ETC NL37WZ16US

NL37WZ16
Triple Buffer
The NL37WZ16 is a high performance buffer with inputs operating
from a 2.3 to 5.5 V supply.
The NL37WZ16 can be used as a line receiver which will receive
slow input signals.
• Designed for 2.3 V to 5.5 V VCC Operation
• Over Voltage Tolerant Inputs and Outputs
• LVTTL Compatible – Interface Capability with 5 V TTL Logic
•
•
•
•
•
with VCC = 3 V
LVCMOS Compatible
24 mA Balanced Output Sink and Source Capability
Near Zero Static Supply Current Substantially Reduces System
Power Requirements
Current Drive Capability is 24 mA at the Outputs
Chip Complexity: FET = 94
http://onsemi.com
MARKING
DIAGRAM
8
8
1
LR
US8
US SUFFIX
CASE 493–01
D
1
D = Date Code
IN A1
1
8
VCC
OUT Y3
2
7
OUT Y1
PIN ASSIGNMENT
IN A2
GND
3
4
6
5
IN A3
OUT Y2
1
IN A1
2
OUT Y3
3
IN A2
4
GND
5
OUT Y2
6
IN A3
7
OUT Y1
8
VCC
Figure 1. Pinout (Top View)
FUNCTION TABLE
A Input
IN A1
OUT Y1
IN A2
OUT Y2
IN A3
OUT Y3
L
H
Y Output
L
H
ORDERING INFORMATION
Figure 2. Logic Symbol
 Semiconductor Components Industries, LLC, 2001
August, 2001 – Rev. 0
See detailed ordering and shipping information in the package
dimensions section on page 4 of this data sheet.
1
Publication Order Number:
NL37WZ16/D
NL37WZ16
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
0.5 to 7.0
V
0.5 ≤ VI ≤ 7.0
V
0.5 ≤ VO ≤ 7.0
V
VI < GND
50
mA
VO < GND
50
mA
VCC
DC Supply Voltage
VI
DC Input Voltage
VO
DC Output Voltage
IIK
DC Input Diode Current
IOK
DC Output Diode Current
IO
DC Output Sink Current
50
mA
ICC
DC Supply Current per Supply Pin
100
mA
IGND
DC Ground Current per Ground Pin
100
mA
TSTG
Storage Temperature Range
65 to 150
C
TL
Lead Temperature, 1 mm from Case for 10 Seconds
TJ
Junction Temperature under Bias
JA
Thermal Resistance
PD
Power Dissipation in Still Air at 85C
MSL
Moisture Sensitivity
FR
Flammability Rating
VESD
ESD Withstand Voltage
Output in Z or LOW State (Note 1)
(Note 2)
260
C
150
C
333
C/W
200
mW
Level 1
Oxygen Index: 28 to 34
UL 94 V–0 @ 0.125 in
Human Body Model (Note 3)
Machine Model (Note 4)
Charged Device Model (Note 5)
> 2000
> 200
N/A
V
Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those
indicated may adversely affect device reliability. Functional operation under absolute maximum–rated conditions is not implied. Functional
operation should be restricted to the Recommended Operating Conditions.
1. IO absolute maximum rating must be observed.
2. Measured with minimum pad spacing on an FR4 board, using 10 mm–by–1 inch, 2–ounce copper trace with no air flow.
3. Tested to EIA/JESD22–A114–A.
4. Tested to EIA/JESD22–A115–A.
5. Tested to JESD22–C101–A.
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
VCC
Supply Voltage
VI
Input Voltage
VO
Output Voltage
TA
Operating Free–Air Temperature
t/V
Input Transition Rise or Fall Rate
Operating
Data Retention Only
(Note 6)
(HIGH or LOW State)
VCC = 2.5 V 0.2 V
VCC = 3.0 V 0.3 V
VCC = 5.0 V 0.5 V
Min
Max
Unit
2.3
1.5
5.5
5.5
V
0
5.5
V
0
5.5
V
40
85
C
0
0
0
20
10
5
ns/V
6. Unused inputs may not be left open. All inputs must be tied to a high–logic voltage level or a low–logic input voltage level.
