CEL UPC3220GR

DATA SHEET
NEC's LOW DISTORTION
DOWN-CONVERTER IC UPC3220GR
FOR DIGITAL CATV
FEATURES
DESCRIPTION
•
LOW DISTORTION:
IIP3 = +1.0 dBm TYP.
•
WIDE AGC DYNAMIC RANGE:
GCRtotal = 45.5 dB TYP.
NEC's UPC3220GR is a silicon monolithic IC designed for use as IF down-converter for digital CATV.
This IC consists of AGC amplifier, mixer and video
amplifier.
•
ON CHIP VIDEO AMPLIFIER
•
SUPPLY VOLTAGE:
5V
NEC's UPC3220GR is packaged in a 16-pin SSOP
(Shrink Small Outline Package) suitable for surface
mount.
•
PACKAGED IN A 16-PIN SSOP SUITABLE
FOR HIGH-DENSITY SURFACE MOUNTING
This IC is manufactured using our 10 GHz fT NESAT II
AL silicon bipolar process.
This process uses silicon nitride passivation film. This
material can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC
has excellent performance, uniformly and reliability.
APPLICATION
• Digital CATV Receivers
ORDERING INFORMATION
PART NUMBER
ORDER NUMBER
UPC3220GR-E1-A UPC3220GR-E1-A
PACKAGE
MARKING
16-pin plastic SSOP
(5.72 mm (225)) (Pb-Free) Note
C3220
SUPPLYING FORM
• Embossed tape 12 mm wide
• Pin 1 indicates pull-out direction of tape
• Qty 2.5 kpcs/reel
Note With regards to terminal solder (the solder contains lead) plated products (conventionally plated), contact your nearby
sales office.
Remark To order evaluation samples, contact your nearby sales office.
Part number for sample order: μPC3220GR
Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.
California Eastern Laboratories
UPC3220GR
INTERNAL BLOCK DIAGRAM AND PIN CONFIGURATION
(Top View)
RF IN1
1
RF IN2
AGC Amp.
Mixer
16
MIX OUT2
2
15
MIX OUT1
VAGC
3
14
GND
GND
4
13
AMP IN1
OSC IN1
5
12
AMP IN2
OSC IN2
6
11
GND
OSC OUT
Buffer Amp.
Video Amp.
VCC1
7
10
AMP OUT1
VCC2
8
9
AMP OUT2
UPC3220GR
PIN EXPLANATIONS
PIN NO.
SYMBOL
PIN VOLTAGE
(V, TYP.)
1
RF IN1
1.46
2
RF IN2
1.46
EXPLANATION
Input pin of IF signal.
1-pin is same phase and 2-pin is opposite phase
at balance input.
In case of single input, 1-pin or 2-pin should be
grounded through capacitor (example 10 nF).
EQUIVALENT CIRCUIT
7
AGC
Control
1
3
VAGC
0 to 3.5
Automatic gain control pin.
This pins bias govern the AGC output level.
7
Minimum gain at VAGC = 0 V
Maximum gain at VAGC = 3.5 V
4
GND
0.0
5
OSC IN1
2.6
6
OSC IN2
2.6
2
3
Ground pin.
Must be connected to the system ground with
minimum inductance.
Ground pattern on the board should be formed
as wide as possible.
AGC
Control
––––––
Input pin of Oscillator signal.
5-pin is same phase and 6-pin is opposite phase
at balance input.
In case of single input, 5-pin or 6-pin should be
grounded through capacitor (ex. 10 nF).
7
5
7
8
VCC1
VCC2
5.0
5.0
6
Power supply pin of IF down convertor block.
Must be connected bypass capacitor to minimize
ground impedance.
––––––
Power supply pin of video amplifier.
Must be connected bypass capacitor to minimize
ground impedance.
––––––
UPC3220GR
PIN
NO.
SYMBOL
PIN VOLTAGE
(V, TYP.)
9
AMP
OUT2
2.5
10
AMP
OUT1
2.5
GND
0.0
11
EXPLANATION
EQUIVALENT CIRCUIT
Output pin of video amplifier.
OUT1 and IN1 are same phase.
OUT2 and IN2 are same phase.
8
9
10
12
AMP IN2
1.45
13
AMP IN1
1.45
Ground pin.
Must be connected to the system ground with
minimum inductance.
Ground pattern on the board should be formed
as wide as possible.
––––––
Signal input pin of video amplifier.
This pin is high impedance.
8
12
14
GND
0.0
15
MIX OUT1
3.7
16
MIX OUT2
3.7
Ground pin.
Must be connected to the system ground with
minimum inductance.
Ground pattern on the board should be formed
as wide as possible.
Output pin of mixer.
This output pin features low-impedance because
of its emitter-follower output port.
13
––––––
7
15
16
UPC3220GR
ABSOLUTE MAXIMUM RATINGS
PARAMETER
SYMBOL
CONDITIONS
RATINGS
UNIT
6.0
V
433
mW
−40 to +85
°C
Supply Voltage
VCC
TA = +25°C
Power Dissipation
PD
TA = +85°C
Operating Ambient Temperature
TA
Storage Temperature
Tstg
−55 to +150
°C
Note
Note
Mounted on double-sided copper-clad 50 x 50 x 1.6 mm epoxy glass PWB
RECOMMENDED OPERATING RANGE
PARAMETER
Supply Voltage
Operating Ambient Temperature
Gain Control Voltage Range
SYMBOL
CONDITIONS
VCC
TA
VAGC
VCC = 4.5 to 5.5 V
MIN.
TYP.
MAX.
