DATA SHEET NEC's LOW DISTORTION DOWN-CONVERTER IC UPC3220GR FOR DIGITAL CATV FEATURES DESCRIPTION • LOW DISTORTION: IIP3 = +1.0 dBm TYP. • WIDE AGC DYNAMIC RANGE: GCRtotal = 45.5 dB TYP. NEC's UPC3220GR is a silicon monolithic IC designed for use as IF down-converter for digital CATV. This IC consists of AGC amplifier, mixer and video amplifier. • ON CHIP VIDEO AMPLIFIER • SUPPLY VOLTAGE: 5V NEC's UPC3220GR is packaged in a 16-pin SSOP (Shrink Small Outline Package) suitable for surface mount. • PACKAGED IN A 16-PIN SSOP SUITABLE FOR HIGH-DENSITY SURFACE MOUNTING This IC is manufactured using our 10 GHz fT NESAT II AL silicon bipolar process. This process uses silicon nitride passivation film. This material can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformly and reliability. APPLICATION • Digital CATV Receivers ORDERING INFORMATION PART NUMBER ORDER NUMBER UPC3220GR-E1-A UPC3220GR-E1-A PACKAGE MARKING 16-pin plastic SSOP (5.72 mm (225)) (Pb-Free) Note C3220 SUPPLYING FORM • Embossed tape 12 mm wide • Pin 1 indicates pull-out direction of tape • Qty 2.5 kpcs/reel Note With regards to terminal solder (the solder contains lead) plated products (conventionally plated), contact your nearby sales office. Remark To order evaluation samples, contact your nearby sales office. Part number for sample order: μPC3220GR Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge. California Eastern Laboratories UPC3220GR INTERNAL BLOCK DIAGRAM AND PIN CONFIGURATION (Top View) RF IN1 1 RF IN2 AGC Amp. Mixer 16 MIX OUT2 2 15 MIX OUT1 VAGC 3 14 GND GND 4 13 AMP IN1 OSC IN1 5 12 AMP IN2 OSC IN2 6 11 GND OSC OUT Buffer Amp. Video Amp. VCC1 7 10 AMP OUT1 VCC2 8 9 AMP OUT2 UPC3220GR PIN EXPLANATIONS PIN NO. SYMBOL PIN VOLTAGE (V, TYP.) 1 RF IN1 1.46 2 RF IN2 1.46 EXPLANATION Input pin of IF signal. 1-pin is same phase and 2-pin is opposite phase at balance input. In case of single input, 1-pin or 2-pin should be grounded through capacitor (example 10 nF). EQUIVALENT CIRCUIT 7 AGC Control 1 3 VAGC 0 to 3.5 Automatic gain control pin. This pins bias govern the AGC output level. 7 Minimum gain at VAGC = 0 V Maximum gain at VAGC = 3.5 V 4 GND 0.0 5 OSC IN1 2.6 6 OSC IN2 2.6 2 3 Ground pin. Must be connected to the system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. AGC Control –––––– Input pin of Oscillator signal. 5-pin is same phase and 6-pin is opposite phase at balance input. In case of single input, 5-pin or 6-pin should be grounded through capacitor (ex. 10 nF). 7 5 7 8 VCC1 VCC2 5.0 5.0 6 Power supply pin of IF down convertor block. Must be connected bypass capacitor to minimize ground impedance. –––––– Power supply pin of video amplifier. Must be connected bypass capacitor to minimize ground impedance. –––––– UPC3220GR PIN NO. SYMBOL PIN VOLTAGE (V, TYP.) 9 AMP OUT2 2.5 10 AMP OUT1 2.5 GND 0.0 11 EXPLANATION EQUIVALENT CIRCUIT Output pin of video amplifier. OUT1 and IN1 are same phase. OUT2 and IN2 are same phase. 8 9 10 12 AMP IN2 1.45 13 AMP IN1 1.45 Ground pin. Must be connected to the system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. –––––– Signal input pin of video amplifier. This pin is high impedance. 8 12 14 GND 0.0 15 MIX OUT1 3.7 16 MIX OUT2 3.7 Ground pin. Must be connected to the system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. Output pin of mixer. This output pin features low-impedance because of its emitter-follower output port. 13 –––––– 7 15 16 UPC3220GR ABSOLUTE MAXIMUM RATINGS PARAMETER SYMBOL CONDITIONS RATINGS UNIT 6.0 V 433 mW −40 to +85 °C Supply Voltage VCC TA = +25°C Power Dissipation PD TA = +85°C Operating Ambient Temperature TA Storage Temperature Tstg −55 to +150 °C Note Note Mounted on double-sided copper-clad 50 x 50 x 1.6 mm epoxy glass PWB RECOMMENDED OPERATING RANGE PARAMETER Supply