP
VCC2
14
INB
Pin
Voltage
TYP.(V)
5 to 9
Note 2
2.49
Function and Explanation
Equivalent Circuit
Power supply pin of video amplifier.
Must be connected bypass capacitor to
minimize ground impedance.
Signal input pin to video amplifier.
7
15
13
14
8
4.13
15
INA
Note 2
2.49
REG
4.13
16
17
AGC GND2
AGC OUT2
Note 1
0
1.69
Ground pin of AGC amplifier2.
Form a ground pattern as wide as possible to
maintain the minimum impedance.
18
17
Signal output pin of AGC amplifier2.
3.31
18
19
AGC VCC1
5
Signal input pin of AGC amplifier2.
AGC IN2
Note 1
Power supply pin of AGC amplifier2.
Must be connected bypass capacitor to
minimize ground impedance.
1.01
18
AGC
Control
5
6
19
1.01
20
Signal output pin of AGC amplifier1.
AGC OUT1
Note 1
4
1.71
20
3.35
Notes 1. above : VAGC = VCC1
2. above : VCC2 = 5 V
4
below : VAGC = 0 V
below : VCC2 = 9 V
Data Sheet P13710EJ3V0DS00
µPC3206GR
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C unless otherwise specified)
Parameter
Symbol
Conditions
Rating
Unit
Supply Voltage 1
VCC1
MIXER Block
6.0
V
Supply Voltage 2
VCC2
Video Amp Block
6.0
V
AGC Control Voltage
VAGC
6.0
V
+10
dBm
433
mW
Maximum Input Power
Pin (MAX.)
TA = 85 °C
Note
Power Dissipation
PD
Operating Ambient Temperature
TA
–40 to +85
°C
Storage Temperature
Tstg
–55 to +150
°C
Rating
Unit
6.0
V
11.0
V
6.0
V
+10
dBm
500
mW
Parameter
Symbol
Conditions
Supply Voltage 1
VCC1
MIXER Block
Supply Voltage 2
VCC2
Video Amp Block
AGC Control Voltage
VAGC
Maximum Input Power
Pin (MAX.)
TA = 75 °C
Note
Power Dissipation
PD
Operating Ambient Temperature
TA
–40 to +75
°C
Storage Temperature
Tstg
–55 to +150
°C
Note Mounted on 50 × 50 × 1.6 mm double epoxy glass board.
RECOMMENDED OPERATING RANGE
Parameter
Supply Voltage 1
Symbol
MIN.
TYP.
MAX.
Unit
VCC1
4.5
5.0
5.5
V
VCC2
4.5
9.0
10.0
V
Operating Ambient Temperature 1
Note 1
TA1
–40
+25
+85
°C
Operating Ambient Temperature 2
Note 2
TA2
–40
+25
+75
°C
Supply Voltage 2
Notes 1. VCC1 = VCC2 = 4.5 to 5.5 V
2. VCC1 = 4.5 to 5.5 V, VCC2 = 4.5 to 10 V
Data Sheet P13710EJ3V0DS00
5
µPC3206GR
ELECTRICAL CHARACTERISTICS (TA = 25 °C)
Parameter
Symbol
Test Conditions
MIN.
TYP.
MAX.
Unit
AGC Amplifier Block (VCC1 = 5 V, fin = 100 MHz, RL = 560 Ω)
Circuit Current 1
ICC1
no input signal, VAGC = 5 V
Note 1
11
16
22
mA
Circuit Current 2
ICC2
no input signal, VAGC = 0 V
Note 1
15
22
32
mA
Bandwidth 1
BW1
Maximum gain (VAGC = 5 V),
Pin = –60 dBm
Note 2, 3
100
220
–
MHz
Bandwidth 2
BW2
Minimum gain (VAGC = 0 V),
Pin = –15 dBm
500
–
–
MHz
Note 3
Maximum Gain 1
GMAX1
Pin = –60 dBm, VAGC = 5 V
Note 3
36
38.5
41
dB
Minimum Gain 1
GMIN2
Pin = –15 dBm, VAGC = 0 V
Note 3
–
–28
–15
dB
Gain Control Range
GCR
Pin = –35 dBm , VAGC = 0 to 5V Note 3
50
–
–
dB
Maximum Output Power
Po (sat)
VAGC = 5 V, Pin = 0 dBm
Note 3
0
2
–
dBm
