ANPEC APL5338XAI-TRG

APL5338
2A Bus Termination Regulator
Features
General Description
•
Sourcing and Sinking Current up to 2A
•
Wide Input Voltage Range: 1.2V to 3.6V
The APL5338 linear regulator is designed to provide a
regulated voltage with bi-directional output current for
•
VTT and VTTREF Voltage Tracks at Half the VREF
DDR-SDRAM termination. The APL5338 integrates two
power transistors to source or sink current up to 2A. It
Voltage
•
VTT and VTTREF Voltage with ±10mV Accuracy
•
Excellent Load Transient Response
•
Stable with 10µF Ceramic Output Capacitor
•
Current-Limit Protection
•
Thermal Shutdown Protection
•
Power-On-Reset Function on VCNTL
•
S3, S5 Input Signals for ACPI States
•
Small MSOP-10P and TDFN3x3-10 Packages
•
Lead Free and Green Devices Available
also incorporates current-limit and thermal shutdown into
a single chip.
The output voltage of APL5338 tracks the voltage at VREF
pin. An internal resistor divider is used to provide a half
voltage of VREF for VTTREF and VTT Voltage. The VTT
output voltage is only requiring 10µF of ceramic output
capacitance for stability and fast transient response. The
S3 and S5 pins provide the sleep state for VTT (S3 state)
and suspend state (S4/S5 state) for device when S5 and
S3 are both pulled low the device provides the soft-off for
VTT and VTTREF. The MSOP-10P and TDFN3x3-10 package with a copper pad is available which provides excel-
(RoHS Compliant)
lent thermal impedance.
Applications
•
Pin Configuration
VREF 1
DDR 2/3 Memory Termination
10 VCNTL
VIN 2
9 S5
VTT 3
8 GND
PGND 4
Simplified Application Circuit
7 S3
VTTSEN 5
6 VTTREF
MSOP-10P (Top View)
CIN
10µF
APL5338
1
2
3
4
5
COUT
10µF
VREF
VIN
VTT
PGND
VCNTL
S5
GND
S3
VTTSNS VTTREF
10
VREF 1
VIN 2
VTT 3
PGND 4
VTTSEN 5
9
8
7
6
C1
0.1µF
10 VCNTL
9 S5
8 GND
7 S3
6 VTTREF
GND
TDFN3X3-10
(Top View)
= Exposed Pad
(connected to ground plane for better heat dissipation)
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
1
www.anpec.com.tw
APL5338
Ordering and Marking Information
Package Code
XA : MSOP-10P QB : TDFN3x3-10
Operating Ambient Temperature Range
I : -40 to 85 oC
Handling Code
TR : Tape & Reel
Assembly Material
G : Halogen and Lead Free Device
APL5338
Assembly Material
Handling Code
Temperature Range
Package Code
APL5338 XA :
APL5338 QB :
L5338
XXX
XX
XXXXX - Date Code
APL
5338
XXXXX
XXXXX - Date Code
Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
Absolute Maximum Ratings (Note 1)
Symbol
VCNTL
Parameter
Rating
Unit
VCNTL Supply Voltage (VCNTL to GND)
-0.3 ~ 7
V
VIN
VIN Supply Voltage (VIN to GND)
-0.3 ~ 7
V
VTT
VTT Output Voltage (VTT to GND)
-0.3 ~ 7
V
VTTREF Output Voltage (VTTREF to GND)
-0.3 ~ 7
V
VTTSNS, VREF, S3 and S5 Voltage
-0.3 ~ 7
V
-0.3 ~ 0.3
V
VTTREF
PGND to GND Voltage
PD
Power Dissipation
TJ
Maximum Junction Temperature
TSTG
TSDR
Internally Limited
Storage Temperature Range
Maximum Lead Soldering Temperature, 10 Seconds
W
150
o
-65 ~ 150
o
260
o
C
C
C
Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are
stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device
reliability.
Thermal Characteristics
Symbol
θJA
Parameter
Typical Value
Junction-to-Ambient Resistance in Free Air (Note 2)
MSOP-10P
TDFN3x3-10
Unit
o
60
C/W
Note 2 : θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. The exposed pad
of MSOP-10P and TDFN3x3-10 is soldered directly on the PCB.