http://onsemi.com
2
NL37WZ16
DC ELECTRICAL CHARACTERISTICS
VCC
Symbol
Parameter
Condition
(V)
Min
0.7 VCC
VIH
High–Level Input
Voltage
2.3 to 5.5
VIL
Low–Level Input
Voltage
2.3 to 5.5
VOH
High–Level
g
Output
V lt
Voltage
VIN = VIH or VIL
VOL
Low–Level Output
V lt
Voltage
VIN = VIH or VIL
40°C ≤ TA ≤ 85°C
TA = 25°C
Typ
Max
Min
Max
0.7 VCC
0.3 VCC
Unit
V
0.3 VCC
V
IOH = 100 µA
2.3 to 5.5
VCC – 0.1
VCC
VCC – 0.1
IOH = –8 mA
2.3
1.9
2.1
1.9
IOH = –12 mA
2.7
2.2
2.4
2.2
IOH = –16 mA
3.0
2.4
2.7
2.4
IOH = –24 mA
3.0
2.3
2.5
2.3
IOH = –32 mA
4.5
3.8
4.0
3.8
IOL = 100 µA
2.3 to 5.5
0.1
0.1
IOL = 8 mA
2.3
0.20
0.3
0.3
IOL = 12 mA
2.7
0.22
0.4
0.4
IOL = 16 mA
3.0
0.28
0.4
0.4
IOL = 24 mA
3.0
0.38
0.55
0.55
IOL = 32 mA
4.5
0.42
0.55
0.55
VIN = VCC or GND
0 to 5.5
0.1
1.0
µA
V
V
IIN
Input Leakage Current
IOFF
Power Off–Output
Leakage Current
VOUT = 5.5 V
0
1
10
µA
ICC
Quiescent Supply
Current
VIN = VCC or GND
5.5
1
10
µA
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
AC ELECTRICAL CHARACTERISTICS tR = tF = 2.5 ns; CL = 50 pF; RL = 500 Ω
40°C ≤ TA ≤ 85°C
TA = 25°C
Symbol
tPLH
tPHL
Condition
VCC (V)
Min
Typ
Max
Min
Max
Unit
RL = 1 M CL = 15 pF
2.5 0.2
1.0
3.0
5.2
1.0
5.8
ns
RL = 1 M CL = 15 pF
3.3 0.3
0.8
2.3
3.6
0.8
4.0
1.2
3.0
4.6
1.2
5.1
0.5
1..8
2.9
0.5
3.2
0.8
2.4
3.8
0.8
4.2
Parameter
Propagation
g
Delay
y
(Fi
(Figure
3 and
d 4)
RL = 500 CL = 50 pF
5.0 0.5
RL = 1 M CL = 15 pF
RL = 500 CL = 50 pF
CAPACITIVE CHARACTERISTICS
Symbol
Parameter
CIN
Input Capacitance
CPD
Power Dissipation
NO TAG)
Capacitance
(Note
Condition
Typical
Unit
VCC = 5.5 V, VI = 0 V or VCC
7.0
pF
10 MHz, VCC = 3.3 V, VI = 0 V or VCC
10 MHz, VCC = 5.5 V, VI = 0 V or VCC
9
11
pF
7. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin ICC. CPD is used to determine the no–load dynamic
power consumption; PD = CPD VCC2 fin ICC VCC.