Video Amplifier Block (VCC2 = 9 V, fin = 100 MHz, RL = 1 kΩ)
Circuit Current 3
ICC3
no input signal
Note 4
16
24
34.5
mA
Differential Gain 1
G1
G1A-G1B pins:short
Note 5
160
260
400
V/V
Differential Gain 2
G2
G1A-G1B pins:open
Note 5
22
25
30
V/V
Video Amplifier Block (VCC2 = 5 V, fin = 100 MHz, RL = 1 kΩ)
Circuit Current 4
ICC4
no input signal
Note 4
8
12.5
18
mA
Differential Gain 3
G3
G1A-G1B pins:short
Note 5
80
140
230
V/V
Differential Gain 4
G4
G1A-G1B pins:open
Note 5
16
22
30
V/V
–
100
–
MHz
Video Amplifier Block (VCC2 = 5 V, 9 V Common, fin = 100 MHz, RL = 1 kΩ, single-ended)
Bandwidth 1
BWG1
G1A-G1B pins:short
Notes 1. By measurement circuit 1
2. –3 dB down from gain at 5 MHz
3. By measurement circuit 2
4. By measurement circuit 3
5. By measurement circuit 4
6
Data Sheet P13710EJ3V0DS00
Note 2, 5
µPC3206GR
STANDARD CHARACTERISTICS (FOR REFERENCE) (TA = 25 °C)
Parameter
Symbol
Test Conditions
Reference Values
Unit
Note 1
5.5
dB
fin2 = 106 MHz, Maximum Gain
(VAGC = 5 V)
Note 2
+4.5
dBm
AGC Amplifier Block (VCC1 = 5 V, fin = 100 MHz, RL = 560 Ω)
Noise Figure
Output Intercept Point
NF
OIP3
Maximum Gain (VAGC = 5 V)
Video Amplifier Block (VCC2 = 9 V, fin = 100 MHz, RL = 1 kΩ)
Output Voltage
Vout
single-ended
Note 3
2
VP-P
Single-end Gain 1
Avs1
G1A-G1B pins:short
Note 3
130
V/V
Single-end Gain 2
Avs2
G1A-G1B pins:open
Note 3
12
V/V
Input Intercept Point 1
IIP31
fin2 = 106 MHz,
G1A-G1B pins:short
–16
dBm
Note 3
fin2 = 106 MHz,
G1A-G1B pins:open
4
dBm
Note 3
Input Intercept Point 2
IIP32
Video Amplifier Block (VCC2 = 5 V, fin = 100 MHz, RL = 1 kΩ)
Single-end Gain 3
Avs3
G1A-G1B pins:short
Note 3
70
V/V
Single-end Gain 4
Avs4
G1A-G1B pins:open
Note 3
11
V/V
Input Intercept Point 3
IIP33
fin2 = 106 MHz,
G1A-G1B pins:short
–15
dBm
Note 3
fin2 = 106 MHz,
G1A-G1B pins:open
2
dBm
Note 3
VAGC = 5 V, VCC2 = 5 V,
G1A-G1B pins:short
76
dB
Note 4
VAGC = 5 V, VCC2 = 5 V,
G1A-G1B pins:open
62
dB
Note 4
VAGC = 0 V, VCC2 = 5 V,
G1A-G1B pins:short
10
dB
Note 4
VAGC = 5 V, VCC2 = 9 V,
G1A-G1B pins:short
80
dB
Note 4
VAGC = 5 V, VCC2 = 9 V,
G1A-G1B pins:open
63
dB
Note 4
VAGC = 0 V, VCC2 = 9 V,
G1A-G1B pins:short
14
dB
Note 4
Input Intercept Point 4
IIP34
Total Block (VCC1 = 5 V, fin = 100 MHz, RL = 1 kΩ)
Maximum Gain 2
Maximum Gain 3
Minimum Gain 2
Maximum Gain 4
Maximum Gain 5
Minimum Gain 3
GMAX2
GMAX3
GMIN2
GMAX4
GMAX5
GMIN3
Notes 1. By measurement circuit 5
2. By measurement circuit 2
3. By measurement circuit 4
4. By measurement circuit 6
Data Sheet P13710EJ3V0DS00
7
µPC3206GR
TYPICAL CHARACTERISTICS (TA = 25 °C)
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
GAIN vs. AGC VOLTAGE
40
50
fin = 100 MHz
RL = 560 Ω
40 measurement
circuit2
30
30
AGC
(VAGC = 0 V)
25
20
20
Gain (dB)
Circuit Current ICC (mA)
No input signal
measurement
35 circuit1, 3
Video Amp.