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
2
www.anpec.com.tw
APL5338
Recommended Operating Conditions
Symbol
VCNTL
VIN
VREF
VS3, VS5
(Note 3)
Parameter
Range
Unit
VCNTL to GND
4.5 ~ 5.5
V
VIN to GND
1.2 ~ 3.6
V
VREF to GND
1.2 ~ 3.6
V
S3, S5 to GND
0 ~ 5.5
V
-2 ~ +2
A
VIN Input Capacitor
10 ~ 100
µF
Capacitance of VTT Output Multi-layer Ceramic Capacitor (MLCC)
10 ~ 47
µF
TA
Ambient Temperature
-40 ~ 85
o
TJ
Junction Temperature
-40 ~ 125
o
IVTT
VTT Output Current
CIN
COUT
(Note 4)
C
C
Note 3 : Refer to the typical application circuit.
Note 4 : If the VTT output current is “+2A”, then VTT source would be 2A current, and vice versa.
Electrical Characteristics
Unless otherwise specified, these specifications apply over VCNTL=5V, VIN=VREF=1.8V, CIN=10µF, COUT=10µF and TA= -40 ~ 85 oC.
Typical values are at TA=25oC.
Symbol
Parameter
Test Conditions
APL5338
Min.
Typ.
Max.
Unit
SUPPLY CURRENT
IVCNTL
VCNTL Supply Current
TJ = 25oC, VCNTL=5V, VS3=VS5=5V, no load
0.2
0.5
1
VCNTL Standby Current
TJ = 25oC, VCNTL=5V, VS3=0V, VS5=5V,
no load
20
50
80
VCNTL Shutdown Current
TJ = 25 C, VCNTL=5V, VS3=VS5=0V, no load,
VIN=VREF=0V
-
0.3
1.0
VIN Supply Current
TJ = 25oC, VCNTL=5V, VS3=VS5=5V, no load
0.3
0.6
1.0
µA
o
VIN
mA
mA
o
VIN Standby Current
TJ = 25 C, VCNTL=5V, VS3=0V, VS5=5V,
no load
-
5
10
VIN Shutdown Current
TJ = 25oC, VCNTL=5V, VS3=VS5=0V, no load,
VIN=VREF=0V
-
0.5
1.0
µA
INPUT IMPEDANCE
IVREF
VREF Input Impedance
VCNTL=5V, VS3=VS5=5V
1
3
5
µA
IVTTSNS
VTTSNS Input Current
VCNTL=5V, VS3=VS5=5V
-
10
-
nA
3.6
3.8
4.0
-
0.2
-
VIN=VREF=3.15V
-
1.575
-
VIN=VREF=1.8V
-
0.9
-
VIN=VREF=1.5V
-
0.75
-
VIN=VREF=1.35V
-
0.675
-
POWER-ON-RESET (POR) AND LOCKOUT VOLTAGE THRESHOLDS
VCNTL POR Voltage Threshold
VCNTL rising
VCNTL POR Hysteresis
V
VTT OUTPUT
VTT Output Voltage
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
3
V
www.anpec.com.tw
APL5338
Electrical Characteristics (Cont.)
Unless otherwise specified, these specifications apply over VCNTL=5V, VIN=VREF=1.8V, CIN=10µF, COUT=10µF and TA= -40 ~ 85 oC.
Typical values are at TA=25oC.
Symbol
Parameter
APL5338
Test Conditions
Unit
Min.
Typ.
Max.
VIN=VREF=1.35V/1.5V/1.8V/3.15V,
over temperature and load current range
-10
-
10
Sourcing Current
2.8
3.0
3.5
Sinking Current
-2.8
-3.0
-3.5
-
2.5
4.0
-1.0
-
1.0
15
25
35
-
1.575
-
VTT OUTPUT (Cont.)
