SILABS SI8900-1

Si8900/1/2
I SOLA TED M ONITORING ADC
Features


ADC
3

input channels
10-bit resolution
2 µs conversion time

Isolated serial I/O port

UART
I

2
(Si8900)
C/SMbus (Si8901)
MHz SPI port (Si8902)

2.5

Transient immunity:
45 kV/µs (typ)

Temperature range:
–40 to +85 °C
>60-year life at rated working
voltage
CSA component notice 5A
approval
IEC 60950, 61010, 60601
VDE/IEC 60747-5-2
UL1577 recognized
Up
Ordering Information:
See page 25.
to 5 kVrms for 1 minute
Applications

Isolated data acquisition
 AC mains monitor
 Solar inverters
Pin Assignments

Isolated temp/humidity sensing
 Switch mode power systems
 Telemetry
Description
VDDA
VDDB
VREF
NC
AIN0
NC
AIN1
The Si8900/1/2 series of isolated monitoring ADCs are useful as linear
signal galvanic isolators, level shifters, and/or ground loop eliminators in
many applications including power-delivery systems and solar inverters.
These devices integrate a 10-bit SAR ADC subsystem, supervisory state
machine and isolated UART (Si8900), I2C/SMbus port (Si8901), or SPI
Port (Si8902) in a single package. Based on Silicon Labs’ proprietary
CMOS isolation technology, ordering options include a choice of 2.5 or
5 kV isolation ratings. All products are safety certified by UL, CSA, and
VDE (pending). The Si8900/1/2 devices offer a typical common-mode
transient immunity performance of 45 kV/µs for robust performance in
noisy and high-voltage environments. Devices in this family are available
in 16-pin SOIC wide-body packages.
Safety Approval (Pending)


UL 1577 recognized


Up to 5

kVrms for 1 minute
VDE certification conformity
IED 60747-5-2 (VDE 0884 Part 2)
CSA component notice 5A
approval
IEC
Si8900
NC
Tx
NC
VDDB
GNDA
GNDB
VDDA
VDDB
VREF
NC
AIN0
NC
AIN1
AIN2
Si8901
RST
SCL
SDA
NC
RSDA
VDDB
GNDA
GNDB
VDDA
VDDB
RST
VREF
AIN0
Copyright © 2012 by Silicon Laboratories
Rx
RST
NC
NC
60950, 61010, 60601
Rev. 1.0 6/12
AIN2
SDO
Si8902
SCLK
SDI
AIN1
EN
AIN2
VDDB
GNDA
GNDB
Si8900/1/2
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Si8900/1/2
2
Rev. 1.0
Si8900/1/2
TABLE O F C ONTENTS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Regulatory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4. ADC Data Transmission Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1. UART (Si8900) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2. I2C/SMBus (Si8901) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
4.3. SPI Port (Si8902) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4. Master Controller Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5. Si8900/1/2 Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1. Isolated Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
6.2. Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
6.3. Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7. Device Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9. Package Outline: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
10. Land Pattern: 16-Pin Wide-Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
11. Top Marking: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
11.1. Si8900/1/2 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
11.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Document Change List: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Rev. 1.0
3
Si8900/1/2
1. Electrical Specifications
Table 1. Recommended Operating Conditions
Parameter
Symbol
Conditions
Min
Typ
Max
Units
Input Side Supply Voltage
VDDA
With respect to GND1
2.7
—
3.6
V
Input Side Supply Current
IDDA
VDDA = 3.3 V, Si890x active
—
10
13.3
mA
VDDA = 3.3 V, Si890x idle
—
8.6
11.4
Output Side Supply Voltage
VDDB
With respect to GND2
2.7
—
5.5
V
Output Side Supply Current
IDDB
VDDB = 3.3 V to 5.5 V, Si890x active
—
4.4
5.8
mA
VDDB = 3.3 V to 5.5 V, Si890x idle
—
3.3
3.9
–40
—
+85
Operating Temperature
TA
°C
Table 2. Electrical Specifications
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
ADC
Resolution
R
10
bits
Integral Nonlinearity
INL
VREF = 2.4 V
—
±0.5
±1
LSB
Differential Nonlinearity
DNL
VREF = 2.4 V,
Guaranteed Monotonic
—
±0.5
±1
LSB
Offset Error
OFS
–2
0
+2
LSB
Full Scale Error
FSE
–2
0
+2
LSB
Offset Tempco
TOS
—
45
—
ppm/°C
Input Voltage Range
VIN
0
VREF
V
Sampling Capacitance
CIN
—
5
—
pF
Input MUX Impedance
RMUX
—
5
—
k
Power Supply
Rejection
PSRR
—
–70
—
dB
Reference Voltage
VREF
0
—
VDDA
V
VREF Supply Current
IVREF
—
12
—
µA
ADC Conversion Time
tCONV
4
Default VREF = VDDA
2
Rev. 1.0
µs
Si8900/1/2
Table 2. Electrical Specifications (Continued)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
Reset and Undervoltage Lockout
Power-on RESET
Voltage Threshold High
VRSTH
—
—
1.8
V
Power-on RESET
Voltage Threshold Low
VRSTL
1.7
—
—
V
VDDA Power-On Reset Ramp
Time
tRAMP
Time from VDDA = 0 V
to VDDA > VRST
—
—
1
ms
Power-On Reset
Delay Time
tPOR
tRAMP < 1 ms
0.3
ms
Output Side UVLO Threshold
UVLO
—
2.3
—
V
H
—
100
—
mV
Logic High Level Input Voltage
VIH
0.7 x VDDB
—
—
V
Logic Low Level Input Voltage
VIL
—
—
0.6
V
Logic Input Current
IIN
+10
µA
Input Capacitance
CIN
Output side UVLO
Hysteresis
Digital Inputs
VIN = 0 V or VDD
–10
—
15
—
pF
VDDB = 5 V,
IOH = –4 mA
VDDB–0.4
4.8
—
V
VDDB = 3.3 V,
IOH = –4 mA
3.1
—
—
V
VDDB = 3.3 to 5 V,
IOL = 4 mA
—
0.2
0.4
V
—
85
—

