ETC AT-41532-TR2

General Purpose, Low Current
NPN Silicon Bipolar Transistor
Technical Data
AT-41532
Features
• General Purpose NPN
Bipolar Transistor
Optimized for Low Current,
Low Voltage Applications at
900 MHz, 1.8 GHz, and
2.4 GHz
• Performance (5 V, 5 mA)
0.9 GHz: 1 dB NF, 15.5 dB GA
1.8 GHz: 1.4 dB NF, 10.5 dB GA
2.4 GHz: 1.9 dB NF, 9 dB GA
• Characterized for 3, 5, and
8 V Use
• Miniature 3-lead SOT-323
(SC-70) Plastic Package
• High Breakdown Voltage
(can be operated up to 10 V)
Applications
• LNA, Oscillator, Driver
Amplifier, Buffer Amplifier,
and Down Converter for
Cellular and PCS Handsets
and Cordless Telephones
• LNA, Oscillator, Mixer, and
Gain Amplifier for Pagers
• Power Amplifier and
Oscillator for RF-ID Tag
• LNA and Gain Amplifier for
GPS
• LNA for CATV Set-Top Box
3-Lead SC-70 (SOT-323)
Surface Mount Plastic
Package
Description
Agilent’s AT-41532 is a general
purpose NPN bipolar transistor
that has been optimized for
maximum ft at low voltage
operation, making it ideal for use
in battery powered
applications in cellular/PCS
and other wireless markets.
The AT-41532 uses the miniature
3-lead SOT-323 (SC-70) plastic
package.
Pin Configuration
COLLECTOR
41
BASE
EMITTER
Optimized performance at 5 V
makes this device ideal for use in
900 MHz, 1.8 GHz, and 2.4 GHz
systems. Typical amplifier design
at 900 MHz yields 1 dB NF and
15.5 dB associated gain at 5 V and
5 mA bias. High gain capability at
1 V and 1 mA makes this device a
good fit for 900 MHz pager
applications. A good noise
match near 50 ohms at 900 MHz
makes this a very user-friendly
device. Moreover, voltage
breakdowns are high enough to
support operation at 10 V.
The AT-41532 belongs to Agilent’s
AT-4XXXX series bipolar
transistors. It exhibits excellent
device uniformity, performance,
and reliability as a result of ionimplantation, self-alignment
techniques, and gold metalization
in the fabrication process.
2
AT-41532 Absolute Maximum Ratings
Units
Absolute
Maximum[1]
VEBO
Emitter-Base Voltage
V
1.5
VCBO
Collector-Base Voltage
V
20
VCEO
Collector-Emitter Voltage
Symbol
Parameter
Thermal Resistance:[2]
θ jc = 350°C/W
Notes:
1. Operation of this device above any one
of these parameters may cause
permanent damage.
2. TMOUNTING SURFACE = 25°C.
V
12
IC
Collector Current
mA
50
PT
Power Dissipation[2,3]
mW
225
Tj
Junction Temperature
°C
150
TSTG
Storage Temperature
°C
-65 to 150
3. Derate at 2.86 mW/°C for
TMOUNTING SURFACE > 72°C.