UNIT
4.5
5.0
5.5
V
−40
+25
+85
°C
0
−
VCC
V
UPC3220GR
ELECTRICAL CHARACTERISTICS
PARAMETER
SYMBOL
(TA = +25ºC, VCC = 5 V)
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
33.0
42.0
53.5
mA
DC Characteristics
Circuit Current 1
(Total Block)
ICC1
No input signal, VCC1 = VCC2 = 5 V
Note 4
Circuit Current 2
(AGC Amplifier Block + Mixer Block)
ICC2
No input signal, VCC1 = 5 V
Note 4
15.0
20.0
25.5
mA
Circuit Current 3
(Video Amplifier Block)
ICC3
No input signal, VCC2 = 5 V
Note 4
18.0
22.0
28.0
mA
AGC Voltage High Level
VAGC (H)
@ Maximum gain
Note 1
3.0
−
VCC
V
AGC Voltage Low Level
VAGC (L)
@ Minimum gain
Note 1
0
−
0.5
V
RF Characteristics (AGC Amplifier Block + Mixer Block: fRF = 84 MHz, fLO = 134 MHz, PLO = −15 dBm, fIF = 50 MHz, ZS = 50 Ω, ZL = 1 kΩ)
RF Input Frequency Range
fRF
fIF = 50 MHz constant
Note 1
30
−
250
MHz
IF Output Frequency Range
fIF
fRF = 84 MHz constant
Note 1
0.1
−
150
MHz
Maximum Conversion Gain
CGMAX
VAGC = 3.0 V, Pin = −50 dBm
Note 1
30.5
33.0
35.5
dB
Minimum Conversion Gain
CGMIN
VAGC = 0.5 V, Pin = −20 dBm
Note 1
−18.0
−12.5
−3.5
dB
VAGC = 0.5 to 3.0 V
Note 1
36.0
45.5
−
dB
−
7.0
8.5
dB
24.0
26.5
−
dBc
AGC Dynamic Range
GCRAGC
Noise Figure
NF
DSB, VAGC = 3.0 V (@ Maximum gain)
Note 2
3rd Order Intermodulaion Distortion
IM3
Vout = 0.236 Vp-p × 2 tone,
(single-ended output),
Pin −30 dBm/tone
fRF1 = 84 MHz, fRF2 = 85 MHz
Note 1
RF Characteristics (Video Amplifier Block: f = 50 MHz, ZS = 50 Ω, ZL = 1 kΩ)
Differential Gain
Maximum Output Voltage 2
Notes 1. By measurement circuit 1
2. By measurement circuit 2
3. By measurement circuit 4
4. By measurement circuit 6
Gdiff
Pin = −55 dBm
Note 3
48.0
50.5
53.5
dB
Voclip2
Pin = −25 dBm
Note 3
2.95
3.70
−
Vp-p
UPC3220GR
STANDARD CHARACTERISTICS
PARAMETER
(TA = +25ºC, VCC = 5 V, ZS = 50 Ω)
SYMBOL
TEST CONDITIONS
REFERENCE VALUE
UNIT
AGC Amplifier Block + Mixer Block (fRF = 84 MHz, fLO = 134 MHz, PLO = −15 dBm, fIF = 50 MHz, ZS = 50 Ω, ZL = 1 kΩ)
Input 3rd Order Distortion
Intercept Point
IIP3
VAGC = 0.5 V (@ Minimum gain)
fRF1 = 84 MHz, fRF2 = 85 MHz Note 1
+1.0
dBm
Maximum Output Voltage1
Voclip1
VAGC = 3.0 V, Pin = −20 dBm
Note 1
0.65
Vp-p
RF IN Impedance
OSC IN Impedance
ZRFin
VAGC = 3.0 V, f = 84 MHz
Note 2
440 − j1100
Ω
ZOSCin
VAGC = 3.0 V, f = 134 MHz
Note 2
280 − j810
Ω
MIXER OUT Impedance
ZMIXout
VAGC = 3.0 V, f = 50 MHz
Note 2
30.2 + j2.5
Ω
60
MHz
Video Amplifier Block (f = 50 MHz, ZS = 50 Ω, ZL = 1 kΩ)
Frequency Range
fBW
Input Impedance
ZAMPin
f = 50 MHz
Note 4
330 − j480
Ω
Output Impedance
ZAMPout
f = 50 MHz
Note 4
21.9 + j22.6
Ω
Vout = 0.7 Vp-p × 2 tone,
fin1 = 49 MHz, fin2 = 50 MHz
55.0
dBc
Note 3
3rd Order Intermodulaion Distortion
IM3
Pin = −55 dBm, G (f = 10 MHz) −1 dB
Note 3
Total Block (fRF = 84 MHz, fLO = 134 MHz, PLO = −15 dBm, fIF = 50 MHz, ZS = 50 Ω, ZL = 1 kΩ)
Maximum Conversion Gain
CGMAX
VAGC = 3.0 V, Pin = −70 dBm
Note 5
67.5
dB
Minimum Conversion Gain
CGMIN
VAGC = 0.5 V, Pin = −40 dBm
Note 5
22.0
dB
Total Dynamic Range
GCR
VAGC = 0.5 to 3.0 V
Noise Figure
NF
Note 5
45.5
dB
DSB, VAGC = 3.0 V (@ Maximum gain)
Note 6
7.0
dB
VAGC = 3.0 V (@ Minimum gain)
Note 5
3.7
Vp-p
Maximum Output Voltage
Voclip
Input 3rd Order Distortion
Intercept Point
IIP3total
VAGC = 0.5 V (@ Minimum gain)
fRF1 = 84 MHz, fRF2 = 85 MHz Note 5
+1.0
dBm
3rd Order Intermodulaion Distortion
IM3total
Vout = 0.7 Vp-p × 2 tone,
Pin −40 dBm/tone
fRF1 = 84 MHz, fRF2 = 85 MHz
51.0
dBc
Notes 1. By measurement circuit 1
2. By measurement circuit 3
3. By measurement circuit 4
4. By measurement circuit 5
5. By measurement circuit 6
6. By measurement circuit 7
Remark The graphs indicate nominal characteristics.
Note 5
UPC3220GR
MEASUREMENT CIRCUIT 1
RF2
0.1 µ F
RF1
50 Ω
50 Ω
1
0.1 µF//20 pF
1 µF
VAGC
0.1 µ F
0.1 µ F
50 Ω
0.1 µ F
VCC1
1 µF
0.1 µ F
Mixer
16
2
15
3
14
4
Note
LO
AGC Amp.
OSC OUT
Buffer Amp.
Spectrum
Analyzer
IF
1 µ F 1 kΩ
50 Ω
1 µ F 1 kΩ
51 Ω
13
12
5
6
Video Amp.
11
7
10
8
9
Note Balun Transformer : TOKO 617DB-1010 B4F (Double balanced type)
MEASUREMENT CIRCUIT 2
Noise Source
RF
0.1 µ F
0.1 µ F//20 pF
1 µF
VAGC
LO
1
1 µF
16
3
14
4
0.1 µ F
Mixer
15
0.1 µ F
0.1 µ F
AGC Amp.
2
Note
50 Ω
VCC1
Noise Figure Meter 50 Ω
OSC OUT
Buffer Amp.
13
5
6
12
Video Amp.
