SILABS SI8440-B-IS

Si8440/1/2
Q U A D -C H A N N E L D I G I TA L I S O L A T O R
Features
Pin Assignments
High-speed operation:
DC – 150 Mbps
Low propagation delay:
<10 ns
Wide Operating Supply Voltage:
2.375–5.5 V
Low power: I1 + I2 <
12 mA/channel at 100 Mbps
Precise timing:
2 ns pulse width distortion
1 ns channel-channel matching
2 ns pulse width skew
2500 VRMS isolation
Transient Immunity: >25 kV/µs
Tri-state outputs with ENABLE
control
DC correct
No start-up initialization required
<10 µs Startup Time
High temperature operation:
125 °C at 100 Mbps
100 °C at 150 Mbps
Wide body SOIC-16 package
Wide Body SOIC
VDD1
GND1
A1
A2
A3
A4
EN1
GND1
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
VDD2
GND2
B1
B2
B3
B4
EN2
GND2
Top View
Applications
Isolated switch mode supplies
Isolated ADC, DAC
Motor control
Power factor correction systems
Safety Regulatory Approvals
UL recognition:2500 VRMS for 1
Minute per UL1577
CSA component acceptance
notice #5A
* All Pending
VDE certification conformity
DIN EN 60747-5-2 (VDE0884
Part 2):2003-01
DIN EN60950(VDE0805):
2001-12;EN60950:2000
VIORM = 560 VPEAK
Description
Silicon Lab's family of digital isolators are CMOS devices that employ
an RF coupler to transmit digital information across an isolation
barrier. Very high speed operation at low power levels is achieved.
These parts are available in a 16-pin wide body SOIC package. Three
speed grade options (1, 10, 100 Mbps) are available and achieve
typical propagation delay of less than 10 ns.
Block Diagram
Si8440
Si8441
Si8442
A1
B1
A1
B1
A1
B1
A2
B2
A2
B2
A2
B2
A3
B3
A3
B3
A3
B3
A4
B4
A4
B4
A4
B4
NC
EN2
EN1
EN2
EN1
Rev. 0.3 4/06
EN2
Copyright © 2006 by Silicon Laboratories
Si8440/1/2
Si8440/1/2
2
Rev. 0.3
Si8440/1/2
TA B L E O F C O N T E N TS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3. Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1. Supply Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2. Input and Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3. Enable Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
4.4. RF Immunity and Common Mode Transient Immunity . . . . . . . . . . . . . . . . . . . . . . . 17
4.5. RF Radiated Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7. Package Outline: Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Rev. 0.3
3
Si8440/1/2
1. Electrical Specifications
Table 1. Electrical Characteristics
(VDD1 = 5 V, VDD2 = 5 V, TA = –40 to 125 C°)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
High Level Input Voltage
VIH
2.0
—
—
V
Low Level Input Voltage
VIL
—
—
0.8
V
High Level Output Voltage
VOH
loh = –4 mA
VDD1,VDD2 – 0.4
4.8
—
V
Low Level Output Voltage
VOL
lol = 4 mA
—
0.2
0.4
V
—
—
±10
µA
Input Leakage Current
IL
Enable Input High Current
IENH
VENx = VIH
—
4
—
µA
Enable Input Low Current
IENL
VENx = VIL
—
20
—
µA
DC Supply Current (All inputs 0 V or at Supply)
Si8440-A,-B,-C, VDD1
All inputs 0 DC
—
7.5
—
mA
Si8440-A,-B,-C, VDD2
All inputs 0 DC
