RICHTEK RT9361A

RT9361A/B
Tiny Package, High Performance, Regulated Charge Pump
General Description
Features
The RT9361A/B is a high performance charge pump
DC/DC converter that produces a regulated 4.5V and 5V
output. No external inductor is required for operation. The
operating voltage range is 2.8V to VOUT. Internal soft-start
z
circuitry effectively reduces the in-rush current both while
start-up and mode change.
z
The RT9361A/B features very low quiescent current, over
current protection and short circuit protection.
The RT9361A/B is available in WDFN-6L 2x2, SOT-23-6
and TSOT-23-6 package.
Ordering Information
z
z
z
z
Input Voltage Range : 2.8V to VOUT
Internal Soft Start Function
5V/4.5V Fixed Output Voltage
Over Current Protection Function
Short Circuit Protection Function
RoHS Compliant and 100% Lead (Pb)-Free
Applications
z
z
z
Mobile phone, Smart Phone LED Backlight
Camera Flash White LED
LCD Display Supply
Pin Configurations
RT9361A/B
(TOP VIEW)
Package Type
E : SOT-23-6
J6 : TSOT-23-6
QW : WDFN-6L 2x2 (W-Type)
Lead Plating System
P : Pb Free
G : Green (Halogen Free and Pb Free)
Output Voltage
A : 5V
B : 4.5V
Note :
Richtek products are :
`
RoHS compliant and compatible with the current require-
CP VIN CN
6
5
4
2
3
VOUT GND EN
SOT-23-6/TSOT-23-6
CP
VIN
CN
1
6
2
5
3
7
4
VOUT
GND
EN
WDFN-6L 2x2
ments of IPC/JEDEC J-STD-020.
`
Suitable for use in SnPb or Pb-free soldering processes.
Marking Information
For marking information, contact our sales representative
directly or through a Richtek distributor located in your
area.
DS9361A/B-13 April 2011
www.richtek.com
1
RT9361A/B
Typical Application Circuit
CPUMP
6
CP
5 VIN
VIN
3 EN
2.8V to VOUT
VOUT 1
RT9361A/B
CIN
+
4
CN
COUT
RT9361A
RT9361B
R
R
GND
LED
2
Part No.
R
Application Configuration
LED LED
CIN (μF)
CPUMP (μF)
COUT (μF)
IOUT < 60mA @ V IN > 3.2V,
1 or 2.2
0.22
1 or 2.2
IOUT < 110mA @ V IN > 3.2V,
10
1
10
IOUT < 80mA @ V IN > 3.2V,
1 or 2.2
0.22
1 or 2.2
IOUT < 150mA @ V IN > 3.2V,
10
1
10
Functional Pin Description
Pin Number
T/SOT-23-6
1
2
WDFN-6L 2x2
6
Pin Name
VOUT
Pin Function
Output Voltage
5,
GND
Exposed Pad (7)
Ground. The exposed pad must be soldered to a large PCB and
connected to GND for maximum power dissipation.