11
7
10
8
9
0.1 µ F
Note Balun Transformer : TOKO 617DB-1010 B4F (Double balanced type)
1 µ F 1 kΩ
1 µ F 1 kΩ
IF
51 Ω
UPC3220GR
MEASUREMENT CIRCUIT 3
RF
0.1 µ F
0.1 µ F//20 pF
1 µF
VAGC
0.1 µ F
0.1 µ F
0.1 µ F
1 µF
AGC Amp.
1µ F
Mixer
IF
16
2
15
3
14
4
LO
VCC1
1
OSC OUT
Buffer Amp.
1 µF
51 Ω
13
12
5
6
11
Video Amp.
7
10
8
9
0.1 µ F
Network Analyzer
LO Port Input Impedance
50 Ω
IF Port Input Impedance
50 Ω
RF Port Input Impedance
MEASUREMENT CIRCUIT 4
1
AGC Amp.
Mixer
2
15
3
14
4
OSC OUT
Buffer Amp.
13
12
5
6
VCC2
1 µF
16
Video Amp.
11
7
10
8
9
0.1 µ F
Remarks 1. Voltage Gain (Single Ended) = 20 log (VOUT/Vin) (dB)
2. Differential Gain (Differential-out) = 20 log (2 × VOUT/Vin) (dB)
3. VOUT = Vout (Measured Value) × (1 050/50)
Vin
1µ F
1µ F
51 Ω
50 Ω
51 Ω
51 Ω
1 µ F 1 kΩ
Vout
50 Ω
1 µ F 1 kΩ
VOUT
Spectrum
Analyzer
51 Ω
UPC3220GR
MEASUREMENT CIRCUIT 5
AGC Amp.
1
Mixer
16
2
15
3
14
OSC OUT
Buffer Amp.
4
13
12
5
6
VCC2
1 µF
Input Impedance
1µ F
1µ F
50 Ω
11
Video Amp.
7
10
8
9
Network
Analyzer
51 Ω
50 Ω
1µ F
1µ F
Output Impedance
0.1 µ F
51 Ω
MEASUREMENT CIRCUIT 6
0.1 µ F
RF
50 Ω
0.1 µ F//20 pF
1 µF
VAGC
LO
1
3
14
4
0.1 µ F
VCC1 1 µ F 0.1 µ F
16
15
0.1 µ F
0.1 µ F
Mixer
2
Note
50 Ω
AGC Amp.
OSC OUT
Buffer Amp.
13
12
5
6
Video Amp.
10
8
9
Note Balun Transformer : TOKO 617DB-1010 B4F (Double balanced type)
1 kΩ
1µ F
Loss 10 dB
@50 MHz
1µ F
11
7
VCC2 1 µ F 0.1 µ F
1 kΩ
Spectrum
Analyzer
1 µ F 1 kΩ
1 µ F 1 kΩ
50 Ω
51 Ω
UPC3220GR
MEASUREMENT CIRCUIT 7
Noise Figure Meter 50 Ω
Noise Source
0.1 µ F
RF
0.1 µ F//20 pF
1 µF
VAGC
LO
1
3
14
4
0.1 µ F
VCC1 1 µ F 0.1 µ F
16
15
0.1 µ F
0.1 µ F
Mixer
2
Note
50 Ω
AGC Amp.
OSC OUT
Buffer Amp.
13
12
5
6
Video Amp.
1 kΩ
1 kΩ
1µ F
1µ F
11
7
10
8
9
1 µ F 1 kΩ
1 µ F 1 kΩ
51 Ω
VCC2 1 µ F 0.1 µ F
Note Balun Transformer : TOKO 617DB-1010 B4F (Double balanced type)
The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.
UPC3220GR
ILLUSTRATION OF THE MEASUREMENT CIRCUIT1, 2 ASSEMBLED ON EVALUATION BOARD
1 kΩ
51 Ω
IFout
0.1 µF
1 kΩ
1µF
0.1 µF
VCC1 (AGC + MIX)
0.1 µF
20 pF
RF1, RF2in
Note
1µF
0.1 µF
µPC3220GR
VAGC
Note Balun Transformer
Remarks
1. Back side: GND pattern
2. Solder plated on pattern
3.
: Through hole
4.
: Represents cutout
1µF
0.1 µF
LOin
UPC3220GR
ILLUSTRATION OF THE MEASUREMENT CIRCUIT3 ASSEMBLED ON EVALUATION BOARD
1µF
51 Ω
0.1 µF
IFout
1µF
0.1 µF
VCC1 (AGC + MIX)
0.1 µF
20 pF
RFin
1µF
0.1 µF
1µF
0.1 µF
µPC3220GR
VAGC
Remarks
1. Back side: GND pattern
2. Solder plated on pattern
3.
: Through hole
4.
: Represents cutout
5.
: Represents short-circuit strip
LOin
UPC3220GR
ILLUSTRATION OF THE MEASUREMENT CIRCUIT4 ASSEMBLED ON EVALUATION BOARD
Vin
1 kΩ
51 Ω
Vout
1µF
1µF
1µF
0.1 µF
1µF
1µF
µPC3220GR
Remarks
1. Back side: GND pattern
2. Solder plated on pattern
3.
: Through hole
4.
: Represents short-circuit strip
51 Ω
1 kΩ
VCC2 (Video)
UPC3220GR
ILLUSTRATION OF THE MEASUREMENT CIRCUIT5 ASSEMBLED ON EVALUATION BOARD
Input Impedance
Output Impedance
1µF
51 Ω
1µF
0.1 µF
1µF
1µF 51 Ω
1µF
µPC3220GR
Remarks
1. Back side: GND pattern
2. Solder plated on pattern
3.
: Through hole
4.
: Represents short-circuit strip
VCC2 (Video)
UPC3220GR
ILLUSTRATION OF THE MEASUREMENT CIRCUIT6, 7 ASSEMBLED ON EVALUATION BOARD
1 kΩ
1µF
1 kΩ
1µF
1µF
0.1 µF
1µF
1µF
0.1 µF
Note
1µF
0.1 µF
µPC3220GR
VAGC
Note Balun Transformer
Remarks
1. Back side: GND pattern
2. Solder plated on pattern
3.
: Through hole
4.
: Represents cutout
5.