—
7
—
mA
Si8440-A,-B,-C, VDD1
All inputs 1 DC
—
15
—
mA
Si8440-A,-B,-C, VDD2
All inputs 1 DC
—
6.5
—
mA
Si8441-A,-B,-C, VDD1
All inputs 0 DC
—
8.7
—
mA
Si8441-A,-B,-C, VDD2
All inputs 0 DC
—
11
—
mA
Si8441-A,-B,-C, VDD1
All inputs 1 DC
—
14
—
mA
Si8441-A,-B,-C, VDD2
All inputs 1 DC
—
12.5
—
mA
Si8442-A,-B,-C, VDD1
All inputs 0 DC
—
10
—
mA
Si8442-A,-B,-C, VDD2
All inputs 0 DC
—
10
—
mA
Si8442-A,-B,-C, VDD1
All inputs 1 DC
—
13
—
mA
Si8442-A,-B,-C, VDD2
All inputs 1 DC
—
13
—
mA
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
Si8440-B,-C, VDD1
—
11
—
mA
Si8440-B,-C, VDD2
—
9
—
mA
Si8441-B,-C, VDD1
—
12
—
mA
Si8441-B,-C, VDD2
—
13.5
—
mA
Si8442-B,-C, VDD1
—
12.5
—
mA
Si8442-B,-C, VDD2
—
12.5
—
mA
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
Si8440-C, VDD1
—
12
—
mA
Si8440-C, VDD2
—
27
—
mA
Si8441-C, VDD1
—
16
—
mA
Si8441-C, VDD2
—
27
—
mA
Si8442-C, VDD1
—
21
—
mA
Si8442-C, VDD2
—
21
—
mA
4
Rev. 0.3
Si8440/1/2
Table 1. Electrical Characteristics (Continued)
(VDD1 = 5 V, VDD2 = 5 V, TA = –40 to 125 C°)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Maximum Data Rate
0
—
100
Mbps
Minimum Pulse Width
—
5
—
ns
tPHL, tPLH
—
7.5
—
ns
PWD
—
1
—
ns
tPSK
—
6
—
ns
tPSKCD/OD
—
0.5
—
ns
Timing Characteristics
Propagation Delay1
Pulse Width Distortion
|tPLH - tPHL|1
Propagation Delay Skew2
Channel-Channel Skew
3
Output Rise Time
C1 = 15 pF
—
2
—
ns
Output Fall Time
C1 = 15 pF
—
2
—
ns
Common Mode Transient
Immunity at Logic Low Output4
CML
25
30
—
kV/µs
Common Mode Transient
Immunity at Logic High Output4
CMH
25
30
—
kV/µs
Enable to Data Valid
ten1
—
5
—
ns
Enable to Data Tri-State
ten2
—
5
—
ns
Start-up Time5
tSU
—
3
—
µs
Notes:
1. tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling
edge of the VOx signal. tPLH propagation delay is measured from the 50% level of the rising edge of the VIx signal to the
50% level of the rising edge of the VOx signal.
2. tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating
temperature, supply voltages, and output load within the recommended operating conditions.
3. Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any
two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is
the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of
the isolation barrier.
4. CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is
the maximum common-mode voltage slew rate that can be sustained while maintaining VO < 0.8 V. The common-mode
voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range
over which the common mode is slewed.
5. Start-up time is the time period from the application of power to valid data at the output.
INPUT
(V IX)
ENABLE
50%
tPLH
tPHL
OUTPUTS
OUTPUT
(V OX)
ten1
50%
ten2
Figure 1. ENABLE Timing Diagram
Figure 2. Propagation Delay Timing
Rev. 0.3
5
Si8440/1/2
Table 2. Electrical Characteristics
(VDD1 = 3.3 V, VDD2 = 3.3 V, TA = –40 to 125 C°)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
High Level Input Voltage
VIH
2.0
—
—
V
