OSRAM SFH-7740

Reflexlichtschranke
Reflective Optical Switch
Lead (Pb) Free Product - RoHS Compliant
SFH 7740
Wesentliche Merkmale
Features
• Arbeitsabstand: 0.5 - 4 mm
• Arbeitsbereich einstellbar
• Optohybrid mit Schmitt-Trigger Ausgang, open
drain
• Extrem niedriger Stromverbrauch
• Sehr kleines SMD Gehäuse
• Hohe Umgebungslicht Unterdrückung
• Working distance: 0.5 - 4 mm
• Working range adjustable
• Opto hybrid with Schmitt trigger output, open
drain
• Extremly low power consumption
• Very small SMD package
• High ambient light suppression
Anwendungen
Applications
• Positionserkennung von Abdeckungen für
Batteriefächer, Foto-Objektiven usw.
• Mobile Geräte
• Position detection of sliding covers for
battery-cases, camera lenses ect.
• Mobile devices
Typ
Type
SFH 7740
Bestellnummer
Ordering Code
Q65110A6668
An application note is available for this product.
Please contact your appropriate OSRAM sales partner
2009-01-14
1
SFH 7740
Grenzwerte
Maximum Ratings
Bezeichnung
Parameter
Symbol
Symbol
Wert
Value
Einheit
Unit
Lagertemperatur
Storage temperature
Tstg
min: – 40
max: + 85
°C
Versorgungsspannung
Supply voltage
Vdd
0-6
V
Externe Spannung an Pin
External voltage at pin
Out
Prog
Test
Anode LED
V
Vout
0 - 4.5
0 - 4.5
0 - 4.5
0 - 1.5
Sink current durch Ausgangstransistor
Sink current through output transistor
(please see figure 1)
Isink
10
mA
Vorwärtsstrom1)
Forward current
(please see figure 1)
If
60
mA
Elektrostatische Entladung
Electrostatic discharge
- Human Body Model
(according to: JESD22-A114E; Class2)
- Machine Model
(according to: JESD22-A115A; Class B)
ESD
2
kV
200
V
20
mA
latch up protection
latch up protection
(according to: EIA/JESD78 Class 1)
1)
Der Vorwärtsstrom If durch die LED ist abhängig von Vdd und Rprog wie folgt:
*
The forward current If depends on Vdd and Rprog as in the following formula:
2009-01-14
2
V dd × 6
I f = 10mA + ⎛ ------------------⎞
⎝ R prog ⎠
SFH 7740
Empfohlene Betriebsbedingungen
Recommended Operating Conditions
Bezeichnung
Parameter
Symbol
Symbol
Wert
Value
min.
typ.
Einheit
Unit
max.
Betriebstemperatur
Operating temperature
Top
– 20
+ 85
°C
Versorgungsspannung
Supply voltage
Vdd
2.4
3.6
V
Ausgangsspannung
Output voltage
(please see figure 1)
DVdd
1.7
3.6
V
Rauschen der Versorgungsspannung1)
Supply voltage ripple
frequency range 0...20kHz
dVdd
200
mV
Pull-up Widerstand
Pull-up resistor
(please see figure 1)
Rpull-up
1000
kΩ
Abblock Kondensatoren
Bypass capacitors
(please see figure 1)
Cbypass
Umgebungslicht
Ambient light
Normlicht / Standard light A
EV
- stabilisation
- HF
Vdd < 3V
Vdd > 3V
10
>1
10 - 100
µF
nF
lux
2000
4000
1)
Der Emitter wird mit 10mA bis 60mA gepulst betrieben; das bedeutet, dass jeder Widerstand in Serie zu Vdd einen Spannungsabfall in
der Versorgungsleitung verursacht. Es wird empfohlen, diesen Serienwiderstand so klein zu halten, dass max dVdd nicht überschritten
wird. Beim Betrieb des SFH 7740 im Labor ist vom Einsatz geregelter Spannungsversorgungen abzusehen. Durch das Einschalten der
IRED wird die Quelle kurzzeitig belastet. Diese Belastung kann zu Spannungsschwankungen der Quelle führen, die wiederum die
Funktion des SFH 7740 beeinträchtigen können. Im Normalbetrieb (Akku, Batterie, stabilisierte Netzteile) tritt dieser Effekt nicht auf.
*
The emitter is driven with 10 mA to 60 mA in pulsed mode; this means, that any series resistance on the Vdd line causes a voltage drop
at the power pin. It is recommended to keep the series resistance low, so that max dVdd is not exceeded. When testing the SFH 7740
sensor in the lab, please do not use regulated voltage supplies. The IR emitter pulse is a high, short load for the power supply. This
load can influence the stability of the output voltage; this instability will influence the operation of the SFH 7740. This effect does not
occur during normal operation of the sensor with batteries, storage batteries, or stabilized voltage supplies.
