Low Current, High Performance NPN Silicon Bipolar Transistor Technical Data AT-32032 Features • High Performance Bipolar Transistor Optimized for Low Current, Low Voltage Applications at 900 MHz, 1.8 GHz, and 2.4 GHz • Performance at 2.7 V, 5 mA: 900 MHz: 1 dB NF, 15 dB GA 1800 MHz: 1.3 dB NF, 11 dB GA 2400 MHz: 1.4 dB NF, 7.5 dB GA • Characterized for End-OfLife Battery Use (2.7 V) • Miniature 3-lead SOT-323 (SC-70) Plastic Package 3-Lead SC-70 (SOT-323) Surface Mount Plastic Package Description Pin Configuration Optimized performance at 2.7 V makes this device ideal for use in 900 MHz, 1.8 GHz, and 2.4 GHz systems. Typical amplifier design at 900 MHz yields 1 dB noise figures with 15 dB associated gain at 2.7 V and 5 mA bias condition, with noise performance being relatively insensitive to input match. High gain capability at 1 V and 1 mA makes this device a good fit for 900 MHz pager applications. Moreover, voltage breakdown is high enough for use at 5 V. COLLECTOR Applications • LNA, Oscillator, Driver Amplifier, Buffer Amplifier, and Down Converter for Cellular and PCS Handsets and Cordless Telephones • LNA, Oscillator, Mixer, and Gain Amplifier for Pagers • Power Amplifier and Oscillator for RF-ID Tag • LNA and Gain Amplifier for GPS • LNA for CATV Set-Top Box 32 BASE EMITTER Agilent’s AT-32032 is a high performance NPN bipolar transistor that has been optimized for maximum ft at low voltage operation, making it ideal for use in battery powered applications in cellular/PCS and other wireless markets. The AT-32032 uses the miniature 3 lead SOT-323 (SC-70) plastic package. The AT-32032 belongs to Agilent’s AT-3XXXX series bipolar transistors. It exhibits excellent device uniformity, performance and reliability as a result of ionimplantation, self-alignment techniques, and gold metalization in the fabrication process. 2 AT-32032 Absolute Maximum Ratings Units Absolute Maximum[1] VEBO Emitter-Base Voltage V 1.5 VCBO Collector-Base Voltage V 11 VCEO Collector-Emitter Voltage V 5.5 Symbol IC Parameter Collector Current Thermal Resistance[2]: θjc = 350°C/W Notes: 1. Operation of this device above any one of these parameters may cause permanent damage. 2. TMOUNTING SURFACE = 25°C. mA 40 PT Power Dissipation[2, 3] mW 200 Tj Junction Temperature °C 150 TSTG Storage Temperature °C -65 to 150 3. Derate at 2.86 mW/°C for TMOUNTING SURFACE > 80°C. Electrical Specifications, TA = 25°C Symbol Parameters and Test Conditions Units Min. Typ. Max. 1.0 1.25 1.3 NF Noise Figure VCE = 2.7 V, IC = 5 mA f = 0.9 GHz f = 1.8 GHz dB GA Associated Gain VCE = 2.7 V, IC = 5 mA f = 0.9 GHz f = 1.8 GHz dB 13.5 hFE Forward Current