ETC AT-32032-TR2

Low Current, High Performance
NPN Silicon Bipolar Transistor
Technical Data
AT-32032
Features
• High Performance Bipolar
Transistor Optimized for
Low Current, Low Voltage
Applications at 900 MHz,
1.8 GHz, and 2.4 GHz
• Performance at 2.7 V, 5 mA:
900 MHz: 1 dB NF, 15 dB GA
1800 MHz: 1.3 dB NF, 11 dB GA
2400 MHz: 1.4 dB NF, 7.5 dB GA
• Characterized for End-OfLife Battery Use (2.7 V)
• Miniature 3-lead SOT-323
(SC-70) Plastic Package
3-Lead SC-70 (SOT-323)
Surface Mount Plastic
Package
Description
Pin Configuration
Optimized performance at 2.7 V
makes this device ideal for use in
900 MHz, 1.8 GHz, and 2.4 GHz
systems. Typical amplifier design
at 900 MHz yields 1 dB noise
figures with 15 dB associated gain
at 2.7 V and 5 mA bias condition,
with noise performance being
relatively insensitive to input
match. High gain capability at 1 V
and 1 mA makes this device a
good fit for 900 MHz pager
applications. Moreover, voltage
breakdown is high enough for use
at 5 V.
COLLECTOR
Applications
• LNA, Oscillator, Driver
Amplifier, Buffer Amplifier,
and Down Converter for
Cellular and PCS Handsets
and Cordless Telephones
• LNA, Oscillator, Mixer, and
Gain Amplifier for Pagers
• Power Amplifier and
Oscillator for RF-ID Tag
• LNA and Gain Amplifier for
GPS
• LNA for CATV Set-Top Box
32
BASE
EMITTER
Agilent’s AT-32032 is a high
performance NPN bipolar
transistor that has been optimized
for maximum ft at low voltage
operation, making it ideal for use
in battery powered applications in
cellular/PCS and other wireless
markets. The AT-32032 uses the
miniature 3 lead SOT-323 (SC-70)
plastic package.
The AT-32032 belongs to Agilent’s
AT-3XXXX series bipolar
transistors. It exhibits excellent
device uniformity, performance
and reliability as a result of ionimplantation, self-alignment
techniques, and gold metalization
in the fabrication process.
2
AT-32032 Absolute Maximum Ratings
Units
Absolute
Maximum[1]
VEBO
Emitter-Base Voltage
V
1.5
VCBO
Collector-Base Voltage
V
11
VCEO
Collector-Emitter Voltage
V
5.5
Symbol
IC
Parameter
Collector Current
Thermal Resistance[2]:
θjc = 350°C/W
Notes:
1. Operation of this device above any one
of these parameters may cause
permanent damage.
2. TMOUNTING SURFACE = 25°C.
mA
40
PT
Power
Dissipation[2, 3]
mW
200
Tj
Junction Temperature
°C
150
TSTG
Storage Temperature
°C
-65 to 150
3. Derate at 2.86 mW/°C for
TMOUNTING SURFACE > 80°C.
Electrical Specifications, TA = 25°C
Symbol
Parameters and Test Conditions
Units
Min.
Typ.
Max.
1.0
1.25
1.3
NF
Noise Figure
VCE = 2.7 V, IC = 5 mA
f = 0.9 GHz
f = 1.8 GHz
dB
GA
Associated Gain
VCE = 2.7 V, IC = 5 mA
f = 0.9 GHz
f = 1.8 GHz
dB
13.5
hFE
Forward Current Transfer Ratio
VCE = 2.7 V, IC = 5 mA
–
70
ICBO
Collector Cutoff Current
VCB = 3 V
µA
0.2
IEBO
Emitter Cutoff Current
VEB = 1 V
µA
1.5
15.0
10.5
300
AT-32032 Characterization Information, TA = 25°C
Symbol
P1dB
G1dB
IP3
|S21|E2
Parameters and Test Conditions
Units
Typ.