VTT Output Accuracy to
VTTREF
ILIM
VTT Current Limit
VTT Leakage Current
VTT=0.9V, VS3=0V, VS5=5V, TJ =25 oC
o
VTTSNS Leakage Current
VTT=0.9V, TJ =25 C
VTT Discharge Current
VTT=0.5V, VS3=VS5=0V, TJ =25 oC, VREF=0V
mV
A
µA
mA
VTTREF OUTPUT
VIN=VREF=3.15V
VTTREF
IVTTREF
IVTTREFDIS
VTTREF Output Voltage
VIN=VREF=1.8V
-
0.9
-
VIN=VREF=1.5V
-
0.75
-
VIN=VREF=1.35V
-
0.675
-
-10
-
+10
10
20
30
VTTREF=0.5V, VS3=VS5=0V, TJ =25 C
0.3
0.5
0.8
VTTREF Output Voltage
Tolerance to 0.5VREF
VIN=VREF, IVTTREF<10mA
VTTREF Source Current Limit
VTTREF=0V
VTTREF Discharge Current
o
V
mV
mA
LOGIC THRESHOLD
VIH
High Threshold Voltage
VS3, VS5 Rising
1.6
-
-
VIL
Low Threshold Voltage
VS3, VS5 Falling
-
-
0.4
-
0.2
-
S3, S5, TJ =25 oC
-
-
4
TJ Rising
-
150
-
-
30
-
S3, S5 Hysteresis
Leakage Current
V
µA
THERMAL SHUTDOWN
TSD
Thermal Shutdown Temperature
Thermal Shutdown Hysteresis
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
4
o
C
www.anpec.com.tw
APL5338
Typical Operating Characteristics
VCNTL Supply Current vs. Temperature
VCNTL Shutdown Current vs. Temperature
1.0
VCNTL=5V
VS3=VS5=5V
VCNTL Shutdown Current (µA)
VCNTL Supply Current (mA)
0.60
0.55
0.50
0.45
0.40
-40 -20
0
20
40
60
0.9
VCNTL=5V
VS3=VS5=0V
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
-40 -20
80 100 120 140
Junction Temperature ( oC)
VIN Supply Current vs. Temperature
0.9
VIN Shutdown Current (µA)
VIN Supply Current (mA)
VCNTL=5V
VS3=VS5=5V
1.0
0.8
0.6
0.4
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
-40 -20 0
20
40
60
0.0
-40 -20
80 100 120 140
20
40
60
80 100 120 140
VTT Output Voltage vs. Temperature
VTTREF Output Voltage vs. Temperature
0.910
VCNTL=5V
VIN=VREF=1.8V
IVTTREF=0mA
0.908
VTT Output Voltage (V)
VTTREF Output Voltage (V)
0
Junction Temperature (oC)
0.910
0.906
60 80 100 120 140
VCNTL=5V
VS3=VS5=0V
Junction Temperature ( oC)
0.908
40
VIN Shutdown Current vs. Temperature
1.0
1.2
0.2
20
Junction Temperature (oC)
1.6
1.4
0
0.904
0.902
0.900
0.898
0.896
0.894
VCNTL=5V
VIN=VREF=1.8V
0.906
0.904
0.902
0.900
0.898
0.894
0.892
0.890
-40 -20 0 20 40 60 80 100 120 140
Junction Temperature ( oC)
0.890
-40 -20
5
IVTT=10mA
0.896
0.892
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
IVTT=-10mA
0 20 40 60 80 100 120 140
Junction Temperature (oC)
www.anpec.com.tw
APL5338
Typical Operating Characteristics (Cont.)
