Reflexlichtschranke Reflective Optical Switch Lead (Pb) Free Product - RoHS Compliant SFH 7740 Wesentliche Merkmale Features • Arbeitsabstand: 0.5 - 4 mm • Arbeitsbereich einstellbar • Optohybrid mit Schmitt-Trigger Ausgang, open drain • Extrem niedriger Stromverbrauch • Sehr kleines SMD Gehäuse • Hohe Umgebungslicht Unterdrückung • Working distance: 0.5 - 4 mm • Working range adjustable • Opto hybrid with Schmitt trigger output, open drain • Extremly low power consumption • Very small SMD package • High ambient light suppression Anwendungen Applications • Positionserkennung von Abdeckungen für Batteriefächer, Foto-Objektiven usw. • Mobile Geräte • Position detection of sliding covers for battery-cases, camera lenses ect. • Mobile devices Typ Type SFH 7740 Bestellnummer Ordering Code Q65110A6668 An application note is available for this product. Please contact your appropriate OSRAM sales partner 2009-01-14 1 SFH 7740 Grenzwerte Maximum Ratings Bezeichnung Parameter Symbol Symbol Wert Value Einheit Unit Lagertemperatur Storage temperature Tstg min: – 40 max: + 85 °C Versorgungsspannung Supply voltage Vdd 0-6 V Externe Spannung an Pin External voltage at pin Out Prog Test Anode LED V Vout 0 - 4.5 0 - 4.5 0 - 4.5 0 - 1.5 Sink current durch Ausgangstransistor Sink current through output transistor (please see figure 1) Isink 10 mA Vorwärtsstrom1) Forward current (please see figure 1) If 60 mA Elektrostatische Entladung Electrostatic discharge - Human Body Model (according to: JESD22-A114E; Class2) - Machine Model (according to: JESD22-A115A; Class B) ESD 2 kV 200 V 20 mA latch up protection latch up protection (according to: EIA/JESD78 Class 1) 1) Der Vorwärtsstrom If durch die LED ist abhängig von Vdd und Rprog wie folgt: * The forward current If depends on Vdd and Rprog as in the following formula: 2009-01-14 2 V dd × 6 I f = 10mA + ⎛ ------------------⎞ ⎝ R prog ⎠ SFH 7740 Empfohlene Betriebsbedingungen Recommended Operating Conditions Bezeichnung Parameter Symbol Symbol Wert Value min. typ. Einheit Unit max. Betriebstemperatur Operating temperature Top – 20 + 85 °C Versorgungsspannung Supply voltage Vdd 2.4 3.6 V Ausgangsspannung Output voltage (please see figure 1) DVdd 1.7 3.6 V Rauschen der Versorgungsspannung1) Supply voltage ripple frequency range 0...20kHz dVdd 200 mV Pull-up Widerstand Pull-up resistor (please see figure 1) Rpull-up 1000 kΩ Abblock Kondensatoren Bypass capacitors (please see figure 1) Cbypass Umgebungslicht Ambient light Normlicht / Standard light A EV - stabilisation - HF Vdd < 3V Vdd > 3V 10 >1 10 - 100 µF nF lux 2000 4000 1) Der Emitter wird mit 10mA bis 60mA gepulst betrieben; das bedeutet, dass jeder Widerstand in Serie zu Vdd einen Spannungsabfall in der Versorgungsleitung verursacht. Es wird empfohlen, diesen Serienwiderstand so klein zu halten, dass max dVdd nicht überschritten wird. Beim Betrieb des SFH 7740 im Labor ist vom Einsatz geregelter Spannungsversorgungen abzusehen. Durch das Einschalten der IRED wird die Quelle kurzzeitig belastet. Diese Belastung kann zu Spannungsschwankungen der Quelle führen, die wiederum die Funktion des SFH 7740 beeinträchtigen können. Im Normalbetrieb (Akku, Batterie, stabilisierte Netzteile) tritt dieser Effekt nicht auf. * The emitter is driven with 10 mA to 60 mA in pulsed mode; this means, that any series resistance on the Vdd line causes a voltage drop at the power pin. It is recommended to keep the series resistance low, so that max dVdd is not exceeded. When testing the SFH 7740 sensor in the lab, please do not use regulated voltage supplies. The IR emitter pulse is a high, short load for the power supply. This load can influence the stability of the output voltage; this instability will influence the operation of the SFH 7740. This effect does not occur during normal operation of the sensor with batteries, storage batteries, or stabilized voltage supplies. 