Electrical Specifications, TA = 25°C
Symbol
Units
Min
Typ
Max
hFE
Forward Current Transfer Ratio
Parameters and Test Conditions
VCE = 5 V
IC = 5 mA
-
30
150
270
ICBO
Collector Cutoff Current
VCB = 3 V
mA
0.2
IEBO
Emitter Cutoff Current
VEB = 1 V
mA
1.0
Characterization Information, TA = 25°C
Symbol
NF
Parameters and Test Conditions
Noise Figure
VCE = 5 V, IC = 5 mA
GA
Associated Gain
VCE = 5 V, IC = 5 mA
Units
Min
Typ
f = 0.9 GHz
f = 1.8 GHz
f = 2.4 GHz
dB
1.0
1.4
1.9
f = 0.9 GHz
f = 1.8 GHz
f = 2.4 GHz
dB
15.5
10.5
9.0
P1dB
Power at 1 dB Gain Compression (opt tuning)
VCE = 5 V, IC = 25 mA
f = 0.9 GHz
dBm
14.5
G1dB
Gain at 1 dB Gain Compression (opt tuning)
VCE = 5 V, IC = 25 mA
f = 0.9 GHz
dB
14.5
Output Third Order Intercept Point,
VCE = 5 V, IC =25 mA (opt tuning)
f = 0.9 GHz
dBm
25
Gain in 50 Ω system; VCE = 5 V, IC = 5 mA
f = 0.9 GHz
f = 2.4 GHz
dB
IP3
|S21E|2
12.5
13.25
5.2
3
AT-41532 Typical Performance
4.0
3.5
2 mA
5 mA
NOISE FIGURE (dB)
2.5
2.0
1.5
1.0
2.5
2.0
1.5
1.0
0
0
0
1.0
2.0
3.0
1.0
FREQUENCY (GHz)
1.5
1.0
2.0
3.0
4.0
0
1.0
FREQUENCY (GHz)
Figure 1. AT-41532 Typical Noise
Figure vs. Frequency at 1 V, 1 mA.
2.0
16
2 mA
5 mA
8
2 mA
5 mA
12
GAIN (dB)
GAIN (dB)
12
4
4.0
Figure 3. AT-41532 Typical Noise
Figure vs. Frequency and Current at
5 V.
16
6
3.0
FREQUENCY (GHz)
Figure 2. AT-41532 Typical Noise
Figure vs. Frequency and Current at
2.7 V.
10
GAIN (dB)
2.0
0
0
4.0
2.5
0.5
0.5
0.5
2 mA
5 mA
3.0
NOISE FIGURE (dB)
3.0
3.0
NOISE FIGURE (dB)
3.5
3.5
8
4
8
4
2
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0
0.5
4.0
1.0
1.5
FREQUENCY (GHz)
2.0
2.5
3.0
3.5
4.0
FREQUENCY (GHz)
Figure 4. AT-41532 Associated Gain
vs. Frequency at 1 V, 1 mA.
9
8
15
G1 dB (dB)
P1 dB (dBm)
7
10
5
0
6
5
4
3
2
2.7 V
5V
-5
2.7 V
5V
1
-10
0
0
5
10
15
20
COLLECTOR CURRENT (mA)
Figure 7. AT-41532 P1 dB vs.
Collector Current and Voltage
(valid up to 2.4 GHz).
25
0
5
10
15
1.0
1.5
2.0
2.5
3.0
3.5
4.0
FREQUENCY (GHz)
Figure 5. AT-41532 Associated Gain
vs. Frequency and Current at 2.7 V.
20
0
0.5
20
COLLECTOR CURRENT (mA)
Figure 8. AT-41532 G1 dB vs.
Collector Current and Voltage
(valid up to 2.4 GHz).
25
Figure 6. AT-41532 Associated Gain
vs. Frequency and Current at 5 V.
4
AT-41532 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 1 V, IC = 1 mA
Freq.