15
10
0
-10
10
AGC
(VAGC = VCC1)
5
VCC1 = 4.5 V
VCC1 = 5.0 V
VCC1 = 5.5 V
-20
-30
0
0
2
6
4
8
10
0
12
1
2
Supply Voltage VCC (V)
GAIN vs. INPUT FREQUENCY
25
5
6
GAIN vs. INPUT FREQUENCY
Gain (50 Ω/560 Ω) (dB)
Gain (50 Ω/560 Ω) (dB)
4
-20
VCC1 = VAGC = 5 V
Pin = -60 dBm
measurement
circuit2 Note1
20
3
AGC Voltage VAGC (V)
15
10
VCC1 = 5 V
VAGC = 0 V
Pin = -15 dBm
measurement
circuit2 Note1
-30
-40
-50
5
-60
0
0
100
300
200
400
500
0
100
Input Frequency fin (MHz)
OUTPUT POWER vs. INPUT POWER
-10
-20
-30
-40
-50
-60
VCC1 = 4.5 V
VCC1 = 5.0 V
VCC1 = 5.5 V
-50
-40
-30
-20
400
500
-10
0
-20
-30
VAGC = 0 V
fin = 100 MHz
RL = 560 Ω
measurement
circuit2 Note2
-40
-50
-60
-70
VCC1 = 4.5 V
VCC1 = 5.0 V
VCC1 = 5.5 V
-80
-90
-35
-25
Input Power Pin (dBm)
-15
-5
Input Power Pin (dBm)
Notes 1. Gain = (Gain at Spectrum Analyzer) + 20 log (560 Ω/50 Ω)
2. Output Power = (Output Power at Spectrum Analyzer) + 10 log (560 Ω/50 Ω)
8
300
OUTPUT POWER vs. INPUT POWER
-10
VAGC = VCC1
fin = 100 MHz
RL = 560 Ω
measurement
circuit2 Note2
Output Power Pout (50 Ω/560 Ω) (dBm)
Output Power Pout (50 Ω/560 Ω) (dBm)
0
200
Input Frequency fin (MHz)
Data Sheet P13710EJ3V0DS00
5
15
µPC3206GR
TYPICAL CHARACTERISTICS (TA = 25 °C)
DIFFERENTIAL GAIN vs. INPUT FREQUENCY
450
300
Differential Gain Gvideo (V/V)
350
250
200
150
100
VCC2 = 8 V
VCC2 = 9 V
VCC2 = 10 V
50
0
0
50
fin = 100 MHz
RL = 1 kΩ
G1A-G1B
= OPEN
measurement
circuit4
35
30
25
20
15
10
VCC2 = 8 V
VCC2 = 9 V
VCC2 = 10 V
5
0
100
150
200
0
250
50
100
150
200
250
Input Frequency fin (MHz)
Input Frequency fin (MHz)
DIFFERENTIAL GAIN vs. INPUT FREQUENCY
DIFFERENTIAL GAIN vs. INPUT FREQUENCY
250
40
fin = 100 MHz
RL = 1 kΩ
G1A-G1B
= SHORT
measurement
circuit4
200
fin = 100 MHz
RL = 1 kΩ
G1A-G1B
= OPEN
measurement
circuit4
35
Differential Gain Gvideo (V/V)
Differential Gain Gvideo (V/V)
400
Differential Gain Gvideo (V/V)
DIFFERENTIAL GAIN vs. INPUT FREQUENCY
40
fin = 100 MHz
RL = 1 kΩ
G1A-G1B
= SHORT
measurement
circuit4
150
100
30
25
20
15
10
50
VCC2 = 4.5 V
VCC2 = 5.0 V
VCC2 = 5.5 V
0
0
50
0
100
150
200
0
250
150
200
Input Frequency fin (MHz)
OUTPUT POWER vs. INPUT POWER
250
0
-10
VCC2 = 9 V
-20
VCC2 = 5 V
-25
fin = 100 MHz
RL = 1 kΩ
G1A-G1B
= SHORT
measurement
circuit4 Note
-30
-35
-40
-30
-20
-10
0
Output Power Pout (50 Ω/1 kΩ) (dBm)
Output Power Pout (50 Ω/1 kΩ) (dBm)
100
Input Frequency fin (MHz)
-5
-40
-50
50
OUTPUT POWER vs. INPUT POWER
0
-15
VCC2 = 4.5 V
VCC2 = 5.0 V
VCC2 = 5.5 V
5
-10
VCC2 = 5 V
-20
VCC2 = 9 V
-30
-40
fin = 100 MHz
RL = 1 kΩ
G1A-G1B
= OPEN
measurement
circuit4 Note
-50
-60
-50
-40
Input Power Pin (dBm)
-30
-20
-10
0
10
Input Power Pin (dBm)
Note Output Power = (Output Power at Spectrum Analyzer) + 10 log (1 kΩ/50 Ω)