Transfer Ratio VCE = 2.7 V, IC = 5 mA – 70 ICBO Collector Cutoff Current VCB = 3 V µA 0.2 IEBO Emitter Cutoff Current VEB = 1 V µA 1.5 15.0 10.5 300 AT-32032 Characterization Information, TA = 25°C Symbol P1dB G1dB IP3 |S21|E2 Parameters and Test Conditions Units Typ. Power at 1 dB Gain Compression (opt tuning) VCE = 2.7 V, IC = 20 mA f = 0.9 GHz dBm 13 Gain at 1 dB Gain Compression (opt tuning) VCE = 2.7 V, IC = 20 mA f = 0.9 GHz dB 15.5 Output Third Order Intercept Point (opt tuning) VCE = 2.7 V, IC = 20 mA f = 0.9 GHz dBm 23 Gain in 50 Ω System VCE = 2.7 V, IC = 2 mA f = 0.9 GHz dB 11.5 3 2.5 2.5 2.0 2.0 2.0 1.5 1.0 NOISE FIGURE (dB) 2.5 NOISE FIGURE (dB) NOISE FIGURE (dB) AT-32032 Typical Performance 1.5 1.0 0.5 1.0 2 mA 5 mA 10 mA 0.5 0 1.5 0 0 1.0 2.0 3.0 4.0 2 mA 5 mA 10 mA 0.5 0 0 1.0 FREQUENCY (GHz) 2.0 3.0 4.0 0 1.0 FREQUENCY (GHz) 2.0 3.0 4.0 FREQUENCY (GHz) 12.0 20.0 20.0 9.0 15.0 15.0 6.0 GAIN (dB) Figure 3. AT-32032 Typical Noise Figure vs. Frequency and Current at 5 V. GAIN (dB) Figure 2. AT-32032 Typical Noise Figure vs. Frequency and Current at 2.7 V. GAIN (dB) Figure 1. AT-32032 Typical Noise Figure vs. Frequency at 1 V, 1 mA. 10.0 3.0 10.0 5.0 5.0 2 mA 5 mA 10 mA 0 2 mA 5 mA 10 mA 0 0 1.0 2.0 3.0 4.0 0 0 1.0 FREQUENCY (GHz) 3.0 4.0 0 1.0 FREQUENCY (GHz) Figure 5. AT-32032 Associated Gain vs. Frequency and Current at 2.7 V. 20 20 15 16 G 1 dB (dBm) 10 5 0 2.0 3.0 4.0 FREQUENCY (GHz) Figure 6. AT-32032 Associated Gain vs. Frequency and Current at 5 V. 16 12 G 1 dB (dBm) Figure 4. AT-32032 Associated Gain vs. Frequency at 1 V, 1 mA. Po -1 dB (dBm) 2.0 12 8 8 4 4 1V 2.7 V 5V -5 -10 1V 2.7 V 5V 1V 2.7 V 5V 0 0 5 10 15 20 25 0 0 2 4 6 8 10 0 2 4 6 8 10 COLLECTOR CURRENT (mA) COLLECTOR CURRENT (mA) COLLECTOR CURRENT (mA) Figure 7. AT-32032 P1 dB vs. Collector Current and Voltage (valid up to 2.4 GHz). Figure 8a. G1 dB vs. Collector Current and Voltage (at 900 MHz). Figure 8b. G1 dB vs. Collector Current and Voltage (at 1.8 GHz). 4 AT-32032 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 1 V, IC = 1 mA Freq. S11 S21 S12 S22 GHz Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.5 0.75 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.852 0.760 0.655 0.523 0.451 0.403 0.419 0.459 0.497 0.529 0.561 0.590 0.626 -51 -74 -94 -130 -161 147 104 69 45 27 13 -2 -17 9.61 8.68 7.68 5.75 4.11 1.76 0.20 -0.92 -1.56 -1.84 -2.07 -2.34 -2.74 3.024 2.717 2.420 1.939 1.606 1.224 1.023 0.899 0.836 0.809 0.788 0.764 0.729 137 119 104 79 60 30 7 -11 -26 -41 -56 -72 -87 -20.65 -18.39 -17.35 -16.68 -16.52 -14.42 -10.21 -6.58 -4.22 -2.85 -2.33 -2.28 -2.57 0.093 0.120 0.136 0.147 0.149 0.190 0.309 0.469 0.615 