Power at 1 dB Gain Compression (opt tuning)
VCE = 2.7 V, IC = 20 mA
f = 0.9 GHz
dBm
13
Gain at 1 dB Gain Compression (opt tuning)
VCE = 2.7 V, IC = 20 mA
f = 0.9 GHz
dB
15.5
Output Third Order Intercept Point (opt tuning)
VCE = 2.7 V, IC = 20 mA
f = 0.9 GHz
dBm
23
Gain in 50 Ω System
VCE = 2.7 V, IC = 2 mA
f = 0.9 GHz
dB
11.5
3
2.5
2.5
2.0
2.0
2.0
1.5
1.0
NOISE FIGURE (dB)
2.5
NOISE FIGURE (dB)
NOISE FIGURE (dB)
AT-32032 Typical Performance
1.5
1.0
0.5
1.0
2 mA
5 mA
10 mA
0.5
0
1.5
0
0
1.0
2.0
3.0
4.0
2 mA
5 mA
10 mA
0.5
0
0
1.0
FREQUENCY (GHz)
2.0
3.0
4.0
0
1.0
FREQUENCY (GHz)
2.0
3.0
4.0
FREQUENCY (GHz)
12.0
20.0
20.0
9.0
15.0
15.0
6.0
GAIN (dB)
Figure 3. AT-32032 Typical Noise
Figure vs. Frequency and Current at
5 V.
GAIN (dB)
Figure 2. AT-32032 Typical Noise
Figure vs. Frequency and Current at
2.7 V.
GAIN (dB)
Figure 1. AT-32032 Typical Noise
Figure vs. Frequency at 1 V, 1 mA.
10.0
3.0
10.0
5.0
5.0
2 mA
5 mA
10 mA
0
2 mA
5 mA
10 mA
0
0
1.0
2.0
3.0
4.0
0
0
1.0
FREQUENCY (GHz)
3.0
4.0
0
1.0
FREQUENCY (GHz)
Figure 5. AT-32032 Associated Gain
vs. Frequency and Current at 2.7 V.
20
20
15
16
G 1 dB (dBm)
10
5
0
2.0
3.0
4.0
FREQUENCY (GHz)
Figure 6. AT-32032 Associated Gain
vs. Frequency and Current at 5 V.
16
12
G 1 dB (dBm)
Figure 4. AT-32032 Associated Gain
vs. Frequency at 1 V, 1 mA.
Po -1 dB (dBm)
2.0
12
8
8
4
4
1V
2.7 V
5V
-5
-10
1V
2.7 V
5V
1V
2.7 V
5V
0
0
5
10
15
20
25
0
0
2
4
6
8
10
0
2
4
6
8
10
COLLECTOR CURRENT (mA)
COLLECTOR CURRENT (mA)
COLLECTOR CURRENT (mA)
Figure 7. AT-32032 P1 dB vs. Collector
Current and Voltage (valid up to
2.4 GHz).
Figure 8a. G1 dB vs. Collector Current
and Voltage (at 900 MHz).
Figure 8b. G1 dB vs. Collector Current
and Voltage (at 1.8 GHz).
4
AT-32032 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 1 V, IC = 1 mA
Freq.
S11
S21
S12
S22
GHz
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.5
0.75
1.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.852
0.760
0.655
0.523
0.451
0.403
0.419
0.459
0.497
0.529
0.561
0.590
0.626
-51
-74
-94
-130
-161
147
104
69
45
27
13
-2
-17
9.61
8.68
7.68
5.75
4.11
1.76
0.20
-0.92
-1.56
-1.84
-2.07
-2.34
-2.74
3.024
2.717
2.420
1.939
1.606
1.224
1.023
0.899
0.836
0.809
0.788
0.764
0.729
137
119
104
79
60
30
7
-11
-26
-41
-56
-72
-87
-20.65
-18.39
-17.35
-16.68
-16.52
-14.42
-10.21
-6.58
-4.22
-2.85
-2.33
-2.28
-2.57
0.093
0.120
0.136
0.147
0.149
0.190
0.309
0.469
0.615
0.720
0.765
0.769
0.744
59
48
40
32
31
43
42
26
5
-18
-40
-60
-79
0.895
0.821
0.756
0.665
0.615
0.565
0.527
0.478
0.411
0.379
0.425
0.495
0.555
-21
-29
-35
-44
-52
-71
-96
-127
-168
141
96
63
38
Gassoc
dB
11.5
8.3
7.4
6.4
5.7
5.0
4.2
AT-32032 Typical Noise Parameters,
Fmin
dB
Mag
Ang
Rn
ohms
0.9
1.8
2.0
2.5
3.0
3.5
4.0
1.1
1.3
1.4
1.6
1.8
2.0
2.2
0.48
0.51
0.52
0.54
0.57
0.61
0.65
63
129
143
177
-153
-125
-102
14.5
6.8
5.2
2.9
4.9
12.7
26.0
20
1.25
15
1
10
0.75
5
0.5
k
Γopt
Freq.