Low Level Input Voltage
VIL
—
—
0.8
V
High Level Output Voltage
VOH
loh = –4 mA
VDD1,VDD2 – 0.4
3.1
—
V
Low Level Output Voltage
VOL
lol = 4 mA
—
0.2
0.4
V
—
—
±10
µA
Input Leakage Current
IL
Enable Input High Current
IENH
VENx = VIH
—
4
—
µA
Enable Input Low Current
IENL
VENx = VIL
—
20
—
µA
DC Supply Current (All inputs 0 V or at supply)
Si8440-A,-B,-C, VDD1
All inputs 0 DC
—
7.3
—
mA
Si8440-A,-B,-C, VDD2
All inputs 0 DC
—
6.5
—
mA
Si8440-A,-B,-C, VDD1
All inputs 1 DC
—
14.3
—
mA
Si8440-A,-B,-C, VDD2
All inputs 1 DC
—
6
—
mA
Si8441-A,-B,-C, VDD1
All inputs 0 DC
—
8.3
—
mA
Si8441-A,-B,-C, VDD2
All inputs 0 DC
—
10.8
—
mA
Si8441-A,-B,-C, VDD1
All inputs 1 DC
—
13.3
—
mA
Si8441-A,-B,-C, VDD2
All inputs 1 DC
—
11.8
—
mA
Si8442-A,-B,-C, VDD1
All inputs 0 DC
—
9
—
mA
Si8442-A,-B,-C, VDD2
All inputs 0 DC
—
9
—
mA
Si8442-A,-B,-C, VDD1
All inputs 1 DC
—
12
—
mA
Si8442-A,-B,-C, VDD2
All inputs 1 DC
—
12
—
mA
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
Si8440-B,-C, VDD1
—
11
—
mA
Si8440-B,-C, VDD2
—
8
—
mA
Si8441-B,-C, VDD1
—
11.4
—
mA
Si8441-B,-C, VDD2
—
14.5
—
mA
Si8442-B,-C, VDD1
—
11.5
—
mA
Si8442-B,-C, VDD2
—
11.5
—
mA
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
Si8440-C, VDD1
—
11.4
—
mA
Si8440-C, VDD2
—
18
—
mA
Si8441-C, VDD1
—
12.5
—
mA
Si8441-C, VDD2
—
21
—
mA
Si8442-C, VDD1
—
17.5
—
mA
Si8442-C, VDD2
—
17.5
—
mA
6
Rev. 0.3
Si8440/1/2
Table 2. Electrical Characteristics (Continued)
(VDD1 = 3.3 V, VDD2 = 3.3 V, TA = –40 to 125 C°)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Maximum Data Rate
0
—
100
Mbps
Minimum Pulse Width
—
5
—
ns
tPHL,tPLH
—
7.5
—
ns
PWD
—
1
—
ns
tPSK
—
8
—
ns
tPSKCD/OD
—
1
—
ns
Timing Characteristics
Propagation Delay1
Pulse Width Distortion
|tPLH - tPHL|1
Propagation Delay Skew2
Channel-Channel Skew
3
Output Rise Time
C1 = 15 pF
—
2
—
ns
Output Fall Time
C1 = 15 pF
—
2
—
ns
Common Mode Transient
Immunity at Logic Low Output4
CML
25
30
—
kV/µs
Common Mode Transient
Immunity at Logic High Output4
CMH
25
30
—
kV/µs
Enable to Data Valid
ten1
—
5
—
ns
Enable to Data Tri-State
ten2
—
5
—
ns
Start-up Time5
tSU
—
3
—
µs
Notes:
1. tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling
edge of the VOx signal. tPLH propagation delay is measured from the 50% level of the rising edge of the VIx signal to the
50% level of the rising edge of the VOx signal.
2. tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating
temperature, supply voltages, and output load within the recommended operating conditions.
3. Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any
two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is
the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of
the isolation barrier.
4. CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is
the maximum common-mode voltage slew rate that can be sustained while maintaining VO < 0.8 V. The common-mode
voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range
over which the common mode is slewed.