Voltage Operating Ambient Temperature Gain Control Voltage Range SYMBOL CONDITIONS VCC TA VAGC VCC = 4.5 to 5.5 V MIN. TYP. MAX. UNIT 4.5 5.0 5.5 V −40 +25 +85 °C 0 − VCC V UPC3220GR ELECTRICAL CHARACTERISTICS PARAMETER SYMBOL (TA = +25ºC, VCC = 5 V) TEST CONDITIONS MIN. TYP. MAX. UNIT 33.0 42.0 53.5 mA DC Characteristics Circuit Current 1 (Total Block) ICC1 No input signal, VCC1 = VCC2 = 5 V Note 4 Circuit Current 2 (AGC Amplifier Block + Mixer Block) ICC2 No input signal, VCC1 = 5 V Note 4 15.0 20.0 25.5 mA Circuit Current 3 (Video Amplifier Block) ICC3 No input signal, VCC2 = 5 V Note 4 18.0 22.0 28.0 mA AGC Voltage High Level VAGC (H) @ Maximum gain Note 1 3.0 − VCC V AGC Voltage Low Level VAGC (L) @ Minimum gain Note 1 0 − 0.5 V RF Characteristics (AGC Amplifier Block + Mixer Block: fRF = 84 MHz, fLO = 134 MHz, PLO = −15 dBm, fIF = 50 MHz, ZS = 50 Ω, ZL = 1 kΩ) RF Input Frequency Range fRF fIF = 50 MHz constant Note 1 30 − 250 MHz IF Output Frequency Range fIF fRF = 84 MHz constant Note 1 0.1 − 150 MHz Maximum Conversion Gain CGMAX VAGC = 3.0 V, Pin = −50 dBm Note 1 30.5 33.0 35.5 dB Minimum Conversion Gain CGMIN VAGC = 0.5 V, Pin = −20 dBm Note 1 −18.0 −12.5 −3.5 dB VAGC = 0.5 to 3.0 V Note 1 36.0 45.5 − dB − 7.0 8.5 dB 24.0 26.5 − dBc AGC Dynamic Range GCRAGC Noise Figure NF DSB, VAGC = 3.0 V (@ Maximum gain) Note 2 3rd Order Intermodulaion Distortion IM3 Vout = 0.236 Vp-p × 2 tone, (single-ended output), Pin −30 dBm/tone fRF1 = 84 MHz, fRF2 = 85 MHz Note 1 RF Characteristics (Video Amplifier Block: f = 50 MHz, ZS = 50 Ω, ZL = 1 kΩ) Differential Gain Maximum Output Voltage 2 Notes 1. By measurement circuit 1 2. By measurement circuit 2 3. By measurement circuit 4 4. By measurement circuit 6 Gdiff Pin = −55 dBm Note 3 48.0 50.5 53.5 dB Voclip2 Pin = −25 dBm Note 3 2.95 3.70 − Vp-p UPC3220GR STANDARD CHARACTERISTICS PARAMETER (TA = +25ºC, VCC = 5 V, ZS = 50 Ω) SYMBOL TEST CONDITIONS REFERENCE VALUE UNIT AGC Amplifier Block + Mixer Block (fRF = 84 MHz, fLO = 134 MHz, PLO = −15 dBm, fIF = 50 MHz, ZS = 50 Ω, ZL = 1 kΩ) Input 3rd Order Distortion Intercept Point IIP3 VAGC = 0.5 V (@ Minimum gain) fRF1 = 84 MHz, fRF2 = 85 MHz Note 1 +1.0 dBm Maximum Output Voltage1 Voclip1 VAGC = 3.0 V, Pin = −20 dBm Note 1 0.65 Vp-p RF IN Impedance OSC IN Impedance ZRFin VAGC = 3.0 V, f = 84 MHz Note 2 440 − j1100 Ω ZOSCin VAGC = 3.0 V, f = 134 MHz Note 2 280 − j810 Ω MIXER OUT Impedance ZMIXout VAGC = 3.0 V, f = 50 MHz Note 2 30.2 + j2.5 Ω 60 MHz Video Amplifier Block (f = 50 MHz, ZS = 50 Ω, ZL = 1 kΩ) Frequency Range fBW Input Impedance ZAMPin f = 50 MHz Note 4 330 − j480 Ω Output Impedance ZAMPout f = 50 MHz Note 4 21.9 + j22.6 Ω Vout = 0.7 Vp-p × 2 tone, fin1 = 49 MHz, fin2 = 50 MHz 55.0 dBc Note 3 3rd Order Intermodulaion Distortion IM3 Pin = −55 dBm, G (f = 10 MHz) −1 dB Note 3 Total Block (fRF = 84 MHz, fLO = 134 MHz, PLO = −15 dBm, fIF = 50 MHz, ZS = 50 Ω, ZL = 1 kΩ) Maximum Conversion Gain CGMAX VAGC = 3.0 V, Pin = −70 dBm Note 5 67.5 dB Minimum Conversion Gain CGMIN VAGC = 0.5 V, Pin = −40 dBm Note 5 22.0 dB Total Dynamic Range GCR VAGC = 0.5 to 3.0 V Noise Figure NF Note 5 45.5 dB DSB, VAGC = 3.0 V (@ Maximum gain) Note 6 7.0 dB VAGC = 3.0 V (@ Minimum gain) Note 5 3.7 Vp-p Maximum Output Voltage Voclip Input 3rd Order Distortion Intercept Point IIP3total VAGC = 0.5 V (@ Minimum gain) fRF1 = 84 MHz, fRF2 = 85 MHz Note 5 +1.0 dBm 3rd Order Intermodulaion Distortion IM3total Vout = 0.7 Vp-p × 2 tone, Pin −40 dBm/tone fRF1 = 84 MHz, fRF2 = 85 MHz 51.0 dBc Notes 1. By measurement circuit 1 2. By measurement circuit 3 3. By measurement circuit 4 4. By measurement circuit 5 5. By measurement circuit 6 6. By measurement circuit 7 Remark The graphs indicate nominal characteristics. Note 5 UPC3220GR MEASUREMENT CIRCUIT 1 RF2 0.1 µ F RF1 50 Ω 50 