GHz
GAIN (dB)
Common Emitter, Z O = 50 Ω, VCE = 1 V, IC = 1 mA
0
-5
0
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
S
MAG = 21 (k ± √k2–1)
S12
MSG = |S21| / |S12|
k=
1 – |S11| 2 – |S22| 2 + |D|2
; D = S11S22 – S12 S21
2 * |S12| |S21|
0.25
gmax
dB(S[2,1])
k
1
2
3
4
5
0
6
FREQUENCY (GHz)
Figure 9. Gain vs. Frequency at
1 V, 1 mA.
Note: dB(|S 21|) = 20 * log(|S 21|)
5
AT-32032 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 2.7 V, IC = 2 mA
Freq.
S11
S21
S12
S22
GHz
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.5
0.75
1.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.744
0.609
0.489
0.351
0.280
0.236
0.258
0.317
0.387
0.455
0.516
0.563
0.610
-57
-78
-96
-129
-158
149
105
72
51
34
19
3
-14
14.37
12.86
11.40
8.86
6.93
4.28
2.58
1.36
0.43
-0.24
-0.80
-1.39
-2.00
5.232
4.394
3.714
2.774
2.221
1.636
1.346
1.170
1.051
0.973
0.913
0.852
0.794
130
112
98
77
61
34
11
-8
-26
-42
-58
-74
-89
-23.72
-21.73
-20.58
-19.05
-17.56
-14.08
-10.62
-7.54
-5.11
-3.28
-2.24
-1.86
-2.00
0.065
0.082
0.094
0.112
0.133
0.198
0.295
0.420
0.555
0.686
0.772
0.807
0.795
60
52
49
48
49
50
44
30
13
-8
-30
-52
-73
0.839
0.755
0.694
0.625
0.592
0.561
0.541
0.510
0.447
0.373
0.367
0.431
0.504
-22
-28
-31
-37
-43
-59
-78
-103
-135
-178
129
86
55
Gassoc
dB
14.0
10.5
9.4
8.4
7.5
6.9
6.2
AT-32032 Typical Noise Parameters,
Fmin
dB
Mag
Ang
Rn
ohms
0.9
1.8
2.0
2.5
3.0
3.5
4.0
0.9
1.2
1.2
1.4
1.6
1.8
2.1
0.38
0.41
0.42
0.44
0.47
0.52
0.57
57
124
136
176
-152
-123
-100
10.6
6.2
5.3
3.4
4.9
10.5
20.6
20
1.25
16
1
12
0.75
8
0.5
k
Γopt
Freq.
GHz
GAIN (dB)
Common Emitter, Z O = 50 Ω, VCE = 2.7 V, IC = 2 mA
4
0
0
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
S
MAG = 21 (k ± √k2–1)
S12
MSG = |S21| / |S12|
k=
1 – |S11| 2 – |S22| 2 + |D|2
; D = S11S22 – S12 S21
2 * |S12| |S21|
0.25
gmax
dB(S[2,1])
k
1
2
3
4
5
0
6
FREQUENCY (GHz)
Figure 10. Gain vs. Frequency at
2.7 V, 2 mA.
Note: dB(|S 21|) = 20 * log(|S 21|)
6
AT-32032 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 2.7 V, IC = 5 mA
Freq.
