RT9519A Linear Single Cell Li-lon Battery Charger with Auto Power Path Management General Description Features The RT9519A is an integrated single cell Li-ion battery charger with Auto Power Path Management (APPM). No external MOSFETs are required. The RT9519A enters sleep mode when power is removed. Charging tasks are optimized by using a control algorithm to vary the charge rate, including pre-charge mode, fast charge mode and constant voltage mode. For the RT9519A, the charge current can also be programmed with an external resistor and modified with an external GPIO. The scope that the battery regulation voltage can be modified with an external GPIO depends on the battery temperature. The internal thermal feedback circuitry regulates the die temperature to optimize the charge rate for all ambient temperatures. The charging task will always be terminated in constant voltage mode when the charging current reduces to the termination current of 10% x ICHG_FAST. Other features z include under voltage protection and over voltage protection for VIN the supply. z Ordering Information Pin Configurations 28V Maximum Rating for VIN Power z Selectable Power Current Limit (0.1A / 0.5A / 1.5A) z Integrated Power MOSFETs z Auto Power Path Management (APPM) z Battery Charging Current Control z Battery Regulation Voltage Control z Programmable Charging Current and Safe Charge Timer z Under Voltage Protection, Over Voltage Protection z Power Good and Charge Status Indicator z Optimized Charge Rate via Thermal Feedback z Thin 20-Lead WQFN Package z RoHS Compliant and Halogen Free Applications z Digital Cameras PDAs and Smart Phones Portable Instruments RT9519A Note : Richtek products are : ` RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. ` Suitable for use in SnPb or Pb-free soldering processes. Marking Information (TOP VIEW) USUS SYS SYS SYS NC Package Type QW : WQFN-20L 3x3 (W-Type) Lead Plating System G : Green (Halogen Free and Pb Free) 20 19 18 17 16 VIN PGOOD CHG GND ISETA 1 15 2 14 GND 3 4 21 5 13 12 11 6 7 8 VSET ISETL ISETU VP ISET 9 10 TS TIMER BAT BAT EN z WQFN-20L 3x3 JF= : Product Code JF=YM DNN YMDNN : Date Code DS9519A-02 April 2011 www.richtek.com 1 RT9519A Typical Application Circuit RT9519A Adapter CIN 2.2µF 17, 18, 19 To System Load SYS TS TIMER 2 PGOOD 3 CHG Power Good Indicator Charge Indicator 6 7 CTIMER 1µF Suspend 1µF 20 USUS Normal Suspend Mode 4.2V 4.05V See ISETU 15 VSET 14 500mA 100mA VIN Current Limit NTC BAT 8, 9 10 EN Chip Enable 1.5A VIN Current Limit External Power Source 2.95V to 3.6V VP 12 1 VIN 1-Cell Li+ RISETA ISETA 5 ICHG ISET 11 ICHG/2 ISETL 13 ISETU + GND 4, 21 (Exposed Pad) Function Block Diagram VIN SYS Control Circuit BAT Thermal Circuit Sleep Mode ISETA ISET Current Setting USUS EN R 200k VSET ISETL VP CC/CV/TR /APPM Multi Loop Controller 200k Timer TIMER 200k Temperature Sense TS 200k CHG Logic Control 200k PGOOD ISETU 200k 1sec Delay GND OVP UVLO www.richtek.com 2 DS9519A-02 April 2011 RT9519A Functional Pin Description Pin No. Pin Name Pin Function 1 VIN Supply Voltage Input. 2 PGOOD Power Good Status Output. Open-drain output. 3 CHG Charger Status Output. Open-drain output. 