RT9519B Linear Single Cell Li-lon Battery Charger with Auto Power Path Management General Description Features The RT9519B is an integrated single cell Li-ion battery charger with Auto Power Path Management (APPM). No external MOSFETs are required. The RT9519B enters sleep mode when power is removed. Charging tasks are optimized by using a control algorithm to vary the charge rate, including pre-charge mode, fast charge mode and constant voltage mode. For the RT9519B, the charge current can also be programmed with an external resistor and modified with an external GPIO. The scope that the battery regulation voltage can be modified with an external GPIO depends on the battery temperature. The internal thermal feedback circuitry regulates the die temperature to optimize the charge rate for all ambient temperatures. The charging task will always be terminated in constant voltage mode when the charging current reduces to the termination current of 10% x ICHG_FAST. Other features z include under voltage protection and over voltage protection for VIN the supply. z Ordering Information Pin Configurations 28V Maximum Rating for VIN Power z Selectable Power Current Limit (0.1A / 0.5A / 1.5A) z Integrated Power MOSFETs z Auto Power Path Management (APPM) z Battery Charging Current Control z Battery Regulation Voltage Control z Programmable Charging Current and Safe Charge Timer z Under Voltage Protection, Over Voltage Protection z Power Good and Charge Status Indicator z Optimized Charge Rate via Thermal Feedback z Thin 20-Lead WQFN Package z RoHS Compliant and Halogen Free Applications z z Digital Cameras PDAs and Smart Phones Portable Instruments RT9519B (TOP VIEW) USUS SYS SYS SYS TS_FAULT Package Type QW : WQFN-20L 3x3 (W-Type) Lead Plating System G : Green (Halogen Free and Pb Free) 20 19 18 17 16 Richtek products are : ` RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. ` Suitable for use in SnPb or Pb-free soldering processes. VIN PGOOD CHG GND ISETA 1 15 2 14 GND 3 4 21 5 13 12 11 6 7 8 VSET ISETL ISETU VP ISET 9 10 TS TIMER BAT BAT EN Note : Marking Information 46= : Product Code 46=YM DNN WQFN-20L 3x3 YMDNN : Date Code DS9519B-01 April 2011 www.richtek.com 1 RT9519B Typical Application Circuit Adapter 1 VIN CIN 2.2µF CSYS R4 R3 SYS R2 2 PGOOD 3 CHG 16 TS_FAULT Power Good Indicator Charge Indicator TS_FAULT Indicator TS TIMER Suspend Normal Suspend Mode 4.2V 20 USUS 15 7 CTIMER 1µF 1.5A CBAT + 1µF 500mA 100mA VIN Current Limit 1-Cell Li+ RISETA ISETA 5 ICHG ISET 11 14 NTC BAT 8, 9 VSET 4.05V R1 6 10 EN Chip Enable See ISETU VIN Current Limit External Power Source 2.95V to 3.6V VP 12 CVP 17, 18, 19 To System Load RT9519B ICHG/2 ISETL 13 ISETU GND 4, 21 (Exposed Pad) Function Block Diagram VIN SYS Control Circuit BAT Thermal Circuit Sleep Mode ISETA ISET Current Setting VP CC/CV/TR /APPM Multi Loop Controller R 200k VSET Timer TIMER Temperature Sense TS 200k ISETL 200k CHG USUS EN ISETU 200k Logic Control TS_FAULT 200k 200k PGOOD OVP UVLO www.richtek.com 2 1sec Delay GND DS9519B-01 April 2011 RT9519B Functional Pin Description Pin No. Pin Name Pin Function 1 VIN Supply Voltage Input. 2 PGOOD Power Good Status Output. Open-drain output. 3 CHG Charger Status Output. Open-drain output. 4, GN D 21 (Exposed Pad) 5 Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation. ISETA Charge Current Set Input. Connect a resistor (RISETA ) between ISETA and GND. 6 TS Temperature Sense Input. The TS pin connects to a battery’s thermistor to determine if the battery is too hot or too cold to charge. If the battery’s temperature is out of range, charging is paused until it re-enters the valid range. TS also detects whether the battery (with NTC) is present or not. 7 TIMER Safe Charge Timer Setting. 