http://onsemi.com
3
NL37WZ16
VCC
VCC
A
50%
GND
tPLH
Y
PULSE
GENERATOR
tPHL
DUT
RT
50% VCC
PROPAGATION DELAYS
tR = tF = 2.5 ns, 10% to 90%; f = 1 MHz; tW = 500 ns
CL
RL
RT = ZOUT of pulse generator (typically 50 Ω)
Figure 3. Switching Waveforms
Figure 4. Test Circuit
DEVICE ORDERING INFORMATION
Device Nomenclature
Device Order
Number
NL37WZ16US
Logic
Circuit
Indicator
No. of
Gates per
Package
Temp
Range
Identifier
NL
3
7
Technology
Device
Function
Package
Suffix
Tape and
Reel
Suffix
Package
Type
Tape and
Reel Size
WZ
16
US
–
US8
178 mm, 3000 Unit
http://onsemi.com
4
NL37WZ16
CAVITY
TAPE
TOP TAPE
TAPE TRAILER
(Connected to Reel Hub)
NO COMPONENTS
160 mm MIN
COMPONENTS
TAPE LEADER
NO COMPONENTS
400 mm MIN
DIRECTION OF FEED
Figure 5. Tape Ends for Finished Goods
TAPE DIMENSIONS mm
4.00
1.50 TYP
4.00
2.00
1.75
3.50 0.25
0.30
8.00 +
– 0.10
1
1.00 ± 0.25 TYP
DIRECTION OF FEED
Figure 6. Carrier Tape Specifications
http://onsemi.com
5
NL37WZ16
t MAX
1.5 mm
MIN
A
13.0 mm ±0.2 mm
50 mm
MIN
20.2 mm
MIN
FULL RADIUS
G
Figure 7. Reel Dimensions
REEL DIMENSIONS
Tape Size
T and R Suffix
A Max
G
t Max
8 mm
US
178 mm
8.4 mm, +1.5 mm, –0.0
14.4 mm
DIRECTION OF FEED
BARCODE LABEL
POCKET
Figure 8. Reel Winding Direction
http://onsemi.com
6
HOLE
NL37WZ16
PACKAGE DIMENSIONS
US8
US SUFFIX
CASE 493–01
ISSUE O
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION A" DOES NOT INCLUDE MOLD
FLASH, PROTRUSION OR GATE BURR. MOLD
FLASH. PROTRUSION AND GATE BURR SHALL
NOT EXCEED 0.140 MM (0.0055") PER SIDE.
4. DIMENSION B" DOES NOT INCLUDE
INTER-LEAD FLASH OR PROTRUSION.
INTER-LEAD FLASH AND PROTRUSION SHALL
NOT E3XCEED 0.140 (0.0055") PER SIDE.
5. LEAD FINISH IS SOLDER PLATING WITH
THICKNESS OF 0.0076-0. 0203 MM. (300-800
INCH).
6. ALL TOLERANCE UNLESS OTHERWISE
SPECIFIED ±0.0508 (0.0002").
–X–
A
8
J
–Y–
5
DETAIL E
B
L
1
4
R
S
G
P
U
C
–T–
SEATING
PLANE
H
0.10 (0.004) T
K
D
N
0.10 (0.004)
M
T X Y
R 0.10 TYP
V
M
F
DETAIL E
3.8
0.5 TYP
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
1.8 TYP
1.0
http://onsemi.com
7
0.3 TYP
(mm)
DIM
A
B
C
D
F
G
H
J
K
L
M
N
P
R
S
U
V
MILLIMETERS
MIN
MAX
1.90
2.10
2.20
2.40
0.60
0.90
0.17
0.25
0.20
0.35
0.50 BSC
0.40 REF
0.10
0.18
0.00
0.10
3.00
3.20
0
6
5
10 0.28
0.44
0.23
0.33
0.37
0.47
0.60
0.80
0.12 BSC
INCHES
MIN
MAX
0.075
0.083
0.087
0.094
0.024
0.035
0.007
0.010
0.008
0.014
0.020 BSC
0.016 REF
0.004
0.007
0.000
0.004
0.118
0.126
0
6
5
10 0.011
0.017
0.009
0.013
0.015
0.019
0.024
0.031
0.005 BSC
NL37WZ16
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
http://onsemi.com
8
NL37WZ16/D