S11
S21
S12
S22
GHz
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.5
0.75
1.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
0.787
0.697
0.620
0.554
0.538
0.543
0.559
0.561
0.545
0.534
0.544
0.563
0.597
0.655
0.703
-75
-104
-128
-166
-164
118
79
47
28
14
2
-10
-23
-34
-42
8.79
7.28
5.84
3.40
1.52
-1.06
-2.61
-3.06
-2.81
-2.46
-2.38
-2.49
-2.79
-3.39
-4.03
2.750
2.311
1.960
1.480
1.191
0.886
0.741
0.703
0.724
0.754
0.761
0.751
0.725
0.677
0.629
125
106
90
66
48
22
5
-7
-20
-35
-52
-68
-84
-100
-112
-20.18
-18.74
-18.40
-18.80
-18.69
-13.30
-8.03
-4.83
-3.11
-2.30
-2.08
-2.18
-2.52
-3.15
-3.76
0.098
0.116
0.120
0.115
0.116
0.216
0.397
0.574
0.699
0.768
0.787
0.778
0.748
0.696
0.649
49
38
31
30
42
60
47
24
0
-23
-44
-63
-80
-96
-110
0.860
0.785
0.734
0.678
0.653
0.620
0.568
0.487
0.398
0.362
0.407
0.467
0.523
0.593
0.665
-22
-28
-32
-40
-50
-73
-102
-137
-180
130
88
58
35
16
-6
Gassoc
dB
9.4
7.6
6.7
5.7
4.6
3.5
2.1
AT-41532 Typical Noise Parameters,
Common Emitter, Z O = 50 Ω, VCE = 1 V, IC = 1 mA
Mag
Ang
Rn
ohms
0.9
1.8
2.0
2.5
3.0
3.5
4.0
1.4
1.8
1.9
2.2
2.6
3.1
3.6
0.44
0.57
0.60
0.66
0.71
0.75
0.77
92
-183
-169
-140
-116
-95
-77
12.4
3.0
3.3
10.1
27.6
59.9
103.0
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
S
MAG = 21 (k ± √k2–1)
S12
MSG = |S21| / |S12|
k=
1 – |S11| 2 – |S22| 2 + |D|2
; D = S11S22 – S12 S21
2 * |S12| |S21|
20
1.50
gmax
dB(S|2,1|)
k
16
1.25
12
1.00
8
0.75
4
0.50
0
0.25
-4
0
1
2
3
4
5
0
6
FREQUENCY (GHz)
Figure 9. Gain vs. Frequency at
1 V, 1 mA.
Note: dB(|S 21|) = 20 * log(|S 21|)
k
Fmin
dB
GAIN (dB)
Γopt
Freq.
GHz
5
AT-32032 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 2.7 V, IC = 2 mA
Freq.
S11
S21
S12
S22
GHz
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.5
0.75
1.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
0.647
0.532
0.455
0.394
0.382
0.397
0.434
0.474
0.497
0.501
0.512
0.532
0.569
0.643
0.687
-82
-111
-134
-171
160
116
80
50
30
15
4
-9
-22
-32
-40
13.45
11.34
9.54
6.70
4.64
1.87
0.03
-1.20
-1.81
-1.88
-1.89
-1.99
-2.31
-2.37
-3.51
4.702
3.691
3.000
2.162
1.707
1.240
1.004
0.871
0.812
0.805
0.804
0.796
0.767
0.762
0.668
119
101
88
68
51
26
5
-10
-23
-36
-51
-67
-83
-97
-112
-23.97
-22.60
-21.87
-20.48
-18.50
-13.56
-9.26
-6.05
-3.84
-2.40
-1.73
-1.61
-1.86
-2.41
-3.10
0.063
0.074
0.081
0.095
0.119
0.210
0.344
0.498
0.643
0.759
0.819
0.831
0.808
0.758
0.700
52
46
46
52
59
61
50
32
11
-12
-34
-55
-74
-93
-107
0.808
0.737
0.696
0.658
0.643
0.627
0.604
0.556
0.470
0.377
0.361
0.411
0.476
0.562
0.639
-21
-24
-27
-33
-40
-59
-81
-108
-142
174
123
82
52
27
1
Gassoc
dB
12.9
9.7
9.1
8.0
6.9
5.9
5.1
AT-32032 Typical Noise Parameters,
Common Emitter, Z O = 50 Ω, VCE = 2.7 V, IC = 2 mA
Mag
Ang
Rn
ohms
0.9
1.8
2.0
2.5
3.0
3.5
4.0
1.2
1.6
1.7
1.9
2.2
2.5
2.9
0.35
0.48
0.51
0.60
0.65
0.70
0.74
100
-179
-165
-136
-112
-91
-74
8.7
3.3
3.7
8.9
21.0
42.0
72.0
20
1.2
gmax
dB(S|2,1|)
k
16
12
0.8
8
0.6
4
0.4
0
0.2
-4
0
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
S
MAG = 21 (k ± √k2–1)
S12
MSG = |S21| / |S12|
k=
1 – |S11| 2 – |S22| 2 + |D|2
; D = S11S22 – S12 S21
2 * |S12| |S21|
1
1
2
3
4
5
0
6
FREQUENCY (GHz)
Figure 10. Gain vs. Frequency at
2.7 V, 2 mA.
Note: dB(|S 21|) = 20 * log(|S 21|)
k
Fmin
dB
GAIN (dB)
Γopt
Freq.