60
—
234
kbps
—
—
240
kbps
—
—
2.5
Mbps
Digital Outputs
Logic High Level Output Voltage
VOH
Logic Low Level Output Voltage
VOL
Digital Output Series Impedance
ROUT
Serial Ports
UART Bit Rate
SMBus/I2C Bit Rate
Slave
Address = 1111000x
SPI Port
Rev. 1.0
5
Si8900/1/2
Table 2. Electrical Specifications (Continued)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
SPI Port Timing
EN Falling Edge to SCLK Rising
Edge
tSE
80
—
—
ns
Last Clock Edge to /EN Rising
tSD
80
—
—
ns
EN Falling to SDO Valid
tSEZ
—
—
160
ns
EN Rising to SDO High-Z
tSDZ
—
—
160
ns
SCLK High Time
tCKH
200
—
—
ns
SCLK Low Time
tCKL
200
—
—
ns
SDI Valid to SCLK Sample Edge
tSIS
80
—
—
ns
SCLK Sample Edge to SDI
Change
tSIH
80
—
—
ns
SCLK Shift Edge to SDO
Change
tSOH
—
—
160
ns
EN
tSE
tCKL
tSD
SCLK
tCLKH
tSIS
tSIH
SDI
tSEZ
tSOH
tSDZ
SDO
Figure 1. SPI Port Timing Characteristics
6
Rev. 1.0
Si8900/1/2
Table 3. Thermal Characteristics
Parameter
Symbol
Test Condition
WB SOIC-16
NB SOIC-16
Unit
100
105
ºC/W
JA
IC Junction-to-Air Thermal
Resistance
Safety-Limiting Current (mA)
500
450
VDD1, VDD2 = 2.70 V
400
370
VDD1, VDD2 = 3.6 V
300
220
200
VDD1, VDD2 = 5.5 V
100
0
0
50
100
Temperature (ºC)
150
200
Figure 2. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
Safety-Limiting Current (mA)
500
430
VDD1, VDD2 = 2.70 V
400
360
VDD1, VDD2 = 3.6 V
300
210
200
VDD1, VDD2 = 5.5 V
100
0
0
50
100
Temperature (ºC)
150
200
Figure 3. (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
Rev. 1.0
7
Si8900/1/2
Table 4. Absolute Maximum Ratings
Parameter
Symbol
Min
Typ
Max
Units
TSTG
–65
—
150
°C
TA
–40
—
85
°C
Input-Side Supply Voltage
VDDA
–0.5
—
6.0
V
Output-Side Supply Voltage
VDDB
–0.5
—
6.0
V
Input/Output Voltage
VI
–0.5
—
VDD +0.5
V
Output Current Drive
IO
—
—
10
mA
Lead Solder Temperature (10 s)
—
—
260
°C
Maximum Isolation Voltage
—
—
6500
VRMS
Storage Temperature
Ambient Temperature under Bias
*Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be
restricted to conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
8
Rev. 1.0
Si8900/1/2
2. Regulatory Information
The Si8900/1/2 family is certified by Underwriters Laboratories, CSA International, and VDE. Table 5 summarizes
the certification levels supported.
Table 5. Regulatory Information
CSA
The Si89xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.
61010-1: Up to 600 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage.
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.
60601-1: Up to 125 VRMS reinforced insulation working voltage; up to 380 VRMS basic insulation working voltage.
VDE
The Si89xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.
60747-5-2: Up to 1200 Vpeak for basic insulation working voltage.
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.
UL
The Si89xx is certified under UL1577 component recognition program. For more details, see File E257455.
Rated up to 5000 VRMS isolation voltage for basic protection.
Rev. 1.0
9
Si8900/1/2
3. Functional Description
The Si8900/1/2 (Figure 4) are isolated monitoring ADCs that convert linear input signals into digital format and
transmit the resulting data through an on-chip isolated serial port to an external master processor (typically a
microcontroller). The Si890x access protocol is simple: The master configures and controls the start of ADC
conversion by writing a configuration register (CNFG_0) Command Byte to the Si890x. The master then acquires
ADC conversion data by reading the Si890x serial port. Devices in this series differ only in the type of serial port.
Options include a UART with on-chip baud rate generator that operates at 234 kbps max (Si8900), an SMBus/I2C
port that operates at 240 kbps max (Si8901), and an SPI Port that operates at 2.5 MHz max (Si8902).
The integrated ADC subsystem consists of a three-channel analog input multiplexer (MUX) followed by a series
gain amplifier (selectable 1x or 0.5x gain) and 10-bit SAR ADC. Serial-port-accessible ADC options allow the user
to select an internal or external voltage reference, set the programmable gain amplifier (PGA), and select the ADC
MUX address. The master can configure the Si890x to return ADC data on-demand (Demand Mode) or
continuously (Burst Mode). For more information, see "CNFG_0 Command Byte" on page 18.
VDDA
VDDB
AIN1
MUX
PGA
10‐Bit
ADC
AIN2
VREF
ADC Subsystem
VREF
Tx
Tx Data
UART
Rx
Rx Data
AIN0
All Blocks
GNDB
ISOLATION