3
4
EN
Chip Enable (Active High)
4
3
CN
Flying Capacitor Negative Terminal
5
2
VIN
Power Input Voltage
6
1
CP
Flying Capacitor Positive Terminal
Function Block Diagram
CP CN
VIN
VOUT
+
EN
1MHz
OSC
-
GND
Load
Disconnect
Voltage
Reference
www.richtek.com
2
VREF
Current
Bias
Short
Circuit
Protection
DS9361A/B-13 April 2011
RT9361A/B
Absolute Maximum Ratings
z
z
z
z
z
z
z
z
(Note 1)
Supply Input Voltage -----------------------------------------------------------------------------------------------------Other I/O Pin Voltages --------------------------------------------------------------------------------------------------Power Dissipation, PD @ TA = 25°C
T/SOT-23-6 -----------------------------------------------------------------------------------------------------------------WDFN-6L 2x2 -------------------------------------------------------------------------------------------------------------Package Thermal Resistance (Note 2)
T/SOT-23-6, θJA -----------------------------------------------------------------------------------------------------------WDFN-6L 2x2, θJA --------------------------------------------------------------------------------------------------------Junction Temperature ----------------------------------------------------------------------------------------------------Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------------------Storage Temperature Range -------------------------------------------------------------------------------------------ESD Susceptibility (Note 3)
HBM (Human Body Mode) ---------------------------------------------------------------------------------------------MM (Machine Mode) ------------------------------------------------------------------------------------------------------
Recommended Operating Conditions
z
z
−0.3V to 6V
−0.3V to 6V
0.4W
0.606W
250°C/W
265°C/W
150°C
260°C
−65°C to 150°C
2kV
200V
(Note 4)
Ambient Temperature Range -------------------------------------------------------------------------------------------- −40°C to 85°C
Junction Temperature Range -------------------------------------------------------------------------------------------- −40°C to 125°C
Electrical Characteristics
(VIN = 3.7V, TA = 25°C, unless otherwise specified)
Parameter
Symbol
Operation Voltage Range
VIN
Output Voltage
VOUT
Quiescent Current
IQ
Maximum Output Current
IOUT
OCP
IOCP
Test Conditions
Min
Typ
Max
Unit
VOUT = 5V
2.8
--
V OUT
V
RT9361A , VIN>3.2V, IOUT<110mA
4.8
5
5.2
V
RT9361B , VIN>3.2V ,IOUT<150mA
4.32
4.5
4.68
V
--
2
4
mA
RT9361A , VIN>3.2V, CPUMP = 1μF
110
--
--
RT9361B , VIN>3.2V, CPUMP = 1μF
150
--
--
250
350
500
mA
--
60
90
mA
IOUT = 60mA, COUT = 2.2μF
--
30
--
mV
VIN = 4.5V, VEN<0.4V
--
0.1
1
μA
IOUT = 0,
Short Circuit Current
Output Ripple
mA
Shut Down Current
ISHDN
Operation Frequency
FOSC
0.8
1
1.3
MHz
Digital Input High Level
VIH
1.5
--
--
V
Digital Input Low Level
VIL
--
--
0.4
V
DS9361A/B-13 April 2011
www.richtek.com
3
RT9361A/B
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended
periods may remain possibility to affect device reliability.
Note 2. θJA is measured in the natural convection at TA = 25°C on the single layer low effective thermal conductivity test board
of JEDEC 51-3 thermal measurement standard.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.
www.richtek.com
4
DS9361A/B-13 April 2011
RT9361A/B
Typical Operating Characteristics