GHz
6
AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 2.7 V, IC = 5 mA
Freq.
S11
S21
S12
S22
GHz
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.5
0.75
1.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
0.400
0.312
0.270
0.247
0.253
0.280
0.323
0.379
0.434
0.480
0.522
0.557
0.595
0.662
0.709
-102
-130
-152
175
149
112
80
55
38
24
10
-5
-19
-29
-39
17.03
14.15
11.97
8.82
6.67
3.86
2.07
0.80
-0.13
-0.72
-1.20
-1.64
-2.17
-2.38
-3.56
7.106
5.101
3.969
2.762
2.154
1.559
1.269
1.097
0.986
0.920
0.871
0.828
0.779
0.761
0.664
106
91
80
64
50
26
6
-12
-28
-43
-58
-72
-87
-99
-115
-25.97
-23.86
-22.09
-19.10
-16.60
-12.48
-9.19
-6.55
-4.50
-2.96
-2.07
-1.73
-1.86
-2.43
-3.03
0.050
0.064
0.079
0.111
0.148
0.238
0.347
0.471
0.595
0.711
0.788
0.820
0.808
0.756
0.705
59
60
61
63
62
55
43
27
9
-11
-32
-53
-73
-92
-107
0.671
0.615
0.588
0.564
0.553
0.535
0.514
0.472
0.398
0.309
0.299
0.366
0.449
0.533
0.633
-22
-24
-25
-30
-37
-54
-75
-99
-130
-174
131
87
55
27
3
Ang
Rn
ohms
Gassoc
dB
106
-165
-151
-126
-106
-86
-69
7.3
3.9
4.8
9.2
18.4
35.0
58.0
14.0
10.7
9.8
8.5
7.5
6.6
5.8
AT-41532 Typical Noise Parameters,
Fmin
dB
0.9
1.8
2.0
2.5
3.0
3.5
4.0
1.2
1.4
1.5
1.7
1.9
2.2
2.5
Γopt
Mag
0.283
0.41
0.44
0.53
0.60
0.67
0.71
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
S
MAG = 21 (k ± √k2–1)
S12
MSG = |S21| / |S12|
k=
1 – |S11| 2 – |S22| 2 + |D|2
; D = S11S22 – S12 S21
2 * |S12| |S21|
25
1.2
20
1
15
0.8
10
0.6
5
0.4
gmax
dB(S|2,1|)
k
-5
0
1
2
0
0.2
3
4
5
0
6
FREQUENCY (GHz)
Figure 11. Gain vs. Frequency at
2.7 V, 5 mA.
Note: dB(|S 21|) = 20 * log(|S 21|)
k
Freq.
GHz
GAIN (dB)
Common Emitter, Z O = 50 Ω, VCE = 2.7 V, I C = 5 mA
7
AT-41532 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 2. 7 V, IC = 10 mA
Freq.