Data Sheet P13710EJ3V0DS00
9
µPC3206GR
STANDARD CHARACTERISTICS (TA = 25 °C)
NOISE FIGURE vs. INPUT FREQUENCY
OUTPUT POWER vs. INPUT POWER
10
VAGC = VCC1
9 RL = 560 Ω
measurement
8 circuit5
-10
VAGC = 3.25 V
-20
VAGC = 5 V
Noise Figure NF (dB)
Output Power Pout (50 Ω/560 Ω) (dBm)
0
-30
-40
VAGC = 0 V
-50
-60
VAGC = 2.8 V
VCC1 = 5 V
fin = 100 MHz
RL = 560 Ω
measurement
circuit2 Note
-70
-80
VAGC = 2 V
-90
-60
-40
-20
0
20
7
6
5
4
3
2
0
10
3rd ORDER INTERMODULATION DISTORTION
Output Power Pout (50 Ω/560 Ω) (dBm)
0
-20
-40
-60
-100
-50
VCC1 = VAGC = 5 V
fin1 = 100 MHz
fin2 = 106 MHz
RL = 560 Ω
measurement
circuit2 Note
-45
-40
-35
-30
-25
–20
Input Power Pin (dBm)
Note Output Power = (Output Power at Spectrum Analyzer) + 10 log (560 Ω/50 Ω)
10
100
Input Frequency fin (MHz)
Input Power Pin (dBm)
-80
VCC1 = 4.5 V
VCC1 = 5.0 V
VCC1 = 5.5 V
1
Data Sheet P13710EJ3V0DS00
1000
µPC3206GR
STANDARD CHARACTERISTICS (TA = 25 °C)
3rd ORDER INTERMODULATION DISTORTION
0
-10
-10
Output Power Pout (50 Ω/1 kΩ) (dBm)
Output Power Pout (50 Ω/1 kΩ) (dBm)
3rd ORDER INTERMODULATION DISTORTION
0
-20
-30
-40
-50
VCC2 = 9 V
fin = 100 MHz
fin2 = 106 MHz
RL = 1 kΩ
G1A-G1B
= SHORT
measurement
circuit4 Note
-60
-70
-80
-90
-50
-40
-30
-20
-20
-30
-40
-50
VCC2 = 5 V
fin = 100 MHz
fin2 = 106 MHz
RL = 1 kΩ
G1A-G1B
= SHORT
measurement
circuit4 Note
-60
-70
-80
-90
-50
-10
-40
Input Power Pin (dBm)
-10
-10
-20
-30
-40
VCC2 = 9 V
fin = 100 MHz
fin2 = 106 MHz
RL = 1 kΩ
G1A-G1B
= OPEN
measurement
circuit4 Note
-60
-70
-80
-90
-25
-20
-15
-10
-20
-10
3rd ORDER INTERMODULATION DISTORTION
0
Output Power Pout (50 Ω/1 kΩ) (dBm)
Output Power Pout (50 Ω/1 kΩ) (dBm)
3rd ORDER INTERMODULATION DISTORTION
0
-50
-30
Input Power Pin (dBm)
-5
-20
-30
-40
-50
VCC2 = 5 V
fin = 100 MHz
fin2 = 106 MHz
RL = 1 kΩ
G1A-G1B
= OPEN
measurement
circuit4 Note
-60
-70
-80
0
-90
-25
Input Power Pin (dBm)
-20
-15
-10
-5
0
Input Power Pin (dBm)
Note Output Power = (Output Power at Spectrum Analyzer) + 10 log (1 kΩ/50 Ω)
Data Sheet P13710EJ3V0DS00
11
µPC3206GR
STANDARD CHARACTERISTICS (TA = 25 °C)
GAIN vs. INPUT FREQUENCY
80
80
60
60
VCC1 = 5 V
VCC2 = 9 V
VAGC = 5 V
fin1 = 100 MHz
RL = 1 kΩ
20 G1A-G1B
= SHORT
measurement
circuit6
0
0
100
Gain (dB)
100
40
200
300
400
500
VCC1 = 5 V
VCC2 = 5 V
VAGC = 5 V
fin1 = 100 MHz
RL = 1 kΩ
20 G1A-G1B
= SHORT
measurement
circuit6
0
0
100
40
400
Input Frequency fin (MHz)
GAIN vs. INPUT FREQUENCY
70
70
60
60
50
50
40
VCC1 = 5 V
30 VCC2 = 9 V
VAGC = 3 V
fin1 = 100 MHz
20
RL = 1 kΩ
G1A-G1B
10 = SHORT
measurement
circuit6
0
0
100
40
30
20
10
0
200
300
400
0
500
100
200
300
400
500
Input Frequency fin (MHz)
GAIN vs. INPUT FREQUENCY