VTT Discharge Current vs. Temperature
VTTREF Discharge Current vs. Temperature
40
VCNTL=5V
VS2=VS5=0V
VTTREF=0.5V
0.8
VTT Discharge Current (mA)
VTTREF Discharge Current (mA)
1.0
0.6
0.4
0.2
0.0
-40 -20
0
20
40
60
25
20
15
60
80 100 120 140
VTTREF Voltage vs. VTTREF Load
Current (DDR3)
0.760
0.758
VTTREF Voltage (V)
0.902
0.900
0.898
0.896
0.754
0.752
0.750
0.748
0.746
0.744
0.892
0.742
0
2
4
6
8
0.740
0
10
VCNTL=5V
VIN=VREF=1.5V
0.756
0.894
0.908
40
VTTREF Voltage vs. VTTREF Load
Current (DDR2)
0.904
0.910
20
Junction Temperature ( oC)
0.906
0.890
0
Junction Temperature ( oC)
VCNTL=5V
VIN=VREF=1.8V
0.908
2
4
6
8
10
VTTREF Load Current (mA)
VTTREF Load Current (mA)
VTT Voltage vs. VTT Load Current
(DDR2)
VTT Voltage vs. VTT Load Current
(DDR3)
0.760
VCNTL=5V
VIN=VREF=1.8V
0.758
0.906
0.756
0.904
0.754
VTT Voltage (V)
VTTREF Voltage (V)
30
10
-40 -20
80 100 120 140
0.910
VTT Voltage (V)
35
VCNTL=5V
VS2=VS5=0V
VTT=0.5V
0.902
0.900
0.898
0.896
0.752
0.750
0.748
0.746
0.894
0.744
0.892
0.742
0.890
-2.0 -1.5 -1.0 -0.5 0.0
0.5
1.0
1.5
0.740
-2.0 -1.5 -1.0 -0.5 0.0
2.0
0.5
1.0
1.5
2.0
VTT Load Current (A)
VTT Load Current (A)
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
VCNTL=5V
VIN=VREF=1.5V
6
www.anpec.com.tw
APL5338
Operating Waveforms
(Refer to the section “Typical Application Circuits” VCNTL=5V, VIN=VREF=1.8V, TA=25oC)
Startup Waveform-S5 Low to High
1
2
Startup Waveform-S3 Low to High
VS5
VS 5
1
VS3
2
VS 3
VTTRE F
3
4
V TTREF
3
VTT
V TT
4
IVTT=IVTTREF=0A
CH1: VS5, 5V/Div, DC
IVTT=IVTTREF=0A
CH1: VS5, 5V/Div, DC
CH2: VS3, 5V/Div, DC
CH3: VTTREF, 500mV/Div, DC
CH4: VTT, 500mV/Div, DC
TIME:100µs/Div
CH2: VS3, 5V/Div, DC
CH3: VTTREF, 500mV/Div, DC
CH4: VTT, 500mV/Div, DC
TIME:100µs/Div
Shutdown Waveform-S3 High to Low
Shutdown Waveform-S3 and S5 High to Low
VS 5
VS5
1
1
VS 3
VS 3
2
2
VTTREF
3
VTTREF
V TT
3
4
V TT
4
IVTT=IVTTREF=0A
CH1: VS5, 5V/Div, DC
IVTT=IVTTREF=0A
CH1: VS5, 5V/Div, DC
CH2: VS3, 5V/Div, DC
CH3: VTTREF, 500mV/Div, DC
CH4: VTT, 500mV/Div, DC
TIME:100µs/Div
CH2: VS3, 5V/Div, DC
CH3: VTTREF, 500mV/Div, DC
CH4: VTT, 500mV/Div, DC
TIME:100µs/Div
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
7
www.anpec.com.tw
APL5338
Operating Waveforms (Cont.)
(Refer to the section “Typical Application Circuits” VCNTL=5V, VIN=VREF=1.8V, TA=25oC)
VTT Load Transient Response
1
VTTRE F
2
V TT
IV TT
3
IVTT=-2A (Sink) to 2A (Source) to -2A
CH1: VTTREF, 50mV/Div, DC
CH2: VTT, 50mV/Div, DC
CH3: I VTT, 2A/Div, DC
TIME:100µs/Div
Pin Description
PIN
I/O
FUNCTION
NO.
NAME
1
VREF
I
Reference Voltage Input for VTT and VTTREF Regulator.
2
VIN
I
Power Input for VTT and VTTREF Pin. An input capacitor should be connected from VIN to PGND.
3
VTT
O
VTT Output Voltage Pin. Source and sink current up to 2A. To insure the stability issue, the output
capacitor typical 10µF should be connected from VTT to PGND.
4
PGND
I/O
Power Ground for VIN and VTT.
5
VTTSNS
I
Voltage Sense for VTT. Connect to the positive node of VTT output capacitors.
6
VTTREF
O
VTT Reference Output Pin. A small capacitor 0.1µF should be connected from VTTREF to GND.
7
S3
I
S3 Signal Input.
8
GND
I/O
Signal Ground.
9
S5
I
S5 Signal Input.
10
VCNTL
I
Power Input for Internal Control Circuitry. A bypass capacitor 0.1µF should be connected near the
pin.