8,9 BAT Battery Charge Current Output. 10 EN Charge Enable. Active Low input. 200kΩ pull low. 11 ISET Half Charge Current Set Input. Control by external GPIO, L = ICHG1 / 2, H = ICHG1, 200kΩ pull low. 12 VP 13 ISETU 14 ISETL 15 VSET 16 TS_FAULT 17, 18, 19 20 This pin must be provided a regulated voltage from 2.95V to 3.6V by external power. VIN Current Limit Control Input. When ISETL = L, L = 100mA, H = 500mA, 200kΩ pull low. VIN Current Limit Control Input. L : see ISETU, H = 1.5A, 200kΩ pull low. Battery Regulation Set Input. Control by external GPIO. L = 4.05V, H = 4.2V, 200kΩ pull low. TS Fault Status Output. Open-drain Output. If TS is of fault (too cold, too hot) or VP triggers UVLO, TS_FAULT = L. If TS and VP are normal, TS_FAULT = H. SYS System Connect Pin. Connect this pin to System with a minimum 10μF ceramic capacitor to GND. USUS VIN Suspend Control Input. H = Suspend, L = No suspend. 200kΩ pull low. DS9519B-01 April 2011 www.richtek.com 3 RT9519B Absolute Maximum Ratings z z z z z z z z z z z (Note 1) Supply Voltage, VIN ----------------------------------------------------------------------------------------------------- −0.3V to 28V CHG, PGOOD ------------------------------------------------------------------------------------------------------------ −0.3V to 28V Other Pins ----------------------------------------------------------------------------------------------------------------- −0.3V to 6V CHG, PGOOD Continuous Current ---------------------------------------------------------------------------------- 20mA BAT Continuous Current (total in two pins) (Note 2) ----------------------------------------------------------- 2.5A Power Dissipation, PD @ TA = 25°C WQFN-20L 3x3 ----------------------------------------------------------------------------------------------------------- 1.471W Package Thermal Resistance (Note 3) WQFN-20L 3x3, θJA ----------------------------------------------------------------------------------------------------- 68°C/W WQFN-20L 3x3, θJC ------------------------------------------------------------------------------------------------------------------------------------------------ 7.5°C/W Lead Temperature (Soldering, 10 sec.) ----------------------------------------------------------------------------- 260°C Junction Temperature --------------------------------------------------------------------------------------------------- 150°C Storage Temperature Range ------------------------------------------------------------------------------------------- −65°C to 150°C ESD Susceptibility (Note 4) HBM (Human Body Mode) --------------------------------------------------------------------------------------------- 2kV MM (Machine Mode) ---------------------------------------------------------------------------------------------------- 200V Recommended Operating Conditions z z z z (Note 5) Supply Input Voltage Range,VIN (ISETL = H) ---------------------------------------------------------------------Supply Input Voltage Range,VIN (ISETL = L) ---------------------------------------------------------------------Junction Temperature Range -----------------------------------------------------------------------------------------Ambient Temperature Range ------------------------------------------------------------------------------------------ 4.4V to 6V 4.5V to 6V −40°C to 125°C −40°C to 85°C Electrical Characteristics (VIN = 5V, VBAT = 4V, TA = 25°C, unless otherwise