25
20
20
15
15
Gain (dB)
25
VCC1 = 5 V
10 VCC2 = 9 V
VAGC = 0 V
fin1 = 100 MHz
RL = 1 kΩ
5 G1A-G1B
= SHORT
measurement
circuit6
0
0
100
500
VCC1 = 5 V
VCC2 = 5 V
VAGC = 3 V
fin1 = 100 MHz
RL = 1 kΩ
G1A-G1B
= SHORT
measurement
circuit6
GAIN vs. INPUT FREQUENCY
Gain (dB)
300
Input Frequency fin (MHz)
Input Frequency fin (MHz)
VCC1 = 5 V
VCC2 = 5 V
VAGC = 0 V
fin1 = 100 MHz
RL = 1 kΩ
G1A-G1B
= SHORT
measurement
circuit6
10
5
0
200
300
400
500
0
100
200
300
Input Frequency fin (MHz)
Input Frequency fin (MHz)
12
200
GAIN vs. INPUT FREQUENCY
Gain (dB)
Gain (dB)
Gain (dB)
GAIN vs. INPUT FREQUENCY
100
Data Sheet P13710EJ3V0DS00
400
500
µPC3206GR
STANDARD CHARACTERISTICS (TA = 25 °C)
GAIN vs. INPUT FREQUENCY
80
60
60
40 VCC1 = 5 V
VCC2 = 9 V
VAGC = 5 V
fin1 = 100 MHz
20 RL = 1 kΩ
G1A-G1B
= OPEN
measurement
circuit6
0
0
100
Gain (dB)
Gain (dB)
GAIN vs. INPUT FREQUENCY
80
200
300
400
500
40 VCC1 = 5 V
VCC2 = 5 V
VAGC = 5 V
fin1 = 100 MHz
20 RL = 1 kΩ
G1A-G1B
= OPEN
measurement
circuit6
0
0
100
Input Frequency fin (MHz)
300
400
500
GAIN vs. INPUT FREQUENCY
40
30
30
Gain (dB)
Gain (dB)
GAIN vs. INPUT FREQUENCY
40
20 VCC1 = 5 V
VCC2 = 9 V
VAGC = 3 V
fin1 = 100 MHz
10 RL = 1 kΩ
G1A-G1B
= OPEN
measurement
circuit6
0
0
100
200
Input Frequency fin (MHz)
VCC1 = 5 V
VCC2 = 5 V
VAGC = 3 V
fin1 = 100 MHz
RL = 1 kΩ
G1A-G1B
= OPEN
measurement
circuit6
20
10
0
200
300
400
500
0
Input Frequency fin (MHz)
100
200
300
400
500
Input Frequency fin (MHz)
Data Sheet P13710EJ3V0DS00
13
µPC3206GR
STANDARD CHARACTERISTICS (TA = 25 °C)
3rd ORDER INTERMODULATION DISTORTION
3rd ORDER INTERMODULATION DISTORTION
0
Output Power Pout (50 Ω/1 kΩ) (dBm)
Output Power Pout (50 Ω/1 kΩ) (dBm)
0
-10
-20
-30
VCC1 = 5 V
VCC2 = 9 V
VAGC = 5 V
fin1 = 100 MHz
fin2 = 106 MHz
RL = 1 kΩ
G1A-G1B
= SHORT
measurement
circuit6 Note
-40
-50
-60
-70
-65
-60
-55
-10
-20
-30
-40
-50
-60
-70
-50
VCC1 = 5 V
VCC2 = 5 V
VAGC = 5 V
fin1 = 100 MHz
fin2 = 106 MHz
RL = 1 kΩ
G1A-G1B
= SHORT
measurement
circuit6 Note
-65
-60
-55
-50
Input Power Pin (dBm)
Input Power Pin (dBm)
3rd ORDER INTERMODULATION DISTORTION
Output Power Pout (50 Ω/1 kΩ) (dBm)
0
-20
-40
VCC1 = 5 V
VCC2 = 9 V
VAGC = 0 V
fin1 = 100 MHz
fin2 = 106 MHz
RL = 1 kΩ
G1A-G1B
= SHORT
measurement
circuit6 Note
-60
-80
-15
-10
-5
0
5
Input Power Pin (dBm)
3rd ORDER INTERMODULATION DISTORTION
3rd ORDER INTERMODULATION DISTORTION
0
-20
-40
VCC1 = 5 V
VCC2 = 9 V
VAGC = 5 V
fin1 = 100 MHz
fin2 = 106 MHz
RL = 1 kΩ
G1A-G1B
= OPEN
measurement
circuit6 Note
-60
-80
-60
-50
-40
-30
Output Power Pout (50 Ω/1 kΩ) (dBm)
Output Power Pout (50 Ω/1 kΩ) (dBm)
0
-20
-40
-60
-80
-60
Input Power Pin (dBm)
-50
-40
Input Power Pin (dBm)