4, GND 21 (Exposed Pad) 5 Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation. ISETA Charge Current Set Input. Connect a resistor (RISETA) between ISETA and GND. 6 TS Temperature Sense Input. The TS pin connects to a battery’s thermistor to determine if the battery is too hot or too cold to charge. If the battery’s temperature is out of range, charging is paused until it re-enters the valid range. TS also detect battery (with NTC) is present or not. 7 TIMER Safe Charge Timer Setting. 8,9 BAT Battery Charge Current Output. 10 EN Charge Enable. Active Low input. 200kΩ pull low. 11 ISET Half Charge Current Set Input. Control by external GPIO, L = ICHG1 / 2, H = I CHG1, 200kΩ pull low. 12 VP This pin must be provided a regulated voltage from 2.95V to 3.6V by external power. 13 ISETU VIN Current Limit Control Input. When ISETL = H, L = 100mA, H = 500mA, 200kΩ pull low. 14 ISETL VIN Current Limit Control Input. H : see ISETU, L = 1.5A, 200kΩ pull low. 15 VSET Battery Regulation Set Input. Control by external GPIO. L = 4.05V, H = 4.2V, 200kΩ pull low. 16 NC No Internal Connection. 17, 18, 19 SYS System Connect Pin. Connect this pin to System with a minimum 10μF ceramic capacitor to GND. USUS VIN Suspend Control Input. H = Suspend, L = No suspend. 200kΩ pull low. 20 DS9519A-02 April 2011 www.richtek.com 3 RT9519A Absolute Maximum Ratings z z z z z z z z z z z (Note 1) Supply Voltage, VIN ----------------------------------------------------------------------------------------------------- −0.3V to 28V CHG, PGOOD ------------------------------------------------------------------------------------------------------------ −0.3V to 28V Other Pins ----------------------------------------------------------------------------------------------------------------- −0.3V to 6V CHG, PGOOD Continuous Current ---------------------------------------------------------------------------------- 20mA BAT Continuous Current (total in two pins) (Note 2) ----------------------------------------------------------- 2.5A Power Dissipation, PD @ TA = 25°C WQFN-20L 3x3 ----------------------------------------------------------------------------------------------------------- 1.471W Package Thermal Resistance (Note 3) WQFN-20L 3x3, θJA ----------------------------------------------------------------------------------------------------- 68°C/W WQFN-20L 3x3, θJC ------------------------------------------------------------------------------------------------------------------------------------------------ 7.5°C/W Lead Temperature (Soldering, 10 sec.) ----------------------------------------------------------------------------- 260°C Junction Temperature --------------------------------------------------------------------------------------------------- 150°C Storage Temperature Range ------------------------------------------------------------------------------------------- −65°C to 150°C ESD Susceptibility (Note 4) HBM (Human Body Mode) --------------------------------------------------------------------------------------------- 2kV MM (Machine Mode) ---------------------------------------------------------------------------------------------------- 200V Recommended Operating Conditions z z z z (Note 5) Supply Input Voltage Range,VIN (ISETL = L) ---------------------------------------------------------------------Supply Input Voltage Range,VIN (ISETL = H) ---------------------------------------------------------------------Junction Temperature Range -----------------------------------------------------------------------------------------Ambient Temperature