specified) Parameter Symbol Supply Input VIN Under Voltage Lockout VUVLO Threshold VIN Under Voltage Lockout ΔVUVLO Hysteresis Test Conditions Min Typ Max Unit VIN = 0V to 4V 3.1 3.3 3.5 V VIN = 4V to 0V -- 240 -- mV I SYS = I BAT = 0mA, EN = L (VBAT > VREGx) -- 1 2 I SYS = IBAT = 0mA, EN = H (VBAT > VREGx) -- 0.8 1.5 VIN Supply Current ISUPPLY VIN Suspend Current VBAT Sleep Leakage Current VIN-BAT VOS Rising IUSUS VIN = 5V, USUS = H -- 195 300 μA ISLEEP VBAT > VIN , (VIN = 0V) -- 5 15 μA VOS_H -- 200 300 mV VIN-BAT VOS Falling Voltage Regulation VOS_L 10 50 -- mV 4.3 4.4 4.5 V 4.16 4.2 4.23 V 4.01 4.05 4.08 V 120 200 System Regulation Voltage VSYS Battery Regulation Voltage VREG1 Battery Regulation Voltage VREG2 APPM Regulation Voltage ΔVAPPM www.richtek.com 4 I SYS = 800mA 0 to 85°C , Loading = 20mA, When VSET = H 0 to 85°C, Loading = 20mA, When VSET = L VSYS − ΔVAPPM mA 280 mV To be continued DS9519B-01 April 2011 RT9519B Parameter Symbol Test Conditions Min Typ Max Unit DPM Regulation Voltage VIN to VSYS MOSFET Ron VDPM RDS(ON) ISETL = L IVIN = 1000mA 4.3 -- 4.4 0.2 4.5 0.35 V Ω BAT to VSYS MOSFET Ron RDS(ON) VBAT = 4.2V, ISYS = 1A -- 0.05 0.1 Ω Re-Charge Threshold ΔVREGCHG Battery Regulation − Recharge level 60 100 140 mV ISETA Set Voltage (Fast Charge Phase) VISETA VBAT = 4V, RISETA = 1kΩ -- 2 -- V Charge Current Setting Range ICHG 100 -- 1200 mA 570 600 630 mA 285 300 315 mA 1.2 1.5 1.8 A ISETL = L, ISETU = H (500mA mode) 450 475 500 mA ISETL = L, ISETU = L (100mA Mode) 90 95 100 mA BAT Falling 2.7 2.8 2.9 V -- 200 -- mV Current Regulation Charge Current Accuracy1 ICHG1 Charge Current Accuracy2 ICHG2 VIN Current Limit IVIN VBAT = 4V, RISETA = 1kΩ ISET = H VBAT = 3.8V, RISETA = 1kΩ ISET = L ISETL = H (1.5A Mode) Pre-charge BAT Pre-Charge Threshold VPRECH BAT Pre-Charge Threshold Hysteresis ΔVPRECH Pre-Charge Current ICHG_PRE VBAT = 2V 5 10 15 % Charge Termination Detection Termination Current Ratio to Fast Charge (Except USB 100 Mode) ITERM ISETL = L, ISETU = H ISETL = H, ISETU = X 5 10 15 % Termination Current Ratio to Fast Charge (USB100 Mode) ITERM2 ISETL = L, ISETU = L -- 3.3 -- % CHG Pull Down Voltage VCHG ICHG = 5mA -- 200 -- mV PGOOD Pull Down Voltage VPGOOD IPGOOD = 5mA -- 200 -- mV TS_FAULT Pull Down Voltage VTS_FAULT ITS_FAULT = 5mA -- 200 -- mV EN, ISETL, USUS, ISETU, VSET, ISET Threshold Voltage Logic-High VIH 1.5 -- -- Logic-Low VIL -- -- 0.4 ---6.25 125 155 20 6.5 ---6.75 °C °C °C V Login Input/Output V Protection Thermal Regulation Thermal Shutdown Temperature Thermal Shutdown Hysteresis Over Voltage Protection TREG TSD ΔTSD VOVP VIN Rising Over Voltage Protection Hysteresis ΔVOVP VIN = 7V to 5V, VOVP − ΔVOVP -- 100 -- mV Output Short Circuit Detection Threshold VSHORT VBAT − VSYS -- 300 -- mV To be continued DS9519B-01 April 2011 www.richtek.com 5 RT9519B Param eter Symbol Test Conditions Min Typ Max Unit 1440 1800 2160 s Tim e Pre-Charge Fault Time t PCHG CTIMER = 1μF (1/8 x tFCHG) Fast charge Fault Time t FCHG CTIMER = 1μF PGOOD Deglitch Time tPGOOD Time measured from VIN : 0Æ5V 1μs rise-time to PGOOD = L 11520 14400 17280 s -- 1 -- s tOVP -- 50 -- μs t PF -- 25 -- ms Input Over Voltage Blanking Time Pre-Charge to Fast-Charge Deglitch Time Fast-Charge to Pre-Charge Deglitch Time Termination Deglitch Time Recharge Deglitch Time t FP -- 25 -- ms t TERMI t RECHG --- 25 100 --- ms ms Input Power Loss to SYS LDO Turn-Off Delay Time t NO_IN -- 25 -- ms Pack T emperature Fault Detection Deglitch Time t TS -- 25 -- ms Short C ircuit D eglitch Time t SHORT -- 250 -- μs Short C ircuit R ecovery Time Other VP (External used only) VP Under