State Machine/ User Registers
RST
GNDA
Si8900
VDDA
VDDB
AIN1
MUX
PGA
10‐Bit
ADC
AIN2
VREF
SCL
All Blocks
ADC Subsystem
VREF
RST
SDA
SMBus/
I2C
Tx Data
Rx Data
AIN0
GNDB
ISOLATION
State Machine/ User Registers
RSDA
GNDA
Si8901
VDDA
VDDB
AIN1
MUX
PGA
AIN2
VREF
10‐Bit
ADC
VREF
ADC Subsystem
RST
SCK
SDI
Tx Data
SPI Port
Rx Data
AIN0
SDO
EN
All Blocks
ISOLATION
State Machine/ User Registers
GND1
Si8902
Figure 4. Si8900/1/2 Block Diagrams
10
Rev. 1.0
GND2
Si8900/1/2
4. ADC Data Transmission Modes
The master can access ADC read-only registers ADC_H and ADC_L using either Demand Mode or Burst Mode. In
Demand Mode (MODE = 1), the master triggers individual A/D conversions “on-demand”. In Burst Mode
(MODE = 0), the Si890x performs ADC conversions continuously.
Master to Slave
Slave to Master
Master writes CNFG_0 Command Byte to Si8900 Rx CNFG_0
Command Byte
MODE = 1
tCONV
CNFG_0
Command ADC_H
ADC_L
Byte
Master reads updated CNFG_0 and ADC Data From Si8900 (Tx output)
B) Si8900 Demand Mode ADC Read Master to Slave
Slave to Master
Master writes Slave Address and CNFG_0 Command Byte to Si8901 SDA
Slave Address CNFG_0
Command Byte
Slave Address
tCONV
MODE = 1
CNFG_0
Command ADC_H
ADC_L
Byte
Master reads Slave Address, updated CNFG_0 and ADC Data from Si8901 (SDA pin) C) Si8901 Demand Mode ADC Read
Master to Slave
Master writes CNFG_0 Command Byte to Si8902 SDI Slave to Master
CNFG_0
Command Byte
tCONV
MODE = 1
The master must wait 8µS (track‐and‐hold time) before reading ADC data packet. CNFG_0 Command Byte
ADC_H
ADC_L
Master reads updated CNFG_0 and ADC Data from Si8902 SDO
D) Si8902 Demand Mode ADC Read Figure 5. ADC Demand Mode Operation
Referring to Figure 5A, a Demand Mode ADC read is initiated when the master writes a Command Byte to the
Si8900. (The Command Byte is a copy of the CNFG_0 register that has been properly configured by the master.)
Upon receipt of the Command Byte, the Si8900 updates its CNFG_0 register and triggers the start of an ADC
conversion, at which time the master may immediately begin reading ADC conversion data from the Si8900 UART.
The ADC conversion data packet contains a copy of the Command Byte for verification and two-bytes of ADC
conversion data. The Si8901 (Figure 5B) ADC read transaction is identical to that of the Si8900 with the exception
of the added I2C/SMBus Slave Address byte (Si8901 Slave Address is 0xF0). The Si8902 Demand Mode ADC
read transaction (Figure 5C) is the same as that of the Si8900, except the master must wait 8 µs after the
transmission of the Command Byte before reading the Si8902 SPI port because byte transmission time is two
times shorter versus the Si8900/01.
Rev. 1.0
11
Si8900/1/2
The Burst Mode ADC transactions for the Si8900 (Figure 6A) and Si8901 (Figure 6B) are substantially the same. A
Burst Mode ADC read is initiated when the master writes a CNFG_0 (MODE = 0) Command Byte to the Si8900/1,
which updates the CNFG_0 register and triggers the ADC continuously. Like the Demand Mode example, the
Si8901 has a Slave Address byte prior to the CNFG_0 Command Byte. When using the Si8901, the master must
write the I2C port address prior to reading the serial port. The Si8902 Burst Mode (Figure 6C) is similar to that of
the Si8900/1, except the master must wait 8 µs before reading the first Burst Mode ADC data packet. After reading
the first Burst Mode ADC data packet, the master may read all ADC data packets that follow without delay.
Master writes CNFG_0 Command Byte to Si8900 Rx
CNFG_0
Command Byte 0
MODE = 0
Master to Slave
tCONV
Slave to Master
tCONV
tCONV
CNFG_0 Command Byte
ADC_H
Data
ADC_H
Data
ADC_L
Data
ADC_L
Data
Master reads updated CNFG_0 Command Byte and ADC data from Si8900 Tx A) Si8900 ADC Burst Mode (MODE = 0)
Master writes Slave Address & CNFG_0 Command Byte to Si8901 SDA Slave Addrress Write
CNFG_0
Command Byte 0
MODE = 0
tCONV
tCONV
Master to Slave
Slave Address
Read
Slave to Master
CNFG_0 Command
Byte
ADC_H
Data
ADC_L
Data
tCONV
ADC_H
Data
ADC_L
Data
Master reads Slave Address, updated CNFG_0 and ADC data from Si8901 SDA
B) Si8901 ADC Burst Mode (MODE = 0)
Master writes CNFG_0 Command Byte to Si8902 SDI Master to Slave
Slave to Master
CNFG_0
Command Byte
MODE = 0
tCONV
tCONV
CNFG_0
Command Byte
ADC_H
Data
ADC_L
Data
tCONV
ADC_H
Data
ADC_L
Data
Master reads updated CNFG_0 and ADC data from Si8902 SDO C) Si8902 ADC Burst Mode (MODE = 0)