Range ------------------------------------------------------------------------------------------ 4.4V to 6V 4.5V to 6V −40°C to 125°C −40°C to 85°C Electrical Characteristics (VIN = 5V, VBAT = 4V, TA = 25°C, unless otherwise specified) Parameter Symbol Supply Input VIN Under Voltage Lockout VUVLO Threshold VIN Under Voltage Lockout ΔVUVLO Hysteresis Test Conditions Min Typ Max Unit VIN = 0V to 4V 3.1 3.3 3.5 V VIN = 4V to 0V -- 240 -- mV ISYS = IBAT = 0mA, EN = L (VBAT > VREGx) -- 1 2 mA ISYS = IBAT = 0mA, EN = H (VBAT > VREGx) -- 0.8 1.5 mA VIN Supply Current I SUPPLY VIN Suspend Current VBAT Sleep Leakage Current VIN-BAT VOS Rising I USUS VIN = 5V, USUS = H -- 195 300 μA I SLEEP VBAT > VIN , (VIN = 0V) -- 5 15 μA VOS_H -- 200 300 mV VIN-BAT VOS Falling VOS_L 10 50 -- mV 4.3 4.4 4.5 V 4.16 4.2 4.23 V 4.01 4.05 4.08 V 120 200 Voltage Regulation System Regulation Voltage VSYS Battery Regulation Voltage VREG1 Battery Regulation Voltage VREG2 APPM Regulation Voltage ΔVAPPM www.richtek.com 4 ISYS = 800mA 0 to 85°C , Loading = 20mA, When VSET = H 0 to 85°C, Loading = 20mA, When VSET = L VSYS − ΔVAPPM 280 mV To be continued DS9519A-02 April 2011 RT9519A Parameter Symbol Test Conditions Min Typ Max Unit DPM Regulation Voltage VDPM 4.4 4.5 V RDS(ON) ISETL = H IVIN = 1000mA 4.3 VIN to VSYS MOSFET Ron -- 0.2 0.35 Ω BAT to VSYS MOSFET Ron RDS(ON) VBAT = 4.2V, I SYS = 1A -- 0.05 0.1 Ω Re-Charge Threshold ΔVREGCHG Battery Regulation − Recharge level 60 100 140 mV ISETA Set Voltage (Fast Charge Phase) VISETA VBAT = 4V, RISETA = 1kΩ -- 2 -- V Charge Current Setting Range ICHG 100 -- 1200 mA Charge Current Accuracy1 ICHG1 570 600 630 mA Charge Current Accuracy2 ICHG2 285 300 315 mA 1.2 1.5 1.8 A ISETL = H, ISETU = H (500mA mode) 450 475 500 mA ISETL = H, ISETU = L (100mA Mode) 90 95 100 mA BAT Falling 2.7 2.8 2.9 V -- 200 -- mV Current Regulation VIN Current Limit IVIN VBAT = 4V, RISETA = 1kΩ ISET = H VBAT = 3.8V, RISETA = 1kΩ ISET = L ISETL = L (1.5A Mode) Pre-charge BAT Pre-Charge Threshold VPRECH BAT Pre-Charge Threshold Hysteresis ΔVPRECH Pre-Charge Current ICHG_PRE VBAT = 2V 5 10 15 % Termination Current Ratio to Fast Charge (Except USB 100 Mode) ITERM ISETL = H, ISETU = H ISETL = L, ISETU = X 5 10 15 % Termination Current Ratio to Fast Charge (USB100 Mode) ITERM2 ISETL = H, ISETU = L -- 3.3 -- % CHG Pull Down Voltage VCHG ICHG = 5mA -- 200 -- mV PGOOD Pull Down Voltage VPGOOD IPGOOD = 5mA -- 200 -- mV EN, ISETL, USUS, ISETU, VSET, ISET Threshold Voltage Logic-High VIH 1.5 -- -- Logic-Low VIL -- -- 0.4 ---6.25 125 155 20 6.5 ---6.75 °C °C °C V Charge Termination Detection Login Input/Output V Protection Thermal Regulation Thermal Shutdown Temperature Thermal Shutdown Hysteresis Over Voltage Protection TREG TSD ΔTSD VOVP VIN Rising Over Voltage Protection Hysteresis ΔVOVP VIN = 7V to 5V, VOVP − ΔVOVP -- 100 -- mV -- 300 -- mV 1800 2160 s Output Short Circuit Detection Threshold Time Pre-Charge Fault Time VSHORT VBAT − VSYS tPCHG CTIMER = 1μF (1/8 x tFCHG ) 1440 Fast charge Fault Time tFCHG CTIMER = 1μF 11520 14400 17280 s To be continued DS9519A-02 April 2011 www.richtek.com 5 RT9519A Parameter PGOOD Deglitch Time Input Over Voltage Blanking Time Pre-Charge to Fast-Charge Deglitch Time Fast-Charge to Pre-Charge Deglitch Time Termination Deglitch Time Recharge Deglitch Time Input Power Loss to SYS LDO Turn-Off Delay Time Pack