Voltage Lockout Threshold TS Battery Detect Threshold NTC t SHORT-R -- 64 -- ms 2.95 -- 3.6 V -- 0.8 -- V 2.75 2.85 2.95 V Low Temperature Trip Point VCOLD 73 74 75 % of VP Low Temperature Trip point Hysteresis ΔVCOLD -- 1 -- % of VP High Temperature Trip Point VHOT 27 28 29 % of VP High Temperature Trip Point Hysteresis ΔVHOT -- 1 -- % of VP V VP Falling Threshold V TS Rising Threshold Falling Threshold Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability. Note 2. Guraranteed by design. Note 3. θJA is measured in natural convection at TA = 25°C on a high effective thermal conductivity four-layer test board of JEDEC 51-7 thermal measurement standard. The measurement case position of θJC is on the exposed pad of the package. Note 4. Devices are ESD sensitive. Handling precaution is recommended. Note 5. The device is not guaranteed to function outside its operating conditions. www.richtek.com 6 DS9519B-01 April 2011 RT9519B Typical Operating Characteristics Charger On/Off Control from EN Charger On/Off Control from VIN USB 500mA Mode USB 500mA Mode VEN (5V/Div) VCHG (5V/Div) VIN (5V/Div) V CHG (5V/Div) VBAT (5V/Div) IBAT (500mA/Div) VBAT (5V/Div) IBAT (500mA/Div) VIN = 5V, VBAT = Real Battery, VVP = 3.3V VIN = 5V, VBAT = Real Battery, VVP = 3.3V Time (25ms/Div) Time (500ms/Div) TS Inserted/Removed VIN Removal USB 500mA Mode VCHG (5V/Div) IBAT (1A/Div) VBAT (5V/Div) VTS (5V/Div) IBAT (500mA/Div) V SYS (5V/Div) VBAT (10V/Div) VIN (10V/Div) VIN = 5V, VBAT = Real Battery, VVP = 3.3V, RSYS = 10Ω, ISETL = H VIN = 5V, VBAT = Real Battery, VVP = 3.3V Time (10ms/Div) Time (25ms/Div) VIN Hot-plug with NTC/without Battery VIN Hot-plug without NVC/Battery I IN (500mA/Div) I IN (500mA/Div) VSYS (5V/Div) VBAT (10V/Div) VIN (10V/Div) V SYS (5V/Div) VBAT (10V/Div) VIN (10V/Div) VIN = 5V, VVP = 3.3V, RSYS = 10Ω, ISETL = H Time (100ms/Div) DS9519B-01 April 2011 VIN = 5V, VVP = 3.3V, RSYS = 10Ω, ISETL = H Time (100ms/Div) www.richtek.com 7 RT9519B VIN Over Voltage Protection VIN Hot-plug with Battery IBAT (1A/Div) IBAT (1A/Div) V SYS (5V/Div) VBAT (10V/Div) VIN (10V/Div) VIN (10V/Div) VSYS (10V/Div) VBAT (10V/Div) VIN = 5V, VVP = 3.3V, VBAT = Real Battery, RSYS = 10Ω, ISETL = H VIN = 5V to 15V, VBAT = Real Battery, RSYS = 10Ω, ISETL = H Time (500ms/Div) Time (100ms/Div) OVP Threshold Voltage vs. Temperature 6.52 4.48 6.50 OVP Threshold Voltage (V) System Regulation Voltage (V)1 System Regulation Voltage vs. Temperature 4.50 4.46 4.44 4.42 4.40 4.38 4.36 4.34 4.32 VIN = 5V, VVP = 3.3V, ISYS = 0.5A 4.30 6.48 Rising 6.46 6.44 6.42 6.40 6.38 Faling 6.36 6.34 VIN = 5V, VBAT = 3.7V, VVP = 3.3V 6.32 -50 -25 0 25 50 75 100 125 -50 -25 0 VBAT 120 - VSYS Dropout Voltage vs. Temperature 455 430 405 380 355 330 305 280 255 VIN = 5V, VVP = 3.3V, ISYS = 1A 230 -50 -25 0 25 50 Temperature (°C) www.richtek.com 8 75 100 125 VBAT - VSYS Dropout Voltage (mV) VIN - VSYS Dropout Voltage (mV) VIN 480 25 50 75 100 125 Temperature (°C) Temperature (°C) - VSYS Dropout Voltage vs. Temperature 115 110 105 100 95 90 85 80 75 70 65 60 55 -50 VBAT = 3.7V, VVP = 3.3V, ISYS = 1A, USUS = H -25 0 25 50 75 100 125 Temperature (°C) DS9519B-01 April 2011 RT9519B ICHG Thermal Regulation vs. Temperature Battery Regulation Voltage vs. Temperature 4.30 Battery Regulation Voltage (V)1 I CHG Thermal Regulation (mA)1 500 450 400 350 300 250 200 150 100 50 VIN = 5V, VBAT = 3.7V, VVP = 3.3V 0 4.28 4.26 4.24 4.22 4.20 4.18 4.16 4.14 4.12 VIN = 5V, VVP = 3.3V 4.10 -50 -25 0 25 50 75 100 125 -50 -25 25 50 75 100 125 Fastcharge Current vs. Battery Voltage Precharge Current vs. Battery Voltage 140 800 