Figure 6. ADC Burst Mode Operation
12
Rev. 1.0
Si8900/1/2
4.1. UART (Si8900)
The UART is a two-wire interface (Tx, Rx) and operates as an asynchronous, full-duplex serial port with internal
auto baud rate generator that measures the period of incoming data stream and automatically adjusts the internal
baud rate generator to match. The auto baud rate detection and matching optimizes UART timing for minimum bit
error rate. For more information, see “AN635: AC Line Monitoring Using the Si890x Family of Isolated ADCs”.
There are a total of 10 bits per data read/write: One start bit, eight data bits (LSB first), and one stop bit with data
transmitted LSB first as shown in Figure 7. Figure 8A and Figure 8B show master/Si8900 ADC read transactions
for Demand Mode and Burst Mode, respectively.
MARK
SPACE
BIT TIMES
Start Bit
D0
D2
D1
D5
D4
D3
D6
D7
STOP BIT
BIT SAMPLING
Figure 7. UART Data Byte
Master to Slave
Slave to Master
CNFG_0 Read Data
D0 D1 D2 D3 D4 D5 D6 D7
STOP
D0
D1
D2
D3
D4
D5
0 P S
START
D0 D1 D2 D3 D4 D5 D6 D7
STOP
D6
D7
D8
D9
MX0
MX1
0 1 P S 0
START
D0 D1 D2 D3 D4 D5 D6 D7
STOP
0 P S
START
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
MX0
MX1
D0 D1 D2 D3 D4 D5 D6 D7
STOP
CNFG_0 Read Data
0 1 P S 0
START
D0 D1 D2 D3 D4 D5 D6 D7
P S
STOP
1 1
START
‐
VREF
MX0
MX1
S
Periodic ADC Data
MODE = 0
D0 D1 D2 D3 D4 D5 D6 D7
P
STOP
1
PGA
MX1
MX0
VREF
MODE=0
PGA
1
START
START
‐
D0 D1 D2 D3 D4 D5 D6 D7
A) Si8900 Demand Mode ADC Read CNFG_0 Write Command Byte
S
D0 D1 D2 D3 D4 D5 D6 D7
0 S
STOP
D0 D1 D2 D3 D4 D5 D6 D7
0 1 P S 0
STOP
1 1 P S
D6
D7
D8
D9
MX0
MX1
‐
START
START
S
D0
D1
D2
D3
D4
D5
ADC Data
STOP
START
D0 D1 D2 D3 D4 D5 D6 D7
P
VREF
MX0
MX1
1
PGA
1
MODE = 1
MX1
MX0
VREF
PGA
‐
STOP
START
S
MODE = 1
CNFG_0 Write Command Byte
B) Si8900 Burst Mode ADC Read Figure 8. Si8900 ADC Read Operation
Rev. 1.0
13
Si8900/1/2
4.2. I2C/SMBus (Si8901)
The I2C/SMBus serial port is a two-wire serial bus where data line SDA is bidirectional and clock line SCL is
unidirectional. Reads and writes to this interface by the master are byte-oriented, with the I2C/SMBus master
controlling the serial data rates up to 240 kbps. The SDA and SCL lines must be pulled high through pull-up
resistors of 5 k or less. An Si8901 ADC read transaction begins with a START condition (“S” or Repeated START
condition “SR”), which is defined as a high-to-low transition on SDA while SCL is high (Figure 9). The master
terminates a transmission with a STOP condition (P), defined as a low-to-high transition on SDA while SCL is high.
The data on SDA must remain stable during the high period of the SCL clock pulse because such changes in either
line will be interpreted as a control command (e.g., S, P SR). SDA and SCL idle in the high state when the bus is
not busy. Acknowledge bits (Figure 10) provide detection of successful data transfers, whereas unsuccessful
transfers conclude with a not-acknowledge bit (NACK). Both the master and the Si8901 generate ACK and NACK
bits. An ACK bit is generated when the receiving device pulls SDA low before the rising edge of the acknowledged
related (ninth) SCL pulse and maintains it low during the high period of the clock pulse. A NACK bit is generated
when the receiver allows SDA to be pulled high before the rising edge of the acknowledged related SCL pulse and
maintains it high during the high period of the clock pulse. An unsuccessful data transfer occurs if a receiving
device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master
attempts communication at a later time. Figure 11A shows the I2C Slave Address Byte and CNFG_0 byte for the
Si8901. Figure 11B and Figure 11C show master/Si8901 ADC read transactions for Demand Mode and Burst
Mode, respectively.
P
SR
S
SDA
SCL
Figure 9. Start and Stop Conditions
Not Acknowledge (NACK)
S
SDA
Acknowledge (ACK)
SCL
1
2
Figure 10. Acknowledge Cycle
14
Rev. 1.0
9
Si8900/1/2
MODE
PGA
A P
Si8901 CNFG_0 Write Data
ACK
R/W = 0
‐
STOP
Si8901 Slave Address
A 1 1
ACK
Write
START
S s6 s5 s4 s3 s2 s1 s0
MX0
VREF
D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0
Slave to Master
MX1
Master to Slave
A) Si8901 CNFG_0 Write 0 A P
D7 D6 D5 D4 D3 D2 D1 D0
ACK
D0
D1
D2
D3
D4
A 0
STOP
D7 D6 D5 D4 D3 D2 D1 D0
D5
D6
D7
D8
D9
A 1 0
MX1
MX0
PGA
‐
Si8901 CNFG_0 Read Data
ACK
MODE=1
R/W = 1
S 1 1
Read
Si8901 Read Slave Address
START
START
S s6 s5 s4 s3 s2 s1 s0
ADC Data
D7 D6 D5 D4 D3 D2 D1 D0