Temperature Fault Detection Deglitch Time Short Circuit Deglitch Time Short Circuit Recovery Time Other VP (External used only) VP Under Voltage Lockout Threshold TS Battery Detect Threshold NTC Symbol Test Conditions Min Typ Max Unit Time measured from VIN : 0Æ5V 1μs rise-time to PGOOD = L -- 1 -- s tOVP -- 50 -- μs tPF -- 25 -- ms tFP -- 25 -- ms tTERMI tRECHG --- 25 100 --- ms ms tNO_IN -- 25 -- ms tTS -- 25 -- ms tSHORT -- 250 -- μs tSHORT-R -- 64 -- ms 2.95 -- 3.6 V -- 0.8 -- V 2.75 2.85 2.95 V 58.8 60 61.2 % of VP -- 1.5 -- % of VP 35.8 37.5 39.1 % of VP -- 1.5 -- % of VP tPGOOD VVP Falling Threshold VTS Low Temperature Trip Point VCOLD Low Temperature Trip point Hysteresis ΔVCOLD High Temperature Trip Point VHOT High Temperature Trip Point Hysteresis ΔVHOT Rising Threshold Falling Threshold Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability. Note 2. Guraranteed by design. Note 3. θJA is measured in natural convection at TA = 25°C on a high effective thermal conductivity four-layer test board of JEDEC 51-7 thermal measurement standard. The measurement case position of θJC is on the exposed pad of the package. Note 4. Devices are ESD sensitive. Handling precaution is recommended. Note 5. The device is not guaranteed to function outside its operating conditions. www.richtek.com 6 DS9519A-02 April 2011 RT9519A Typical Operating Characteristics Charger On/Off Control from EN Charger On/Off Control from VIN USB 500mA Mode USB 500mA Mode VEN (5V/Div) VCHG (5V/Div) VIN (5V/Div) VCHG (5V/Div) VBAT (2V/Div) IBAT (500mA/Div) VBAT (5V/Div) IBAT (500mA/Div) VIN = 5V, VBAT = Real Battery, VVP = 3.3V VIN = 5V, VBAT = Real Battery, VVP = 3.3V Time (25ms/Div) Time (500ms/Div) TS Inserted/Removed VIN Removal USB 500 Mode VIN = 5V, VBAT = Real Battery, ISETL = L, VVP = 3.3V, RSYS = 10Ω VCHG (5V/Div) VBAT (2V/Div) VTS (2V/Div) IBAT (500mA/Div) IBAT (1A/Div) VSYS (2V/Div) VIN = 5V, VBAT = Real Battery, VVP = 3.3V VBAT (5V/Div) VIN (5V/Div) Time (25ms/Div) Time (10ms/Div) VIN Hot-plug with NTC/Without Battery VIN Hot-plug Without NTC/Battery I IN (500mA/Div) I IN (500mA/Div) VSYS (5V/Div) VBAT (5V/Div) VSYS (5V/Div) VBAT (5V/Div) VIN (5V/Div) VIN (5V/Div) VIN = 5V, VVP = 3.3V, RSYS = 10Ω Time (100ms/Div) DS9519A-02 April 2011 VIN = 5V, VVP = 3.3V, RSYS = 10Ω Time (100ms/Div) www.richtek.com 7 RT9519A System Regulation Voltage vs. Temperature VIN Hot-plug with Battery 4.60 4.55 System Voltage (V) 1 IBAT (500mA/Div) VSYS (5V/Div) VBAT (5V/Div) VIN (5V/Div) VIN = 5V, VBAT = Real Battery, ISETL = L, VVP = 3.3V, RSYS = 10Ω 4.50 4.45 4.40 4.35 4.30 4.25 VIN = 5V, ISYS = 0.5A, VVP = 3.3V 4.20 Time (100ns/Div) -50 -25 0 25 50 75 100 125 Temperature (°C) OVP Threshold Voltage vs. Temperature VIN Over Voltage Protection 6.60 IBAT (500mA/Div) OVP Voltage (V) 1 6.55 VIN (5V/Div) VSYS (5V/Div) VBAT (5V/Div) VIN = 5V to 15v, VBAT = Real Battery, ISETL = L, RSYS = 10Ω Rising 6.50 6.45 Falling 6.40 6.35 6.30 6.25 VIN = 5V, VBAT = 3.7V, VVP = 3.3V 6.20 Time (500ms/Div) -50 -25 0 25 50 75 100 125 Temperature (°C) VSYS Dropout Voltage vs. Temperature VBAT - VSYS Dropout Voltage vs. Temperature 70 450 400 350 300 250 200 150 100 50 VIN = 5V, ISYS = 1A, VVP = 3.3V 0 VBAT - VSYS Dropout Voltage (mV) VIN - VSYS Dropout Voltage (mV) VIN 500 60 50 40 30 20 10 VIN = 5V, VBAT = 3.7V, ISYS = 1A, USUS = H, VVP = 3.3V 0 -50 -25 0 25 50 Temperature (°C) www.richtek.com 8 75 100 125 -50 -25 0 25 50 75 100 125 Temperature (°C) DS9519A-02 April 2011 RT9519A ICHG Thermal Regulation vs. Temperature Battery Regulation Voltage vs. Temperature 4.30 USB 500 Mode 4.28 500 4.26 Battery Voltage(V) I CHG Thermal Regulation (mA)1 600 400 300 200 4.24 4.22 4.20 4.18 4.16 4.14 100 4.12 VIN = 5V, VBAT = 3.7V, VVP = 3.3V 0 VIN = 5V, VVP = 3.3V 4.10 -50 -25 0 25 50 75 100 125 -50 -35 -20 25 40 55 70 85 1040 Fastcharge Current (mA)1 Precharge Current (mA) 10 Fastcharge Current vs. Battery Voltage Precharge Current vs. Battery Voltage 100 96 92 88 84 1030 1020 1010 VIN = 5V, VVP = 3.3V, RISETA = 0.6kΩ 80 2.0 -5 Temperature (°C) Temperature (°C) 2.2 2.4 2.6 Battery Voltage (V) DS9519A-02 April 2011 2.8 3.0 VIN = 5V, VVP = 3.3V, RISETA = 0.6kΩ 1000 3.00 3.22 3.44 3.66 3.88 4.10 Battery Voltage (V) www.richtek.com 9 RT9519A Applications Information The RT9519A is a fully integrated single-cell Li-ion battery charger ideal for portable applications. The internal thermal feedback circuitry regulates the die temperature to optimize the charge rate for all ambient temperatures. Other features include under voltage protection and over voltage protection. Pre-charge Mode When the output voltage is lower than 2.8V, the charging current will be reduce to a fast-charge current ratio set by RISETA to protect the battery life time. Fast-charge Mode When the output voltage is higher than 3V, the charging current will be equal to the fast-charge current set by RISETA. Constant Voltage Mode When the output voltage is near 4.2V, and the charging current fall below the termination current, after a deglitch time check of 25ms, the charger will become disabled and CHG will go from L to H. For example the system load current may have activated the APPM loop which reduces the available charging current. the device has entered thermal regulation because the IC junction temperature has exceeded TREG. During each of these events, if 3V < VBAT < 4.1V, the internal charging time is slowed down proportionately to the reduction in charging current. However, once the duration exceed the fault time, the CHG output will flash at approximately 2Hz to indicate a fault condition and the charge current will be reduced to about 1mA. 2V tFCHG_true = tFCHG × VISETA tFCHG_true : modified timer in fast tFCHG : original timer in fast charger tFCHG = 14400 sec × ( CTIMER ) 1μ F tFCHG 8 : timer in pre-charge tPCHG = tPCHG Time fault release methods : (1) Re-plug power Re-charge Mode (2) Toggle EN When the chip is in charge termination mode, the charging current will gradually go down to zero. However, once the voltage of the battery drops to below 4.1V, there will be a deglitch time of 100ms and then the charging current will resume again. (3) Enter/exit suspend mode Charging Current Decision The charge current can be set according to the following equations : If ISET = H (for ICHG1 ) ICHG_FAST V = ISETA × 300 RISETA If ISET = L (for ICHG2 ) ICHG_FAST = VISETA × 150 RISETA (4) Remove Battery (5) OVP Note that the fast charge fault time is independent of the charge current. Power Good VIN Power Good ( PGOOD = L) Input State VIN < VUVLO VUVLO < VIN < VBAT + VOS_H VBAT + VOS_H < VIN < VOVP VIN > VOVP PGOOD Output High Impedance High Impedance Low Impedance High Impedance ICHG_PRE = 10% × ICHG_FAST Time Fault During the fast charge