Ω 1 0.1 µF//20 pF 1 µF VAGC 0.1 µ F 0.1 µ F 50 Ω 0.1 µ F VCC1 1 µF 0.1 µ F Mixer 16 2 15 3 14 4 Note LO AGC Amp. OSC OUT Buffer Amp. Spectrum Analyzer IF 1 µ F 1 kΩ 50 Ω 1 µ F 1 kΩ 51 Ω 13 12 5 6 Video Amp. 11 7 10 8 9 Note Balun Transformer : TOKO 617DB-1010 B4F (Double balanced type) MEASUREMENT CIRCUIT 2 Noise Source RF 0.1 µ F 0.1 µ F//20 pF 1 µF VAGC LO 1 1 µF 16 3 14 4 0.1 µ F Mixer 15 0.1 µ F 0.1 µ F AGC Amp. 2 Note 50 Ω VCC1 Noise Figure Meter 50 Ω OSC OUT Buffer Amp. 13 5 6 12 Video Amp. 11 7 10 8 9 0.1 µ F Note Balun Transformer : TOKO 617DB-1010 B4F (Double balanced type) 1 µ F 1 kΩ 1 µ F 1 kΩ IF 51 Ω UPC3220GR MEASUREMENT CIRCUIT 3 RF 0.1 µ F 0.1 µ F//20 pF 1 µF VAGC 0.1 µ F 0.1 µ F 0.1 µ F 1 µF AGC Amp. 1µ F Mixer IF 16 2 15 3 14 4 LO VCC1 1 OSC OUT Buffer Amp. 1 µF 51 Ω 13 12 5 6 11 Video Amp. 7 10 8 9 0.1 µ F Network Analyzer LO Port Input Impedance 50 Ω IF Port Input Impedance 50 Ω RF Port Input Impedance MEASUREMENT CIRCUIT 4 1 AGC Amp. Mixer 2 15 3 14 4 OSC OUT Buffer Amp. 13 12 5 6 VCC2 1 µF 16 Video Amp. 11 7 10 8 9 0.1 µ F Remarks 1. Voltage Gain (Single Ended) = 20 log (VOUT/Vin) (dB) 2. Differential Gain (Differential-out) = 20 log (2 × VOUT/Vin) (dB) 3. VOUT = Vout (Measured Value) × (1 050/50) Vin 1µ F 1µ F 51 Ω 50 Ω 51 Ω 51 Ω 1 µ F 1 kΩ Vout 50 Ω 1 µ F 1 kΩ VOUT Spectrum Analyzer 51 Ω UPC3220GR MEASUREMENT CIRCUIT 5 AGC Amp. 1 Mixer 16 2 15 3 14 OSC OUT Buffer Amp. 4 13 12 5 6 VCC2 1 µF Input Impedance 1µ F 1µ F 50 Ω 11 Video Amp. 7 10 8 9 Network Analyzer 51 Ω 50 Ω 1µ F 1µ F Output Impedance 0.1 µ F 51 Ω MEASUREMENT CIRCUIT 6 0.1 µ F RF 50 Ω 0.1 µ F//20 pF 1 µF VAGC LO 1 3 14 4 0.1 µ F VCC1 1 µ F 0.1 µ F 16 15 0.1 µ F 0.1 µ F Mixer 2 Note 50 Ω AGC Amp. OSC OUT Buffer Amp. 13 12 5 6 Video Amp. 10 8 9 Note Balun Transformer : TOKO 617DB-1010 B4F (Double balanced type) 1 kΩ 1µ F Loss 10 dB @50 MHz 1µ F 11 7 VCC2 1 µ F 0.1 µ F 1 kΩ Spectrum Analyzer 1 µ F 1 kΩ 1 µ F 1 kΩ 50 Ω 51 Ω UPC3220GR MEASUREMENT CIRCUIT 7 Noise Figure Meter 50 Ω Noise Source 0.1 µ F RF 0.1 µ F//20 pF 1 µF VAGC LO 1 3 14 4 0.1 µ F VCC1 1 µ F 0.1 µ F 16 15 0.1 µ F 0.1 µ F Mixer 2 Note 50 Ω AGC Amp. OSC OUT Buffer Amp. 13 12 5 6 Video Amp. 1 kΩ 1 kΩ 1µ F 1µ F 11 7 10 8 9 1 µ F 1 kΩ 1 µ F 1 kΩ 51 Ω VCC2 1 µ F 0.1 µ F Note Balun Transformer : TOKO 617DB-1010 B4F (Double balanced type) The application circuits and their parameters are for reference only and are not intended for use in actual design-ins. UPC3220GR ILLUSTRATION OF THE MEASUREMENT CIRCUIT1, 2 ASSEMBLED ON EVALUATION BOARD 1 kΩ 51 Ω IFout 0.1 µF 1 kΩ 1µF 0.1 µF VCC1 (AGC + MIX) 0.1 µF 20 pF RF1, RF2in Note 1µF 0.1 µF µPC3220GR VAGC Note Balun Transformer Remarks 1. Back side: GND pattern 2. Solder plated on pattern 3. : Through hole 4. : Represents cutout 1µF 0.1 µF LOin UPC3220GR ILLUSTRATION OF THE MEASUREMENT CIRCUIT3 ASSEMBLED ON EVALUATION BOARD 1µF 51 Ω 0.1 µF IFout 1µF 0.1 µF VCC1 (AGC + MIX) 0.1 µF 20 pF RFin 1µF 0.1 µF 1µF 0.1 µF µPC3220GR VAGC Remarks 1. Back side: GND pattern 2. Solder plated on pattern 3. : Through hole 4. : Represents cutout 5. : Represents short-circuit strip LOin UPC3220GR ILLUSTRATION OF THE MEASUREMENT CIRCUIT4 ASSEMBLED ON EVALUATION BOARD Vin 1 kΩ 51 Ω Vout 1µF 1µF 1µF 0.1 µF 1µF 1µF µPC3220GR Remarks 1. Back side: GND pattern 2. Solder plated on pattern 3. : Through hole 4. : Represents short-circuit strip 51 Ω 1 kΩ VCC2 (Video) UPC3220GR ILLUSTRATION OF THE MEASUREMENT CIRCUIT5 ASSEMBLED ON EVALUATION BOARD Input Impedance Output Impedance 1µF 51 Ω 1µF 0.1 µF 1µF 1µF 51 Ω 1µF µPC3220GR Remarks 1. Back side: GND pattern 2. Solder plated on pattern 3. : Through hole 4. : Represents short-circuit strip VCC2 (Video) UPC3220GR ILLUSTRATION OF THE MEASUREMENT CIRCUIT6, 7 ASSEMBLED ON EVALUATION BOARD 1 kΩ 1µF 1 kΩ 1µF 1µF 0.1 µF 1µF 1µF 0.1 µF Note 