ACK
D7 D6 D5 D4 D3 D2 D1 D0
Si8901 Slave Address = 0xF0
MX1
MX0
VREF
Si8901 CNFG_0 Write Data
STOP
PGA
A P
ACK
‐
MODE=1
MX0
VREF
R/W = 0
Write
START
Si8901 Write Slave Address
A 1 1
ACK
S s6 s5 s4 s3 s2 s1 s0
MX1
D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0
B) Si8901 Demand Mode ADC Read
Periodic ADC Data
0 A
D7 D6 D5 D4 D3 D2 D1 D0
P
STOP
D0
A
D1
D2
D3
D4
A 0
ACK
D7 D6 D5 D4 D3 D2 D1 D0
D5
D6
D7
D8
D9
MX1
MX0
A 1 0
ACK
Si8901 CNFG_0 Read Data
PGA
MODE=0
‐
ACK
S 1 1
Read
START
START
Si8901 Read Slave Address
R/W = 1
D7 D6 D5 D4 D3 D2 D1 D0
S s6 s5 s4 s3 s2 s1 s0
D7 D6 D5 D4 D3 D2 D1 D0
MX1
MX0
VREF
ACK
Si8901 CNFG_0 Write Data
A P
STOP
‐
MODE=0
PGA
MX0
VREF
R/W = 0
A 1 1
ACK
Si8901 Slave Address
Write
START
S s6 s5 s4 s3 s2 s1 s0
MX1
D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0
C) Si8901 Burst Mode ADC Read
Figure 11. Si8901 ADC Read Operation
MASTER
SPI Shift Register
7 6 5 4 3 2 1 0
Si8902
MOSI
SDI
MISO
SDO
SPI Shift Register
7 6 5 4 3 2 1 0
/EN
Receive Buffer
Receive Buffer
Baud Rate Generator
SCLK
SCLK
EN or Px.y
Figure 12. Master Connection to Si8902
Rev. 1.0
15
Si8900/1/2
4.3. SPI Port (Si8902)
EN
SCLK
SDI
SDO
MSB
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
MSB
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Figure 13. Si8902 Data/Clock Timing
The Serial Peripheral Interface (SPI port) is a slave mode, full-duplex, synchronous, 4-wire serial bus that connects
to the master as shown in Figure 12. The master's clock and data timing must match the Si8902 timing shown
Figure 12 (for more information about clock and data timing, please see the “SPI Port” section of Table 2 on
page 6).
As shown in Figure 13, an SPI bus transaction begins with the master driving EN low and maintaining this state for
the duration of the read transaction(s). The master transmits data from its master-out/slave-in terminal (MOSI) to
the Si8902 serial read/write input terminal (SDI). The Si8902 transmits data to the master from its serial data-out
terminal (SDO) to the master-in/slave-out terminal (MISO), and data transfer ends when the master returns /EN to
the high state. Figure 14A shows the Si8902 CNFG_0 Command Byte format, while Figures 14B and 14C show
Si8902 Demand Mode and Burst Mode ADC reads.
16
Rev. 1.0
Si8900/1/2
A) Si8902 CNFG_0 Command Byte
PGA
‐
MODE=1
MX0
VREF
MX1
1
PGA
CNFG_0 Write Command Byte
D7 D6 D5 D4 D3 D2 D1 D0
1
‐
MODE
1
MX0
1
VREF
Slave to Master
MX1
D7 D6 D5 D4 D3 D2 D1 D0
Master to Slave
CNFG_0 Write Command Byte
Si8902 CNFG_0 Read Byte
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
MX0
MX1
D7 D6 D5 D4 D3 D2 D1 D0
0
0
D7 D6 D5 D4 D3 D2 D1 D0
ADC Data
Si8902 CNFG_0 Read Byte
0
D5
D4
D3
D2
D1
D0
0 1 0
D9
D8
D7
D6
0
MX1
MX0
1 0
D5
D4
D3
D2
D1
D0
‐
MX1
MX0
D9
D8
D7
D6
1 1
MODE = 0
PGA
8µS Delay D7 D0 D7 D0 D7 D0 D7 D0 D7 D0 MX1
MX0
VREF
CNFG_0 Write Command Byte
0
PGA
‐
MODE=0
MX0
VREF
MX1
1
1
B) Si8902 ADC Demand Mode Read
D7 D6 D5 D4 D3 D2 D1 D0
1
PGA
‐
MODE = 1
VREF
1
MX0
1
MX1
8µS Delay D7 D6 D5 D4 D3 D2 D1 D0
0
Periodic ADC Data
C) Si8902 ADC Burst Mode Read
Figure 14. Si8902 ADC Read Operation
4.4. Master Controller Firmware
The user's master controller must include firmware to manage the Si890x Demand and Burst operating modes and
serial port control. In some cases, the master controller may also require a firmware moving average function to
reduce noise. For more information on master controller firmware, see AN638, available for download at
www.silabs.com/isolation.
Rev. 1.0
17
Si8900/1/2
5. Si8900/1/2 Configuration Registers
CNFG_0 Command Byte
Bit
D7
D6
D5
D4
D3
D2
D1
D0
Name
1
1
MX1
MX0
VREF
—
MODE
PGA
Type
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
1
1
1
1
1
1
1
1
Bit
Name
7:6
1,1
5:4
MX1, MX0
Function
Internal use. These bits are always set to 1.
ADC MUX Address.
ADC MUX address selection is controlled by MX1, MX0 as follows:
18
3
VREF
2
—
1
MODE
0
PGA
MX1
MX0
Selected ADC MUX Channel
1
1
Not Used
1
0
AIN2
0
1
AIN1
0
0
AIN0
ADC Voltage Reference Source
VDD is selected as the reference voltage when this bit is set to 1. An externally connected voltage reference generator is selected when this bit is reset to 0.
Not used.
ADC Read Mode
ADC Demand Mode read is enabled when this bit is 1, and Burst Mode is enabled
when this bit is 0. For more information on Demand and Burst mode operation,
please see "ADC Data Transmission Modes" on page 11.