phase, several events may increase the charging time. www.richtek.com 10 DS9519A-02 April 2011 RT9519A Charge State Indicator Charge State CHG Output Charging Charging Suspended by Thermal Loop Safety Timers Expired Low (for first charge cycle) 2Hz Flash Charging Done Recharging after Termination IC Disabled or no Valid Input Power From (1), (2) − RHOT R R1 = COLD 0.9 R2 = 0.6 × R1 − RHOT If R2 < 0 RCOLD = 0.6 RCOLD + R1 High Impedance (3) From (3) R1 = RCOLD − RCOLD 0.6 Battery Pack Temperature Monitoring The battery pack temperature monitoring function can be realized by connecting the TS pin to an external Negative Temperature Coefficient (NTC) thermistor to prevent over temperature condition. Charging is suspended when the voltage at the TS pin is out of normal operating range. The internal timer is then paused, but the value is maintained. When the TS pin voltage returns back to normal operating range, charging will resume and the safe charge timer will continue to count down from the point where it was suspended. Note that although charging is suspended due to the battery pack temperature fault, the CHG pin will continue to remain low and indicate charging. VP VP 0.6 x VP + R1 TS R2 0.375 x VP + Too Cold Charge Enable When EN is low, the charger turns on. When EN is high, the charger turns off. EN is pulled low for initial condition. VIN input Current Limit ISETL ISETU H H L L H X VIN Input Current Limit 95mA 475mA 1.5A Suspend Mode Set USUS = H, and the charge will enter Suspend Mode. In the Suspend Mode, CHG is in high impedance and IUSUS(MAX) < 300μA. Power Switch For the RT9519A, there are three power scenarios: Too Hot (1)When a battery and an external power supply (USB or adapter) are connected simultaneously : RNTC Too Hot Temperature If the system load requirements exceed that of the input current limit, the battery will be used to supplement the current to the load. However, if the system load requirements are less than that of the input current limit, the excess power from the external power supply will be used to charge the battery. RHOT = RNTC (2)When only the battery is connected to the system : Figure 1 Too Cold Temperature RCOLD = RNTC R2 + RCOLD = 0.6 RCOLD + R1 + R2 R2 + RHOT = 0.375 RHOT + R1 +R2 DS9519A-02 April 2011 The battery provides the power to the system. (1) (2) (3)When only an external power supply is connected to the system : www.richtek.com 11 RT9519A The external power supply provides the power to the system. Input DPM Mode For the RT9519A, the input voltage is monitored when the USB100 or USB500 is selected. If the input voltage is lower than VDPM, the input current limit will be reduced to stop the input voltage from dropping any further. This can prevent the IC from damaging improperly configured or inadequately designed USB sources. APPM Mode Once the sum of the charging and system load currents becomes higher than the maximum input current limit, the SYS pin voltage will be reduced. When the SYS pin voltage is reduced to the VAPPM, the RT9519A will automatically operate in APPM mode. In this mode, the charging current is reduced while the SYS current is increased to maintain system output. In APPM mode, the battery termination function is disabled. Battery Supplement Mode Short Circuit Protect In APPM mode, the SYS voltage will continue to drop if the charge current is zero and the