2009-01-14 3 SFH 7740 Kennwerte (Ta = 25°C) Characteristics Bezeichnung Parameter Symbol Symbol Wert Value min. Minimale Betriebsspannung für Startphase Minimum required supply voltage for start-up (please see figure 2) Vdd, start 0.8 Länge der Startphase Start up time (please see figure 2) tstart 60 Mess-Wiederholzeit Measurement refresh time (please see figure 2) trefresh LED „An“ Zeit LED „ON“ Time (please see figure 3) tpulse Mittlere Stromaufnahme1) Mean current consumption1) RProg = h, Vdd = 3V typ. Einheit Unit max. 2.0 V 90 120 ms 60 90 120 ms 30 45 60 µs Idd, mean 25 50 μA Maximale Stromaufnahme Maximum current consumption RProg = h, Vdd = 3V Idd, max 10 20 mA Mittlere Stromaufnahme1) Mean current consumption1) RProg = 470 Ω, Vdd = 3V Idd, mean 45 75 μA Maximale Stromaufnahme Maximum current consumption RProg = 470 Ω, Vdd = 3V Idd, max 50 65 mA Ausgangsleckstrom „high“ Output leakage current „high“ DVdd = 2.2V Iout, H 5 400 nA Ausgangsspannung „low“ Output voltage „low“ DVdd = 2.2V; Rpullup = 270 Ω Vout, L 0.1 0.5 V Wellenlänge der max. Fotoempfindlichkeit Wavelength of max. sensitivity λS, max 880 2009-01-14 4 nm SFH 7740 Kennwerte (Ta = 25°C) Characteristics Bezeichnung Parameter Symbol Symbol Wert Value min. typ. Einheit Unit max. Spektraler Bereich der Fotoempfindlichkeit S = 10% von Smax Spectral range of sensitivity S = 10% of Smax λ Wellenlänge der Strahlung des Emitters Wavelength at peak emission IF = 10 mA λpeak 850 nm Spektrale Bandbreite des Emitters bei 50% von Δλ 30 nm Imax Spectral bandwidth of the emitter at 50% of Imax IF = 10 mA 1) * gepulster Betrieb: Dauer LED an: ~44µs / Dauer LED aus: ~90ms pulsed operating mode: LED on time: ~44µs / LED off time: ~90ms 2009-01-14 5 730 1080 nm SFH 7740 Schaltabstand und Reflektoreigenschaften Switching distance and reflector characteristics Bezeichnung Parameter Symbol Symbol Wert Value min. Reflektor Reflektivität Reflector reflectivity λ = 850nm RA 850nm Kontrast Verhältnis (Reflektor / Absorber) contrast ratio (Reflector / absorber) RR 850nm / RA 850nm Reflektor und Absorber Größe1) (B x L) Reflector and absorber size1) (w x l) Areflector Aabsorber Einstellbarer Arbeitsabstand2) Adjustiable working distance2) d Variation des Arbeitsabstandes1) Variation of working distance1) Δd typ. max. 50 RR 850nm Absorber Reflektivität Absorber reflectivity λ = 850nm Einheit Unit % 9 % 4 mm +/- 0.4 mm 10 0.5 1) siehe / see Application note: „Reflective Optical Sensor SFH 7740“. 2) Der Abeitsabstand d ist definiert von der Sensoroberfläche bis zum Reflektor. dmin und dmax können nur mit einem Reflektor (Reflektionsgrad R>60%) und Absorber (R<6%) erreicht werden. * The working distance d is defined from top of the sensor to reflector surface. dmin and dmax can only be reached with a reflector (reflection coefficient R>60%) and absorber ( R<6%). Graph 1: Adjustion of different working distances by emitter current If and Rprog as func 60 50% 60% 50 70% 80% If / mA 40 90% 30 V dd × 6 R prog = -----------------------I f – 10mA 20 10 0.5 2009-01-14 1 1.5 2 d / mm 2.5 3 6 3.5 4 SFH 7740 Blockdiagramm (empfohlener Pull-Up-Widerstand Rpull up = 10kOhm...100kOhm) Block diagram (recommended Pull up resistance Rpull up = 10kOhm...100kOhm) Figure 