PGA Gain Set
PGA gain is 1 when this bit is set to 1. PGA gain is 0.5 when this bit is reset to 0.
Rev. 1.0
Si8900/1/2
ADC_H Byte
Bit
D7
D6
D5
D4
D3
D2
D1
D0
Name
1
0
MX1
MX0
D9
D8
D7
D6
Type
R
R
R
R
R
R
R
R
Default
—
—
—
—
—
—
—
—
Bit
Name
7:6
1,0
5:4
MX1, MX0
3:0
D9: D6
Function
Internal use. These bits are always set to 1,0.
ADC MUX Address
ADC input MUX address for the converted data in ADC_H, ADC_L.
ADC conversion data bits D9:D6
Most significant 4 bits of ADC conversion data.
ADC_L Byte
Bit
D7
D6
D5
D4
D3
D2
D1
D0
Name
0
D5
D4
D3
D2
D1
D0
0
Type
R
R
R
R
R
R
R
R
Default
—
—
—
—
—
—
—
—
Bit
Name
7
0
6:1
D5:D0
Function
Internal use. This bit is always set to 0.
ADC Conversion Data Bits D5:D0
Least significant 6 bits of ADC conversion data.
0
0
Internal use. This bit is always set to 0.
Rev. 1.0
19
Si8900/1/2
6. Applications
6.1. Isolated Outputs
The Si890x serial outputs are internally isolated from the device input side. To ensure safety in the end-user
application, high voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the safety extra-low
voltage circuits (i.e., circuits with <30 VAC) by a certain distance (creepage/clearance). If a component straddles
this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large
high-voltage breakdown protection rating (commonly referred to as working voltage protection). Tables published in
the component standards (UL1577, IEC60747, CSA 5A) are readily accepted by certification bodies to provide
proof for end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, 606011, etc.) requirements before starting any circuit design that uses galvanic isolation. To enhance the robustness of a
design, it is further recommended that the user also include 100  resistors in series with the Si890x inputs and
outputs if the system is excessively noisy. The nominal impedance of an isolated Si890x output channel is
approximately 50  and is a combination of the value of the on-chip series termination resistor and channel
resistance of the output driver FET. When driving loads where transmission line effects are a factor, output pins
should be appropriately terminated with controlled-impedance PCB traces.
The Si890x supply inputs must be bypassed with a parallel combination of 10 µF and 0.1 µF capacitors at VDDA
and VDDB as shown in Figure 15A. The capacitors should be placed as close to the package as possible. The
Si890x uses the VDDA supply as its internal ADC voltage reference by default. A precision external reference can
be installed as shown in Figure 15A and must be bypassed with a parallel combination of 0.1 µF and 4.7 µF
capacitors. (Note that the CNFG_0 VREF bit must be set to 0 when using the external reference.) The Si890x has
an on-chip power on reset circuit (POR) that maintains the device in its reset state until VDDA has stabilized. A
2 k pull-up resistor on RST is strongly recommended to reduce the possibility of external noise coupling into the
reset input. The Si8901 will also require a 5 k pull-up resistor to VDDA on the RSDA input.
2.7 V to 3.6 V Board Edge
2.5 V to 5.5 V 0.1 µF
0.1 µF
Si890x
10 µF
VDDA
VDDA
VDDB
10 µF
VREF
VREF
Si890x
VDDA
0.1 µF
4.7 µF
5 K
2 K
GNDA
RST
RSDA
Optional External VREF
GNDA
Si8901 Only
GNDA
GNDB
GNDB
8 mm (min)
Board Edge
Keep‐out Area
(No metal in this area)
A
GNDB
B
Figure 15. Si890x Installation
Figure 15B shows the required PCB ground configuration, where an 8 mm (min) “keep-out area” is provided to
ensure adequate creepage and clearance distances between the two grounds. PCB metal traces cannot be
present or cross through the keep-out area on the PCB top, bottom, or internal layer.
20
Rev. 1.0
Si8900/1/2
6.2. Device Reset
During power-up, the Si890x is held in the reset state by the internal power-on reset signal (POR) until VDDA
settles above VRST. When this condition is met, a delay is initiated that maintains the Si890x in the reset state for
time period tPOR, after which the reset signal is driven high allowing the Si890x to start-up. Note the maximum
allowable VDD ramp time (i.e. time from 0 V to VDDA settled above VRST) is 1 ms. Slower ramp times may cause
the Si890x to be released from reset before VDDA reaches the VRST level.
Figure 16 shows typical VDDA monitor reset timing where the internal reset is driven low (Si890x in reset) when
VDDA falls below VRST (e.g., during a power down or VDDA brownout). The internal reset is released to its high