120 750 Fastcharge Current (mA)1 Precharge Current (mA) 0 Temperature (°C) Temperature (°C) 100 80 60 40 20 700 650 600 550 500 450 VIN = 5V, VVP = 3.3V, RISETA = 0.6kΩ, ISETL = H VIN = 5V, VVP = 3.3V, RISETA = 1kΩ, ISETL = H 0 400 2 2.2 2.4 2.6 Battery Voltage (V) DS9519B-01 April 2011 2.8 3 3 3.2 3.4 3.6 3.8 4 4.2 Battery Voltage (V) www.richtek.com 9 RT9519B Applications Information The RT9519B is a fully integrated single-cell Li-ion battery charger ideal for portable applications. The internal thermal feedback circuitry regulates the die temperature to optimize the charge rate for all ambient temperatures. Other features include under voltage protection and over voltage protection. Pre-charge Mode When the output voltage is lower than 2.8V, the charging current will be reduce to a fast-charge current ratio set by RISETA to protect the battery life time. Fast-charge Mode When the output voltage is higher than 3V, the charging current will be equal to the fast-charge current set by RISETA. Constant Voltage Mode When the output voltage is near 4.2V, and the charging current fall below the termination current, after a deglitch time check of 25ms, the charger will become disabled and CHG will go from L to H. For example the system load current may have activated the APPM loop which reduces the available charging current. the device has entered thermal regulation because the IC junction temperature has exceeded TREG. During each of these events, if 3V < VBAT < 4.1V, the internal charging time is slowed down proportionately to the reduction in charging current. However, once the duration exceed the fault time, the CHG output will flash at approximately 2Hz to indicate a fault condition and the charge current will be reduced to about 1mA. 2V tFCHG_true = tFCHG × VISETA tFCHG_true : modified timer in fast tFCHG : original timer in fast charger tFCHG = 14400 sec × ( CTIMER ) 1μ F tFCHG 8 : timer in pre-charge tPCHG = tPCHG Time fault release methods : (1) Re-plug power Re-charge Mode (2) Toggle EN When the chip is in charge termination mode, the charging current will gradually go down to zero. However, once the voltage of the battery drops to below 4.1V, there will be a deglitch time of 100ms and then the charging current will resume again. (3) Enter/exit suspend mode Charging Current Decision The charge current can be set according to the following equations : (4) Remove Battery (5) OVP If ISET = H (for ICHG1) timer = tFCHG If ISET = L (for ICHG2) timer = 2 x tFCHG If ISET = H (for ICHG1 ) ICHG_FAST = VISETA × 300 RISETA If ISET = L (for ICHG2 ) ICHG_FAST = VISETA × 150 RISETA ICHG_PRE = 10% × ICHG_FAST Power Good VIN Power Good ( PGOOD = L) Input State VIN < VUVLO VUVLO < VIN < VBAT + VOS_H VBAT + VOS_H < VIN < VOVP VIN > VOVP PGOOD Output High Impedance High Impedance Low Impedance High Impedance Time Fault During the fast charge phase, several events may increase the charging time. www.richtek.com 10 DS9519B-01 April 2011 RT9519B Charge State Indicator Charge State CHG Output Charging Charging Suspended by Thermal Loop Safety Timers Expired Low (for first charge cycle) 2Hz Flash Charging Done Recharging after Termination IC Disabled or no Valid Input Power From (1), (2) R − RHOT R1 = COLD 2.457 R2 = 0.389 × R1− RHOT If R2 < 0 RCOLD = 0.74 RCOLD + R1 High Impedance (3) From (3) R1 = RCOLD − RCOLD 0.74 Battery Pack Temperature Monitoring The battery pack temperature monitoring function can be realized by connecting the TS pin to an external Negative Temperature Coefficient (NTC) thermistor to prevent over temperature condition. Charging is suspended