S11
S21
S12
S22
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.5
0.75
1.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
0.243
0.199
0.184
0.186
0.199
0.232
0.275
0.334
0.399
0.462
0.521
0.566
0.609
0.678
0.722
-122
-149
-169
161
139
107
79
56
41
27
14
-2
-18
-28
-39
18.39
15.19
12.88
9.64
7.44
4.61
2.84
1.60
0.66
-0.02
-0.67
-1.26
-1.88
-2.97
-3.38
8.310
5.751
4.408
3.034
2.354
1.700
1.387
1.202
1.079
0.997
0.926
0.865
0.805
0.711
0.678
97
85
76
62
49
27
6
-12
-29
-45
-60
-75
-90
-101
-116
-26.90
-23.99
-21.74
-18.35
-15.79
-11.93
-9.00
-6.66
-4.79
-3.30
-2.34
-1.89
-1.92
-2.32
-3.02
0.045
0.063
0.082
0.121
0.162
0.253
0.355
0.465
0.576
0.684
0.764
0.805
0.802
0.766
0.706
68
69
69
67
63
52
39
24
7
-12
-32
-52
-72
-91
-106
0.586
0.552
0.536
0.520
0.510
0.491
0.467
0.424
0.349
0.261
0.251
0.328
0.422
0.485
0.620
-21
-21
-23
-28
-35
-52
-72
-95
-125
-167
134
88
56
29
3
MSG = |S21| / |S12|
k=
1 – |S11| 2 – |S22| 2 + |D|2
; D = S11S22 – S12 S21
2 * |S12| |S21|
25
1.25
20
1
15
0.75
10
0.5
5
0.25
k
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
S
MAG = 21 (k ± √k2–1)
S12
GAIN (dB)
GHz
gmax
dB(S|2,1|)
k
0
0
1
2
3
4
5
0
6
FREQUENCY (GHz)
Figure 12. Gain vs. Frequency at
2.7 V, 10 mA.
Note: dB(|S 21|) = 20 * log(|S 21|)
8
AT-41532 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 2 mA
Freq.
S11
S21
S12
S22
GHz
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.5
0.75
1.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
0.659
0.540
0.456
0.387
0.371
0.387
0.428
0.472
0.494
0.490
0.489
0.506
0.541
0.634
0.670
-79
-108
-131
-169
162
116
79
49
28
13
2
-10
-22
-33
-39
13.43
11.41
9.64
6.81
4.74
1.91
0.01
-1.31
-1.96
-1.95
-1.81
-1.84
-2.07
-2.46
-3.23
4.696
3.720
3.034
2.190
1.726
1.247
1.001
0.860
0.798
0.799
0.812
0.810
0.788
0.754
0.689
121
103
89
69
53
27
7
-8
-20
-33
-48
-64
-80
-94
-109
-25.16
-23.78
-23.06
-21.69
-19.63
-14.40
-9.89
-6.47
-4.05
-2.36
-1.51
-1.28
-1.51
-2.09
-2.75
0.055
0.065
0.070
0.082
0.104
0.191
0.320
0.475
0.627
0.762
0.840
0.863
0.841
0.786
0.729
53
48
48
55
63
67
56
38
17
-5
-29
-51
-71
-90
-105
0.836
0.774
0.738
0.705
0.694
0.685
0.673
0.635
0.556
0.448
0.388
0.408
0.462
0.539
0.625
-18
-22
-24
-30
-37
-54
-75
-100
-131
-170
141
96
62
35
6
Rn
ohms
Gassoc
dB
8.5
3.4
3.7
8.8
21.7
44.6
79.5
13.5
10.6
9.7
8.8
7.8
7.1
6.0
0.9
1.8
2.0
2.5
3.0
3.5
4.0
1.2
1.5
1.6
1.9
2.2
2.5
2.9
0.35
0.48
0.51
0.60
0.65
0.70
0.74
100
178
-166
-137
-112
-92
-73
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
S
MAG = 21 (k ± √k2–1)
S12
MSG = |S21| / |S12|
k=
1 – |S11| 2 – |S22| 2 + |D|2
; D = S11S22 – S12 S21
2 * |S12| |S21|
25
1.2
20
1
15
0.8
10
0.6
5
0.4
gmax
dB(S|2,1|)
k
-5
0
1
2
0
0.2
3
4
5
0
6
FREQUENCY (GHz)
Figure 13. Gain vs. Frequency at
5 V, 2 mA.
Note: dB(|S 21|) = 20 * log(|S 21|)
k
Common Emitter, Z O = 50 Ω, 5 V, IC = 2 mA
Γopt
Freq.