: Represents short-circuit strip
51 Ω
1 kΩ
VCC2 (Video)
VCC1 (VGC + MIX)
0.1 µF
20 pF
RFin
Vout
1µF
0.1 µF
LOin
UPC3220GR
Circuit Current1 (Total Block) ICC1 (mA)
CIRCUIT CURRENT1 (TOTAL BLOCK)
vs. SUPPLY VOLTAGE
60
VAGC = 0 V
No Singnal
50 Measurement
Cuicuit6
40
30
TA = +25°C
20
TA = +85°C
10
0
0
1
TA = -40°C
2
3
4
5
6
Circuit Current3 (Video Amplifier Block) ICC3 (mA)
Supply Voltage VCC1, 2 (V)
CIRCUIT CURRENT3 (VIDEO AMPLIFIER
BLOCK) vs. SUPPLY VOLTAGE
30
VCC1 = VAGC = 0 V
No Singnal
25 Measurement
Cuicuit6
20
15
10
TA = +25°C
5 TA = +85°C
0
TA = -40°C
0
1
2
3
4
5
6
Supply Voltage VCC2 (V)
Remark The graphs indicate nominal characteristics.
Circuit Current2 (AGC Amplifier + Mixer Block) ICC2 (mA)
TYPICAL CHARACTERISTICS (TA = +25ºC, unless otherwise specified)
CIRCUIT CURRENT2 (AGC AMPLIFIER
+ MIXER BLOCK) vs. SUPPLY VOLTAGE
30
VCC2 = VAGC = 0 V
No Singnal
25 Measurement
Cuicuit6
20
15
10
TA = +25°C
5
0
TA = +85°C
0
1
TA = -40°C
2
3
4
Supply Voltage VCC1 (V)
5
6
UPC3220GR
VOLTAGE GAIN vs.
RF INPUT FREQUENCY RANGE
VOLTAGE GAIN vs.
RF INPUT FREQUENCY RANGE
40
35
35
30
25
20
25
VCC1 = 5.5 V
5.0 V
4.5 V
Voltage Gain (dB)
Voltage Gain (dB)
30
15
10
5
VAGC = 3.0 V
0 Pin = -50 dBm
-5 fLO = 60 to 290 MHz
PLO =-15 dBm
-10 fIF = 50 MHz
Measurement Cuicuit1
-15
0
50
100
150
200
250
10
5
VAGC = 3.0 V
0 VCC = 5.0 V
-5 Pin = -50 dBm
fLO = 60 to 290 MHz
-10 PLO = -15 dBm
-15 fIF = 50 MHz
Measurement Cuicuit1
-20
0
50
100
35
25
VCC1 = 5.5 V
5.0 V
4.5 V
20
15
150
200
0
-20
0
250
50
100
150
200
RF Input Frequency Range fRF (MHz)
VOLTAGE GAIN vs.
RF INPUT FREQUENCY RANGE
VOLTAGE GAIN vs.
RF INPUT FREQUENCY RANGE
250
35
Voltage Gain (dB)
VAGC = 0.5 V
35 Pin = -20 dBm
fLO = 60 to 290 MHz
30 PLO = -15 dBm
25 fIF = 50 MHz
Measurement Cuicuit1
20
15
10
VCC1 = 4.5 V
5.0 V
5.5 V
VAGC = 0.5 V
30 VCC = 5.0 V
25 Pin = -20 dBm
fLO = 60 to 290 MHz
20 PLO = -15 dBm
15 fIF = 50 MHz
Measurement Cuicuit1
10
5
0
-5
TA = +25°C
TA = -40°C
TA = +85°C
-10
-10
-15
0
TA = +85°C
RF Input Frequency Range fRF (MHz)
40
-5
TA = -40°C
-5
-15
100
250
5
-10
50
TA = +25°C
10
-10
0
200
VAGC = 1.5 V
VCC = 5.0 V
Pin = -50 dBm
fLO = 60 to 290 MHz
PLO = -15 dBm
fIF = 50 MHz
Measurement Cuicuit1
30
-5
5
150
VOLTAGE GAIN vs.
RF INPUT FREQUENCY RANGE
0
-15
0
Voltage Gain (dB)
15
VOLTAGE GAIN vs.
RF INPUT FREQUENCY RANGE
Voltage Gain (dB)
Voltage Gain (dB)
5
TA = +25°C
RF Input Frequency Range fRF (MHz)
VAGC = 1.5 V
35 Pin = -50 dBm
fLO = 60 to 290 MHz
30 PLO = -15 dBm
25 fIF = 50 MHz
Measurement Cuicuit1
20
10
TA = -40°C
TA = +85°C
RF Input Frequency Range fRF (MHz)
40
15
20
-15
50
100
150
200
250
RF Input Frequency Range fRF (MHz)
Remark The graphs indicate nominal characteristics.
-20
0
50
100
150
200
RF Input Frequency Range fRF (MHz)
250
UPC3220GR
VOLTAGE GAIN vs.
IF OUTPUT FREQUENCY RANGE
40
35
35
30
30
25
25
VCC1 = 5.5 V
5.0 V
4.5 V
20
15
Voltage Gain (dB)
Voltage Gain (dB)
VOLTAGE GAIN vs.
IF OUTPUT FREQUENCY RANGE
10
5
VAGC = 3.0 V
0 Pin = -50 dBm
-5 fLO = 94 to 234 MHz
PLO = -15 dBm
-10 fRF = 84 MHz
Measurement Cuicuit1
-15
0
20
60
40
80
100 120 140 160
20
10
5
VAGC = 3.0 V
0 VCC1 = 5.0 V
-5 Pin = -50 dBm
fLO = 94 to 234 MHz
-10 PLO = -15 dBm
-15 fRF = 84 MHz
Measurement Cuicuit1
-20
40
0
20
60
Voltage Gain (dB)
Voltage Gain (dB)
35
VAGC = 1.5 V
35 Pin = -50 dBm
fLO = 94 to 234 MHz
30 PLO = -15 dBm
25 fRF = 84 MHz
Measurement Cuicuit1
20
VCC1 = 4.5 V
5.0 V
5.5 V
0
VAGC = 1.5 V
30 VCC1 = 5.0 V
25 Pin = -50 dBm
fLO = 94 to 234 MHz
20 PLO = -15 dBm
15 fRF = 84 MHz
Measurement Cuicuit1
10
-10
-15
40
60
80
-20
0
100 120 140 160
IF Output Frequency Range fIF (MHz)
Voltage Gain (dB)
Voltage Gain (dB)
15
10
VCC1 = 4.5 V
5.0 V
5.5 V
60
80
100 120 140 160
VAGC = 0.5 V
30 VCC1 = 5.0 V
25 Pin = -20 dBm
fLO = 94 to 234 MHz
20 PLO = -15 dBm
15 fRF = 84 MHz
Measurement Cuicuit1
10
5
0
-5
TA = +25°C
TA = -40°C
TA = +85°C
-10
-15
-10
-15
0
40
35
VAGC = 0.5 V
35 Pin = -20 dBm
fLO = 94 to 234 MHz
30 PLO = -15 dBm
25 fRF = 84 MHz
Measurement Cuicuit1
20
-5
20
VOLTAGE GAIN vs.