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
8
www.anpec.com.tw
APL5338
Block Diagram
VIN
VREF
VTTREF
GND
VCNTL
POR
VTT
S3
Soft-Start and
Control Logic
S5
VTTSEN
Thermal
Shutdown
Current Limit
PGND
Typical Application Circuit
VIN
3.15/1.8/1 .5/1.35V
VCNTL
C IN
10 µF
VTT
1.575 /0 .9/0.75/0.675V
-2~+2 A
APL5338
1
2
3
4
C OUT
10µF
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
5
5V
10
VREF
VCNTL
VIN
S5
VTT
GND
PGND
S3
9
8
7
6
VTTSNS
9
C2
0.1µF
VTTREF
C1
0.1µF
www.anpec.com.tw
APL5338
Function Description
VTT Source/Sink Regulator
S3, S5 Control
The APL5338 is a low dropout source/sink linear regulator with maximum 2A source/sink current. Two internal N-
The S3 and S5 signals control the VTT and VTTREF states
and these pins should be connected to SLP_S3 and
channel MOSFETs controlled by separate high bandwidth
error amplifiers regulate the output voltage by sourcing
SLP_S5 signals respectively. The table1 shows the truth
table of the S3 and S5 pins. When both S3 and S5 are
current from VIN or sinking current to PGND. To prevent
two pass elements from shoot-through, a voltage offset
above the logic threshold voltage, the VTT and VTTREF
are turned on at S0 state. When S3 is low and S5 is high,
is created between two positive inputs of the error
amplifiers.
the VTT voltage is disabled and left high impedance in
S3 state. When both S3 and S5 are low, the VTT and
Power-On-Reset (POR)
VTTREF are turned off and discharged to the ground
through internal MOSFETs during S4/S5 state. (Note that
The APL5338 monitors the VCNTL pin voltage for poweron-reset function to prevent erroneous operation. The
if the S3 is forced high and S5 is forced low, then VTTREF
is discharged and VTT is at high-Z state. Such condition
built-in POR circuit keeps the outputs shutoff until internal circuit is operating properly. Typical POR threshold is
is not recommended.)
3.8V with 0.2V hysteresis.
Thermal Shutdown
A thermal shutdown circuit limits the junction tempera-
VTTREF Regulator
VTTREF voltage follows 1/2VREF voltage which is the
ture of the APL5338. When the junction temperature exceeds +150oC, the device will turn off the MOSFETs, al-
reference of the VTT regulator. The VTTREF block consists of a resistor divider and a low pass filter. The regu-
lowing the device to cool down. The regulator regulates
the output again through initiation of a new soft-start cycle
lator can source current up to 20mA (typical). To insure
after the junction temperature cools by 30oC, resulting in
a pulsed output during continuous thermal overload
the stability, a 0.1µF ceramic capacitor should be connected from VTTREF to GND.
conditions. The thermal shutdown is designed with a
30oC hysteresis to lower the average junction tempera-
Soft-Start and Current Limit
ture during continuous thermal overload conditions, extending lifetime of the device. For normal operation, de-
The APL5338 monitors the output current, both sourcing
and sinking current, and limits the maximum output cur-
vice power dissipation should be externally limited so
that junction temperatures will not exceed +125oC.
rent to prevent damages during current overload or short
circuit (shorted from VOUT to GND or VIN) conditions.
The APL5338 provides a soft-start function, using the
constant current to charge the output capacitor that gives
a rapid and linear output voltage rise. If the load current is
above the current limit start-up, the VTT cannot start
successfully.
Table1. The truth table of S3 and S5 pins
STATE
S3
S5
VTTREF
VTT
S0
H
H
1
1
S3
L
H
1
0(high-Z)
S4/5
L
L
0(discharge)
0(discharge)
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
10
www.anpec.com.tw
APL5338
Application Information
Input Capacitor
Layout Consideration
The APL5338 requires proper input capacitors to supply
surge current during stepping load transients to prevent
Figure 1 illustrates the layout. Below is a checklist for
your layout:
the input rail from dropping. Because the parasitic inductor from the voltage sources or other bulk capacitors to
1. Please place the input capacitors close to the VIN.
2. Output capacitors for VTT must be close to the pin with
the VIN limits the slew rate of the surge current, it is necessary to place the input capacitors near VIN as close as
short and wide track.