1µF 0.1 µF µPC3220GR VAGC Note Balun Transformer Remarks 1. Back side: GND pattern 2. Solder plated on pattern 3. : Through hole 4. : Represents cutout 5. : Represents short-circuit strip 51 Ω 1 kΩ VCC2 (Video) VCC1 (VGC + MIX) 0.1 µF 20 pF RFin Vout 1µF 0.1 µF LOin UPC3220GR Circuit Current1 (Total Block) ICC1 (mA) CIRCUIT CURRENT1 (TOTAL BLOCK) vs. SUPPLY VOLTAGE 60 VAGC = 0 V No Singnal 50 Measurement Cuicuit6 40 30 TA = +25°C 20 TA = +85°C 10 0 0 1 TA = -40°C 2 3 4 5 6 Circuit Current3 (Video Amplifier Block) ICC3 (mA) Supply Voltage VCC1, 2 (V) CIRCUIT CURRENT3 (VIDEO AMPLIFIER BLOCK) vs. SUPPLY VOLTAGE 30 VCC1 = VAGC = 0 V No Singnal 25 Measurement Cuicuit6 20 15 10 TA = +25°C 5 TA = +85°C 0 TA = -40°C 0 1 2 3 4 5 6 Supply Voltage VCC2 (V) Remark The graphs indicate nominal characteristics. Circuit Current2 (AGC Amplifier + Mixer Block) ICC2 (mA) TYPICAL CHARACTERISTICS (TA = +25ºC, unless otherwise specified) CIRCUIT CURRENT2 (AGC AMPLIFIER + MIXER BLOCK) vs. SUPPLY VOLTAGE 30 VCC2 = VAGC = 0 V No Singnal 25 Measurement Cuicuit6 20 15 10 TA = +25°C 5 0 TA = +85°C 0 1 TA = -40°C 2 3 4 Supply Voltage VCC1 (V) 5 6 UPC3220GR VOLTAGE GAIN vs. RF INPUT FREQUENCY RANGE VOLTAGE GAIN vs. RF INPUT FREQUENCY RANGE 40 35 35 30 25 20 25 VCC1 = 5.5 V 5.0 V 4.5 V Voltage Gain (dB) Voltage Gain (dB) 30 15 10 5 VAGC = 3.0 V 0 Pin = -50 dBm -5 fLO = 60 to 290 MHz PLO =-15 dBm -10 fIF = 50 MHz Measurement Cuicuit1 -15 0 50 100 150 200 250 10 5 VAGC = 3.0 V 0 VCC = 5.0 V -5 Pin = -50 dBm fLO = 60 to 290 MHz -10 PLO = -15 dBm -15 fIF = 50 MHz Measurement Cuicuit1 -20 0 50 100 35 25 VCC1 = 5.5 V 5.0 V 4.5 V 20 15 150 200 0 -20 0 250 50 100 150 200 RF Input Frequency Range fRF (MHz) VOLTAGE GAIN vs. RF INPUT FREQUENCY RANGE VOLTAGE GAIN vs. RF INPUT FREQUENCY RANGE 250 35 Voltage Gain (dB) VAGC = 0.5 V 35 Pin = -20 dBm fLO = 60 to 290 MHz 30 PLO = -15 dBm 25 fIF = 50 MHz Measurement Cuicuit1 20 15 10 VCC1 = 4.5 V 5.0 V 5.5 V VAGC = 0.5 V 30 VCC = 5.0 V 25 Pin = -20 dBm fLO = 60 to 290 MHz 20 PLO = -15 dBm 15 fIF = 50 MHz Measurement Cuicuit1 10 5 0 -5 TA = +25°C TA = -40°C TA = +85°C -10 -10 -15 0 TA = +85°C RF Input Frequency Range fRF (MHz) 40 -5 TA = -40°C -5 -15 100 250 5 -10 50 TA = +25°C 10 -10 0 200 VAGC = 1.5 V VCC = 5.0 V Pin = -50 dBm fLO = 60 to 290 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit1 30 -5 5 150 VOLTAGE GAIN vs. RF INPUT FREQUENCY RANGE 0 -15 0 Voltage Gain (dB) 15 VOLTAGE GAIN vs. RF INPUT FREQUENCY RANGE Voltage Gain (dB) Voltage Gain (dB) 5 TA = +25°C RF Input Frequency Range fRF (MHz) VAGC = 1.5 V 35 Pin = -50 dBm fLO = 60 to 290 MHz 30 PLO = -15 dBm 25 fIF = 50 MHz Measurement Cuicuit1 20 10 TA = -40°C TA = +85°C RF Input Frequency Range fRF (MHz) 40 15 20 -15 50 100 150 200 250 RF Input Frequency Range fRF (MHz) Remark The graphs indicate nominal characteristics. -20 0 50 100 150 200 RF Input Frequency Range fRF (MHz) 250 UPC3220GR VOLTAGE GAIN vs. IF OUTPUT FREQUENCY RANGE 40 35 35 30 30 25 25 VCC1 = 5.5 V 5.0 V 4.5 V 20 15 Voltage Gain (dB) Voltage Gain (dB) VOLTAGE GAIN vs. IF OUTPUT FREQUENCY RANGE 10 5 VAGC = 3.0 V 0 Pin = -50 dBm -5 fLO = 94 to 234 MHz PLO = -15 dBm -10 fRF = 84 MHz Measurement Cuicuit1 -15 0 20 60 40 80 100 120 140 160 20 10 5 VAGC = 3.0 V 0 VCC1 = 5.0 V -5 Pin = -50 dBm fLO = 94 to 234 MHz -10 PLO = -15 dBm -15 fRF = 84 MHz Measurement Cuicuit1 -20 40 0 20 60 Voltage Gain (dB) Voltage Gain (dB) 35 VAGC = 1.5 V 35 Pin = -50 dBm fLO = 94 to 234 MHz 30 PLO = -15 dBm 25 fRF = 84 MHz Measurement Cuicuit1 20 VCC1 = 4.5 V 5.0 V 5.5 V 0 VAGC = 1.5 V 30 VCC1 = 5.0 V 25 Pin = -50 dBm fLO = 94 to 234 MHz 20 PLO = -15 dBm 15 fRF = 84 MHz Measurement Cuicuit1 10 -10 -15 40 60 80 -20 0 100 120 140 160 IF Output Frequency Range fIF (MHz) Voltage Gain (dB) Voltage Gain (dB) 15 10 VCC1 = 4.5 V 5.0 V 5.5 V 