5. Start-up time is the time period from the application of power to valid data at the output.
Rev. 0.3
7
Si8440/1/2
Table 3. Electrical Characteristics
(VDD1 = 2.5 V, VDD2 = 2.5 V, TA = –40 to 100 C°)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
High Level Input Voltage
VIH
2.0
—
—
V
Low Level Input Voltage
VIL
—
—
0.8
V
High Level Output Voltage
VOH
loh = –4 mA
VDD1,VDD2 – 0.4
2.3
—
V
Low Level Output Voltage
VOL
lol = 4 mA
—
0.2
0.4
V
—
—
±10
µA
Input Leakage Current
IL
Enable Input High Current
IENH
VENx = VIH
—
4
—
µA
Enable Input Low Current
IENL
VENx = VIL
—
20
—
µA
DC Supply Current (All inputs 0 V or at supply)
Si8440-A,-B,-C, VDD1
All inputs 0 DC
—
6.8
—
mA
Si8440-A,-B,-C, VDD2
All inputs 0 DC
—
6.3
—
mA
Si8440-A,-B,-C, VDD1
All inputs 1 DC
—
12.5
—
mA
Si8440-A,-B,-C, VDD2
All inputs 1 DC
—
5.8
—
mA
Si8441-A,-B,-C, VDD1
All inputs 0 DC
—
7.8
—
mA
Si8441-A,-B,-C, VDD2
All inputs 0 DC
—
9.8
—
mA
Si8441-A,-B,-C, VDD1
All inputs 1 DC
—
12.5
—
mA
Si8441-A,-B,-C, VDD2
All inputs 1 DC
—
11
—
mA
Si8442-A,-B,-C, VDD1
All inputs 0 DC
—
8.8
—
mA
Si8442-A,-B,-C, VDD2
All inputs 0 DC
—
8.5
—
mA
Si8442-A,-B,-C, VDD1
All inputs 1 DC
—
11.5
—
mA
Si8442-A,-B,-C, VDD2
All inputs 1 DC
—
11.5
—
mA
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
Si8440-B,-C, VDD1
—
10.2
—
mA
Si8440-B,-C, VDD2
—
7
—
mA
Si8441-B,-C, VDD1
—
10.5
—
mA
Si8441-B,-C, VDD2
—
11.5
—
mA
Si8442-B,-C, VDD1
—
11
—
mA
Si8442-B,-C, VDD2
—
11
—
mA
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
Si8440-C, VDD1
—
10.8
—
mA
Si8440-C, VDD2
—
14.5
—
mA
Si8441-C, VDD1
—
12.5
—
mA
Si8441-C, VDD2
—
17
—
mA
Si8442-C, VDD1
—
15
—
mA
Si8442-C, VDD2
—
15
—
mA
8
Rev. 0.3
Si8440/1/2
Table 3. Electrical Characteristics (Continued)
(VDD1 = 2.5 V, VDD2 = 2.5 V, TA = –40 to 100 C°)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Maximum Data Rate
0
—
100
Mbps
Minimum Pulse Width
—
5
—
ns
tPHL,tPLH
—
12
—
ns
PWD
—
1.5
—
ns
tPSK
—
10
—
ns
tPSKCD/OD
—
1
—
ns
Timing Characteristics
Propagation Delay1
Pulse Width Distortion
|tPLH - tPHL|1
Propagation Delay Skew2
Channel-Channel Skew
3
Output Rise Time
C1 = 15 pF
—
2
—
ns
Output Fall Time
C1 = 15 pF
—
2
—
ns
Common Mode Transient
Immunity at Logic Low Output4
CML
25
30
—
kV/µs
Common Mode Transient
Immunity at Logic High Output4
CMH
25
30
—
kV/µs
Enable to Data Valid
ten1
—
5
—
ns
Enable to Data Tri-State
ten2
—
5
—
ns
Start-up Time5
tSU
—
3
—
µs
Notes:
1. tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling
edge of the VOx signal. tPLH propagation delay is measured from the 50% level of the rising edge of the VIx signal to the
50% level of the rising edge of the VOx signal.
2. tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating
temperature, supply voltages, and output load within the recommended operating conditions.
3. Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any
two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is
the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of
the isolation barrier.
4. CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is
the maximum common-mode voltage slew rate that can be sustained while maintaining VO < 0.8 V. The common-mode
voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range
over which the common mode is slewed.
5. Start-up time is the time period from the application of power to valid data at the output.
Rev. 0.3
9
Si8440/1/2
Table 4. Recommended Operating Conditions
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
TA
100 Mbps, 15 pF, 5 V
–40
25
125
ºC
150 Mbps, 15 pF, 5 V
0
25
100
ºC
VDD1
2.375
—
5.5
V
VDD2
2.375
—
5.5
V
Ambient Operating Temperature*
Supply Voltage
*Note: The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels,
and supply voltage.