state when VDDA again settles above VRST. External circuitry can also be used to force a reset event by driving
the external RST input low. A 2 k pull-up resistor on RST is recommended to avoid erroneous reset events from
external noise coupling to the RST input.
VDDA
VD
DA
VRSTH
VRSTL
VDDA(min)
Internal RESET
tPOR
VDDA Monitor Reset
Power‐On Reset
Figure 16. Si890x Power-on and Monitor Reset
Rev. 1.0
21
Si8900/1/2
6.3. Application Example
Figure 17 shows the Si8900 operating as a single-phase ac line voltage and current monitor. The VDDA dc bias
circuit uses a low-cost 3.3 V linear regulator referenced to the neutral (white wire). The ac current is measured on
ADC input AIN0. The ac line voltage is scaled by resistors R17 and R18 and level-shifted by the 1.5 V VREF. AC
line current is measured using differential amplifier U1 connected across shunt resistor R1. Data is transferred to
the external controller or processor via the isolated UART.
BLACK
WHITE
Single‐Phase
AC Line
1.5 V
R2
R3
R4
R1
U1
Low Cost Dual OpAmp
R5
R17
R6 C2
R7
R18
R9
TX
C3
R10
Si8900
AIN1
R11
R8
AIN0
1.5 V
C1
RX
R12
D1
R13
C4
U2
3.3 V LDO
VDDA
C5
R14
VDDB
1.5 V
R15
GNDA
GNDB
Figure 17. AC Line Monitor Application Example
22
Rev. 1.0
External Master Controller
Output Side Bias Supply
Si8900/1/2
7. Device Pin Assignments
VDDA
VDDB
VDDA
VDDB
VREF
NC
VREF
NC
RST
AIN0
NC
AIN0
NC
NC
Rx
AIN1
SCL
VREF
Tx
AIN2
SDA
AIN0
NC
RST
NC
AIN1
EN
VDDB
AIN2
VDDB
GNDB
GNDA
GNDB
AIN1
Si8900
AIN2
NC
RST
VDDB
RSDA
GNDA
GNDB
GNDA
Si8901
VDDA
VDDB
NC
SDO
Si8902
SCLK
SDI
Figure 18. Si8900/1/2 Pinout (16SOW)
Table 6. Si8900/1/2 Pin Assignments
Pin
Si8900 Si8901 Si8902
Pin
Pin
Pin
1
VDDA
2
VREF
Description
Input side VDD bias voltage (typically 3.3 V)
RST
Si8900/1: External voltage reference input.
Si8902: Active low reset.
NC
Si8900: ADC analog input channel 0.
Si8901: ADC analog input channel 0.
Si8902: No connection
3
AIN0
AIN0
4
AIN1
AIN1
VREF Si8900: ADC analog input channel 1.
Si8901: ADC analog input channel 1.
Si8902: External VREF in.
5
AIN2
AIN2
AIN0
Si8900: ADC analog input channel 2.
Si8901: ADC analog input channel 2.
Si8902: ADC analog input channel 0.
6
NC
RST
AIN1
Si8900: No Connection.
Si8901: Active low reset.
Si8902: ADC analog input channel 1.
7
RST
RSDA
AIN2
Si8900: Active low reset.
Si8901: RSDA bias resistor (typically 5 k).
Si8902: ADC analog input channel 2.
8
GNDA
Input side ground
9
GNDB
Output side ground
10
VDDB
Output side VDD bias voltage (2.7 V to 5.5 V)
11
NC
12
Tx
SDA
13
Rx
SCL
EN
Si8900/1: No connection. Si8902: SPI Port Enable.
SDI
Si8900: UART unidirectional transmit output.
Si8901: I2C Bidirectional data input/output.
Si8902: SPI port Serial data in.
SCLK Si8900: UART unidirectional receive input.
Si8901: I2C port unidirectional serial clock input.
Si8902: SPI port unidirectional serial clock input.
Rev. 1.0
23
Si8900/1/2
Table 6. Si8900/1/2 Pin Assignments (Continued)
Pin
14
24
Si8900 Si8901 Si8902
Pin
Pin
Pin
NC
SDO
15
NC
16
VDDB
Description
Si8900/1: No connection.
Si8902: SPI port Serial data out (SDO)
No connection
Si8900/1/2: Output side VDD bias voltage (2.7 V to 5.5 V).
Rev. 1.0
Si8900/1/2
8. Ordering Guide
Table 7. Product Ordering Information1,2,3
Part Number (OPN)
Serial Port
Package
Isolation Rating
Temp Range
Si8900B-A01-GS
UART
WB SOIC
2.5 kV
–40 to +85 °C
Si8900D-A01-GS
UART
WB SOIC
5.0 kV
–40 to +85 °C
Si8901B-A01-GS
I2C/SMBus
WB SOIC
2.5 kV
–40 to +85 °C
Si8901D-A01-GS
I2C/SMBus
WB SOIC
5.0 kV
–40 to +85 °C
Si8902B-A01-GS
SPI Port
WB SOIC
2.5 kV
–40 to +85 °C
Si8902D-A01-GS
SPI Port
WB SOIC
5.0 kV
–40 to +85 °C
Notes:
1. Add an “R” suffix to the part number to specify the tape and reel option. Example: “Si8900AB-A-ISR”.
2. All packages are RoHS-compliant.
3. Moisture sensitivity level is MSL3 for wide-body SOIC-16 package with peak reflow temperatures of 260 °C according
to the JEDEC industry standard classifications and peak solder temperatures.
Rev. 1.0
25
Si8900/1/2
9. Package Outline: 16-Pin Wide Body SOIC
Figure 19 illustrates the package details for the Si8900/1/2 Digital Isolator. Table 8 lists the values for the
dimensions shown in the illustration.
Figure 19. 16-Pin Wide Body SOIC
Table 8. Package Diagram Dimensions
Millimeters
Symbol
Min
Max
A
—
2.65
A1
0.1
0.3
D
10.3 BSC
E
10.3 BSC
E1
7.5 BSC
b
0.31
0.51
c
0.20
0.33
e
26
1.27 BSC
h
0.25
0.75
L
0.4
1.27