system load increases beyond the input current limit. When the SYS voltage decreases below the battery voltage, the battery will kick in to supplement the system load until the SYS voltage rises above the battery voltage. While in supplement mode, there is no battery supplement current regulation. However, a built in short circuit protection feature is available to prevent any abnormal current situations. While the battery is supplementing the load, if the difference between the battery and SYS voltage becomes more than the short circuit threshold voltage, SYS will be disabled. After a short circuit recovery time, tSHORT_R, the counter will be restarted. In supplement mode, the battery termination function is disabled. Note that for the battery supply mode exit condition, VBAT − VSYS < 0V. Thermal Regulation and Thermal Shutdown The RT9519A provides a thermal regulation loop function to monitor the device temperature. If the die temperature rises above the regulation temperature, TREG, the charge current will automatically be reduced to lower the die temperature. However, in certain circumstances (such as high VIN, heavy system load, etc.) even with the thermal loop in place, the die temperature may still continue to increase. In this case, if the temperature rises above the thermal shutdown threshold, TSD, the internal switch between VIN and SYS will be turned off. The switch between the battery and SYS will remain on, however, to allow continuous battery power to the load. Once the die temperature decreases by ΔTSD, the internal switch between VIN and SYS will be turned on again and the device returns to normal thermal regulation. Charging Profile 4.16 to 4.2 to 4.23V -40 to 85°C Battery Voltage Charging Current VRECH VPRECH ISETL = H, ISETU = H If ISETL = L, ISETU = X ITERMI = 10% x ICHG_FAST If ISETL = H, ISETU = L ITERMI = 3.3% x ICHG_FAST ICHG_PRE = 10% x ICHG_FAST ITERM ITERM2 Time Figure 2 www.richtek.com 12 DS9519A-02 April 2011 RT9519A APPM Profile 1.5A Mode : VIN 5V VSYS 4.4V VAPPM 4.2V VBAT 4.0V 3A 2A IBAT 1A ISYS 0 IVIN -1A -2A -3A T1 T2 T3 T4 T5 T6 T7 ISYS VSYS IVIN IBAT T1, T7 0 SYS Regulation Voltage CHG_MAX CHG_MAX T2, T6 < IVIN_OC − CHG_MAX SYS Regulation Voltage ISYS + CHG_MAX CHG_MAX Auto Charge Voltage Threshold VIN _OC V IN_OC − ISYS VBAT − IBAT x RD S(ON) VIN _OC ISYS−IVIN_OC T3, T5 > IVIN_OC − CHG_MAX < IVIN_OCs T4 > IVIN_OC USB 500mA Mode : VUSB 5V VSYS 4.4V VAPPM 4.2V VBAT 4.0V 0.75A 0.5A IBAT 0.25A 0 ISYS IUSB -0.25A -0.5A -0.75A T1 T2 T3 T4 T5 T6 T7 ISYS VSYS IUSB IBAT T1, T7 0 SYS Regulation Voltage CHG_MAX CHG_MAX T2, T6 < IVIN_OC (USB) − CHG_MAX SYS Regulation Voltage T3, T5 T4 > IVIN_OC (USB) − CHG_MAX < IVIN_OC (USB) > IVIN_OC (USB) DS9519A-02 April 2011 ISYS + CHG_MAX CHG_MAX Auto Charge Voltage Threshold IVIN_OC (USB) IVIN_OC (USB) − ISYS VBAT − IBAT x RDS(ON) IVIN_OC (USB) ISYS − IVIN_OC (USB) www.richtek.com 13 RT9519A VSET vs VREG , ISET vs ICHG VSET 4.16 to 4.2 to 4.23V VREG 4.01 to 4.05 to 4.08V ISET ICHG +/-5% ICHG 0.5 x ICHG +/-5% For JEITA Battery Temperature Standard : CV regulation voltage will change at the following battery Temp ranges 0°C to 10°C and 45°C to 60°C CC regulation current will change at the following battery Temp ranges 0°C to 10°C and 45°C to 60°C 4.16 to 4.2 to 4.23V 4.01 to 4.05 to 4.08V 4.01 to 4.05 to 4.08V 0°C 45°C 10°C 60°C Temperature +/- 2°C ICHG +/- 