Table 5. Absolute Maximum Ratings
Parameter
Symbol
Min
Typ
Max
Unit
TSTG
–65
—
150
ºC
TA
–40
—
125
ºC
VDD1, VDD2
–0.5
—
6
V
Input Voltage
VI
–0.5
—
VDD + 0.5
V
Output Voltage
VO
–0.5
—
VDD + 0.5
V
Output Current Drive Channel
LO
—
—
10
mA
Lead Solder Temperature (10s)
—
—
260
ºC
Maximum Isolation Voltage
—
—
4000
VDC
Storage Temperature
Ambient Temperature Under Bias
Supply Voltage
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation
should be restricted to conditions as specified in the operational sections of this data sheet. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Table 6. Package Characteristics
Parameter
Symbol
Resistance (Input-Output)1
Capacitance
(Input-Output)1
Input Capacitance2
Test Condition
RIO
CIO
f = 1 MHz
CI
IC Junction-to-Case Thermal Resistance,
Side 1
θJCI
IC Junction-to-Case Thermal Resistance,
Side 2
θJCO
Thermocouple
located at center of
package underside
Min
Typ
Max
Unit
—
1012
—
Ω
—
1.4
—
pF
—
4.0
—
pF
—
33
—
ºC/W
—
28
—
ºC/W
Notes:
1. Device considered a 2-terminal device; Pins 1– 8 shorted together and pins 9–16 shorted together.
2. Input capacitance is from any input data pin to ground.
10
Rev. 0.3
Si8440/1/2
Table 7. Regulatory Information
The Si84xx have been approved by the organizations listed below.
UL1
VDE2
CSA
Recognized under 1577 component Approved under CSA Component
recognition program1
Acceptance Notice #5A
Certified according to DIN EN
60747-5-2 (VDE 0884 Part 2): 2003012
Basic insulation, 2500 V RMS
isolation voltage
Reinforced insulation per CSA
Basic insulation, 560 V peak
60950-1-03 and IEC 60950-1, 400 V Complies with DIN EN 60747-5-2
RMS maximum working voltage
(VDE 0884 Part 2): 2003-01, DIN EN
60950 (VDE 0805): 2001-12; EN
60950:2000 Reinforced insulation,
560 V peak
File E257455
File 2500035643
File 5006301-4880-0001
Notes:
1. In accordance with UL1577, each Si84xx is proof tested by applying an insulation test voltage > 3000 V RMS for 1
second (current leakage detection limit = 5 µA).
2. In accordance with DIN EN 60747-5-2, each Si84xx is proof tested by applying an insulation test voltage > 1050 V
peak for 1 second (partial discharge detection limit = 5 pC). A “*” mark branded on the component designates DIN EN
60747-5-2 approval.
Table 8. Insulation and Safety-related Specifications
Parameter
Symbol
Rated Dielectric Insulation Voltage
Test Condition
Value
Unit
1 minute duration
2500
VRMS
Minimum External Air Gap (Clearance)
L(IO1)
Measured from input terminals to output terminals, shortest distance
through air
7.7 min
mm
Minimum External Tracking (Creepage)
L(IO2)
Measured from input terminals to output terminals, shortest distance path
along body
8.1
mm
Insulation distance through insulation
0.017
min
mm
DIN IEC 112/VDE 0303 Part 1
>175
V
Material Group
(DIN VDE 0110, 1/89, Table 1)
IIIa
Minimum Internal Gap (Internal Clearance)
Tracking Resistance (Comparative Tracking
Index)
Basic Isolation Group
CTI
Rev. 0.3
11
Si8440/1/2
Table 9. DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation Characteristics1,2
Description
Symbol
Installation Classification per DIN VDE 0110
For Rated Mains Voltages < 150 VRMS
For Rated Mains Voltages < 300 VRMS
For Rated Mains Voltages < 400 VRMS
Characteristic
Unit
I-IV
I-III
I-II
Climatic Classification
40/125/21
Pollution Degree (DIN VDE 0110, Table 1)
2
Maximum Working Insulation Voltage
VIORM
560
VPEAK
VPR
1050
VPEAK
Input to Output Test Voltage, Method a
After Environmental Tests Subgroup 1
(VIORM x 1.6 = VPR, tm = 60 sec, Partial Discharge < 5 pC)
After Input and/or Safety Test Subgroup 2/3
(VIORM x 1.2 = VPR, tm = 60 sec, Partial Discharge < 5 pC)
VPR
896
VPEAK
672
VPEAK
Highest Allowable Overvoltage (Transient Overvoltage, tTR = 10 sec)
VTR
4000
VPEAK
Safety-Limiting Values (Maximum value allowed in the event of a failure;
also see the thermal derating curve, Figure 3)
Case Temperature
Side 1 Current
Side 2 Current
TS
IS1
IS2
150
265
335
ºC
mA
mA
Insulation Resistance at TS, VIO = 500 V
RS
>109
Ω
Input to Output Test Voltage, Method b1
(VIORM x 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC)
Notes:
1. This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data is
ensured by protective circuits.