Fmin
GHz
dB
Mag
Ang
GAIN (dB)
AT-41532 Typical Noise Parameters,
9
AT-41532 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 5 mA
Freq.
S11
S21
S12
GHz
Mag
Ang
dB
Mag
Ang
dB
0.5
0.75
1.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
0.402
0.304
0.255
0.225
0.227
0.256
0.301
0.359
0.414
0.457
0.496
0.531
0.573
0.633
0.696
-98
-124
-147
178
151
111
79
53
36
22
10
-4
-19
-28
-38
17.27
14.42
12.25
9.09
6.92
4.06
2.22
0.92
-0.02
-0.60
-1.00
-1.42
-1.89
-2.40
-3.32
7.303
5.260
4.095
2.848
2.218
1.596
1.291
1.111
0.997
0.933
0.891
0.849
0.805
0.759
0.682
107
92
82
65
52
28
8
-10
-26
-40
-55
-70
-85
-95
-113
-27.15
-25.04
-23.26
-20.23
-17.66
-13.38
-9.92
-7.07
-4.78
-2.97
-1.84
-1.37
-1.44
-2.03
-2.63
Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 5 mA
Γopt
Freq.
Fmin
Rn
GHz
dB
ohms
Mag
Ang
Gassoc
dB
S22
Mag
0.044
0.056
0.069
0.097
0.131
0.214
0.319
0.443
0.577
0.711
0.809
0.854
0.847
0.792
0.739
Ang
Mag
Ang
60
61
63
66
65
59
48
33
16
-4
-26
-49
-69
-88
-105
0.713
0.663
0.640
0.621
0.613
0.603
0.592
0.562
0.498
0.401
0.344
0.374
0.441
0.516
0.624
-19
-21
-23
-28
-34
-51
-69
-92
-120
-156
154
105
67
38
8
1.1
1.4
1.5
1.7
1.9
2.2
2.4
0.29
0.41
0.44
0.53
0.60
0.67
0.71
110
-167
-153
-127
-106
-86
-70
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
S
MAG = 21 (k ± √k2–1)
S12
MSG = |S21| / |S12|
k=
1 – |S11| 2 – |S22| 2 + |D|2
; D = S11S22 – S12 S21
2 * |S12| |S21|
7.0
3.9
4.7
9.3
18.6
36.8
59.5
14.8
11.3
10.5
9.3
8.4
7.5
6.7
25
1.2
20
1
15
0.8
10
0.6
5
0.4
gmax
dB(S|2,1|)
k
-5
0
1
2
0
0.2
3
4
5
0
6
FREQUENCY (GHz)
Figure 14. Gain vs. Frequency at
5 V, 5 mA.
Note: dB(|S 21|) = 20 * log(|S 21|)
k
0.9
1.8
2.0
2.5
3.0
3.5
4.0
GAIN (dB)
AT-41532 Typical Noise Parameters,
10
AT-41532 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 10 mA
Freq.
S11
S21
S12
S22
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.5
0.75
1.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
0.239
0.182
0.160
0.155
0.167
0.201
0.246
0.306
0.369
0.430
0.489
0.539
0.588
0.638
0.713
-113
-140
-162
164
140
105
76
54
40
27
14
-1
-16
-29
-38
18.69
15.51
13.20
9.95
7.75
4.87
3.05
1.79
0.86
0.23
-0.35
-0.91
-1.58
-3.09
-3.24
8.601
5.966
4.571
3.144
2.440
1.751
1.421
1.229
1.105
1.027
0.961
0.900
0.834
0.701
0.689
98
86
78
63
51
29
9
-10
-26
-42
-58
-73
-88
-102
-115
-28.05
-25.18
-22.94
-19.50
-16.89
-12.90
-9.80
-7.24
-5.11
-3.33
-2.11
-1.49
-1.45
-1.93
-2.58
0.040
0.055
0.071
0.106
0.143
0.226
0.324
0.434
0.555
0.682
0.785
0.842
0.846
0.801
0.743
69
70
71
69
66
57
45
31
14
-5
-26
-47
-68
-88
-104
0.641
0.611
0.597
0.585
0.578
0.566
0.553
0.523
0.461
0.366
0.308
0.342
0.419
0.501
0.616
-18
-19
-20
-26
-33
-49
-67
-88
-115
-149
161
110
70
40
9
MSG = |S21| / |S12|
k=
1 – |S11| 2 – |S22| 2 + |D|2
; D = S11S22 – S12 S21
2 * |S12| |S21|
25
1.25
20
1
15
0.75
10
0.5
5
0.25
k
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
S
MAG = 21 (k ± √k2–1)
S12
GAIN (dB)
GHz
gmax
dB(S|2,1|)
k
0
0
1
2
3
4
5
0
6
FREQUENCY (GHz)