2009-01-14
3
SFH 7740
Kennwerte (Ta = 25°C)
Characteristics
Bezeichnung
Parameter
Symbol
Symbol
Wert
Value
min.
Minimale Betriebsspannung für Startphase
Minimum required supply voltage for start-up
(please see figure 2)
Vdd, start
0.8
Länge der Startphase
Start up time
(please see figure 2)
tstart
60
Mess-Wiederholzeit
Measurement refresh time
(please see figure 2)
trefresh
LED „An“ Zeit
LED „ON“ Time
(please see figure 3)
tpulse
Mittlere Stromaufnahme1)
Mean current consumption1)
RProg = h, Vdd = 3V
typ.
Einheit
Unit
max.
2.0
V
90
120
ms
60
90
120
ms
30
45
60
µs
Idd, mean
25
50
μA
Maximale Stromaufnahme
Maximum current consumption
RProg = h, Vdd = 3V
Idd, max
10
20
mA
Mittlere Stromaufnahme1)
Mean current consumption1)
RProg = 470 Ω, Vdd = 3V
Idd, mean
45
75
μA
Maximale Stromaufnahme
Maximum current consumption
RProg = 470 Ω, Vdd = 3V
Idd, max
50
65
mA
Ausgangsleckstrom „high“
Output leakage current „high“
DVdd = 2.2V
Iout, H
5
400
nA
Ausgangsspannung „low“
Output voltage „low“
DVdd = 2.2V; Rpullup = 270 Ω
Vout, L
0.1
0.5
V
Wellenlänge der max. Fotoempfindlichkeit
Wavelength of max. sensitivity
λS, max
880
2009-01-14
4
nm
SFH 7740
Kennwerte (Ta = 25°C)
Characteristics
Bezeichnung
Parameter
Symbol
Symbol
Wert
Value
min.
typ.
Einheit
Unit
max.
Spektraler Bereich der Fotoempfindlichkeit
S = 10% von Smax
Spectral range of sensitivity
S = 10% of Smax
λ
Wellenlänge der Strahlung des Emitters
Wavelength at peak emission
IF = 10 mA
λpeak
850
nm
Spektrale Bandbreite des Emitters bei 50% von
Δλ
30
nm
Imax
Spectral bandwidth of the emitter at 50% of Imax
IF = 10 mA
1)
*
gepulster Betrieb: Dauer LED an: ~44µs / Dauer LED aus: ~90ms
pulsed operating mode: LED on time: ~44µs / LED off time: ~90ms
2009-01-14
5
730
1080
nm
SFH 7740
Schaltabstand und Reflektoreigenschaften
Switching distance and reflector characteristics
Bezeichnung
Parameter
Symbol
Symbol
Wert
Value
min.
Reflektor Reflektivität
Reflector reflectivity
λ = 850nm
RA 850nm
Kontrast Verhältnis (Reflektor / Absorber)
contrast ratio (Reflector / absorber)
RR 850nm /
RA 850nm
Reflektor und Absorber Größe1) (B x L)
Reflector and absorber size1) (w x l)
Areflector
Aabsorber
Einstellbarer Arbeitsabstand2)
Adjustiable working distance2)
d
Variation des Arbeitsabstandes1)
Variation of working distance1)
Δd
typ.
max.
50
RR 850nm
Absorber Reflektivität
Absorber reflectivity
λ = 850nm
Einheit
Unit
%
9
%
4
mm
+/- 0.4
mm
10
0.5
1)
siehe / see Application note: „Reflective Optical Sensor SFH 7740“.
2)
Der Abeitsabstand d ist definiert von der Sensoroberfläche bis zum Reflektor. dmin und dmax können nur mit einem
Reflektor (Reflektionsgrad R>60%) und Absorber (R<6%) erreicht werden.
* The working distance d is defined from top of the sensor to reflector surface. dmin and dmax can only be reached with
a reflector (reflection coefficient R>60%) and absorber ( R<6%).