60 80 100 120 140 160 VAGC = 0.5 V 30 VCC1 = 5.0 V 25 Pin = -20 dBm fLO = 94 to 234 MHz 20 PLO = -15 dBm 15 fRF = 84 MHz Measurement Cuicuit1 10 5 0 -5 TA = +25°C TA = -40°C TA = +85°C -10 -15 -10 -15 0 40 35 VAGC = 0.5 V 35 Pin = -20 dBm fLO = 94 to 234 MHz 30 PLO = -15 dBm 25 fRF = 84 MHz Measurement Cuicuit1 20 -5 20 VOLTAGE GAIN vs. IF OUTPUT FREQUENCY RANGE 40 0 TA = +85°C IF Output Frequency Range fIF (MHz) VOLTAGE GAIN vs. IF OUTPUT FREQUENCY RANGE 5 TA = -40°C 0 -5 -10 20 TA = +25°C 5 -5 -15 0 100 120 140 160 VOLTAGE GAIN vs. IF OUTPUT FREQUENCY RANGE 40 5 80 IF Output Frequency Range fIF (MHz) VOLTAGE GAIN vs. IF OUTPUT FREQUENCY RANGE 10 TA = -40°C TA = +25°C 15 IF Output Frequency Range fIF (MHz) 15 TA = +85°C 20 40 60 80 100 120 140 160 IF Output Frequency Range fIF (MHz) Remark The graphs indicate nominal characteristics. -20 0 20 40 60 80 100 120 140 160 IF Output Frequency Range fIF (MHz) UPC3220GR VOLTAGE GAIN vs. GAIN CONTROL VOLTAGE RANGE VCC1 = 4.5 V 5.0 V 5.5 V fRF = 84 MHz Pin = -50 dBm fLO = 134 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit1 0.5 1.0 1.5 3.0 3.5 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 0 TA = -40°C +25°C +85°C VCC1 = 5.0 V fRF = 84 MHz Pin = -50 dBm fLO = 134 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit1 0.5 1.0 1.5 2.5 2.0 3.0 3.5 Gain Control Voltage Range VAGC (V) Gain Control Voltage Range VAGC (V) NOISE FIGURE vs. GAIN CONTROL VOLTAGE RANGE NOISE FIGURE vs. GAIN CONTROL VOLTAGE RANGE 35 fLO = 134 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit2 30 Noise Figure NF (dB) 2.5 2.0 Voltage Gain (dB) 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 0 25 20 15 10 VCC1 = 5.5 V 5.0 V 4.5 V 5 0 1.0 35 VCC1 = 5.0 V fLO = 134 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit2 30 Noise Figure NF (dB) Voltage Gain (dB) VOLTAGE GAIN vs. GAIN CONTROL VOLTAGE RANGE 25 20 15 10 TA = +85°C +25°C -40°C 5 1.5 2.0 2.5 3.0 3.5 Gain Control Voltage Range VAGC (V) Remark The graphs indicate nominal characteristics. 0 1.0 1.5 2.0 2.5 3.0 Gain Control Voltage Range VAGC (V) 3.5 UPC3220GR OUTPUT POWER vs. INPUT POWER -20 VCC1 = 5.5 V 5.0 V 4.5 V -25 -30 -35 -40 VAGC = 3.0 V fRF = 84 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit1 -45 -50 -50 -45 -40 -35 -30 -25 -20 -15 -30 -40°C -35 -40 +85°C -45 -50 -55 -55 -50 -45 -40 -35 VCC1 = 5.0 V VAGC = 3.0 V fRF = 84 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit1 -30 -25 -20 -15 2 TONE OUTPUT POWER vs. INPUT POWER -40 -50 -60 -70 -80 -90 -50 -40 VAGC = 3.0 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit1 -30 -20 -20 TA = -40°C +25°C +85°C -30 -40 -50 -60 -70 -80 -90 -100 -60 -50 -40 VCC1 = 5.0 V VAGC = 3.0 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit1 -30 -20 Input Power Pin (dBm) Input Power Pin (dBm) 2 TONE OUTPUT POWER vs. INPUT POWER 2 TONE OUTPUT POWER vs. INPUT POWER VCC1 = 4.5 V 5.0 V -30 5.5 V -40 -50 -60 -70 -80 -90 -100 -50 TA = +25°C -25 2 TONE OUTPUT POWER vs. INPUT POWER VCC1 = 4.5 V 5.0 V -30 5.5 V -20 -20 Input Power Pin (dBm) -20 -100-60 -15 Input Power Pin (dBm) 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) -55 -55 Output Power Pout (50 Ω/1 050 Ω) (dBm) -15 -40 -30 VAGC = 2.1 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit1 -20 -10 Input Power Pin (dBm) Remark The graphs indicate nominal characteristics. 