1 Blockdiagramm Block diagram CHF R Prog Prog Cstabilisation Vdd Test DVdd R pull up ASIC LED Anode (must not be connected) Phototransistor LED Isink Out VOut Device boundaries IF GND GND GND GND 2009-01-14 7 OHF03409 SFH 7740 Figure 2 Startverhalten Start-up sequence Vdd Vdd_start max Vdd_start min t Out For reflector High Default Low Low For absorber or no reflector t1 t 60 ms - t1 120 ms + t1 Undefined high or low output impedance OHF03836 Der Ausgang ist immer hochohmig, wenn an Vdd keine Spannung angeschlossen ist. Wenn die Versorgungsspannung Vdd, start erreicht, bleibt der Ausgang für 60ms < tstart <120ms auf „low“. Anschließend findet etwa alle 90ms eine Messung des reflektierten Signals statt und der Ausgang wird entprechend geschalten (Figure 3). If the supply voltage at Vdd is not connected, the output is always high ohmic. When supply voltage reaches Vdd, start , the sensor output stays low for 60ms < tstart <120ms. Subsequently approx. every 90ms the reflected signal is measured and the output is set accordingly (Figure 3). Figure 3 Timing diagram Ιf t Out For reflector High For absorber or no reflector Low tpulse t trefresh 2009-01-14 OHF03835 8 SFH 7740 LED: Relative Spectral Emission Irel = f (λ); TA = 25°C Phototransistor Relative Spectral Sensitivity Srel = f (λ); TA = 25°C OHL01714 100 % SFH 7740: Mean current consumption Idd = f (Vdd); Rprog; TA = 25°C 10 0 µA % S re l I rel 80 80 60 60 470Ω 50 I dd 330Ω 40 2kΩ 40 40 20 20 30 0 700 750 800 850 nm 950 λ 2009-01-14 inf. 0 700 8 00 9 0 0 1 0 00 lam b da / n m 9 1 1 00 20 2.4 2.7 3.0 V dd / V 3.3 3.6 SFH 7740 Maßzeichnung Package Outlines Maße in mm (inch) / Dimensions in mm (inch) 2009-01-14 10 SFH 7740 Anschlußbelegung Pin configuration Pin # Description 1 Anode LED (must not be connected) 2 GND 3 Out 4 Test (must be connected to GND) 5 Vdd 6 Prog Bauteilaufnahme device pickup Vakuum Pipette sollte das Bauteil am rechteckigen Außenrahmen fassen. Laminar vacuum pickup nozzle should use the rectangular outer wall of the device for handling. ø1.5 (0.059) Empfohlenes Pickup Nadel Recommended pickup nozzle 3.6 (0.142) 3.8 (0.150) 13 (0.512) GPLY7058 Maße in mm/ Dimensions in mm 2009-01-14 11 SFH 7740 Empfohlenes Lötpaddesign Recommended Solderpad Design Maße in mm / Dimensions in mm Gurtverpackung Taping 2009-01-14 12 SFH 7740 Maße in mm / Dimensions in mm 2009-01-14 13 SFH 7740 Lötbedingungen Soldering Conditions Vorbehandlung nach JEDEC Level 4 Preconditioning acc. to JEDEC Level 4 Reflow Lötprofil für bleifreies Löten Reflow Soldering Profile for lead free soldering (nach J-STD-020C) (acc. to J-STD-020C) OHLA0687 300 Maximum Solder Profile Recommended Solder Profile Minimum Solder Profile ˚C 255 ˚C 240 ˚C T 250 ˚C 260 ˚C +0 -5 ˚C 245 ˚C ±5 ˚C ˚C 235 ˚C +5 -0 ˚C 217 ˚C 10 s min 200 30 s max Ramp Down 6 K/s (max) 150 100 s max 120 s max 100 Ramp Up 3 K/s (max) 50 25 ˚C 0 0 50 100 150 200 250 s 300 t Published by OSRAM Opto Semiconductors GmbH Wernerwerkstrasse 2, D-93049 Regensburg www.osram-os.com © All Rights Reserved. The information describes the type of component and shall not be considered as assured characteristics. Due to the special conditions of the manufacturing processes of Sensor, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization. Packing Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components 1 , may only be used in life-support devices or systems 2 with the express written approval of OSRAM OS. 1 A critical component is a component usedin a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered. 2009-01-14 14