0.720 0.765 0.769 0.744 59 48 40 32 31 43 42 26 5 -18 -40 -60 -79 0.895 0.821 0.756 0.665 0.615 0.565 0.527 0.478 0.411 0.379 0.425 0.495 0.555 -21 -29 -35 -44 -52 -71 -96 -127 -168 141 96 63 38 Gassoc dB 11.5 8.3 7.4 6.4 5.7 5.0 4.2 AT-32032 Typical Noise Parameters, Fmin dB Mag Ang Rn ohms 0.9 1.8 2.0 2.5 3.0 3.5 4.0 1.1 1.3 1.4 1.6 1.8 2.0 2.2 0.48 0.51 0.52 0.54 0.57 0.61 0.65 63 129 143 177 -153 -125 -102 14.5 6.8 5.2 2.9 4.9 12.7 26.0 20 1.25 15 1 10 0.75 5 0.5 k Γopt Freq. GHz GAIN (dB) Common Emitter, Z O = 50 Ω, VCE = 1 V, IC = 1 mA 0 -5 0 gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor S MAG = 21 (k ± √k2–1) S12 MSG = |S21| / |S12| k= 1 – |S11| 2 – |S22| 2 + |D|2 ; D = S11S22 – S12 S21 2 * |S12| |S21| 0.25 gmax dB(S[2,1]) k 1 2 3 4 5 0 6 FREQUENCY (GHz) Figure 9. Gain vs. Frequency at 1 V, 1 mA. Note: dB(|S 21|) = 20 * log(|S 21|) 5 AT-32032 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 2.7 V, IC = 2 mA Freq. S11 S21 S12 S22 GHz Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.5 0.75 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.744 0.609 0.489 0.351 0.280 0.236 0.258 0.317 0.387 0.455 0.516 0.563 0.610 -57 -78 -96 -129 -158 149 105 72 51 34 19 3 -14 14.37 12.86 11.40 8.86 6.93 4.28 2.58 1.36 0.43 -0.24 -0.80 -1.39 -2.00 5.232 4.394 3.714 2.774 2.221 1.636 1.346 1.170 1.051 0.973 0.913 0.852 0.794 130 112 98 77 61 34 11 -8 -26 -42 -58 -74 -89 -23.72 -21.73 -20.58 -19.05 -17.56 -14.08 -10.62 -7.54 -5.11 -3.28 -2.24 -1.86 -2.00 0.065 0.082 0.094 0.112 0.133 0.198 0.295 0.420 0.555 0.686 0.772 0.807 0.795 60 52 49 48 49 50 44 30 13 -8 -30 -52 -73 0.839 0.755 0.694 0.625 0.592 0.561 0.541 0.510 0.447 0.373 0.367 0.431 0.504 -22 -28 -31 -37 -43 -59 -78 -103 -135 -178 129 86 55 Gassoc dB 14.0 10.5 9.4 8.4 7.5 6.9 6.2 AT-32032 Typical Noise Parameters, Fmin dB Mag Ang Rn ohms 0.9 1.8 2.0 2.5 3.0 3.5 4.0 0.9 1.2 1.2 1.4 1.6 1.8 2.1 0.38 0.41 0.42 0.44 0.47 0.52 0.57 57 124 136 176 -152 -123 -100 10.6 6.2 5.3 3.4 4.9 10.5 20.6 20 1.25 16 1 12 0.75 8 0.5 k Γopt Freq. GHz GAIN (dB) Common Emitter, Z O = 50 Ω, VCE = 2.7 V, IC = 2 mA 4 0 0 gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor S MAG = 21 (k ± √k2–1) S12 MSG = |S21| / |S12| k= 1 – |S11| 2 – |S22| 2 + |D|2 ; D = S11S22 – S12 S21 2 * |S12| |S21| 0.25 gmax dB(S[2,1]) k 1 2 3 4 5 0 6 FREQUENCY (GHz) Figure 10. Gain vs. Frequency at 2.7 V, 2 mA. Note: dB(|S 21|) = 20 * log(|S 21|) 6 AT-32032 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 2.7 V, IC = 5 mA Freq. S11 S21 S12 S22 GHz Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.5 0.75 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.484 0.344 0.257 