Note Output Power = (Output Power at Spectrum Analyzer) + 10 log (1 kΩ/50 Ω)
14
VCC1 = 5 V
VCC2 = 5 V
VAGC = 5 V
fin1 = 100 MHz
fin2 = 106 MHz
RL = 1 kΩ
G1A-G1B
= OPEN
measurement
circuit6 Note
Data Sheet P13710EJ3V0DS00
-30
µPC3206GR
STANDARD CHARACTERISTICS (TA = 25 °C)
NOISE FIGURE vs. INPUT FREQUENCY
10
9
9
8
8
Noise Figure NF (dB)
Noise Figure NF (dB)
NOISE FIGURE vs. INPUT FREQUENCY
10
7
6
5
4
3
2
1
VCC1 = 5 V
VCC2 = 9 V
VAGC = 5 V
RL = 1 kΩ
G1A-G1B
= SHORT
measurement
circuit7
0
10
100
1000
7
6
5
4 VCC1 = 5 V
VCC2 = 5 V
3 VAGC = 5 V
RL = 1 kΩ
2 G1A-G1B
= SHORT
1 measurement
circuit7
0
10
Input Frequency fin (MHz)
9
9
8
8
Noise Figure NF (dB)
Noise Figure NF (dB)
10
7
6
5
3
2
1
VCC1 = 5 V
VCC2 = 9 V
VAGC = 5 V
RL = 1 kΩ
G1A-G1B
= OPEN
measurement
circuit7
0
10
100
1000
NOISE FIGURE vs. INPUT FREQUENCY
NOISE FIGURE vs. INPUT FREQUENCY
10
4
100
Input Frequency fin (MHz)
1000
7
6
5
4 VCC1 = 5 V
VCC2 = 5 V
3 VAGC = 5 V
RL = 1 kΩ
2 G1A-G1B
= OPEN
1 measurement
circuit7
0
10
100
1000
Input Frequency fin (MHz)
Input Frequency fin (MHz)
Data Sheet P13710EJ3V0DS00
15
µPC3206GR
INPUT IMPEDANCE (2 PIN)
MARKER
Zin
1
45 MHz
938.4 Ω – j604.8 Ω
2
100 MHz
434.7 Ω – j573.8 Ω
3
250 MHz
122.5 Ω – j324.9 Ω
Conditions TA = 25°C
VCC1 = 5 V
1
2
3
START
STOP
0.045000000 GHz
0.250000000 GHz
OUTPUT IMPEDANCE (20 PIN)
MARKER
2
3
16
1
45 MHz
19.86 Ω + 3.83 Ω
2
100 MHz
20.28 Ω + 9.26 Ω
3
250 MHz
22.28 Ω + 22.48 Ω
Conditions TA = 25°C
VCC1 = 5 V
1
START
STOP
Zout
0.045000000 GHz
0.250000000 GHz
Data Sheet P13710EJ3V0DS00
µPC3206GR
INPUT IMPEDANCE (19 PIN)
MARKER
Zin
1
45 MHz
965.8 Ω – j601.2 Ω
2
100 MHz
446.6 Ω – j661.8 Ω
3
250 MHz
126.8 Ω – j312.4 Ω
Conditions TA = 25°C
VCC1 = 5 V
1
2
3
START
STOP
0.045000000 GHz
0.250000000 GHz
OUTPUT IMPEDANCE (17 PIN)
MARKER
2
3
ZOUT
1
45 MHz
10.32 Ω + j2.88 Ω
2
100 MHz
10.86 Ω + j6.42 Ω
3
250 MHz
12.67 Ω + j15.39 Ω
Conditions TA = 25°C
VCC1 = 5 V
1
START
STOP
0.045000000 GHz
0.250000000 GHz
Data Sheet P13710EJ3V0DS00
17
µPC3206GR
INPUT IMPEDANCE (15 PIN)
(i) TA = 25°C, VCC2 = 5 V
MARKER
Zin
1
45 MHz
840.0 Ω – j2560 Ω
2
100 MHz
50.19 Ω – j1259 Ω
3
250 MHz
52.03 Ω – j475.6 Ω
1
2
3
START
STOP
0.045000000 GHz
0.250000000 GHz
(ii) TA = 25°C, VCC2 = 9 V
MARKER
1
2
3
START
STOP
18
0.045000000 GHz
0.250000000 GHz
Data Sheet P13710EJ3V0DS00
Zin
1
45 MHz
478.3 Ω – j3091 Ω
2
100 MHz
106.13 Ω – j1368 Ω
3
250 MHz
55.11 Ω – j501.3 Ω
µPC3206GR
OUTPUT IMPEDANCE (12 PIN)
(i) TA = 25°C, VCC2 = 5 V, 11 pin is grounded through 50 Ω resistor.
MARKER
Zout
1
45 MHz
9.88 Ω + j6.25 Ω
2
100 MHz
14.21 Ω + j11.78 Ω
3
250 MHz
23.64 Ω + j15.73 Ω
2
3
1
START
STOP
0.045000000 GHz
0.250000000 GHz
(ii) TA = 25°C, VCC2 = 9 V, 11 pin is grounded through 50 Ω resistor.