Figure 15. Gain vs. Frequency at
5 V, 10 mA.
Note: dB(|S 21|) = 20 * log(|S 21|)
11
AT-41532 Application
Information
The AT-41532 is described in a
low noise amplifier for use in the
800 to 900 MHz frequency range.
The amplifier is designed for use
with .032 inch thickness FR-4
printed circuit board material.
900 MHz LNA Design
The amplifier is designed for a
VCE of 5 volts and IC of 5 mA. and
a minimum power supply voltage
of 5.25 volts. Higher power supply
voltages will require an additional
resistance to be inserted at the
power supply terminal. The
amplifier schematic is shown in
Figure 16.
A component list is shown in
Figure 17. The artwork including
component placement is shown
in Figure 18.
C3
C2
L1 Q1 R6
INPUT
Zo C1
L3 C4
OUTPUT
Zo
L2
R5
R1
C4
R2
R4
C5
VCC = 5.25 V
C1,C4 10 pF chip capacitor
C2
Open circuited stub – see
text
C3
2.7 pF chip capacitor
C5
1000 pF chip capacitor
L1
8 nH chip inductor
(Coilcraft 1008CS-080)
L2
Optional (see R1)
L3
15 nH chip inductor
(Coilcraft 1008CS-150)
Q1
Agilent
AT-41532 Silicon Bipolar
Transistor
R1
10K Ω chip resistor (may
want to substitute a
180 nH chip inductor and
50 Ω resistor for lower
noise figure , better low
freq stability, then
readjust R2)
R2
48 K Ω chip resistor
(adjust for rated Ic)
R3
3.32 K Ω chip resistor
R4
3.32 K Ω chip resistor
R5
51.1 Ω chip resistor
R6
1.1K Ω chip resistor (see
text)
Zo
50 Ω microstripline
Biasing
The bias network is designed for
a nominal power supply voltage
of 5.25 volts. Resistors R1 and R2
are used to adjust collector
current. Resistor R4 can be
attached to the junction of R5 and
C5 to improve bias point stability.
Figure 17. Component Parts List.
R3
Figure 16. Schematic Diagram.
The input matching network uses
a series inductor for the noise
match. Some fine tuning for
lowest noise figure and improved
input VSWR can be accomplished
by adding capacitance at C2. The
shunt C is accomplished with an
open circuited stub while a chip
inductor is used for the series
element. The output impedance
matching network is a high pass
structure consisting of a series
capacitor and shunt inductor. A
resistor is paralleled across the
shunt inductor to enhance broad
band stability through 10 GHz.
Bias insertion is accomplished
through the use of the shunt
inductor appropriately bypassed.
Surface mount Coilcraft inductors were chosen for their small
size.
AT-3XX32
AT-4XX32
IN
01/98 AJW
.062 FR-4
OUT
Vcc
Figure 18. 1X Artwork showing
Component Placement.
Performance
The measured gain of the completed amplifier is shown in
Figure 19. The gain varies
from 14 to 15 dB over the 800 to
900 MHz frequency range. Noise
figure versus frequency is shown
in Figure 20. Best performance
occurs at 850 MHz providing a
near 1 dB noise figure.