0.165 0.124 0.112 0.144 0.209 0.296 0.394 0.489 0.564 0.627 -70 -88 -103 -130 -160 143 100 72 57 43 28 10 -9 18.65 16.04 13.98 10.90 8.76 5.93 4.19 3.01 2.14 1.43 0.70 -0.12 -1.05 8.559 6.339 5.000 3.509 2.740 1.979 1.620 1.414 1.279 1.179 1.084 0.986 0.886 113 98 87 70 57 33 13 -7 -25 -43 -61 -78 -94 -25.51 -23.25 -21.46 -18.59 -16.29 -12.69 -9.89 -7.55 -5.58 -3.94 -2.79 -2.18 -2.10 0.053 0.069 0.085 0.118 0.153 0.232 0.320 0.419 0.526 0.636 0.725 0.778 0.786 62 61 61 60 57 48 37 24 8 -10 -30 -50 -71 0.680 0.602 0.561 0.522 0.502 0.477 0.454 0.418 0.353 0.275 0.270 0.355 0.455 -26 -28 -29 -33 -39 -55 -73 -95 -124 -166 137 91 58 Ang Rn ohms Gassoc dB 71 138 152 -173 -142 -114 -93 7.5 5.1 4.6 4.1 5.8 11.0 20.0 15.6 11.5 10.4 9.1 8.2 7.4 6.7 AT-32032 Typical Noise Parameters, Fmin dB 0.9 1.8 2.0 2.5 3.0 3.5 4.0 0.9 1.2 1.2 1.3 1.5 1.7 1.9 Γopt Mag 0.23 0.295 0.31 0.35 0.41 0.47 0.54 25 1.25 20 1 15 0.75 10 0.5 k Freq. GHz GAIN (dB) Common Emitter, Z O = 50 Ω, VCE = 2.7 V, I C = 5 mA 5 0 0 gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor S MAG = 21 (k ± √k2–1) S12 MSG = |S21| / |S12| k= 1 – |S11| 2 – |S22| 2 + |D|2 ; D = S11S22 – S12 S21 2 * |S12| |S21| 0.25 gmax dB(S[2,1]) k 1 2 3 4 5 0 6 FREQUENCY (GHz) Figure 11. Gain vs. Frequency at 2.7 V, 5 mA. Note: dB(|S 21|) = 20 * log(|S 21|) 7 AT-32032 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 2. 7 V, IC = 10 mA Freq. S11 S21 S12 S22 GHz Mag Ang dB Mag Ang dB Mag Ang Mag 0.5 0.75 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.292 0.194 0.139 0.081 0.057 0.064 0.103 0.169 0.258 0.362 0.466 0.553 0.628 -76.768 -89.611 -100.612 -126.165 -160.808 131.034 91.686 69.993 58.339 46.145 31.083 13.235 -5.840 20.197 17.121 14.850 11.624 9.409 6.523 4.750 3.580 2.719 2.042 1.334 0.533 -0.404 10.230 7.179 5.527 3.813 2.954 2.119 1.728 1.510 1.368 1.265 1.166 1.063 0.955 102.252 90.014 81.084 66.997 54.862 33.080 13.099 -5.823 -24.160 -42.430 -60.668 -78.273 -95.268 -26.558 -23.688 -21.463 -18.160 -15.735 -12.174 -9.551 -7.424 -5.668 -4.173 -3.083 -2.402 -2.236 0.047 0.065 0.085 0.124 0.163 0.246 0.333 0.425 0.521 0.619 0.701 0.758 0.773 68.475 68.467 67.769 64.256 59.458 48.003 35.089 21.009 5.600 -11.469 -30.211 -50.020 -69.960 0.577 0.528 0.504 0.481 0.467 0.443 0.418 0.378 0.309 0.224 0.217 0.307 0.419 Ang -23.850 -24.315 -25.449 -30.013 -36.600 -52.023 -70.196 -92.177 -119.643 -160.597 138.234 91.480 58.813 AT-32032 Typical Noise Parameters, 1.1 1.3 1.4 1.5 1.7 1.9 2.0 0.15 0.23 0.26 0.32 0.38 0.45 0.52 87 159 173 -156 -128 -105 -84 7.6 5.6 5.3 5.7 8.6 14.8 25.0 16.2 11.9 11.0 9.5 8.4 7.6 6.8 25 1.25 20 1 15 0.75 10 0.5 k 0.9 1.8 2.0 2.5 3.0 3.5 