(For RT9361A, CIN = COUT = 2.2μF, CPUMP = 0.22μF, TA = 25°C, unless otherwise specified )
Quiescent Current vs. Input Voltage
Output Voltage vs. Output Current
1.7
5.1
VIN
VIN
VIN
VIN
4.9
4.8
= 3.2V
= 3.7V
= 4.3V
= 5V
Quiescent Current (mA)
Output Voltage (V)
5
4.7
4.6
4.5
1.6
TA = 85°C
1.5
TA = 25°C
1.4
TA = -20°C
1.3
1.2
TA = -40°C
1.1
1
4.4
10
20
30
40
50
60
70
2.8
80
3
3.2 3.4 3.6 3.8
Output Current (mA)
4
4.2 4.4 4.6 4.8
5
Input Voltage (V)
Output Voltage vs. Input Voltage
Output Voltage vs. Input Voltage
5.08
5.1
TA = 85°C
5
5
Output Voltage (V)
Output Voltage (V)
5.04
TA = 25°C
4.96
TA = -40°C
4.92
4.88
IOUT = 10mA
IOUT = 20mA
IOUT = 30mA
IOUT = 40mA
IOUT = 50mA
IOUT = 60mA
IOUT = 70mA
IOUT = 80mA
4.9
4.8
4.7
4.6
4.84
IOUT = 60mA
4.8
2.75
3
3.25
3.5
3.75
4
4.25
4.5
4.75
5
4.5
2.75
Input Voltage (V)
Operation Frequency (MHz)
Output Voltage (V)
3.75
4
4.25
4.5
4.75
5
1.4
IOUT = 0mA
5.065
5.06
5.055
3.5
Operation Frequency vs. Temperature
Output Voltage vs. Temperature
5.07
3.25
Input Voltage (V)
5.08
5.075
3
IOUT = 60mA
5.05
5.045
5.04
5.035
1.3
IOUT = 60mA
1.2
1.1
IOUT = 0mA
1
0.9
0.8
5.03
-40 -30 -20 -10
0
10 20 30 40
Temperature (°C)
DS9361A/B-13 April 2011
50 60 70 80
-40 -30 -20 -10 0
10 20 30 40 50 60 70 80
Temperature (°C)
www.richtek.com
5
RT9361A/B
Efficiency vs. Input Voltage
Efficiency vs. Output Curent
0.85
85
1001
VIN = 3V
0.8
80
0.9
90
VIN = 3.4V
0.7
70
0.65
65
0.6
60
VIN = 4.2V
0.55
55
0.8
80
Efficiency (%)
Efficiency (%)
0.75
75
0.7
70
0.6
60
0.5
50
50
0.5
0.45
45
IOUT
IOUT
IOUT
IOUT
IOUT
IOUT
=
=
=
=
=
=
10mA
20mA
30mA
40mA
50mA
60mA
40
0.4
0.4
40
10
15
20
25
30
35
40
45
50
55
60
2.75
3
3.25
3.5
Output Curent (mA)
4.75
5
4.75
5
1.3
1.3
1.2
TA = -40°C
1.2
VIL (V)
VIH (V)
4.5
1.4
1.4
TA = 25°C
1.1
TA = -40°C
1.1
1
TA = 85°C
1
TA = 25°C
TA = 85°C
0.9
0.9
0.8
2.75
3
3.25
3.5
3.75
4
4.25
4.5
4.75
5
0.8
2.75
3
3.25
3.5
3.75
4
4.25
Input Voltage (V)
Input Voltage (V)
Inrush Current
Inrush Current
VIN
(2V/Div)
(2V/Div)
4.5
(2V/Div)
(2V/Div)
VOUT
I IN
4.25
VIL vs. Input Voltage
VIH vs. Input Voltage
EN
4
Input Voltage (V)
1.5
VIN
3.75
VOUT
(2V/Div)
(2V/Div)
EN
(500mA/Div)
(500mA/Div)
I IN
VIN = 2.8V, IOUT = 60mA
Time (40μs/Div)
www.richtek.com
6
VIN = 5V, IOUT = 60mA
Time (40μs/Div)
DS9361A/B-13 April 2011
RT9361A/B
Normal Operation
VIN
Normal Operation
VIN
(1V/Div)
VOUT
VOUT
(2V/Div)
(2V/Div)
(2V/Div)
(2V/Div)
(2V/Div)
CN
CN
IOUT
(50mA/Div)
(50mA/Div)
VIN = 2.8V, IOU T = 60mA
VOUT
Time (400ns/Div)
Time (400ns/Div)
Dimming Operation
Dimming Operation
(2V/Div)
(2V/Div)
(2V/Div)
PWM
I IN
(50mA/Div)
VIN = 3.7V
Time (40μs/Div)
Refer to Application Informatiom “Figure 1”
VIN
VIN = 5V, IOUT = 60mA
(2V/Div)
VIN
(2V/Div)
VOUT
(2V/Div)
PWM
I IN
(50mA/Div)
VIN = 3.7V
Time (10ms/Div)
Maximum Output Current (mA)
Maximum Output Current vs. Input Voltage
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0
TA = -40°C
TA = -20°C
TA = 25°C
TA = 85°C
2.8
3
3.2 3.4 3.6 3.8
4
4.2 4.4 4.6 4.8
5
Input Voltage (V)
DS9361A/B-13 April 2011
www.richtek.com
7
Refer to Application Informatiom “Figure 1”
IOUT
RT9361A/B
Application Information
Capacitor Selection
CPUMP
0.22µF
Careful selection of the three external capacitors CIN, COUT
and CPUMP is very important because they will affect rampup time, output ripple and transient performance. Optimum
performance will be obtained when low ESR (<100mΩ)
ceramic capacitors are used for CIN and COUT and CPUMP.