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) Output Power Pout (50 Ω/1 050 Ω) (dBm) OUTPUT POWER vs. INPUT POWER -20 -30 TA = -40°C +25°C +85°C -40 -50 -60 -70 -80 -90 -100-50 -40 -30 VCC1 = 5.0 V VAGC = 2.1 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit1 -20 -10 Input Power Pin (dBm) -20 VCC1 = 4.5 V 5.0 V -30 5.5 V -40 -50 -60 -70 -80 -90 -100 -30 -20 -10 VAGC = 1.5 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit1 0 10 2 TONE OUTPUT POWER vs. INPUT POWER -20 -30 TA = -40°C +25°C +85°C -40 -50 -60 -70 -80 -90 -100 -30 -20 -10 VCC1 = 5.0 V VAGC = 1.5 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit1 0 10 Input Power Pin (dBm) Input Power Pin (dBm) 2 TONE OUTPUT POWER vs. INPUT POWER 2 TONE OUTPUT POWER vs. INPUT POWER -20 VCC1 = 4.5 V 5.0 V -30 5.5 V -40 -50 -60 -70 -80 -90 -100 -30 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) 2 TONE OUTPUT POWER vs. INPUT POWER -20 -10 VAGC = 0.5 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit1 0 10 Input Power Pin (dBm) Remark The graphs indicate nominal characteristics. 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) UPC3220GR -20 -30 TA = -40°C +25°C +85°C -40 -50 -60 -70 -80 -90 -100 -30 -20 -10 VCC1 = 5.0 V VAGC = 0.5 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit1 0 10 Input Power Pin (dBm) UPC3220GR –Video Amplifier Block– VOLTAGE GAIN (SINGLE-ENDED) vs. INPUT FREQUENCY VOLTAGE GAIN (SINGLE-ENDED) vs. INPUT FREQUENCY 50 Voltage Gain (Single-ended) (dB) VCC2 = 4.5 V 49 5.0 V 5.5 V 48 47 46 45 44 43 42 41 Pin = -55 dBm Measurement Cuicuit4 40 10 50 100 TA = -40°C +25°C +85°C 49 48 47 46 45 44 43 42 VCC2 = 5 V 41 Pin = -55 dBm Measurement Cuicuit4 40 10 50 100 Input Frequency fin (MHz) OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER 0 VCC2 = 4.5 V 5.0 V -5 5.5 V -10 -15 -20 -25 -30 -35 -40 -50 -45 -40 -35 fIF = 50 MHz Measurement Cuicuit4 -20 -15 -30 -25 0 -5 TA = -40°C +25°C +85°C -10 -15 -20 -25 -30 VCC2 = 5 V fIF = 50 MHz Measurement Cuicuit4 -20 -15 -30 -25 -35 -40 -50 -45 -40 -35 Input Power Pin (dBm) Input Power Pin (dBm) 2 TONE OUTPUT POWER vs. INPUT POWER 2 TONE OUTPUT POWER vs. INPUT POWER 0 VCC2 = 4.5 V 5.0 V -10 5.5 V -20 -30 -40 -50 -60 -70 -80 -90 -60 Output Power Pout (50 Ω/1 050 Ω) (dBm) Input Frequency fin (MHz) -50 -40 fIF1 = 50 MHz fIF2 = 49 MHz Measurement Cuicuit4 -30 -20 Input Power Pin (dBm) Remark The graphs indicate nominal characteristics. 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) Output Power Pout (50 Ω/1 050 Ω) (dBm) Voltage Gain (Single-ended) (dB) 50 0 -10 -20 TA = -40°C +25°C +85°C -30 -40 -50 -60 -70 -80 -90 -60 -50 -40 VCC2 = 5 V fIF1 = 50 MHz fIF2 = 49 MHz Measurement Cuicuit4 -30 -20 Input Power Pin (dBm) UPC3220GR –Total Block– VOLTAGE GAIN vs. RF INPUT FREQUENCY RANGE VOLTAGE GAIN vs. RF INPUT FREQUENCY RANGE 80 80 VAGC = 3.0 V (Pin = -70 dBm) 50 VAGC = 1.5 V (Pin = -40 dBm) 40 30 VAGC = 0.5 V (Pin = -40 dBm) 20 fLO = 60 to 290 MHz 10 PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit6 0 50 100 0 150 VAGC = 3.0 V (Pin = -70 dBm) 50 VAGC = 1.5 V (Pin = -40 dBm) 40 30 20 VAGC = 0.5 V (Pin = -40 dBm) TA = -40°C +25°C +85°C 0 50 0 200 250 Measurement Cuicuit6 150 200 250 100 RF Input Frequency Range fRF (MHz) RF Input Frequency Range fRF (MHz) VOLTAGE GAIN vs. IF OUTPUT FREQUENCY RANGE VOLTAGE GAIN vs. IF OUTPUT FREQUENCY RANGE 80 fLO = 94 to 234 MHz PLO = -15 dBm fRF = 84 MHz Measurement Cuicuit6 60 VAGC = 3.0 V (Pin = -70 dBm) 50 VAGC = 1.5 V (Pin = -40 dBm) 40 30 VAGC = 0.5 V (Pin = -40 dBm) 20 VCC1, 2 = 4.5 V 5.0 V 5.5 V 10 20 40 0 60 80 100 Measurement Cuicuit6 VCC1, 2 = 5 V fLO = 94 to 234 MHz PLO = -15 dBm fRF = 84 MHz 70 Voltage Gain (dB) 70 Voltage Gain (dB) 60 10 80 60 50 VAGC = 3.0 V (Pin = -70 dBm) VAGC = 1.5 V (Pin = ñ40 dBm) 40 30 20 TA = -40°C +25°C +85°C 0 20 40 0 10 120 140 160 VAGC = 0.5 V (Pin = -40 dBm) 60 80 100 120 140 160 IF Output Frequency Range fIF (MHz) IF Output Frequency Range fIF (MHz) VOLTAGE GAIN vs. GAIN CONTROL VOLTAGE RANGE VOLTAGE GAIN vs. GAIN CONTROL VOLTAGE RANGE 75 70 70 65 65 Voltage Gain (dB) Voltage Gain (dB) 60 PLO = -15 dBm VCC1, 2 = 5 V fLO = 60 to 290 MHz fIF = 50 MHz 70 60 55 60 VCC1, 2 = 4.5 V 5.0 V 5.5 V 50 45 40 fRF = 84 MHz Pin = -70 dBm fLO = 134 MHz PLO = -15 dBm