4.0 Gassoc dB GAIN (dB) Common Emitter, Z O = 50 Ω, VCE = 2.7 V, IC = 10 mA Γopt Freq. Fmin Rn GHz dB ohms Mag Ang 5 0 0 gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor S MAG = 21 (k ± √k2–1) S12 MSG = |S21| / |S12| k= 1 – |S11| 2 – |S22| 2 + |D|2 ; D = S11S22 – S12 S21 2 * |S12| |S21| 0.25 gmax dB(S[2,1]) k 1 2 3 4 5 0 6 FREQUENCY (GHz) Figure 12. Gain vs. Frequency at 2.7 V, 10 mA. Note: dB(|S 21|) = 20 * log(|S 21|) 8 AT-32032 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 2 mA Freq. S11 S21 S12 S22 GHz Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.1 0.5 0.9 1.0 1.5 1.8 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.940 0.732 0.518 0.484 0.342 0.291 0.265 0.212 0.238 0.306 0.383 0.456 0.523 0.573 0.620 -13 -56 -87 -93 -124 -142 -153 151 103 70 50 34 19 2 --14 17.5 14.9 12.4 11.6 9.0 7.8 7.1 4.5 2.7 1.5 0.6 -0.1 -0.7 -1.3 -2.0 7.500 5.588 4.165 3.814 2.824 2.466 2.267 1.670 1.367 1.186 1.067 0.990 0.918 0.857 0.792 167 129 104 99 78 67 61 34 11 -8 -26 -43 -59 -75 -90 -36.0 -23.8 -21.1 -20.6 -19.0 -18.1 -17.5 -14.0 -10.7 -7.6 -5.2 -3.3 -2.3 -1.9 -2.0 0.016 0.064 0.088 0.093 0.112 0.125 0.134 0.199 0.293 0.416 0.550 0.682 0.771 0.805 0.791 83 60 51 50 49 49 50 50 43 30 13 -8 -31 -53 -73 0.981 0.842 0.714 0.699 0.632 0.606 0.596 0.566 0.549 0.515 0.453 0.375 0.373 0.437 0.515 -5 -22 -29 -30 -36 -40 -43 -58 -77 -102 -134 -177 130 86 54 0.9 1.8 2.0 2.5 3.0 3.5 4.0 1.0 1.2 1.3 1.5 1.7 1.9 2.1 0.48 0.445 0.44 0.43 0.47 0.53 0.58 50 118 134 172 -154 -123 -98 Rn ohms Gassoc dB 14.7 7.4 5.8 3.7 5.0 11.3 23.7 14.8 10.1 9.5 8.5 7.7 7.0 6.4 25 1.25 20 1 15 0.75 10 0.5 k Common Emitter, ZO = 50 Ω, 5 V, IC = 2 mA Γopt Freq. Fmin GHz dB Mag Ang GAIN (dB) AT-32032 Typical Noise Parameters, 5 0 0 gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor S MAG = 21 (k ± √k2–1) S12 MSG = |S21| / |S12| k= 1 – |S11| 2 – |S22| 2 + |D|2 ; D = S11S22 – S12 S21 2 * |S12| |S21| 0.25 gmax dB(S[2,1]) k 1 2 3 4 5 0 6 FREQUENCY (GHz) Figure 13. Gain vs. Frequency at 5 V, 2 mA. Note: dB(|S 21|) = 20 * log(|S 21|) 9 AT-32032 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 5 mA Freq. S11 S21 S12 S22 GHz Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.1 0.5 0.9 1.0 1.5 1.8 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.860 0.496 0.298 0.269 0.168 0.133 0.116 0.086 0.121 0.194 0.287 0.390 0.491 0.570 0.640 -19 -67 -90 -96 -119 -135 -146 150 98 70 57 43 28 10 -9 23.8 18.8 14.9 14.1 11.0 9.7 8.9 6.1 4.3 3.1 2.3 1.6 0.8 0 -1.0 15.523 8.705 5.569 5.067 3.558 3.046 2.782 2.011 1.640 1.434 1.300 1.198 1.101 0.997 0.891 160 114 92 88 71 63 58 34 13 -6 -25 -44 -62 -79 -95 -36.4 -25.4 -22.0 -21.4 -18.5 -17.1 -16.2 -12.7 -9.9 -7.6 -5.7 -4.0 -2.8 -2.2 -2.1 0.015 0.054 0.079 0.085 0.119 0.140 0.154 0.232 0.319 0.417 0.521 0.631 0.722 0.774 0.781 80 63 61 61 59 58 57 48 37 23 8 -10 -30 -51 -72 0.949 0.690 0.580 0.570 0.530 0.514 0.508 0.483 0.461 0.422 0.354 0.274 0.273 0.361 0.464 -9 -25 -28 -29 -33 -36 -39 -54 -72 -95 -124 -166 137 91 57 AT-32032 Typical Noise Parameters, 1.0 1.2 1.3 1.4 1.6 1.8 2.0 0.38 0.335 0.33 0.35 0.40 0.47 0.54 52 124 140 179 -146 -118 -92 11.7 6.3 5.3 4.3 5.9 11.5 22.0 16.1 11.2 10.5 9.2 8.2 7.5 6.8 25 1.25 20 1 15 0.75 10 0.5 k 0.9 1.8 2.0 2.5 3.0 3.5 4.0 Gassoc dB GAIN (dB) Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 5 mA Γopt Freq. Fmin Rn GHz dB ohms Mag Ang 5 0 0 gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor S MAG = 21 (k ± √k2–1) S12 MSG = |S21| / |S12| k= 1 – |S11| 2 – |S22| 2 + |D|2 ; D = S11S22 – S12 S21 2 * |S12| |S21| 0.25 gmax dB(S[2,1]) k 1 2 3 4 5 0 6 FREQUENCY (GHz) Figure 14. Gain vs. Frequency at 5 V, 5 mA. Note: dB(|S 21|) = 20 * log(|S 21|) 10 AT-32032 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 10 mA Freq. S11 S21 S12 S22 GHz Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.1 0.5 0.9 1.0 1.5 1.8 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.751 0.322 0.181 0.160 0.094 0.068 0.055 0.032 0.075 0.148 0.243 0.354 0.464 0.555 0.636 -26 -70 -84 -88 -102 -114 -123 146 86 67 58 47 32 14 -5 27.7 20.3 15.9 15.0 11.8 10.4 9.6 6.7 4.9 3.7 2.9 2.2 1.5 0.7 -0.3 24.169 10.383 6.208 5.623 3.885 3.304 3.012 2.161 1.759 1.538 1.397 1.292 1.190 1.083 0.967 152 103 85 82 68 60 56 34 14 -5 -24 -42 -61 -79 -96 -37.1 -26.4 -22.1 -21.3 -18.1 -16.5 -15.6 -12.1 -9.5 -7.5 -5.7 -4.3 -3.2 -2.5 -2.3 0.014 0.048 0.078 0.086 0.125 0.149 0.165 0.248 0.334 0.424 0.517 0.613 0.695 0.751 0.765 78 68 68 67 64 61 59 47 34 20 5 -12 -31 -51 -71 0.898 0.584 0.514 0.508 0.483 0.473 0.468 0.444 0.419 0.375 0.301 0.214 0.214 0.311 0.426 -13 -24 -25 -26 -30 -34 -37 -52 -70 -92 -120 -162 136 89 57 AT-32032 Typical Noise Parameters, 1.1 1.3 1.4 1.5 1.7 1.9 2.1 0.29 0.25 0.26 0.31 0.37 0.45 0.52 69 143 159 -165 -133 -106 -84 10.0 6.1 5.6 5.5 8.1 14.6 25.7 17.0 11.8 11.0 9.6 8.5 7.7 6.9 25 1.25 20 1 15 0.75 10 0.5 k 0.9 1.8 2.0 2.5 3.0 3.5 4.0 Gassoc dB GAIN (dB) Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 10 mA Γopt Freq. Fmin Rn GHz dB ohms Mag Ang 5 0 0 gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor S MAG = 21 (k ± √k2–1) S12 MSG = |S21| / |S12| k= 1 – |S11| 2 – |S22| 2 + |D|2 ; D = S11S22 – S12 S21 2 * |S12| |S21| 0.25 gmax dB(S[2,1]) k 1 2 3 4 5 0 6 FREQUENCY (GHz) Figure 15. Gain vs. Frequency at 5 V, 10 mA. Note: dB(|S 21|) = 20 * log(|S 21|) 