when the voltage at the TS pin is out of normal operating range. The internal timer is then paused, but the value is maintained. When the TS pin voltage returns back to normal operating range, charging will resume and the safe charge timer will continue to count down from the point where it was suspended. Note that although charging is suspended due to the battery pack temperature fault, the CHG pin will continue to remain low and indicate charging. VP VP 0.74 x VP - R1 TS + 0.28 x VP + When EN is low, the charger turns on. When EN is high, the charger turns off. EN is pulled low for initial condition. VIN input Current Limit ISETL ISETU L L H L H X VIN Input Current Lim it 95mA 475mA 1.5A Suspend Mode Set USUS = H, and the charge will enter Suspend Mode. In the Suspend Mode, CHG is in high impedance and IUSUS(MAX) < 300μA. Power Switch Too Cold For the RT9519B, there are three power scenarios: - R2 Charge Enable Too Hot (1)When a battery and an external power supply (USB or adapter) are connected simultaneously : RNTC Too Hot Temperature If the system load requirements exceed that of the input current limit, the battery will be used to supplement the current to the load. However, if the system load requirements are less than that of the input current limit, the excess power from the external power supply will be used to charge the battery. RHOT = RNTC (2)When only the battery is connected to the system : Figure 1 Too Cold Temperature RCOLD = RNTC R2 + RCOLD = 0.74 RCOLD + R1 + R2 R2 + RHOT = 0.28 RHOT + R1 +R2 DS9519B-01 April 2011 The battery provides the power to the system. (1) (2) (3)When only an external power supply is connected to the system : www.richtek.com 11 RT9519B The external power supply provides the power to the system. While in supplement mode, there is no battery supplement current regulation. However, a built in short circuit protection feature is available to prevent any abnormal current situations. While the battery is supplementing the load, if the difference between the battery and SYS voltage becomes more than the short circuit threshold voltage, SYS will be disabled. After a short circuit recovery time, tSHORT_R, the counter will be restarted. In supplement mode, the battery termination function is disabled. Note that for the battery supply mode exit condition, VBAT − VSYS < 0V. Input DPM Mode For the RT9519B, the input voltage is monitored when the USB100 or USB500 is selected. If the input voltage is lower than VDPM, the input current limit will be reduced to stop the input voltage from dropping any further. This can prevent the IC from damaging improperly configured or inadequately designed USB sources. APPM Mode Thermal Regulation and Thermal Shutdown Once the sum of the charging and system load currents becomes higher than the maximum input current limit, the SYS pin voltage will be reduced. When the SYS pin voltage is reduced to the VAPPM, the RT9519B will automatically operate in APPM mode. In this mode, the charging current is reduced while the SYS current is increased to maintain system output. In APPM mode, the battery termination function is disabled. The RT9519B provides a thermal regulation loop function to monitor the device temperature. If the die temperature rises above the regulation temperature, TREG, the charge current will automatically be reduced to lower the die temperature. However, in certain circumstances (such as high VIN, heavy system load, etc.) even with the thermal loop in place, the die temperature may still continue to increase. In this case, if the temperature rises above the thermal