IF OUTPUT FREQUENCY RANGE
40
0
TA = +85°C
IF Output Frequency Range fIF (MHz)
VOLTAGE GAIN vs.
IF OUTPUT FREQUENCY RANGE
5
TA = -40°C
0
-5
-10
20
TA = +25°C
5
-5
-15
0
100 120 140 160
VOLTAGE GAIN vs.
IF OUTPUT FREQUENCY RANGE
40
5
80
IF Output Frequency Range fIF (MHz)
VOLTAGE GAIN vs.
IF OUTPUT FREQUENCY RANGE
10
TA = -40°C
TA = +25°C
15
IF Output Frequency Range fIF (MHz)
15
TA = +85°C
20
40
60
80
100 120 140 160
IF Output Frequency Range fIF (MHz)
Remark The graphs indicate nominal characteristics.
-20
0
20
40
60
80
100 120 140 160
IF Output Frequency Range fIF (MHz)
UPC3220GR
VOLTAGE GAIN vs.
GAIN CONTROL VOLTAGE RANGE
VCC1 = 4.5 V
5.0 V
5.5 V
fRF = 84 MHz
Pin = -50 dBm
fLO = 134 MHz
PLO = -15 dBm
fIF = 50 MHz
Measurement Cuicuit1
0.5
1.0
1.5
3.0
3.5
40
35
30
25
20
15
10
5
0
-5
-10
-15
-20
0
TA = -40°C
+25°C
+85°C
VCC1 = 5.0 V
fRF = 84 MHz
Pin = -50 dBm
fLO = 134 MHz
PLO = -15 dBm
fIF = 50 MHz
Measurement Cuicuit1
0.5
1.0
1.5
2.5
2.0
3.0
3.5
Gain Control Voltage Range VAGC (V)
Gain Control Voltage Range VAGC (V)
NOISE FIGURE vs.
GAIN CONTROL VOLTAGE RANGE
NOISE FIGURE vs.
GAIN CONTROL VOLTAGE RANGE
35
fLO = 134 MHz
PLO = -15 dBm
fIF = 50 MHz
Measurement Cuicuit2
30
Noise Figure NF (dB)
2.5
2.0
Voltage Gain (dB)
40
35
30
25
20
15
10
5
0
-5
-10
-15
-20
0
25
20
15
10
VCC1 = 5.5 V
5.0 V
4.5 V
5
0
1.0
35
VCC1 = 5.0 V
fLO = 134 MHz
PLO = -15 dBm
fIF = 50 MHz
Measurement Cuicuit2
30
Noise Figure NF (dB)
Voltage Gain (dB)
VOLTAGE GAIN vs.
GAIN CONTROL VOLTAGE RANGE
25
20
15
10
TA = +85°C
+25°C
-40°C
5
1.5
2.0
2.5
3.0
3.5
Gain Control Voltage Range VAGC (V)
Remark The graphs indicate nominal characteristics.
0
1.0
1.5
2.0
2.5
3.0
Gain Control Voltage Range VAGC (V)
3.5
UPC3220GR
OUTPUT POWER vs. INPUT POWER
-20
VCC1 = 5.5 V
5.0 V
4.5 V
-25
-30
-35
-40
VAGC = 3.0 V
fRF = 84 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50 MHz
Measurement Cuicuit1
-45
-50
-50
-45
-40
-35
-30
-25
-20 -15
-30
-40°C
-35
-40
+85°C
-45
-50
-55
-55
-50
-45
-40
-35
VCC1 = 5.0 V
VAGC = 3.0 V
fRF = 84 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50 MHz
Measurement Cuicuit1
-30 -25 -20 -15
2 TONE OUTPUT POWER
vs. INPUT POWER
-40
-50
-60
-70
-80
-90
-50
-40
VAGC = 3.0 V
fRF1 = 84 MHz
fRF2 = 85 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50, 49 MHz
Measurement Cuicuit1
-30
-20
-20
TA = -40°C
+25°C
+85°C
-30
-40
-50
-60
-70
-80
-90
-100
-60
-50
-40
VCC1 = 5.0 V
VAGC = 3.0 V
fRF1 = 84 MHz
fRF2 = 85 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50, 49 MHz
Measurement Cuicuit1
-30
-20
Input Power Pin (dBm)
Input Power Pin (dBm)
2 TONE OUTPUT POWER
vs. INPUT POWER
2 TONE OUTPUT POWER
vs. INPUT POWER
VCC1 = 4.5 V
5.0 V
-30
5.5 V
-40
-50
-60
-70
-80
-90
-100
-50
TA = +25°C
-25
2 TONE OUTPUT POWER
vs. INPUT POWER
VCC1 = 4.5 V
5.0 V
-30
5.5 V
-20
-20
Input Power Pin (dBm)
-20
-100-60
-15
Input Power Pin (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
-55
-55
Output Power Pout (50 Ω/1 050 Ω) (dBm)
-15
-40
-30
VAGC = 2.1 V
fRF1 = 84 MHz
fRF2 = 85 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50, 49 MHz
Measurement Cuicuit1
-20
-10
Input Power Pin (dBm)
Remark The graphs indicate nominal characteristics.