In general, low ESR may be defined as less than 100mΩ.
In all cases, X7R or X5R dielectric are recommended. For
particular application, low ESR Tantalum capacitors may
be substituted; however optimum output ripple performance
may not be realized. Aluminum electrolytic capacitors are
not recommended for using with the RT9361A/B due the
their inherent high ESR characteristic.
In general, lower values for CIN, COUT and CPUMP may be
utilized for light load current applications (<60mA). Drawing
a load current of 60mA or less may use a CIN and COUT
capacitor value as low as 2.2μF and a CPUMP value of
0.22μF. CIN and COUT may range from 1μF for light loads
to 10μF for heavy output load conditions (<110mA). CPUMP
may range from 0.22μF for light loads to 1μF for heavy
output load conditions. If CPUMP is increased, COUT should
also be increased by the same ratio to minimize output
ripple. As a basic rule, the ratio between CIN, COUT and
CPUMP should be approximately 10 to 1. Lowering the CIN,
COUT and CPUMP value can decrease the ramp-up time of
VOUT, but it will increase the output ripple oppositely.
CPUMP
0.22µF
CIN
2.2µF
VIN
+
CP
CN
VIN
VOUT
RT9361A/B
EN
CIN
2.2µF
VIN
R
100
R
100
R
100
LED
20mA
LED
20mA
LED
20mA
CN
VIN
VOUT
COUT
2.2µF
VOUT
4.5V/150mA
RT9361A/B
+
EN
R
R
R
LED
LED
LED
GND
Figure 2. Application Circuits for Flash LEDs
CPUMP
1µF
CIN
10µF
VIN
CP
CN
VIN
VOUT
EN
VOUT
5V/110mA
L
1µH
RT9361A/B
+
COUT
10µF
GND
1µF
Figure 3. Application Circuits for Constant Load
CPUMP
0.22µF
CIN
10µF
VIN +
3.3V
COUT
2.2µF
CP
CP
CN
VIN
VOUT
RT9361A/B
EN
GND
VOUT
5V/180mA
COUT
10µF
CPUMP 0.22µF
GND
CP
CN
VIN
VOUT
RT9361A/B
Figure 1. Application Circuits for Backlight Dimming
EN
GND
Figure 4. Application Circuits for Doubling the Output
Current
www.richtek.com
8
DS9361A/B-13 April 2011
RT9361A/B
Efficiency
The approximate efficiency is given by :
Efficiency (%) =
=
VOUT × IOUT
POUT
× 100 =
× 100
PIN
VIN × 2IOUT
VOUT
× 100 − − − (×2 Charge Pump Operating Mode)
2VIN
For a charge pump with an output of 5 volts and a nominal
input of 3 volts, the theoretical efficiency is 83.33%. Due
to internal switching losses and IC quiescent current
consumption, the actual efficiency can be measured as
82.72%.
Thermal Considerations
The maximum power dissipation depends on the thermal
resistance of IC package, PCB layout, the rate of
surroundings airflow and temperature difference between
junction to ambient. The maximum power dissipation can
be calculated by following formula :
PD(MAX) = ( TJ(MAX) - TA ) / θJA
Where T J(MAX) is the maximum operation junction
temperature 125°C, TA is the ambient temperature and
the θJA is the junction to ambient thermal resistance.
0.8
Single Layer PCB
0.7
Power Dissipation (W)
The efficiency of the charge pump regulator varies with
the output voltage version, the applied input voltage, the
load current, and the internal operation mode of the device.
T/SOT-23-6
0.6
0.5
0.4
WDFN-6L 2x2
0.3
0.2
0.1
0.0
0
25
50
75
100
125
Ambient Temperature (°C)
Figure 5. Derating Curves for RT9361 Packages
PCB Board Layout
The RT9361A/B is a high-frequency switched-capacitor
converter, and therefore large transient currents will flow
in VIN and VOUT. For best performance and to minimize
ripple, place all of the components as close to IC as
possible. Besides a solid ground plane is recommended
on the bottom layer of the PCB. The ground of CIN and
COUT should be connected together and as close to the IC
as possible. Figure 6 and Figure 7 shows the typical PCB
layout of RT9361A/B EVB board.