Measurement Cuicuit6 35 30 25 20 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Gain Control Voltage Range VAGC (V) Remark The graphs indicate nominal characteristics. Voltage Gain (dB) Voltage Gain (dB) VCC1, 2 = 4.5 V 5.0 V 70 5.5 V 55 50 45 TA = -40°C +25°C +85°C 40 35 30 25 20 15 0 0.5 1.0 1.5 VCC1, 2 = 5 V fRF = 84 MHz Pin = -70 dBm fLO = 134 MHz PLO = -15 dBm Measurement Cuicuit6 2.5 3.0 3.5 2.0 Gain Control Voltage Range VAGC (V) UPC3220GR NOISE FIGURE vs. GAIN CONTROL VOLTAGE RANGE 35 35 30 30 25 Noise Figure NF (dB) Noise Figure NF (dB) NOISE FIGURE vs. GAIN CONTROL VOLTAGE RANGE VCC1, 2 = 4.5 V 5.0 V 5.5 V 20 15 10 fIF = 50 MHz fLO = 134 MHz 5 PLO = -15 dBm Measurement Cuicuit7 0 1.0 1.5 2.0 2.5 3.0 3.5 25 TA = -40°C +25°C +85°C 20 15 10 VCC1, 2 = 5 V fIF = 50 MHz 5 fLO = 134 MHz PLO = ñ15 dBm Measurement Cuicuit7 0 1.0 1.5 2.0 Gain Control Voltage Range VAGC (V) -10 -15 -20 -25 VAGC = 3.0 V fRF = 84 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit6 -30 -35 -40 -75 -70 -65 -60 -55 -50 -45 -40 -35 0 -5 TA = +25°C -10 -15 -40°C -20 -25 +85°C -30 -35 -40 -75 -70 -65 -60 -55 VCC1, 2 = 5.0 V VAGC = 3.0 V fRF = 84 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50 MHz Measurement Cuicuit6 -50 -45 -40 -35 Input Power Pin (dBm) Input Power Pin (dBm) 2 TONE OUTPUT POWER vs. INPUT POWER 2 TONE OUTPUT POWER vs. INPUT POWER 0 VCC1, 2 = 4.5 V 5.0 V -10 5.5 V -20 -30 -40 -50 -60 -70 -80 -80 Output Power Pout (50 Ω/1 050 Ω) (dBm) VCC1, 2 = 5.5 V 5.0 V 4.5 V -70 -60 VAGC = 3.0 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit6 -50 -40 Input Power Pin (dBm) Remark The graphs indicate nominal characteristics. 3.5 OUTPUT POWER vs. INPUT POWER 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) Output Power Pout (50 Ω/1 050 Ω) (dBm) 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) -5 3.0 Gain Control Voltage Range VAGC (V) OUTPUT POWER vs. INPUT POWER 0 2.5 0 -10 TA = -40°C +25°C +85°C -20 -30 -40 -50 -60 -70 -80 -80 -70 -60 VCC1, 2 = 5.0 V VAGC = 3.0 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit6 -50 -40 Input Power Pin (dBm) 0 VCC1, 2 = 4.5 V 5.0 V -10 5.5 V -20 -30 -40 -50 -60 -70 -80 -50 -40 -30 VAGC = 1.5 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit6 -20 -10 2 TONE OUTPUT POWER vs. INPUT POWER 0 -10 TA = -40°C +25°C +85°C -20 -30 -40 -50 -60 -70 -80 -50 -40 -30 VCC1, 2 = 5 V VAGC = 1.5 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit6 -20 -10 Input Power Pin (dBm) Input Power Pin (dBm) 2 TONE OUTPUT POWER vs. INPUT POWER 2 TONE OUTPUT POWER vs. INPUT POWER 0 VCC1, 2 = 4.5 V 5.0 V -10 5.5 V -20 -30 -40 -50 -60 -70 -80 -35 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) 2 TONE OUTPUT POWER vs. INPUT POWER -25 -15 VAGC = 0.5 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit6 -5 5 Input Power Pin (dBm) Remark The graphs indicate nominal characteristics. 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) UPC3220GR 0 -10 TA = -40°C +25°C +85°C -20 -30 -40 -50 -60 -70 -80 -35 -25 -15 VCC1, 2 = 5.0 V VAGC = 0.5 V fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz Measurement Cuicuit6 -5 5 Input Power Pin (dBm) UPC3220GR -20 4.0 Pout 3.5 -30 3.0 -40 2.5 -50 VAGC 2.0 -60 1.5 -70 1.0 -80 -90 -80 0.5 IM3 -70 -60 -50 -40 -30 -20 -10 0 0 Gain Control Voltage Range VAGC (V) 3rd Order Intermoduration Distortion IM3 (dBc) 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) IM3, 2 TONE OUTPUT POWER, GAIN CONTROL VOLTAGE vs. INPUT POWER VCC1, 2 = 4.5 V 5.0 V 5.5 V Conditions fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz @Vout = 0.7 Vp-p/tone Measurement Cuicuit6 Input Power Pin (dBm) -20 4.0 Pout 3.5 -30 3.0 -40 2.5 -50 VAGC 2.0 -60 1.5 -70 1.0 IM3 -80 -90 -80 0.5 -70 -60 -50 -40 -30 -20 -10 Input Power Pin (dBm) Remark The graphs indicate nominal characteristics. 