2. The * marking on packages denotes DIN EN 60747-5-2 approval for 560 V peak working voltage.
350
Safety-Limiting Current (mA)
300
250
SIDE #2
200
150
SIDE #1
100
50
0
0
50
100
Case Temperature (ºC)
150
200
Figure 3. Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
12
Rev. 0.3
Si8440/1/2
2. Typical Performance Characteristics
15
20
18
5V
Current (mA)
Current (mA)
13
11
3.3V
9
2.5V
7
5V
16
3.3V
14
12
5
2.5V
10
0
10
20
30
40
50
60
70
80
90
100
0
10
20
30
Data Rate (Mbps)
40
50
60
70
80
Figure 4. Si8440 Typical VDD1 Supply Current
vs. Data Rate 5, 3.3, and 2.5 V Operation
100
Figure 6. Si8441 Typical VDD1 Supply Current
vs. Data Rate 5, 3.3, and 2.5 V Operation
30
30
5V
5V
25
25
Current (mA)
Current (mA)
90
Data Rate (Mbps)
3.3V
20
15
2.5V
10
3.3V
20
15
2.5V
10
5
5
0
10
20
30
40
50
60
70
80
90
100
0
10
20
30
Data Rate (Mbps)
40
50
60
70
80
90
100
Data Rate (Mbps)
Figure 5. Si8440 Typical VDD2 Supply Current
vs. Data Rate 5, 3.3, and 2.5 V Operation
(15 pF Load)
Figure 7. Si8441 Typical VDD2 Supply Current
vs. Data Rate 5, 3.3, and 2.5 V Operation
(15 pF Load)
30
Current (mA)
25
5V
20
3.3V
15
2.5V
10
5
0
10
20
30
40
50
60
70
80
90
100
Data Rate (Mbps)
Figure 8. Si8442 Typical VDD1 or VDD2 Supply
Current vs. Data Rate 5, 3.3, and 2.5 V
Operation (15 pF Load)
Rev. 0.3
13
Si8440/1/2
10
Delay (ns)
9
8
Falling Edge
7
6
Rising Edge
5
-40
-20
0
20
40
60
80
100
120
Temperature (Degrees C)
Figure 9. Propagation Delay
vs. Temperature 5 V Operation
10
Delay (ns)
9
Rising Edge
8
Falling Edge
7
6
5
-40
-20
0
20
40
60
80
100
120
Temperature (Degrees C)
Figure 10. Propagation Delay
vs. Temperature 3.3 V Operation
15
Delay (ns)
13
Rising Edge
11
Falling Edge
9
7
5
-40
-20
0
20
40
60
80
100
120
Temperature (Degrees C)
Figure 11. Propagation Delay
vs. Temperature 2.5 V Operation
14
Rev. 0.3
Si8440/1/2
3. Application Information
3.1. Theory of Operation
The operation of an Si8440 channel is analogous to that of an opto coupler, except an RF carrier is modulated
instead of light. This simple architecture provides a robust isolated data path and requires no special
considerations or initialization at start-up. A simplified block diagram for a single Si8440 channel is shown in
Figure 12. A channel consists of an RF transmitter and receiver separated by a transformer.
Referring to the transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying and
applies the resulting waveform to the primary of the transformer. The receiver contains a demodulator that decodes
the input state according to its RF energy content and applies the result to output B via the output driver.
3.2. Eye Diagram
Figure 13 illustrates an eye-diagram taken on an Si8440-IS. The test used an Anritsu (MP1763C) Pulse Pattern
Generator for the data source. The output of the generator's clock and data from an Si8440-IS were captured on an
oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of 150 Mbps. The
results also show that very low pulse width distortion and very little jitter were exhibited.