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
Output Power Pout (50 Ω/1 050 Ω) (dBm)
OUTPUT POWER vs. INPUT POWER
-20
-30
TA = -40°C
+25°C
+85°C
-40
-50
-60
-70
-80
-90
-100-50
-40
-30
VCC1 = 5.0 V
VAGC = 2.1 V
fRF1 = 84 MHz
fRF2 = 85 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50, 49 MHz
Measurement Cuicuit1
-20
-10
Input Power Pin (dBm)
-20
VCC1 = 4.5 V
5.0 V
-30
5.5 V
-40
-50
-60
-70
-80
-90
-100
-30
-20
-10
VAGC = 1.5 V
fRF1 = 84 MHz
fRF2 = 85 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50, 49 MHz
Measurement Cuicuit1
0
10
2 TONE OUTPUT POWER
vs. INPUT POWER
-20
-30
TA = -40°C
+25°C
+85°C
-40
-50
-60
-70
-80
-90
-100
-30
-20
-10
VCC1 = 5.0 V
VAGC = 1.5 V
fRF1 = 84 MHz
fRF2 = 85 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50, 49 MHz
Measurement Cuicuit1
0
10
Input Power Pin (dBm)
Input Power Pin (dBm)
2 TONE OUTPUT POWER
vs. INPUT POWER
2 TONE OUTPUT POWER
vs. INPUT POWER
-20
VCC1 = 4.5 V
5.0 V
-30
5.5 V
-40
-50
-60
-70
-80
-90
-100
-30
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 TONE OUTPUT POWER
vs. INPUT POWER
-20
-10
VAGC = 0.5 V
fRF1 = 84 MHz
fRF2 = 85 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50, 49 MHz
Measurement Cuicuit1
0
10
Input Power Pin (dBm)
Remark The graphs indicate nominal characteristics.
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
UPC3220GR
-20
-30
TA = -40°C
+25°C
+85°C
-40
-50
-60
-70
-80
-90
-100
-30
-20
-10
VCC1 = 5.0 V
VAGC = 0.5 V
fRF1 = 84 MHz
fRF2 = 85 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50, 49 MHz
Measurement Cuicuit1
0
10
Input Power Pin (dBm)
UPC3220GR
–Video Amplifier Block–
VOLTAGE GAIN (SINGLE-ENDED)
vs. INPUT FREQUENCY
VOLTAGE GAIN (SINGLE-ENDED)
vs. INPUT FREQUENCY
50
Voltage Gain (Single-ended) (dB)
VCC2 = 4.5 V
49
5.0 V
5.5 V
48
47
46
45
44
43
42
41 Pin = -55 dBm
Measurement Cuicuit4
40
10
50
100
TA = -40°C
+25°C
+85°C
49
48
47
46
45
44
43
42
VCC2 = 5 V
41 Pin = -55 dBm
Measurement Cuicuit4
40
10
50
100
Input Frequency fin (MHz)
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
0
VCC2 = 4.5 V
5.0 V
-5
5.5 V
-10
-15
-20
-25
-30
-35
-40
-50
-45
-40
-35
fIF = 50 MHz
Measurement Cuicuit4
-20
-15
-30 -25
0
-5
TA = -40°C
+25°C
+85°C
-10
-15
-20
-25
-30
VCC2 = 5 V
fIF = 50 MHz
Measurement Cuicuit4
-20
-15
-30 -25
-35
-40
-50
-45
-40
-35
Input Power Pin (dBm)
Input Power Pin (dBm)
2 TONE OUTPUT POWER
vs. INPUT POWER
2 TONE OUTPUT POWER
vs. INPUT POWER
0
VCC2 = 4.5 V
5.0 V
-10
5.5 V
-20
-30
-40
-50
-60
-70
-80
-90
-60
Output Power Pout (50 Ω/1 050 Ω) (dBm)
Input Frequency fin (MHz)
-50
-40
fIF1 = 50 MHz
fIF2 = 49 MHz
Measurement Cuicuit4
-30
-20
Input Power Pin (dBm)
Remark The graphs indicate nominal characteristics.
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
Output Power Pout (50 Ω/1 050 Ω) (dBm)
Voltage Gain (Single-ended) (dB)
50
0
-10
-20
TA = -40°C
+25°C
+85°C
-30
-40
-50
-60
-70
-80
-90
-60
-50
-40
VCC2 = 5 V
fIF1 = 50 MHz
fIF2 = 49 MHz
Measurement Cuicuit4
-30
-20
Input Power Pin (dBm)
UPC3220GR
–Total Block–
VOLTAGE GAIN
vs. RF INPUT FREQUENCY RANGE
VOLTAGE GAIN
vs. RF INPUT FREQUENCY RANGE
80
80
VAGC = 3.0 V (Pin = -70 dBm)
50
VAGC = 1.5 V (Pin = -40 dBm)
40
30
VAGC = 0.5 V (Pin = -40 dBm)
20
fLO = 60 to 290 MHz
10 PLO = -15 dBm
fIF = 50 MHz
Measurement Cuicuit6
0
50
100
0
150
VAGC = 3.0 V (Pin = -70 dBm)
50
VAGC = 1.5 V (Pin = -40 dBm)
40
30
20
VAGC = 0.5 V (Pin = -40 dBm)
TA = -40°C
+25°C
+85°C
0
50
0
200
250
Measurement Cuicuit6
150
200
250
100
RF Input Frequency Range fRF (MHz)
RF Input Frequency Range fRF (MHz)
VOLTAGE GAIN
vs. IF OUTPUT FREQUENCY RANGE
VOLTAGE GAIN
vs. IF OUTPUT FREQUENCY RANGE
80
fLO = 94 to 234 MHz
PLO = -15 dBm
fRF = 84 MHz
Measurement Cuicuit6
60
VAGC = 3.0 V (Pin = -70 dBm)
50
VAGC = 1.5 V (Pin = -40 dBm)
40
30
VAGC = 0.5 V (Pin = -40 dBm)
20
VCC1, 2 = 4.5 V
5.0 V
5.5 V
10
20
40
0
60
80
100
Measurement Cuicuit6 VCC1, 2 = 5 V
fLO = 94 to 234 MHz
PLO = -15 dBm
fRF = 84 MHz
70
Voltage Gain (dB)
70
Voltage Gain (dB)
60
10
80
60
50
VAGC = 3.0 V (Pin = -70 dBm)
VAGC = 1.5 V (Pin = ñ40 dBm)
40
30
20
TA = -40°C
+25°C
+85°C
0
20
40
0
10
120 140 160
VAGC = 0.5 V (Pin = -40 dBm)
60
80
100
120 140 160
IF Output Frequency Range fIF (MHz)
IF Output Frequency Range fIF (MHz)
VOLTAGE GAIN
vs. GAIN CONTROL VOLTAGE RANGE
VOLTAGE GAIN
vs. GAIN CONTROL VOLTAGE RANGE
75
70
70
65
65
Voltage Gain (dB)
Voltage Gain (dB)
60
PLO = -15 dBm
VCC1, 2 = 5 V
fLO = 60 to 290 MHz fIF = 50 MHz
70
60
55
60
VCC1, 2 = 4.5 V
5.0 V
5.5 V
50
45
40
fRF = 84 MHz
Pin = -70 dBm
fLO = 134 MHz
PLO = -15 dBm
Measurement Cuicuit6
35
30
25
20
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
Gain Control Voltage Range VAGC (V)
Remark The graphs indicate nominal characteristics.