11 900 MHz LNA Design The amplifier is designed for a Vce of 2.7 volts and Ic of 5 mA. and a nominal power supply voltage of 3 volts. The amplifier schematic is shown in Figure 16. R6 C2 L4 C3 L1 Q1 INPUT Zo L3 Zo C1 OUTPUT L2 R5 R1 C4 R2 R4 C5 VCC = 3 V R3 Figure 16. Schematic Diagram. C1,C3 10 pF chip capacitor C2 Open circuited stub .275 inch long C4,C5 1000 pF chip capacitor L1 8 nH chip inductor (Coilcraft 1008CS-080) L2 Optional (see R1) L3 56 nH chip inductor (Coilcraft 1008CS-560) L4 15 nH chip inductor (Coilcraft 1008CS-150) Q1 Agilent AT-32032 Silicon Bipolar Transistor R1 10K Ω chip resistor (may want to substitute a 180 nH chip inductor and 50 W resistor for lower noise figure, better low freq stability, the readjust R2) R2 26.1 K Ω chip resistor (adjust for rated Ic) R3 3.32 K Ω chip resistor R4 3.32 K Ω chip resistor R5 51.1 Ω chip resistor R6 13 Ω chip resistor (see text) Zo 50 Ω microstripline Figure 17. Component Parts List. AT-3XX32 AT-4XX32 IN 02/98 AJW .031 FR-4 OUT Vcc Figure 18. 1X Artwork showing Component Placement. The input matching network uses a shunt C series L input impedance matching circuit for low noise. The shunt C is accomplished with an open circuited stub while a chip inductor is used for the series element. The output impedance matching network consists of a series chip inductor. Bias insertion is accomplished by the use of small inductors suitably bypassed. A resistor is placed in series with the output bias decoupling inductor to de-Q the network and improve in-band and low frequency stability. Surface mount Coilcraft inductors were chosen for their small size. Resistor R6 enhances broad band stability especially in the 9 to 10 GHz frequency range. Biasing The bias network is designed for a nominal power supply voltage of 3 volts. Resistors R1 and R2 are used to adjust collector current. Resistor R4 can be attached to the junction of R5 and C5 to improve bias point stability. Performance The measured gain of the completed amplifier is shown in Figure 19. The gain varies from 15.5 to 16.5 dB over the 800 to 900 MHz frequency range. Noise figure versus frequency is shown in Figure 20. Best performance occurs at 950 MHz providing a 1.1 dB noise figure. Measured input and output return loss is shown in Figure 21. The input return loss is 7 dB at 900 MHz and can be improved to 9 dB with a 0.1 dB increase in noise figure by increasing the amount of capacitance at C2. Additional capacitance at C2 increases the input return loss even further with increased noise figure. Output return loss is a nominal 12 to 15 dB. 17 16 15 GAIN (dB) The AT-32032 is described in a low noise amplifier for use in the 800 to 900 MHz frequency range. The amplifier is designed for use with .032 inch thickness FR-4 printed circuit board material. A component list is shown in Figure 17. The artwork including component placement is shown in Figure 18. 