S11
S21
S12
S22
GHz
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.5
0.75
1.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.484
0.344
0.257
0.165
0.124
0.112
0.144
0.209
0.296
0.394
0.489
0.564
0.627
-70
-88
-103
-130
-160
143
100
72
57
43
28
10
-9
18.65
16.04
13.98
10.90
8.76
5.93
4.19
3.01
2.14
1.43
0.70
-0.12
-1.05
8.559
6.339
5.000
3.509
2.740
1.979
1.620
1.414
1.279
1.179
1.084
0.986
0.886
113
98
87
70
57
33
13
-7
-25
-43
-61
-78
-94
-25.51
-23.25
-21.46
-18.59
-16.29
-12.69
-9.89
-7.55
-5.58
-3.94
-2.79
-2.18
-2.10
0.053
0.069
0.085
0.118
0.153
0.232
0.320
0.419
0.526
0.636
0.725
0.778
0.786
62
61
61
60
57
48
37
24
8
-10
-30
-50
-71
0.680
0.602
0.561
0.522
0.502
0.477
0.454
0.418
0.353
0.275
0.270
0.355
0.455
-26
-28
-29
-33
-39
-55
-73
-95
-124
-166
137
91
58
Ang
Rn
ohms
Gassoc
dB
71
138
152
-173
-142
-114
-93
7.5
5.1
4.6
4.1
5.8
11.0
20.0
15.6
11.5
10.4
9.1
8.2
7.4
6.7
AT-32032 Typical Noise Parameters,
Fmin
dB
0.9
1.8
2.0
2.5
3.0
3.5
4.0
0.9
1.2
1.2
1.3
1.5
1.7
1.9
Γopt
Mag
0.23
0.295
0.31
0.35
0.41
0.47
0.54
25
1.25
20
1
15
0.75
10
0.5
k
Freq.
GHz
GAIN (dB)
Common Emitter, Z O = 50 Ω, VCE = 2.7 V, I C = 5 mA
5
0
0
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
S
MAG = 21 (k ± √k2–1)
S12
MSG = |S21| / |S12|
k=
1 – |S11| 2 – |S22| 2 + |D|2
; D = S11S22 – S12 S21
2 * |S12| |S21|
0.25
gmax
dB(S[2,1])
k
1
2
3
4
5
0
6
FREQUENCY (GHz)
Figure 11. Gain vs. Frequency at
2.7 V, 5 mA.
Note: dB(|S 21|) = 20 * log(|S 21|)
7
AT-32032 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 2. 7 V, IC = 10 mA
Freq.
S11
S21
S12
S22
GHz
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
0.5
0.75
1.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.292
0.194
0.139
0.081
0.057
0.064
0.103
0.169
0.258
0.362
0.466
0.553
0.628
-76.768
-89.611
-100.612
-126.165
-160.808
131.034
91.686
69.993
58.339
46.145
31.083
13.235
-5.840
20.197
17.121
14.850
11.624
9.409
6.523
4.750
3.580
2.719
2.042
1.334
0.533
-0.404
10.230
7.179
5.527
3.813
2.954
2.119
1.728
1.510
1.368
1.265
1.166
1.063
0.955
102.252
90.014
81.084
66.997
54.862
33.080
13.099
-5.823
-24.160
-42.430
-60.668
-78.273
-95.268
-26.558
-23.688
-21.463
-18.160
-15.735
-12.174
-9.551
-7.424
-5.668
-4.173
-3.083
-2.402
-2.236
0.047
0.065
0.085
0.124
0.163
0.246
0.333
0.425
0.521
0.619
0.701
0.758
0.773
68.475
68.467
67.769
64.256
59.458
48.003
35.089
21.009
5.600
-11.469
-30.211
-50.020
-69.960
0.577
0.528
0.504
0.481
0.467
0.443
0.418
0.378
0.309
0.224
0.217
0.307
0.419
Ang
-23.850
-24.315
-25.449
-30.013
-36.600
-52.023
-70.196
-92.177
-119.643
-160.597
138.234
91.480
58.813
AT-32032 Typical Noise Parameters,
1.1
1.3
1.4
1.5
1.7
1.9
2.0
0.15
0.23
0.26
0.32
0.38
0.45
0.52
87
159
173
-156
-128
-105
-84
7.6
5.6
5.3
5.7
8.6
14.8
25.0
16.2
11.9
11.0
9.5
8.4
7.6
6.8
25
1.25
20
1
15
0.75
10
0.5
k
0.9
1.8
2.0
2.5
3.0
3.5
4.0
Gassoc
dB
GAIN (dB)
Common Emitter, Z O = 50 Ω, VCE = 2.7 V, IC = 10 mA
Γopt
Freq.