shutdown threshold, TSD, the internal switch between VIN and SYS will be turned off. The switch between the battery and SYS will remain on, however, to allow continuous battery power to the load. Once the die temperature decreases by ΔTSD, the internal switch between VIN and SYS will be turned on again and the device returns to normal thermal regulation. Battery Supplement Mode Short Circuit Protect In APPM mode, the SYS voltage will continue to drop if the charge current is zero and the system load increases beyond the input current limit. When the SYS voltage decreases below the battery voltage, the battery will kick in to supplement the system load until the SYS voltage rises above the battery voltage. Charging Profile 4.16 to 4.2 to 4.23V -40 to 85°C Battery Voltage Charging Current VRECH VPRECH ISETL = L, ISETU = H If ISETL = H, ISETU = X ITERMI = 10% x ICHG_FAST If ISETL = L, ISETU = L ITERMI = 3.3% x ICHG_FAST ICHG_PRE = 10% x ICHG_FAST ITERM ITERM2 Time Figure 2 www.richtek.com 12 DS9519B-01 April 2011 RT9519B APPM Profile 1.5A Mode : VIN 5V VSYS 4.4V VAPPM 4.2V VBAT 4.0V 3A 2A IBAT 1A ISYS 0 IVIN -1A -2A -3A T1 T2 T3 T4 T5 T6 T7 ISYS VSYS IVIN IBAT T1, T7 0 SYS Regulation Voltage CHG_MAX CHG_MAX T2, T6 < IVIN_OC − CHG_MAX SYS Regulation Voltage ISYS + CHG_MAX CHG_MAX Auto Charge Voltage Threshold VIN _OC V IN_OC − ISYS VBAT − IBAT x RD S(ON) VIN _OC ISYS−IVIN_OC T3, T5 > IVIN_OC − CHG_MAX < IVIN_OCs T4 > IVIN_OC USB 500mA Mode : VUSB 5V VSYS 4.4V VAPPM 4.2V VBAT 4.0V 0.75A 0.5A IBAT 0.25A 0 ISYS IUSB -0.25A -0.5A -0.75A T1 T2 T3 T4 T5 T6 T7 ISYS VSYS IUSB IBAT T1, T7 0 SYS Regulation Voltage CHG_MAX CHG_MAX T2, T6 < IVIN_OC (USB) − CHG_MAX SYS Regulation Voltage T3, T5 T4 > IVIN_OC (USB) − CHG_MAX < IVIN_OC (USB) > IVIN_OC (USB) DS9519B-01 April 2011 ISYS + CHG_MAX CHG_MAX Auto Charge Voltage Threshold IVIN_OC (USB) IVIN_OC (USB) − ISYS VBAT − IBAT x RDS(ON) IVIN_OC (USB) ISYS − IVIN_OC (USB) www.richtek.com 13 RT9519B VSET vs VREG , ISET vs ICHG VSET 4.16 to 4.2 to 4.23V VREG 4.01 to 4.05 to 4.08V ISET ICHG +/-5% ICHG 0.5 x ICHG +/-5% For JEITA Battery Temperature Standard : CV regulation voltage will change at the following battery Temp ranges 0°C to 10°C and 45°C to 60°C CC regulation current will change at the following battery Temp ranges 0°C to 10°C and 45°C to 60°C 4.16 to 4.2 to 4.23V 4.01 to 4.05 to 4.08V 4.01 to 4.05 to 4.08V 0°C 45°C 10°C 60°C Temperature +/- 2°C ICHG +/- 5% 0.5 x ICHG +/- 5% 0.5 x ICHG +/- 5% Temperature +/- 2°C www.richtek.com 14 DS9519B-01 April 2011 RT9519B RT9519B Operation State Digram for Charging Fast-Charge State If ISET = H ICHG_FAST = (VISETA / RISETA) x 300 If ISET = L ICHG_FAST = (VISETA / RISETA) x 150 Yes VBAT > 3V No VIN – VBAT > VOS_H Yes Pre-Charge State ICHG_PRE = Sleep State If VSET = H Check VBAT > 4.1V If VSET = L Check V BAT > 3.95V No 10% x ICHG_FAST Yes No Time > tFCHG Yes No Time > tPCHG Standby State ISETL = L & ISETU = H ISETL = H & ISETU = X Check ICHG < 10% x ICHG_FAST If ISETL = L & ISETU = L Check ICHG < 3.3% x ICHG_FAST If Yes No Timer-Out State CHG = flash 2Hz & ICHG to 1mA Yes No Yes VUVLO< VIN < VOVP & EN = L &USUS = L Re-Charge State CHG = High impedance Charger Disable Time > tTERMI = 25msec Yes Yes If VSET = H Check VBAT < 4.1V If VSET = L Check VBAT < 3.95V Any State or VIN < VUVLO, Charge Done State CHG = High impedance & ICHG = 0A or VIN > VOVP, Or VIN - VBAT < VOS_H or USUS = H or EN = H No Operation State Digram for TS PIN Any State No 74% x VVP < VTS < 2.85V Or VTS < 28% x VVP No VTS > 2.85V Yes Yes TS fault State ICHG = 0A Keep CHG state DS9519B-01 April 2011 