14 13 12 11 10 500 600 700 800 900 1000 FREQUENCY (MHz) Figure 19. Gain vs Frequency. 1.5 1.4 NOISE FIGURE (dB) AT-32032 Application Information 1.3 1.2 1.1 1 500 600 700 800 900 1000 FREQUENCY (MHz) Figure 20. Noise Figure vs Frequency. 12 output resistors R5 and R6 could be varied in value. Increasing the value of R5 and decreasing the value of R6 will improve IP3 although circuit stability may be sacrificed. The second method would be to optimize the output match for power as opposed to matching for lowest VSWR. RETURN LOSS (dB) 0 -5 -10 -15 Input Output -20 500 600 700 800 900 1000 FREQUENCY (MHz) Figure 21. Input/Output Return Loss. Output intercept point, IP3, was measured at 900 MHz to be +14.3 dBm. This could be improved in two ways. The Using the AT-32032 at Other Frequencies The demo board and design techniques presented here can be used to build low noise amplifiers for other frequencies in the VHF through 1.9 GHz frequency range. 13 Ordering Information Part Number AT-32032-BLK AT-32032-TR1 AT-32032-TR2 Increment 100 3000 10000 Comments Bulk 7" Reel 13" Reel Package Dimensions SOT-323 Plastic Package 1.30 (0.051) REF. 2.20 (0.087) 2.00 (0.079) 1.35 (0.053) 1.15 (0.045) 0.650 BSC (0.025) 0.425 (0.017) TYP. 2.20 (0.087) 1.80 (0.071) 0.10 (0.004) 0.00 (0.00) 0.25 (0.010) 0.15 (0.006) 0.30 REF. 1.00 (0.039) 0.80 (0.031) 10° 0.30 (0.012) 0.10 (0.004) 0.20 (0.008) 0.10 (0.004) 14 Tape Dimensions and Product Orientation For Outline SOT-323 (SC-70 3 Lead) P P2 D P0 E F W C D1 t1 (CARRIER TAPE THICKNESS) Tt (COVER TAPE THICKNESS) K0 8° MAX. A0 DESCRIPTION 5° MAX. B0 SYMBOL SIZE (mm) SIZE (INCHES) CAVITY LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER A0 B0 K0 P D1 2.24 ± 0.10 2.34 ± 0.10 1.22 ± 0.10 4.00 ± 0.10 1.00 + 0.25 0.088 ± 0.004 0.092 ± 0.004 0.048 ± 0.004 0.157 ± 0.004 0.039 + 0.010 PERFORATION DIAMETER PITCH POSITION D P0 E 1.55 ± 0.05 4.00 ± 0.10 1.75 ± 0.10 0.061 ± 0.002 0.157 ± 0.004 0.069 ± 0.004 CARRIER TAPE WIDTH THICKNESS W t1 8.00 ± 0.30 0.255 ± 0.013 0.315 ± 0.012 0.010 ± 0.0005 COVER TAPE WIDTH TAPE THICKNESS C Tt 5.4 ± 0.10 0.062 ± 0.001 0.205 ± 0.004 0.0025 ± 0.00004 DISTANCE CAVITY TO PERFORATION (WIDTH DIRECTION) F 3.50 ± 0.05 0.138 ± 0.002 CAVITY TO PERFORATION (LENGTH DIRECTION) P2 2.00 ± 0.05 0.079 ± 0.002 www.semiconductor.agilent.com Data subject to change. Copyright © 1999 Agilent Technologies 5965-6216E (11/99)