5% 0.5 x ICHG +/- 5% 0.5 x ICHG +/- 5% Temperature +/- 2°C www.richtek.com 14 DS9519A-02 April 2011 RT9519A RT9519A Operation State Digram for Charging VBAT > 3V Fast-Charge State If ISET = H ICHG_FAST = (VISETA / RISETA) x 300 If ISET = L ICHG_FAST = (VISETA / RISETA) x 150 Yes No VIN – VBAT > VOS_H Yes Pre-Charge State ICHG_PRE = Sleep State If VSET = H Check VBAT > 4.1V If VSET = L Check VBAT > 3.95V No 10% x ICHG_FAST Yes No Time > tFCHG Yes No Time > tPCHG Standby State ISETL = H & ISETU = H ISETL = L & ISETU = X Check ICHG < 10% x ICHG_FAST If ISETL = H & ISETU = L Check ICHG < 3.3% x ICHG_FAST If Yes No Timer-Out State CHG = flash 2Hz & ICHG to 1mA Yes No Yes VUVLO< VIN < VOVP & EN = L &USUS = L Re-Charge State CHG = High impedance Charger Disable Time > tTERMI = 25msec Yes Yes If VSET = H Check VBAT < 4.1V If VSET = L Check VBAT < 3.95V Any State or VIN < VUVLO, Charge Done State CHG = High impedance & ICHG = 0A or VIN > VOVP, Or VIN - VBAT < VOS_H or USUS = H or EN = H No Operation State Digram for TS PIN Any State No 60% x VVP < VTS < 2.85V Or VTS < 37.5% x VVP No VTS > 2.85V Yes Yes TS fault State ICHG = 0A Keep CHG state DS9519A-02 April 2011 Battery Remove State ICHG = 0A CHG = High impedance Reset timer and CHG www.richtek.com 15 RT9519A For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula : PD(MAX) = (TJ(MAX) − TA) / θJA where TJ(MAX) is the maximum junction temperature, TA is the ambient temperature, and θJA is the junction to ambient thermal resistance. For recommended operating condition specifications of the RT9519A, the maximum junction temperature is 125°C and TA is the ambient temperature. The junction to ambient thermal resistance, θJA, is layout dependent. For WQFN20L 3x3 packages, the thermal resistance, θJA, is 68°C/ W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at TA = 25°C can be calculated by the following formula : Maximum Power Dissipation (W)1 Thermal Considerations 1.6 Four-Layer PCB 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 25 50 75 100 125 Ambient Temperature (°C) Figure 3. Derating Curves for RT9519A Package PD(MAX) = (125°C − 25°C) / (68°C/W) = 1.471W for WQFN-20L 3x3 package The maximum power dissipation depends on the operating ambient temperature for fixed T J(MAX) and thermal resistance, θJA. For the RT9519A package, the derating curve in Figure 3 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation. www.richtek.com 16 DS9519A-02 April 2011 RT9519A Outline Dimension 1 1 2 2 DETAIL A Pin #1 ID and Tie Bar Mark Options Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated. Symbol Dimensions In Millimeters Dimensions In Inches Min Max Min Max A 0.700 0.800 0.028 0.031 A1 0.000 0.050 0.000 0.002 A3 0.175 0.250 0.007 0.010 b 0.150 0.250 0.006 0.010 D 2.900 3.100 0.114 0.122 D2 1.650 1.750 0.065 0.069 E 2.900 3.100 0.114 0.122 E2 1.650 1.750 0.065 0.069 e L 0.400 0.350 0.016 0.450 0.014 0.018 W-Type 20L QFN 3x3 Package Richtek Technology Corporation Richtek Technology Corporation Headquarter Taipei Office (Marketing) 5F, No. 20, Taiyuen Street, Chupei City 5F, No. 95, Minchiuan Road, Hsintien City Hsinchu, Taiwan, R.O.C. Taipei County, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611 Tel: (8862)86672399 Fax: (8862)86672377 Email: [email protected] Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek. DS9519A-02 April 2011 www.richtek.com 17