Fmin
Rn
GHz
dB
ohms
Mag
Ang
5
0
0
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
S
MAG = 21 (k ± √k2–1)
S12
MSG = |S21| / |S12|
k=
1 – |S11| 2 – |S22| 2 + |D|2
; D = S11S22 – S12 S21
2 * |S12| |S21|
0.25
gmax
dB(S[2,1])
k
1
2
3
4
5
0
6
FREQUENCY (GHz)
Figure 12. Gain vs. Frequency at
2.7 V, 10 mA.
Note: dB(|S 21|) = 20 * log(|S 21|)
8
AT-32032 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 2 mA
Freq.
S11
S21
S12
S22
GHz
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.1
0.5
0.9
1.0
1.5
1.8
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.940
0.732
0.518
0.484
0.342
0.291
0.265
0.212
0.238
0.306
0.383
0.456
0.523
0.573
0.620
-13
-56
-87
-93
-124
-142
-153
151
103
70
50
34
19
2
--14
17.5
14.9
12.4
11.6
9.0
7.8
7.1
4.5
2.7
1.5
0.6
-0.1
-0.7
-1.3
-2.0
7.500
5.588
4.165
3.814
2.824
2.466
2.267
1.670
1.367
1.186
1.067
0.990
0.918
0.857
0.792
167
129
104
99
78
67
61
34
11
-8
-26
-43
-59
-75
-90
-36.0
-23.8
-21.1
-20.6
-19.0
-18.1
-17.5
-14.0
-10.7
-7.6
-5.2
-3.3
-2.3
-1.9
-2.0
0.016
0.064
0.088
0.093
0.112
0.125
0.134
0.199
0.293
0.416
0.550
0.682
0.771
0.805
0.791
83
60
51
50
49
49
50
50
43
30
13
-8
-31
-53
-73
0.981
0.842
0.714
0.699
0.632
0.606
0.596
0.566
0.549
0.515
0.453
0.375
0.373
0.437
0.515
-5
-22
-29
-30
-36
-40
-43
-58
-77
-102
-134
-177
130
86
54
0.9
1.8
2.0
2.5
3.0
3.5
4.0
1.0
1.2
1.3
1.5
1.7
1.9
2.1
0.48
0.445
0.44
0.43
0.47
0.53
0.58
50
118
134
172
-154
-123
-98
Rn
ohms
Gassoc
dB
14.7
7.4
5.8
3.7
5.0
11.3
23.7
14.8
10.1
9.5
8.5
7.7
7.0
6.4
25
1.25
20
1
15
0.75
10
0.5
k
Common Emitter, ZO = 50 Ω, 5 V, IC = 2 mA
Γopt
Freq.
Fmin
GHz
dB
Mag
Ang
GAIN (dB)
AT-32032 Typical Noise Parameters,
5
0
0
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
S
MAG = 21 (k ± √k2–1)
S12
MSG = |S21| / |S12|
k=
1 – |S11| 2 – |S22| 2 + |D|2
; D = S11S22 – S12 S21
2 * |S12| |S21|
0.25
gmax
dB(S[2,1])
k
1
2
3
4
5
0
6
FREQUENCY (GHz)
Figure 13. Gain vs. Frequency at
5 V, 2 mA.
Note: dB(|S 21|) = 20 * log(|S 21|)
9
AT-32032 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 5 mA
Freq.