0 0 Gain Control Voltage Range VAGC (V) 3rd Order Intermoduration Distortion IM3 (dBc) 2 tone Output Power Pout (50 Ω/1 050 Ω) (dBm) IM3, 2 TONE OUTPUT POWER, GAIN CONTROL VOLTAGE vs. INPUT POWER TA = -40°C +25°C +85°C Conditions fRF1 = 84 MHz fRF2 = 85 MHz fLO = 134 MHz PLO = -15 dBm fIF = 50, 49 MHz @Vout = 0.7 Vp-p/tone Measurement Cuicuit6 UPC3220GR S-PARAMETERS –AGC Amplifier Block + Mixer Block (Vcc1 = 5.0 V, VAGC = 3.0 V, by measurement circuit 3) MIXER RF Input Impedance 1 2 3 4 1 : 30 MHz 2 : 84 MHz 3 : 150 MHz 4 : 250 MHz 1.830 kΩ 443.0 Ω 207.4 Ω 109.7 Ω -1.603 kΩ -1.096 kΩ -728.7 Ω -454.1 Ω 3.309 pF 1.730 pF 1.456 pF 1.402 pF 1 : 10 MHz 2 : 36 MHz 3 : 50 MHz 4 : 100 MHz 29.48 Ω 29.98 Ω 30.17 Ω 30.79 Ω 634.6 mΩ 1.908 Ω 2.476 Ω 4.171 Ω 10.07 nH 8.431 nH 7.884 nH 6.638 nH MIXER RF Output Impedance 2 3 1 4 UPC3220GR MIXER OSC Input Impedance 2 3 4 1 1 : 30 MHz 2 : 100 MHz 3 : 134 MHz 4 : 250 MHz 1.820 kΩ 415.5 Ω 284.6 Ω 133.4 Ω -1.823 kΩ -1.010 Ω -813.1 Ω -487.0 Ω 2.911 pF 1.575 pF 1.461 pF 1.307 pF UPC3220GR –Video Amplifier Block (Vcc2 = 5.0 V, by measurement circuit 5) Video Amplifier Input Impedance 1 3 4 2 1 : 10 MHz 2 : 36 MHz 3 : 50 MHz 4 : 100 MHz 1.187 kΩ 389.8 Ω 333.4 Ω 245.5 Ω -1.177 kΩ -588.3 Ω -481.1 Ω -369.7 Ω 13.54 pF 7.516 pF 6.617 pF 4.304 pF 1 : 10 MHz 2 : 36 MHz 3 : 50 MHz 4 : 100 MHz 10.04 Ω 15.86 Ω 21.54 Ω 45.48 Ω 5.225 Ω 17.70 Ω 22.61 Ω 23.89 Ω 83.16 nH 78.25 nH 71.96 nH 38.02 nH Video Amplifier Output Impedance 2 1 3 4 UPC3220GR PACKAGE DIMENSIONS 16--PIN PLASTIC SSOP (5.72 mm (225))(UNIT:mm) 16 9 detail of lead end 1 5º± 5º 8 5.2±0.3 6.4±0.2 1.8 MAX. 4.4±0.2 1.5±0.1 1.0±0.2 S 0.65 0.22+0.10 -0.05 0.125±0.075 0.475 MAX. 0.10 M 0.5±0.2 0.17 +0.08 -0.07 0.10 S UPC3220GR NOTES ON CORRECT USE (1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference. (3) The bypass capacitor should be attached to VCC line. RECOMMENDED SOLDERING CONDITIONS This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office. Soldering Method Soldering Conditions Condition Symbol Infrared Reflow Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass) : 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below IR260 Wave Soldering Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass) : 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below WS260 Partial Heating Peak temperature (pin temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass) : 350°C or below : 3 seconds or less : 0.2%(Wt.) or below HS350 Caution Do not use different soldering methods together (except for partial heating). Life Support Applications These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale. 04/25/2005 A Business Partner of NEC Compound Semiconductor Devices, Ltd. 4590 Patrick Henry Drive Santa Clara, CA 95054-1817 Telephone: (408) 919-2500 Facsimile: (408) 988-0279 Subject: Compliance with EU Directives CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE. CEL Pb-free products have the same base part number with a suffix added. The suffix –A indicates that the device is Pb-free. The –AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive. This status is based on CEL’s understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information. Restricted Substance per RoHS Concentration Limit per RoHS (values are not yet fixed) Concentration contained in CEL devices -A Not Detected Lead (Pb) < 1000 PPM Mercury < 1000 PPM Not Detected Cadmium < 100 PPM Not Detected Hexavalent Chromium < 1000 PPM Not Detected PBB < 1000 PPM Not Detected PBDE < 1000 PPM Not Detected -AZ (*) If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative. Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall CEL’s liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis. See CEL Terms and Conditions for additional clarification of warranties and liability.