Battery Remove State ICHG = 0A CHG = High impedance Reset timer and CHG www.richtek.com 15 RT9519B Thermal Considerations Layout Considerations For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula : The RT9519B is a fully integrated low cost single cell Liion battery charger ideal for portable applications. Careful PCB layout is necessary. For best performance, place all peripheral components as close to the IC as possible. PD(MAX) = (TJ(MAX) − TA) / θJA A short connection is highly recommended. The following guidelines should be strictly followed when designing a PCB layout for the RT9519B. ` Input and output capacitor should be placed close to the IC and connected to ground plane. The input trace on the PCB should be placed far away from sensitive devices and shielded by the ground. ` The GND and exposed pad should be connected to a strong ground plane for heat sinking and noise protection. ` The connection of RISETA should be isolated from other noisy traces. A short wire is recommended to prevent EMI and noise coupling. where TJ(MAX) is the maximum junction temperature, TA is the ambient temperature, and θJA is the junction to ambient thermal resistance. For recommended operating condition specifications of the RT9519B, the maximum junction temperature is 125°C and TA is the ambient temperature. The junction to ambient thermal resistance, θJA, is layout dependent. For WQFN20L 3x3 packages, the thermal resistance, θJA, is 68°C/ W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at TA = 25°C can be calculated by the following formula : PD(MAX) = (125°C − 25°C) / (68°C/W) = 1.471W for WQFN-20L 3x3 package The maximum power dissipation depends on the operating ambient temperature for fixed T J(MAX) and thermal Maximum Power Dissipation (W)1 resistance, θJA. For the RT9519B package, the derating curve in Figure 3 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation. 1.6 Four-Layer PCB 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 25 50 75 100 125 Ambient Temperature (°C) Figure 3. Derating Curves for RT9519B Package www.richtek.com 16 DS9519B-01 April 2011 RT9519B R4 GND should be connected to a strong ground plane for heat sinking and noise protection. CSYS GND SYS CIN R3 R2 20 19 18 17 16 VIN PGOOD CHG GND R GND ISETA ISETA 1 15 2 14 GND 3 4 13 21 5 12 11 7 8 CTIMER VSET ISETL ISETU VP ISET 9 10 TS TIMER BAT BAT EN 6 The RISETA connection copper area should be minimized and kept far away from noise sources. Connect the Exposed Pad to a ground plane. USUS SYS SYS SYS TS_FAULT Place CIN near The IC to improve performance. CBAT GND R1 CVP TS NTC GND Figure 4. PCB Layout Guide DS9519B-01 April 2011 www.richtek.com 17 RT9519B Outline Dimension 1 1 2 2 DETAIL A Pin #1 ID and Tie Bar Mark Options Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated. Symbol Dimensions In Millimeters Dimensions In Inches Min Max Min Max A 0.700 0.800 0.028 0.031 A1 0.000 0.050 0.000 0.002 A3 0.175 0.250 0.007 0.010 b 0.150 0.250 0.006 0.010 D 2.900 3.100 0.114 0.122 D2 1.650 1.750 0.065 0.069 E 2.900 3.100 0.114 0.122 E2 1.650 1.750 0.065 0.069 e L 0.400 0.350 0.016 0.450 0.014 0.018 W-Type 20L QFN 3x3 Package Richtek Technology Corporation Richtek Technology Corporation Headquarter Taipei Office (Marketing) 5F, No. 20, Taiyuen Street, Chupei City 5F, No. 95, Minchiuan Road, Hsintien City Hsinchu, Taiwan, R.O.C. Taipei County, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611 Tel: (8862)86672399 Fax: (8862)86672377 Email: [email protected] Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek. www.richtek.com 18 DS9519B-01 April 2011