MARKER
Zout
1
45 MHz
7.36 Ω + j4.85 Ω
2
100 MHz
10.50 Ω + j9.58 Ω
3
250 MHz
19.37 Ω + j13.70 Ω
2
3
1
START
STOP
0.045000000 GHz
0.250000000 GHz
Data Sheet P13710EJ3V0DS00
19
µPC3206GR
THERMAL CHARACTERISTICS (FOR REFERENCE)
CIRCUIT CURRENT vs. AMBIENT TEMPERATURE
(AGC BLOCK)
CIRCUIT CURRENT vs. AMBIENT TEMPERATURE
(VIDEO AMP BLOCK)
30
30
25
Circuit Current ICC (mA)
Circuit Current ICC (mA)
no input signal
VCC1 = 5 V
measurement
25
circuit1
VAGC = 0 V
20
15
VAGC = 5 V
10
5
0
-50
no input signal
measurement
circuit3
VCC2 = 9 V
20
15
VCC2 = 5 V
10
5
-25
0
25
50
75
0
-50
100
-25
Ambient Temperature TA (°C)
OUTPUT POWER vs. INPUT POWER
100
OUTPUT POWER vs. INPUT POWER
-20
-30
-40
TA = -40 °C
TA = +25 °C
TA = +85 °C
-40
-30
-20
-10
0
Output Power Pout (50 Ω/560 Ω) (dBm)
Output Power Pout (50 Ω/560 Ω) (dBm)
75
VCC1 = 5 V
VAGC = 0 V
-20 fin = 100 MHz
RL = 560 Ω
-30 measurement
circuit2 Note
-40
-50
-60
-70
TA = -40 °C
TA = +25 °C
TA = +85 °C
-80
-90
-35
-25
Input Power Pin (dBm)
-15
-5
Input Power Pin (dBm)
Note Output Power = (Output Power at Spectrum Analyzer) + 10 log (560 Ω/50 Ω)
20
50
-10
VCC1 = 5 V
VAGC = VCC1
fin = 100 MHz
-10 RL = 560 Ω
measurement
circuit2 Note
-50
25
Ambient Temperature TA (°C)
0
-50
-60
0
Data Sheet P13710EJ3V0DS00
5
15
µPC3206GR
THERMAL CHARACTERISTICS (FOR REFERENCE)
DIFFERENTIAL GAIN vs. INPUT FREQUENCY
DIFFERENTIAL GAIN vs. INPUT FREQUENCY
450
350
300
Differential Gain Gvideo (V/V)
400
Differential Gain Gvideo (V/V)
250
VCC2 = 9 V
fin = 100 MHz
RL = 1 kΩ
G1A-G1B
= SHORT
measurement
circuit4
250
200
150
100
VCC2 = 5 V
fin = 100 MHz
RL = 1 kΩ
G1A-G1B
= SHORT
measurement
circuit4
200
150
100
50
TA = -40 °C
TA = +25 °C
TA = +85 °C
50
0
0
50
TA = -40 °C
TA = +25 °C
TA = +85 °C
0
100
150
200
250
0
50
100
150
200
250
Input Frequency fin (MHz)
Input Frequency fin (MHz)
GAIN vs. AGC VOLTAGE
50
VCC1 = 5 V
fin = 100 MHz
40 RL = 560 Ω
measurement
30 circuit2
Gain (dB)
20
10
0
-10
TA = -40 °C
TA = +25 °C
TA = +85 °C
-20
-30
0
1
2
3
4
5
6
AGC Voltage VAGC (V)
Data Sheet P13710EJ3V0DS00
21
µPC3206GR
MEASUREMENT CIRCUIT 1
200
1
AGC Amp1
20
0.022 µ F
4700pF
IN
1µ F
VCC1
19
3
18
0.1 µ F
100 k
VAGC
2
100 k
0.022 µ F
1µ F
0.022 µ F
0.1 µ F
0.022 µ F
0.1 µ F
4
VCC1
0.1 µ F
17
AGC Amp2
510
5
16
6
15
7
14
8
9
1µ F
0.1 µ F
AGC OUT
13
VIDEO
Amp
12
10
11
MEASUREMENT CIRCUIT 2
Note
SG1
(50 Ω)
SG2
(50 Ω)
200
1
MIXPAD
1µ F
VCC1
20
0.022 µ F
4700pF
2
19
3
18
0.1 µ F
100 k
VAGC
AGC Amp1
100 k
1µ F
0.022 µ F
0.022 µ F
0.1 µ F
0.022 µ F
0.1 µ F
4
510
5
16
6
15
7
14
8
13
VIDEO
Amp
10
12
11
Note In the case of measurement of IM3
22
0.1 µ F
17
AGC Amp2
9
1µ F
Data Sheet P13710EJ3V0DS00
0.1 µ F
VCC1
Spectrum
Analyzer
(50 Ω)
µPC3206GR
MEASUREMENT CIRCUIT 3
1
AGC Amp1
20
2
19
3
18
4
17
AGC Amp2
5
16
0.1 µ F
6
IN1
15
51
open
/short
7
14
8
13
1000pF
9
VIDEO
Amp
VCC2
0.022 µ F
OUT1
12
0.022 µ F 950
10
OUT2
11
0.022 µ F 950
MEASUREMENT CIRCUIT 4
1
AGC Amp1
20
2
19
3
18
4
17
Note
SG1
(50 Ω)
AGC Amp2
5
16
6
15
SG2
(50 Ω)
0.1 µ F
MIXPAD
51
7
open
/short
14
1000pF
8
9
13
VIDEO
Amp
0.022 µ F
12
0.022 µ F
10
950
11
VCC2
Spectrum
Analyzer
(50 Ω)
0.022 µ F
1k
Note In the case of measurement of IM3
Data Sheet P13710EJ3V0DS00
23
µPC3206GR
MEASUREMENT CIRCUIT 5
NF
METER
Noise Source
200
1
AGC Amp1
20
0.022 µ F
1µ F
VCC1
19
3
18
0.1 µ F
100 k
VAGC
4700pF
2
100 k
1µ F
0.022 µ F
0.022 µ F
0.1 µ F
0.022 µ F
0.1 µ F
4
VCC1
0.1 µ F
17
AGC Amp2
16
6
15
7
14
8
0.1 µ F
510
5
9
1µ F
13
VIDEO
Amp
12
10
11
MEASUREMENT CIRCUIT 6
200
1
1µ F
4700pF
2
19
3
18
0.1 µ F
100 k
VCC1
20
0.022 µ F