Graph 1: Adjustion of different working distances by emitter current If and Rprog as func
60
50%
60%
50
70%
80%
If / mA
40
90%
30
V dd × 6
R prog = -----------------------I f – 10mA
20
10
0.5
2009-01-14
1
1.5
2
d / mm
2.5
3
6
3.5
4
SFH 7740
Blockdiagramm (empfohlener Pull-Up-Widerstand Rpull up = 10kOhm...100kOhm)
Block diagram (recommended Pull up resistance Rpull up = 10kOhm...100kOhm)
Figure 1
Blockdiagramm
Block diagram
CHF
R Prog
Prog
Cstabilisation Vdd
Test
DVdd
R pull up
ASIC
LED Anode
(must not be
connected)
Phototransistor
LED
Isink
Out
VOut
Device
boundaries
IF
GND
GND
GND
GND
2009-01-14
7
OHF03409
SFH 7740
Figure 2
Startverhalten
Start-up sequence
Vdd
Vdd_start max
Vdd_start min
t
Out
For reflector
High
Default
Low
Low
For absorber
or no reflector
t1
t
60 ms - t1
120 ms + t1
Undefined high or low output impedance
OHF03836
Der Ausgang ist immer hochohmig, wenn an Vdd keine Spannung angeschlossen ist. Wenn die
Versorgungsspannung Vdd, start erreicht, bleibt der Ausgang für 60ms < tstart <120ms auf „low“. Anschließend
findet etwa alle 90ms eine Messung des reflektierten Signals statt und der Ausgang wird entprechend
geschalten (Figure 3).
If the supply voltage at Vdd is not connected, the output is always high ohmic. When supply voltage reaches
Vdd, start , the sensor output stays low for 60ms < tstart <120ms. Subsequently approx. every 90ms the reflected
signal is measured and the output is set accordingly (Figure 3).
Figure 3
Timing diagram
Ιf
t
Out
For reflector
High
For absorber
or no reflector
Low
tpulse
t
trefresh
2009-01-14
OHF03835
8
SFH 7740
LED:
Relative Spectral Emission
Irel = f (λ); TA = 25°C
Phototransistor
Relative Spectral Sensitivity
Srel = f (λ); TA = 25°C
OHL01714
100
%
SFH 7740:
Mean current consumption
Idd = f (Vdd); Rprog; TA = 25°C
10 0
µA
%
S re l
I rel 80
80
60
60
470Ω
50
I dd
330Ω
40
2kΩ
40
40
20
20
30
0
700
750
800
850
nm 950
λ
2009-01-14
inf.
0
700
8 00
9 0 0 1 0 00
lam b da / n m
9
1 1 00
20
2.4
2.7
3.0
V dd / V
3.3
3.6
SFH 7740
Maßzeichnung
Package Outlines
Maße in mm (inch) / Dimensions in mm (inch)
2009-01-14
10
SFH 7740
Anschlußbelegung
Pin configuration
Pin #
Description
1
Anode LED (must not be connected)
2
GND
3
Out
4
Test (must be connected to GND)
5
Vdd
6
Prog
Bauteilaufnahme
device pickup
Vakuum Pipette sollte das Bauteil am rechteckigen Außenrahmen fassen.
Laminar vacuum pickup nozzle should use the rectangular outer wall of the device for handling.
ø1.5 (0.059)
Empfohlenes Pickup Nadel
Recommended pickup nozzle
3.6 (0.142)
3.8 (0.150)
13 (0.512)
GPLY7058
Maße in mm/ Dimensions in mm
2009-01-14
11
SFH 7740
Empfohlenes Lötpaddesign
Recommended Solderpad Design
Maße in mm / Dimensions in mm
Gurtverpackung
Taping
2009-01-14
12
SFH 7740
Maße in mm / Dimensions in mm
2009-01-14
13
SFH 7740
Lötbedingungen
Soldering Conditions
Vorbehandlung nach JEDEC Level 4
Preconditioning acc. to JEDEC Level 4
Reflow Lötprofil für bleifreies Löten
Reflow Soldering Profile for lead free soldering
(nach J-STD-020C)
(acc. to J-STD-020C)
OHLA0687
300
Maximum Solder Profile
Recommended Solder Profile
Minimum Solder Profile
˚C
255 ˚C
240 ˚C
T 250
˚C
260 ˚C +0
-5 ˚C
245 ˚C ±5 ˚C
˚C
235 ˚C +5
-0 ˚C
217 ˚C
10 s min
200
30 s max
Ramp Down
6 K/s (max)
150
100 s max
120 s max
100
Ramp Up
3 K/s (max)
50
25 ˚C
0
0
50
100
150
200
250
s
300
t
Published by
OSRAM Opto Semiconductors GmbH
Wernerwerkstrasse 2, D-93049 Regensburg
www.osram-os.com
© All Rights Reserved.
The information describes the type of component and shall not be considered as assured characteristics. Due to the
special conditions of the manufacturing processes of Sensor, the typical data or calculated correlations of technical
parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each
single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If
requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
Terms of delivery and rights to change design reserved. Due to technical requirements components may contain
dangerous substances. For information on the types in question please contact our Sales Organization.
Packing
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office.
By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing
material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs
incurred.
Components used in life-support devices or systems must be expressly authorized for such purpose! Critical
components 1 , may only be used in life-support devices or systems 2 with the express written approval of OSRAM OS.
1
A critical component is a component usedin a life-support device or system whose failure can reasonably be expected
to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.
2
Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain
and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.
2009-01-14
14