3. VTTSNS should be connected to the output capacitors
possible. Input capacitors should be greater than 10µF. A
capacitor of 0.1µF (MLCC) or above is recommended for
of VTT separated from large current path to avoid effect of ESR and ESL. The ESR and ESL of ground track
VCNTL pin noise decoupling.
between VTT and GND should be minimized.
4. VREF should be connected to VIN by a separate track.
Output Capacitor
VREF is the reference voltage of VTTREF, so avoid any
noise to get into the VREF.
The APL5338 needs a proper output capacitor to maintain circuit stability and improve transient response over
5. PGND is the ground of VIN and VTT. GND is the signal
ground of VREF, VTTREF S3 and S5. GND and PGND
temperature and current. In order to insure the circuit
stability, a 10µF MLCC (minimum) as an output capacitor
should be isolated with a single point connection between them.
must be placed near the VTT. W ith X5R and X7R
dielectrics.
6. Soldering the exposed pad to ground is good for
heatsinking. Numerous vias 0.33 mm in diameter con-
Thermal Consideration
nected from the thermal land to the internal/solderside ground plane(s) should be used to enhance
The APL5338 maximum power dissipation depends on
the differences of the thermal resistance and tempera-
dissipation.
Large ground plane is good for heatsinking. Optimum
ture between junction and ambient air. The power dissipation PD across the device is:
performance can only be achieved when the device is
mounted on a PC board according to the board layout
PD = (TJ - TA) / θJA
where (TJ-TA) is the temperature difference between the
junction and ambient air. θJA is the thermal resistance
diagrams which are shown as Figure 2.
VIN
between junction and ambient air. Assuming the TA=25°C
and maximum TJ=150°C (typical thermal limit threshold),
VCNTL
CIN
the maximum power dissipation is calculated as:
PD(max)=(150-25)/60
VTT
APL5338
1
VREF
2 VIN
3
S5
GND
VTT
= 2.08(W)
4
For normal operation, do not exceed the maximum operating junction temperature of TJ = 125°C. The calculated
COUT
5
VCNTL
PGND
VTTSNS
S3
VTTREF
5V
10
C2
9
8
7
6
C1
power dissipation should be less than:
PD =(125-25)/60
Figure 1
= 1.66(W)
The exposed pad provides an electrical connection to
ground and channels heat away. Connect the exposed
pad to ground by using a large ground plane.
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
11
www.anpec.com.tw
APL5338
Application Information (Cont.)
Layout Consideration (Cont.)
For dissipating heat
PGND
GND
CIN
VCNTL
VIN
C2
COUT
VTT
C1
PGND
APL5338
GND
Figure 2. Recommended Layout
Recommended Minimum Footprint
8
7
6
5
10
9
8
7
6
0.061
0.010
0.181
0.098
0.098
1
2
0.020
3
4
5
Unit : Inch
MSOP-8P
The via diameter = 0.012
0.012
Hole size = 0.008
0.024
0.0965
0.012
0.02
0.062
Unit: Inch
TDFN3x3-10
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
12
www.anpec.com.tw
APL5338
Package Information
MSOP-10P
D
SEE
VIEW A
E
E2
EXPOSED
PAD
E1
D1
c
e
0.25
A
GAUGE PLANE
SEATING PLANE
A1
L
VIEW A
S
Y
M
B
O
L
0
A2
b
MSOP-10P
MILLIMETERS
MIN.
INCHES
MAX.
MIN.
MAX.
A
1.10
A1
0.00
0.15
0.000
0.006
A2
0.75
0.95
0.030
0.037
b
0.17
0.33
0.007
0.013
c
0.08
0.23
0.003
0.009
0.043
D
2.90
3.10
0.114
0.122
D1
1.50
2.50
0.059
0.098
E
4.70
5.10
0.185
0.201
E1
2.90
3.10
0.114
0.122
E2
1.50
2.50
0.059
0.098
e
0.50 BSC
0.020 BSC
L
0.40
0.80
0.016
0.031
0
0°
8°
0°
8°
Note: 1. Follow JEDEC MO-187 BA-T.
2. Dimension “D”does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion or gate burrs shall not flash or protrusions.
3. Dimension “E1” does not include inter-lead flash or protrusions.
Inter-lead flash and protrusions shall not exceed 6 mil per side.