S11
S21
S12
S22
GHz
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.1
0.5
0.9
1.0
1.5
1.8
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.860
0.496
0.298
0.269
0.168
0.133
0.116
0.086
0.121
0.194
0.287
0.390
0.491
0.570
0.640
-19
-67
-90
-96
-119
-135
-146
150
98
70
57
43
28
10
-9
23.8
18.8
14.9
14.1
11.0
9.7
8.9
6.1
4.3
3.1
2.3
1.6
0.8
0
-1.0
15.523
8.705
5.569
5.067
3.558
3.046
2.782
2.011
1.640
1.434
1.300
1.198
1.101
0.997
0.891
160
114
92
88
71
63
58
34
13
-6
-25
-44
-62
-79
-95
-36.4
-25.4
-22.0
-21.4
-18.5
-17.1
-16.2
-12.7
-9.9
-7.6
-5.7
-4.0
-2.8
-2.2
-2.1
0.015
0.054
0.079
0.085
0.119
0.140
0.154
0.232
0.319
0.417
0.521
0.631
0.722
0.774
0.781
80
63
61
61
59
58
57
48
37
23
8
-10
-30
-51
-72
0.949
0.690
0.580
0.570
0.530
0.514
0.508
0.483
0.461
0.422
0.354
0.274
0.273
0.361
0.464
-9
-25
-28
-29
-33
-36
-39
-54
-72
-95
-124
-166
137
91
57
AT-32032 Typical Noise Parameters,
1.0
1.2
1.3
1.4
1.6
1.8
2.0
0.38
0.335
0.33
0.35
0.40
0.47
0.54
52
124
140
179
-146
-118
-92
11.7
6.3
5.3
4.3
5.9
11.5
22.0
16.1
11.2
10.5
9.2
8.2
7.5
6.8
25
1.25
20
1
15
0.75
10
0.5
k
0.9
1.8
2.0
2.5
3.0
3.5
4.0
Gassoc
dB
GAIN (dB)
Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 5 mA
Γopt
Freq.
Fmin
Rn
GHz
dB
ohms
Mag
Ang
5
0
0
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
S
MAG = 21 (k ± √k2–1)
S12
MSG = |S21| / |S12|
k=
1 – |S11| 2 – |S22| 2 + |D|2
; D = S11S22 – S12 S21
2 * |S12| |S21|
0.25
gmax
dB(S[2,1])
k
1
2
3
4
5
0
6
FREQUENCY (GHz)
Figure 14. Gain vs. Frequency at
5 V, 5 mA.
Note: dB(|S 21|) = 20 * log(|S 21|)
10
AT-32032 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 10 mA
Freq.
S11
S21
S12
S22
GHz
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.1
0.5
0.9
1.0
1.5
1.8
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.751
0.322
0.181
0.160
0.094
0.068
0.055
0.032
0.075
0.148
0.243
0.354
0.464
0.555
0.636
-26
-70
-84
-88
-102
-114
-123
146
86
67
58
47
32
14
-5
27.7
20.3
15.9
15.0
11.8
10.4
9.6
6.7
4.9
3.7
2.9
2.2
1.5
0.7
-0.3
24.169
10.383
6.208
5.623
3.885
3.304
3.012
2.161
1.759
1.538
1.397
1.292
1.190
1.083
0.967
152
103
85
82
68
60
56
34
14
-5
-24
-42
-61
-79
-96
-37.1
-26.4
-22.1
-21.3
-18.1
-16.5
-15.6
-12.1
-9.5
-7.5
-5.7
-4.3
-3.2
-2.5
-2.3
0.014
0.048
0.078
0.086
0.125
0.149
0.165
0.248
0.334
0.424
0.517
0.613
0.695
0.751
0.765
78
68
68
67
64
61
59
47
34
20
5
-12
-31
-51
-71
0.898
0.584
0.514
0.508
0.483
0.473
0.468
0.444
0.419
0.375
0.301
0.214
0.214
0.311
0.426
-13
-24
-25
-26
-30
-34
-37
-52
-70
-92
-120
-162
136
89
57
AT-32032 Typical Noise Parameters,
1.1
1.3
1.4
1.5
1.7
1.9
2.1
0.29
0.25
0.26
0.31
0.37
0.45
0.52
69
143
159
-165
-133
-106
-84
10.0
6.1
5.6
5.5
8.1
14.6
25.7
17.0
11.8
11.0
9.6
8.5
7.7
6.9
25
1.25
20
1
15
0.75
10
0.5
k
0.9
1.8
2.0
2.5
3.0
3.5
4.0
Gassoc
dB
GAIN (dB)
Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 10 mA
Γopt
Freq.