0°
7°
Rev. 1.0
Si8900/1/2
10. Land Pattern: 16-Pin Wide-Body SOIC
Figure 20 illustrates the recommended land pattern details for the Si8900/1/2 in a 16-pin wide-body SOIC. Table 9
lists the values for the dimensions shown in the illustration.
Figure 20. 16-Pin SOIC Land Pattern
Table 9. 16-Pin Wide Body SOIC Land Pattern Dimensions
Dimension
Feature
(mm)
C1
Pad Column Spacing
9.40
E
Pad Row Pitch
1.27
X1
Pad Width
0.60
Y1
Pad Length
1.90
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN
for Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card
fabrication tolerance of 0.05 mm is assumed.
Rev. 1.0
27
Si8900/1/2
11. Top Marking: 16-Pin Wide Body SOIC
11.1. Si8900/1/2 Top Marking
Si89XYOV
YYWWTTTTTT
e3
TW
11.2. Top Marking Explanation
Line 1 Marking:
Line 2 Marking:
Line 3 Marking:
28
Si89 = Isolator product series
Serial Port
0 = UART
Base Part Number
1 = I2C
Ordering Options
2 = SPI
Y = Channel Configuration
(See Ordering Guide for more
X = # of data channels (3, 2, 1)
information).
Y = # of reverse channels (1, 0)
V = Insulation rating
B = 2.5 kV; D = 5.0 kV
YY = Year
WW = Workweek
Assigned by assembly subcontractor. Corresponds to the
year and workweek of the mold date.
TTTTTT = Mfg Code
Manufacturing code from assembly house
Circle = 1.5 mm Diameter
(Center-Justified)
“e3” Pb-Free Symbol
Country of Origin ISO Code
Abbreviation
TW = Taiwan
Rev. 1.0
Si8900/1/2
DOCUMENT CHANGE LIST:
Revision 0.5 to Revision 1.0

No changes.
Rev. 1.0
29
Si8900/1/2
CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
30
Rev. 1.0