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
13
www.anpec.com.tw
APL5338
Package Information
TDFN3x3-10
D
E
A
b
Pin 1
A1
D2
A3
L
K
E2
Pin 1 Corner
e
TDFN3x3-10
S
Y
M
B
O
L
A
MIN.
MAX.
MIN.
0.70
0.80
0.028
0.031
A1
0.00
0.05
0.000
0.002
INCHES
MILLIMETERS
A3
0.20 REF
MAX.
0.008 REF
b
0.18
0.30
0.007
0.012
D
2.90
3.10
0.114
0.122
D2
2.20
2.70
0.087
0.106
E
2.90
3.10
0.114
0.122
E2
1.40
1.75
0.055
0.069
0.50
0.012
e
0.50 BSC
L
0.30
K
0.20
0.020 BSC
0.020
0.008
Note : 1. Followed from JEDEC MO-229 VEED-5.
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
14
www.anpec.com.tw
APL5338
Carrier Tape & Reel Dimensions
P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H
A
d
T1
Application
MSOP-10P
Application
TDFN3x3-10
A
H
330.0±2.00
50 MIN.
P0
P1
T1
12.4+2.00
-0.00
P2
4.00±0.10
8.00±0.10
2.00±0.05
A
H
330.0±2.00
50 MIN.
P0
P1
T1
12.4+2.00
-0.00
P2
4.0±0.10
8.0±0.10
2.0±0.05
C
13.0+0.50
-0.20
D0
1.5+0.10
-0.00
C
13.0+0.50
-0.20
D0
1.5+0.10
-0.00
d
D
W
E1
F
1.5 MIN.
20.2 MIN.
12.0±0.30
1.75±0.10
5.5±0.05
D1
A0
B0
K0
5.30±0.20
3.30±0.20
1.40±0.20
d
T
0.6+0.00
-0.40
D
W
E1
F
1.5 MIN.
20.2 MIN.
12.0±0.30
1.75±0.10
5.5±0.05
D1
T
0.6+0.00
-0.40
A0
B0
K0
3.30±0.20
3.30±0.20
1.30±0.20
1.5 MIN.
1.5 MIN.
(mm)
Devices Per Unit
Package Type
Unit
Quantity
MSOP-10P
Tape & Reel
3000
TDFN3x3-10
Tape & Reel
3000
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
15
www.anpec.com.tw
APL5338
Taping Direction Information
MSOP-10P
USER DIRECTION OF FEED
TDFN3x3-10
USER DIRECTION OF FEED
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
16
www.anpec.com.tw
APL5338
Classification Profile
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
17
www.anpec.com.tw
APL5338
Classification Reflow Profiles
Profile Feature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
3 °C/second max.
3°C/second max.
183 °C
60-150 seconds
217 °C
60-150 seconds
See Classification Temp in table 1
See Classification Temp in table 2
Time (tP)** within 5°C of the specified
classification temperature (Tc)
20** seconds
30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max.
6 °C/second max.
6 minutes max.
8 minutes max.
Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
Average ramp-up rate
(Tsmax to TP)
Liquidous temperature (TL)
Time at liquidous (tL)
Peak package body Temperature
(Tp)*
Time 25°C to peak temperature
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)
Package
Thickness
<2.5 mm
≥2.5 mm
Volume mm
<350
235 °C
220 °C
3
Volume mm
≥350
220 °C
220 °C
3
Table 2. Pb-free Process – Classification Temperatures (Tc)
Package
Thickness
<1.6 mm
1.6 mm – 2.5 mm
≥2.5 mm
Volume mm
<350
260 °C
260 °C
250 °C
3
Volume mm
350-2000
260 °C
250 °C
245 °C
3
Volume mm
>2000
260 °C
245 °C
245 °C
3
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TCT
HBM
MM
Latch-Up
Method
JESD-22, B102
JESD-22, A108
JESD-22, A102
JESD-22, A104
MIL-STD-883-3015.7
JESD-22, A115
JESD 78
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
18
Description
5 Sec, 245°C
1000 Hrs, Bias @ Tj=125°C
168 Hrs, 100%RH, 2atm, 121°C
500 Cycles, -65°C~150°C
VHBM≧2KV
VMM≧200V
10ms, 1tr≧100mA
www.anpec.com.tw
APL5338
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Aug., 2013
19
www.anpec.com.tw