Voltage Gain (dB)
Voltage Gain (dB)
VCC1, 2 = 4.5 V
5.0 V
70
5.5 V
55
50
45
TA = -40°C
+25°C
+85°C
40
35
30
25
20
15
0
0.5
1.0
1.5
VCC1, 2 = 5 V
fRF = 84 MHz
Pin = -70 dBm
fLO = 134 MHz
PLO = -15 dBm
Measurement Cuicuit6
2.5
3.0
3.5
2.0
Gain Control Voltage Range VAGC (V)
UPC3220GR
NOISE FIGURE vs.
GAIN CONTROL VOLTAGE RANGE
35
35
30
30
25
Noise Figure NF (dB)
Noise Figure NF (dB)
NOISE FIGURE vs.
GAIN CONTROL VOLTAGE RANGE
VCC1, 2 = 4.5 V
5.0 V
5.5 V
20
15
10
fIF = 50 MHz
fLO = 134 MHz
5 PLO = -15 dBm
Measurement Cuicuit7
0
1.0
1.5
2.0
2.5
3.0
3.5
25
TA = -40°C
+25°C
+85°C
20
15
10
VCC1, 2 = 5 V
fIF = 50 MHz
5 fLO = 134 MHz
PLO = ñ15 dBm
Measurement Cuicuit7
0
1.0
1.5
2.0
Gain Control Voltage Range VAGC (V)
-10
-15
-20
-25
VAGC = 3.0 V
fRF = 84 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50 MHz
Measurement Cuicuit6
-30
-35
-40
-75
-70
-65
-60
-55
-50
-45
-40 -35
0
-5
TA = +25°C
-10
-15
-40°C
-20
-25
+85°C
-30
-35
-40
-75
-70
-65
-60
-55
VCC1, 2 = 5.0 V
VAGC = 3.0 V
fRF = 84 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50 MHz
Measurement Cuicuit6
-50 -45 -40 -35
Input Power Pin (dBm)
Input Power Pin (dBm)
2 TONE OUTPUT POWER
vs. INPUT POWER
2 TONE OUTPUT POWER
vs. INPUT POWER
0
VCC1, 2 = 4.5 V
5.0 V
-10
5.5 V
-20
-30
-40
-50
-60
-70
-80
-80
Output Power Pout (50 Ω/1 050 Ω) (dBm)
VCC1, 2 = 5.5 V
5.0 V
4.5 V
-70
-60
VAGC = 3.0 V
fRF1 = 84 MHz
fRF2 = 85 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50, 49 MHz
Measurement Cuicuit6
-50
-40
Input Power Pin (dBm)
Remark The graphs indicate nominal characteristics.
3.5
OUTPUT POWER vs. INPUT POWER
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
-5
3.0
Gain Control Voltage Range VAGC (V)
OUTPUT POWER vs. INPUT POWER
0
2.5
0
-10
TA = -40°C
+25°C
+85°C
-20
-30
-40
-50
-60
-70
-80
-80
-70
-60
VCC1, 2 = 5.0 V
VAGC = 3.0 V
fRF1 = 84 MHz
fRF2 = 85 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50, 49 MHz
Measurement Cuicuit6
-50
-40
Input Power Pin (dBm)
0
VCC1, 2 = 4.5 V
5.0 V
-10
5.5 V
-20
-30
-40
-50
-60
-70
-80
-50
-40
-30
VAGC = 1.5 V
fRF1 = 84 MHz
fRF2 = 85 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50, 49 MHz
Measurement Cuicuit6
-20
-10
2 TONE OUTPUT POWER
vs. INPUT POWER
0
-10
TA = -40°C
+25°C
+85°C
-20
-30
-40
-50
-60
-70
-80
-50
-40
-30
VCC1, 2 = 5 V
VAGC = 1.5 V
fRF1 = 84 MHz
fRF2 = 85 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50, 49 MHz
Measurement Cuicuit6
-20
-10
Input Power Pin (dBm)
Input Power Pin (dBm)
2 TONE OUTPUT POWER
vs. INPUT POWER
2 TONE OUTPUT POWER
vs. INPUT POWER
0
VCC1, 2 = 4.5 V
5.0 V
-10
5.5 V
-20
-30
-40
-50
-60
-70
-80
-35
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 TONE OUTPUT POWER
vs. INPUT POWER
-25
-15
VAGC = 0.5 V
fRF1 = 84 MHz
fRF2 = 85 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50, 49 MHz
Measurement Cuicuit6
-5
5
Input Power Pin (dBm)
Remark The graphs indicate nominal characteristics.
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
UPC3220GR
0
-10
TA = -40°C
+25°C
+85°C
-20
-30
-40
-50
-60
-70
-80
-35
-25
-15
VCC1, 2 = 5.0 V
VAGC = 0.5 V
fRF1 = 84 MHz
fRF2 = 85 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50, 49 MHz
Measurement Cuicuit6
-5
5
Input Power Pin (dBm)
UPC3220GR
-20
4.0
Pout
3.5
-30
3.0
-40
2.5
-50
VAGC
2.0
-60
1.5
-70
1.0
-80
-90
-80
0.5
IM3
-70
-60
-50
-40
-30
-20
-10
0
0
Gain Control Voltage Range VAGC (V)
3rd Order Intermoduration Distortion IM3 (dBc)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
IM3, 2 TONE OUTPUT POWER,
GAIN CONTROL VOLTAGE vs. INPUT POWER
VCC1, 2 = 4.5 V
5.0 V
5.5 V
Conditions
fRF1 = 84 MHz
fRF2 = 85 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50, 49 MHz
@Vout = 0.7 Vp-p/tone
Measurement Cuicuit6
Input Power Pin (dBm)
-20
4.0
Pout
3.5
-30
3.0
-40
2.5
-50
VAGC
2.0
-60
1.5
-70
1.0
IM3
-80
-90
-80
0.5
-70
-60
-50
-40
-30
-20
-10
Input Power Pin (dBm)
Remark The graphs indicate nominal characteristics.