Fmin
Rn
GHz
dB
ohms
Mag
Ang
5
0
0
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
S
MAG = 21 (k ± √k2–1)
S12
MSG = |S21| / |S12|
k=
1 – |S11| 2 – |S22| 2 + |D|2
; D = S11S22 – S12 S21
2 * |S12| |S21|
0.25
gmax
dB(S[2,1])
k
1
2
3
4
5
0
6
FREQUENCY (GHz)
Figure 15. Gain vs. Frequency at
5 V, 10 mA.
Note: dB(|S 21|) = 20 * log(|S 21|)
11
900 MHz LNA Design
The amplifier is designed for a
Vce of 2.7 volts and Ic of 5 mA.
and a nominal power supply
voltage of 3 volts. The amplifier
schematic is shown in Figure 16.
R6
C2
L4
C3
L1 Q1
INPUT
Zo
L3
Zo C1
OUTPUT
L2
R5
R1
C4
R2
R4
C5
VCC = 3 V
R3
Figure 16. Schematic Diagram.
C1,C3 10 pF chip capacitor
C2
Open circuited stub .275
inch long
C4,C5 1000 pF chip capacitor
L1
8 nH chip inductor
(Coilcraft 1008CS-080)
L2
Optional (see R1)
L3
56 nH chip inductor
(Coilcraft 1008CS-560)
L4
15 nH chip inductor
(Coilcraft 1008CS-150)
Q1
Agilent AT-32032
Silicon Bipolar Transistor
R1
10K Ω chip resistor (may
want to substitute a 180 nH
chip inductor and 50 W
resistor for lower noise
figure, better low freq
stability, the readjust R2)
R2
26.1 K Ω chip resistor
(adjust for rated Ic)
R3
3.32 K Ω chip resistor
R4
3.32 K Ω chip resistor
R5
51.1 Ω chip resistor
R6
13 Ω chip resistor (see text)
Zo
50 Ω microstripline
Figure 17. Component Parts List.
AT-3XX32
AT-4XX32
IN
02/98 AJW
.031 FR-4
OUT
Vcc
Figure 18. 1X Artwork showing
Component Placement.
The input matching network uses
a shunt C series L input impedance matching circuit for low
noise. The shunt C is accomplished with an open circuited
stub while a chip inductor is used
for the series element. The output
impedance matching network
consists of a series chip inductor.
Bias insertion is accomplished by
the use of small inductors suitably bypassed. A resistor is
placed in series with the output
bias decoupling inductor to de-Q
the network and improve in-band
and low frequency stability.
Surface mount Coilcraft inductors were chosen for their small
size. Resistor R6 enhances broad
band stability especially in the 9
to 10 GHz frequency range.
Biasing
The bias network is designed for
a nominal power supply voltage
of 3 volts. Resistors R1 and R2 are
used to adjust collector current.
Resistor R4 can be attached to
the junction of R5 and C5 to
improve bias point stability.
Performance
The measured gain of the completed amplifier is shown in
Figure 19. The gain varies
from 15.5 to 16.5 dB over the 800
to 900 MHz frequency range.
Noise figure versus frequency is
shown in Figure 20. Best performance occurs at 950 MHz providing a 1.1 dB noise figure.
Measured input and output return
loss is shown in Figure 21. The
input return loss is 7 dB at
900 MHz and can be improved to
9 dB with a 0.1 dB increase in
noise figure by increasing the
amount of capacitance at C2.