TRANSMITTER
RF
OSCILLATOR
A
RECEIVER
MODULATOR
DEMODULATOR
B
Figure 12. Simplified Channel Diagram
Figure 13. Eye Diagram
Rev. 0.3
15
Si8440/1/2
4. Layout Recommendations
4.1. Supply Bypass
Dielectric isolation is a set of specifications produced by
the safety regulatory agencies from around the world
that describes the physical construction of electrical
equipment that derives power from a high-voltage
power system such as 100–240 VAC systems or
industrial power systems. The dielectric test (or HIPOT
test) given in the safety specifications places a very high
voltage between the input power pins of a product and
the user circuits and the user touchable surfaces of the
product. For the IEC relating to products deriving their
power from the 220–240 V power grids, the test voltage
is 2500 VAC (or 3750 VDC—the peak equivalent
voltage).
There are two
specifications:
terms
described
in
the
safety
The Si8440 requires a 0.1 µF bypass capacitor between
VDD1 and GND1 and VDD2 and GND2. The capacitor
should be placed as close as possible to the package.
4.2. Input and Output Characteristics
The Si8440 inputs and outputs are standard CMOS
drivers/receivers.
4.3. Enable Inputs
The receiver output drivers are enabled when the
Enable input is high and the drivers remain in a highimpedance state when Enable is low. The Enable input
can be used for multiplexing or as a clock sync input.
Supply currents remain at their nominal values when
Enable is low. The Enable inputs must be tied to a logic
level.
Creepage—the distance along the insulating surface
an arc may travel.
Clearance—the distance through the shortest path
through air that an arc may travel.
Figure 14 illustrates the accepted method of providing
the proper creepage distance along the surface. For a
220–240 V application, this distance is 8 mm and the
wide body SOIC package must be used. There must be
no copper traces within this 8 mm exclusion area, and
the surface should have a conformal coating such as
solder resist. The digital isolator chip must straddle this
exclusion area.
Figure 14. Creepage Distance
16
Rev. 0.3
Si8440/1/2
4.4. RF Immunity and Common Mode Transient Immunity
The Si8440 family has very high common mode transient immunity while transmitting data. This is typically
measured by applying a square pulse with very fast rise/fall times between the isolated grounds. Measurements
show no failures up to 30 kV/µs. During a high surge event the output may glitch low for up to 20–30 ns, but the
output corrects immediately after the surge event.
The Si844x family passes the industrial requirements of CISPR24 for RF immunity of 3 V/m using an unshielded
evaluation board. As shown in Figure 15, the isolated ground planes form a parasitic dipole antenna, while
Figure 16 shows the RMS common mode voltage versus frequency above which the Si844x becomes susceptible
to data corruption. To avoid compromising data, care must be taken to keep RF common-mode voltage below the
envelope specified in Figure 16. The PCB should be laid-out to not act as an efficient antenna for the RF frequency
of interest. RF susceptibility is also significantly reduced when the end system is housed in a metal enclosure, or
otherwise shielded.
GND1
Isolator
GND2
Dipole
Antenna
Figure 15. Dipole Antenna
RMS Voltage (V)
5
4
3
2
1
0
500
1000
1500
2000
Frequency (MHz)
Figure 16. RMS Common Mode Voltage vs. Frequency
Rev. 0.3
17
Si8440/1/2
4.5. RF Radiated Emissions
The Si8440 family uses a RF carrier frequency of approximately 2.1 GHz. This will result in a small amount of
radiated emissions at this frequency and its harmonics. The radiation is not from the IC chip but due to a small
amount of RF energy driving the isolated ground planes which can act as a dipole antenna.
The unshielded Si8440 evaluation board passes FCC requirements. Table 10 shows measured emissions
compared to FCC requirements.
Radiated emissions can be reduced if the circuit board is enclosed in a shielded enclosure or if the PCB is a less
efficient antenna.