For recommended operating conditions specification of
RT9361, where T J(MAX) is the maximum junction
temperature of the die (125°C) and TA is the operated
ambient temperature. The junction to ambient thermal
resistance θJA for T/SOT-23-6 is 250°C/W and WDFN-6L
2x2 is 165°C/W on the standard JEDEC 51-3 single layer
thermal test board. The maximum power dissipation at
TA = 25°C can be calculated by following formula :
P D(MAX) = (125°C − 25°C) / 250°C/W = 0.4W for
T/SOT-23-6 packages
Figure 6
PD(MAX) = (125°C − 25°C) / 165°C/W = 0.606W for
WDFN-6L 2x2 packages
The maximum power dissipation depends on operating
ambient temperature for fixed T J(MAX) and thermal
resistance θJA. For RT9361 packages, the Figure 5 of derating curves allows the designer to see the effect of rising
ambient temperature on the maximum power allowed.
Figure 7
DS9361A/B-13 April 2011
www.richtek.com
9
RT9361A/B
Outline Dimension
H
D
L
C
B
b
A
A1
e
Symbol
Dimensions In Millimeters
Dimensions In Inches
Min
Max
Min
Max
A
0.889
1.295
0.031
0.051
A1
0.000
0.152
0.000
0.006
B
1.397
1.803
0.055
0.071
b
0.250
0.560
0.010
0.022
C
2.591
2.997
0.102
0.118
D
2.692
3.099
0.106
0.122
e
0.838
1.041
0.033
0.041
H
0.080
0.254
0.003
0.010
L
0.300
0.610
0.012
0.024
SOT-23-6 Surface Mount Package
www.richtek.com
10
DS9361A/B-13 April 2011
RT9361A/B
H
D
L
C
B
b
A
A1
e
Symbol
Dimensions In Millimeters
Dimensions In Inches
Min
Max
Min
Max
A
0.700
1.000
0.028
0.039
A1
0.000
0.100
0.000
0.004
B
1.397
1.803
0.055
0.071
b
0.300
0.559
0.012
0.022
C
2.591
3.000
0.102
0.118
D
2.692
3.099
0.106
0.122
e
0.838
1.041
0.033
0.041
H
0.080
0.254
0.003
0.010
L
0.300
0.610
0.012
0.024
TSOT-23-6 Surface Mount Package
DS9361A/B-13 April 2011
www.richtek.com
11
RT9361A/B
D2
D
L
E
E2
1
SEE DETAIL A
2
e
2
1
b
A
A1
1
DETAIL A
Pin #1 ID and Tie Bar Mark Options
A3
Note : The configuration of the Pin #1 identifier is optional,
but must be located within the zone indicated.
Symbol
Dimensions In Millimeters
Dimensions In Inches
Min
Max
Min
Max
A
0.700
0.800
0.028
0.031
A1
0.000
0.050
0.000
0.002
A3
0.175
0.250
0.007
0.010
b
0.200
0.350
0.008
0.014
D
1.950
2.050
0.077
0.081
D2
1.000
1.450
0.039
0.057
E
1.950
2.050
0.077
0.081
E2
0.500
0.850
0.020
0.033
e
L
0.650
0.300
0.026
0.400
0.012
0.016
W-Type 6L DFN 2x2 Package
Richtek Technology Corporation
Richtek Technology Corporation
Headquarter
Taipei Office (Marketing)
5F, No. 20, Taiyuen Street, Chupei City
5F, No. 95, Minchiuan Road, Hsintien City
Hsinchu, Taiwan, R.O.C.
Taipei County, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
Tel: (8862)86672399 Fax: (8862)86672377
Email: [email protected]
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit
design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be
guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.
www.richtek.com
12
DS9361A/B-13 April 2011