Additional capacitance at C2
increases the input return loss
even further with increased noise
figure. Output return loss is a
nominal 12 to 15 dB.
17
16
15
GAIN (dB)
The AT-32032 is described in a
low noise amplifier for use in the
800 to 900 MHz frequency range.
The amplifier is designed for use
with .032 inch thickness FR-4
printed circuit board material.
A component list is shown in
Figure 17. The artwork including
component placement is shown
in Figure 18.
14
13
12
11
10
500
600
700
800
900
1000
FREQUENCY (MHz)
Figure 19. Gain vs Frequency.
1.5
1.4
NOISE FIGURE (dB)
AT-32032 Application
Information
1.3
1.2
1.1
1
500
600
700
800
900
1000
FREQUENCY (MHz)
Figure 20. Noise Figure vs Frequency.
12
output resistors R5 and R6 could
be varied in value. Increasing the
value of R5 and decreasing the
value of R6 will improve IP3
although circuit stability may be
sacrificed. The second method
would be to optimize the output
match for power as opposed to
matching for lowest VSWR.
RETURN LOSS (dB)
0
-5
-10
-15
Input
Output
-20
500
600
700
800
900
1000
FREQUENCY (MHz)
Figure 21. Input/Output Return Loss.
Output intercept point, IP3, was
measured at 900 MHz to be
+14.3 dBm. This could be
improved in two ways. The
Using the AT-32032 at Other
Frequencies
The demo board and design
techniques presented here can be
used to build low noise amplifiers
for other frequencies in the VHF
through 1.9 GHz frequency range.
13
Ordering Information
Part Number
AT-32032-BLK
AT-32032-TR1
AT-32032-TR2
Increment
100
3000
10000
Comments
Bulk
7" Reel
13" Reel
Package Dimensions
SOT-323 Plastic Package
1.30 (0.051)
REF.
2.20 (0.087)
2.00 (0.079)
1.35 (0.053)
1.15 (0.045)
0.650 BSC (0.025)
0.425 (0.017)
TYP.
2.20 (0.087)
1.80 (0.071)
0.10 (0.004)
0.00 (0.00)
0.25 (0.010)
0.15 (0.006)
0.30 REF.
1.00 (0.039)
0.80 (0.031)
10°
0.30 (0.012)
0.10 (0.004)
0.20 (0.008)
0.10 (0.004)
14
Tape Dimensions and Product Orientation
For Outline SOT-323 (SC-70 3 Lead)
P
P2
D
P0
E
F
W
C
D1
t1 (CARRIER TAPE THICKNESS)
Tt (COVER TAPE THICKNESS)
K0
8° MAX.
A0
DESCRIPTION
5° MAX.
B0
SYMBOL
SIZE (mm)
SIZE (INCHES)
CAVITY
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
A0
B0
K0
P
D1
2.24 ± 0.10
2.34 ± 0.10
1.22 ± 0.10
4.00 ± 0.10
1.00 + 0.25
0.088 ± 0.004
0.092 ± 0.004
0.048 ± 0.004
0.157 ± 0.004
0.039 + 0.010
PERFORATION
DIAMETER
PITCH
POSITION
D
P0
E
1.55 ± 0.05
4.00 ± 0.10
1.75 ± 0.10
0.061 ± 0.002
0.157 ± 0.004
0.069 ± 0.004
CARRIER TAPE
WIDTH
THICKNESS
W
t1
8.00 ± 0.30
0.255 ± 0.013
0.315 ± 0.012
0.010 ± 0.0005
COVER TAPE
WIDTH
TAPE THICKNESS
C
Tt
5.4 ± 0.10
0.062 ± 0.001
0.205 ± 0.004
0.0025 ± 0.00004
DISTANCE
CAVITY TO PERFORATION
(WIDTH DIRECTION)
F
3.50 ± 0.05
0.138 ± 0.002
CAVITY TO PERFORATION
(LENGTH DIRECTION)
P2
2.00 ± 0.05
0.079 ± 0.002
www.semiconductor.agilent.com
Data subject to change.
Copyright © 1999 Agilent Technologies
5965-6216E (11/99)