0
0
Gain Control Voltage Range VAGC (V)
3rd Order Intermoduration Distortion IM3 (dBc)
2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm)
IM3, 2 TONE OUTPUT POWER,
GAIN CONTROL VOLTAGE vs. INPUT POWER
TA = -40°C
+25°C
+85°C
Conditions
fRF1 = 84 MHz
fRF2 = 85 MHz
fLO = 134 MHz
PLO = -15 dBm
fIF = 50, 49 MHz
@Vout = 0.7 Vp-p/tone
Measurement Cuicuit6
UPC3220GR
S-PARAMETERS
–AGC Amplifier Block + Mixer Block
(Vcc1 = 5.0 V, VAGC = 3.0 V, by measurement circuit 3)
MIXER RF Input Impedance
1
2
3
4
1 : 30 MHz
2 : 84 MHz
3 : 150 MHz
4 : 250 MHz
1.830 kΩ
443.0 Ω
207.4 Ω
109.7 Ω
-1.603 kΩ
-1.096 kΩ
-728.7 Ω
-454.1 Ω
3.309 pF
1.730 pF
1.456 pF
1.402 pF
1 : 10 MHz
2 : 36 MHz
3 : 50 MHz
4 : 100 MHz
29.48 Ω
29.98 Ω
30.17 Ω
30.79 Ω
634.6 mΩ
1.908 Ω
2.476 Ω
4.171 Ω
10.07 nH
8.431 nH
7.884 nH
6.638 nH
MIXER RF Output Impedance
2
3
1 4
UPC3220GR
MIXER OSC Input Impedance
2
3
4
1
1 : 30 MHz
2 : 100 MHz
3 : 134 MHz
4 : 250 MHz
1.820 kΩ
415.5 Ω
284.6 Ω
133.4 Ω
-1.823 kΩ
-1.010 Ω
-813.1 Ω
-487.0 Ω
2.911 pF
1.575 pF
1.461 pF
1.307 pF
UPC3220GR
–Video Amplifier Block (Vcc2 = 5.0 V, by measurement circuit 5)
Video Amplifier Input Impedance
1
3
4
2
1 : 10 MHz
2 : 36 MHz
3 : 50 MHz
4 : 100 MHz
1.187 kΩ
389.8 Ω
333.4 Ω
245.5 Ω
-1.177 kΩ
-588.3 Ω
-481.1 Ω
-369.7 Ω
13.54 pF
7.516 pF
6.617 pF
4.304 pF
1 : 10 MHz
2 : 36 MHz
3 : 50 MHz
4 : 100 MHz
10.04 Ω
15.86 Ω
21.54 Ω
45.48 Ω
5.225 Ω
17.70 Ω
22.61 Ω
23.89 Ω
83.16 nH
78.25 nH
71.96 nH
38.02 nH
Video Amplifier Output Impedance
2
1
3
4
UPC3220GR
PACKAGE DIMENSIONS
16--PIN PLASTIC SSOP
(5.72 mm (225))(UNIT:mm)
16
9
detail of lead end
1
5º± 5º
8
5.2±0.3
6.4±0.2
1.8 MAX.
4.4±0.2
1.5±0.1
1.0±0.2
S
0.65
0.22+0.10
-0.05
0.125±0.075
0.475 MAX.
0.10 M
0.5±0.2
0.17
+0.08
-0.07
0.10 S
UPC3220GR
NOTES ON CORRECT USE
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).
All the ground pins must be connected together with wide ground pattern to decrease impedance difference.
(3) The bypass capacitor should be attached to VCC line.
RECOMMENDED SOLDERING CONDITIONS
This product should be soldered and mounted under the following recommended conditions. For soldering methods and
conditions other than those recommended below, contact your nearby sales office.
Soldering Method
Soldering Conditions
Condition Symbol
Infrared Reflow
Peak temperature (package surface temperature)
Time at peak temperature
Time at temperature of 220°C or higher
Preheating time at 120 to 180°C
Maximum number of reflow processes
Maximum chlorine content of rosin flux (% mass)
: 260°C or below
: 10 seconds or less
: 60 seconds or less
: 120±30 seconds
: 3 times
: 0.2%(Wt.) or below
IR260
Wave Soldering
Peak temperature (molten solder temperature)
Time at peak temperature
Preheating temperature (package surface temperature)
Maximum number of flow processes
Maximum chlorine content of rosin flux (% mass)
: 260°C or below
: 10 seconds or less
: 120°C or below
: 1 time
: 0.2%(Wt.) or below
WS260
Partial Heating
Peak temperature (pin temperature)
Soldering time (per side of device)
Maximum chlorine content of rosin flux (% mass)
: 350°C or below
: 3 seconds or less
: 0.2%(Wt.) or below
HS350
Caution Do not use different soldering methods together (except for partial heating).
Life Support Applications
These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably
be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and
agree to fully indemnify CEL for all damages resulting from such improper use or sale.
04/25/2005
A Business Partner of NEC Compound Semiconductor Devices, Ltd.
4590 Patrick Henry Drive
Santa Clara, CA 95054-1817
Telephone: (408) 919-2500
Facsimile: (408) 988-0279
Subject: Compliance with EU Directives
CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant
with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous
Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive
2003/11/EC Restriction on Penta and Octa BDE.
CEL Pb-free products have the same base part number with a suffix added. The suffix –A indicates
that the device is Pb-free. The –AZ suffix is used to designate devices containing Pb which are
exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals.
All devices with these suffixes meet the requirements of the RoHS directive.
This status is based on CEL’s understanding of the EU Directives and knowledge of the materials that
go into its products as of the date of disclosure of this information.
Restricted Substance
per RoHS
Concentration Limit per RoHS
(values are not yet fixed)
Concentration contained
in CEL devices
-A
Not Detected
Lead (Pb)
< 1000 PPM
Mercury
< 1000 PPM
Not Detected
Cadmium
< 100 PPM
Not Detected
Hexavalent Chromium
< 1000 PPM
Not Detected
PBB
< 1000 PPM
Not Detected
PBDE
< 1000 PPM
Not Detected
-AZ
(*)
If you should have any additional questions regarding our devices and compliance to environmental
standards, please do not hesitate to contact your local representative.
Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance
content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information
provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better
integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate
information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL
suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for
release.
In no event shall CEL’s liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to
customer on an annual basis.
See CEL Terms and Conditions for additional clarification of warranties and liability.