Table 10. Radiated Emissions
18
Frequency
(GHz)
Measured
(dBµV/m)
FCC Spec
(dBµV/m)
Compared
to Spec
(dB)
2.094
70.0
74.0
–4.0
2.168
68.3
74.0
–5.7
4.210
61.9
74.0
–12.1
4.337
60.7
74.0
–13.3
6.315
58.3
74.0
–15.7
6.505
60.7
74.0
–13.3
8.672
45.6
74.0
–28.4
Rev. 0.3
Si8440/1/2
5. Pin Descriptions
VDD1
GND1
A1
A2
A3
A4
EN1
GND1
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
VDD2
GND2
B1
B2
B3
B4
EN2
GND2
Top View
Wide Body SOIC
Name
SOIC-16 Pin#
Type
Description
VDD1
1
Supply
Side 1 power supply.
GND1
2
Ground
Side 1 ground.
A1
3
Digital Input
Side 1 digital input.
A2
4
Digital Input
Side 1 digital input.
A3
5
Digital I/O
Side 1 digital input or output.
A4
6
Digital I/O
Side 1 digital input or output.
EN1
7
Digital Input
GND1
8
Ground
Side 1 ground.
GND2
9
Ground
Side 2 ground.
EN2
10
Digital Input
B4
11
Digital I/O
Side 2 digital input or output.
B3
12
Digital I/O
Side 2 digital input or output.
B2
13
Digital Output
Side 2 digital output.
B1
14
Digital Output
Side 2 digital output.
GND2
15
Ground
Side 2 ground.
VDD2
16
Supply
Side 2 power supply.
Side 1 active high enable. NC on Si8440.
Side 2 active high enable.
Rev. 0.3
19
Si8440/1/2
6. Ordering Guide
Number of Inputs Maximum Data
VDD2 Side
Rate
Ordering Part
Number
Number of
Inputs VDD1
Side
Si8440-A-IS
4
0
Si8440-B-IS
4
Si8440-C-IS
Temperature
Package
Type
1
–40 to 125 °C
SOIC-16
0
10
–40 to 125 °C
SOIC-16
4
0
100
–40 to 125 °C
SOIC-16
Si8441-A-IS
3
1
1
–40 to 125 °C
SOIC-16
Si8441-B-IS
3
1
10
–40 to 125 °C
SOIC-16
Si8441-C-IS
3
1
100
–40 to 125 °C
SOIC-16
Si8442-A-IS
2
2
1
–40 to 125 °C
SOIC-16
Si8442-B-IS
2
2
10
–40 to 125 °C
SOIC-16
Si8442-C-IS
2
2
100
–40 to 125 °C
SOIC-16
Note: All packages are Pb-free and RoHS compliant. Moisture sensitivity level is MSL2 with peak reflow temperature of
260 °C according to the JEDEC industry standard classifications, and peak solder temperature.
20
Rev. 0.3
Si8440/1/2
7. Package Outline: Wide Body SOIC
Figure 17 illustrates the package details for the Quad-Channel Digital Isolator. Table 14 lists the values for the
dimensions shown in the illustration.
Figure 17. 16-Pin Wide Body SOIC
Table 14. Package Diagram Dimensions
Millimeters
Symbol
Min
Max
A
—
2.65
A1
0.1
0.3
D
10.3 BSC
E
10.3 BSC
E1
7.5 BSC
b
0.31
0.51
c
0.20
0.33
e
1.27 BSC
h
0.25
0.75
L
0.4
1.27
θ
0°
7°
Rev. 0.3
21
Si8440/1/2
DOCUMENT CHANGE LIST
Revision 0.2 to Revision 0.3
Added enable high and low typical current
specifications to Tables 1, 2, and 3.
Added startup time specifications (with note 5) to
Tables 1, 2, and 3.
Rewrote paragraph 1 in section "4.4. RF Immunity
and Common Mode Transient Immunity" on page 17
to reflect 30 kV/µs transient immunity capability.
22
Rev. 0.3
Si8440/1/2
NOTES:
Rev. 0.3
23
Si8440/1/2
CONTACT INFORMATION
Silicon Laboratories Inc.
4635 Boston Lane
Austin, TX 78735
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: [email protected]
Internet: www.silabs.com
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
24
Rev. 0.3