SG1
(50 Ω)
VAGC
AGC Amp1
100 k
0.022 µ F
1µ F
0.022 µ F
0.1 µ F
0.022 µ F
0.1 µ F
open
/short
4
1µ F
0.1 µ F
17
AGC Amp2
0.1 µ F
510
5
16
6
15
7
14
8
13
1000pF
9
VIDEO
Amp
0.022 µ F
12
0.022 µ F 950
10
11
0.022 µ F
1k
24
VCC1
Data Sheet P13710EJ3V0DS00
VCC2
Spectrum
Analyzer
(50 Ω)
µPC3206GR
MEASUREMENT CIRCUIT 7
NOISE
SOURCE
NF
METER
200
1
AGC Amp1
20
0.022 µ F
1µ F
VCC1
19
3
18
0.1 µ F
100 k
VAGC
4700pF
2
100 k
0.022 µ F
1µ F
0.022 µ F
0.1 µ F
0.022 µ F
0.1 µ F
open
/short
4
1µ F
0.1 µ F
VCC1
17
AGC Amp2
0.1 µ F
510
5
16
6
15
7
14
8
13
1000pF
9
VIDEO
Amp
0.022 µ F
VCC2
12
0.022 µ F 950
10
11
0.022 µ F
1k
Data Sheet P13710EJ3V0DS00
25
µPC3206GR
ILLUSTRATION OF THE EVALUATION BOARD FOR MEASUREMENT CIRCUIT6
AGC IN
AGC OUT
VDEO IN
VCC
VAGC
1 µF
1 µF
100 k
0.1µ
0.022µ
4700 P
1µ
200
100 k
0.022 µ
VCC
0.022 µ
0.1 µ
0.1 µ
510
1000 P
0.022µ
0.1 µ
0.1 µ
0.022 µ
short/open
0.022 µ
950
0.022 µ
VCC
950
NEC
µ PC3206
FXTR
VDEO OUT
Notes on evaluation board
(1) GND pattern on rear side
26
(2)
: Through hole
(3)
: represents cutout
Data Sheet P13710EJ3V0DS00
VDEO OUT
µPC3206GR
PACKAGE DIMENSIONS
20 PIN PLASTIC SSOP (225 mil) (UNIT: mm)
20
11
detail of lead end
+7˚
3˚–3˚
1
10
6.7 ± 0.3
6.4 ± 0.2
1.8 MAX.
4.4 ± 0.1
1.5 ± 0.1
1.0 ± 0.2
0.5 ± 0.2
0.15
0.65
+0.10
0.22 –0.05
0.15
+0.10
–0.05
0.575 MAX.
0.10 M
0.1 ± 0.1
NOTE
Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.
Data Sheet P13710EJ3V0DS00
27
µPC3206GR
NOTE ON CORRECT USE
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesires osillation).
(3) Keep the track length of the ground pins as short as possible.
(4) A low pass filter must be attached to VCC line.
(5) A matching circuit must be externally attached to output port.
RECOMMENDED SOLDERING CONDITIONS
This product should be soldered under the following recommended conditions.
For soldering methods and
conditions other than those recommended below, contact your NEC sales representative.
Soldering Method
Soldering Conditions
Recommended Condition
Symbol
Infrared Reflow
Package peak temperature: 235°C or below
Time: 30 seconds or less (at 210°C)
Note
Count: 3, Exposure limit : None
IR35-00-3
VPS
Package peak temperature: 215°C or below
Time: 40 seconds or less (at 200°C)
Note
Count: 3, Exposure limit : None
VP15-00-3
Partial Heating
Pin temperature: 300°C
Time: 3 seconds or less (per side of device)
Note
Exposure limit : None
–
Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period.
Caution Do not use different soldering methods together (except for partial heating).
For details of the recommended soldering conditions for surface mounting, refer to information document
SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).
28
Data Sheet P13710EJ3V0DS00
µPC3206GR
[MEMO]
Data Sheet P13710EJ3V0DS00
29
µPC3206GR
[MEMO]
30
Data Sheet P13710EJ3V0DS00
µPC3206GR
[MEMO]
Data Sheet P13710EJ3V0DS00
31
µPC3206GR
• The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
• No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
• NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
• Descriptions of circuits, software, and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these circuits,
software, and information in the design of the customer's equipment shall be done under the full responsibility
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
parties arising from the use of these circuits, software, and information.
• While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
• NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
M7 98. 8