12
27 Ω range and has similar effects
on circuit stability. A third
alternative is to re-optimize the
output match for power as
opposed to matching for lowest
output VSWR. This may make the
output return loss less than 10 dB
but it would enhance power
output.
0
-2
RETURN LOSS (dB)
Measured input and output return
loss is shown in Figure 21. The
input return loss is 10 dB at
850 MHz and can be improved
with slight tuning at C2. Output
return loss was measured at
almost 10 dB at 850 MHz.
-4
-6
-8
-10
16
-12
GAIN (dB)
14
-14
500
Input
Output
600
700
800
900
1000
FREQUENCY (MHz)
12
Figure 21. Input/Output Return Loss.
10
8
6
500
600
700
800
900
1000
FREQUENCY (MHz)
Figure 19. Gain vs Frequency.
There is considerable tuning
interaction between input and
output matching networks in any
single stage amplifier. Having a
somewhat better input return loss
coincident with low noise figure
may necessitate a compromise in
output return loss.
1.6
NOISE FIGURE (dB)
1.5
1.4
1.3
1.2
1.1
1
500
600
700
800
900
1000
FREQUENCY (MHz)
Figure 20. Noise Figure vs Frequency.
Output intercept point, IP3, was
measured at 850 MHz to be
+12 dBm. Removing the 1.1 KΩ
resistor at R6 increases IP3 to
+13.6 dBm. Resistor R6 was
originally added to enhance
stability; caution is urged when
removing this resistor or increasing its value without careful
analysis. Another alternative to
the shunt resistor R6 would be to
incorporate a resistor in series
with the transistor collector lead.
This resistor would be in the 10 to
Modifications to Original
Demo Board
The original demo board dated
01/98 requires some modification
to work as described in this
application note. The modification is to add resistor R6 in series
with the collector lead. This is
accomplished by cutting the etch
at the output of Q1 such that
resistor R6 can be placed on the
circuit board as shown in
Figure 17. Inductor L3 will then
have be placed at a 90 degree
angle with respect to its original
intended location. L3 is then
connected to the junction of R6
and L4 with a small piece of wire
or etch.
Using the AT-41532 at Other
Frequencies
The demo board and design
techniques presented here can be
used to build low noise amplifiers
for other frequencies in the VHF
through 1.9 GHz frequency range.
13
Ordering Information
Part Number
Increment
Comments
AT-41532-BLK
AT-41532-TR1
AT-41532-TR2
100
3000
10000
Bulk
7" Reel
13" Reel
Package Dimensions
SOT-323 Plastic Package
1.30 (0.051)
REF.
2.20 (0.087)
2.00 (0.079)
1.35 (0.053)
1.15 (0.045)
0.650 BSC (0.025)
0.425 (0.017)
TYP.
2.20 (0.087)
1.80 (0.071)
0.10 (0.004)
0.00 (0.00)
0.25 (0.010)
0.15 (0.006)
0.30 REF.
1.00 (0.039)
0.80 (0.031)
10°
0.30 (0.012)
0.10 (0.004)
0.20 (0.008)
0.10 (0.004)
14
Tape Dimensions and Product Orientation
For Outline SOT-323 (SC-70 3 Lead)
P
P2
D
P0
E
F
W
C
D1
t1 (CARRIER TAPE THICKNESS)
Tt (COVER TAPE THICKNESS)
K0
8° MAX.
A0
DESCRIPTION
5° MAX.
B0
SYMBOL
SIZE (mm)
SIZE (INCHES)
CAVITY
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
A0
B0
K0
P
D1
2.24 ± 0.10
2.34 ± 0.10
1.22 ± 0.10
4.00 ± 0.10
1.00 + 0.25
0.088 ± 0.004
0.092 ± 0.004
0.048 ± 0.004
0.157 ± 0.004
0.039 + 0.010
PERFORATION
DIAMETER
PITCH
POSITION
D
P0
E
1.55 ± 0.05
4.00 ± 0.10
1.75 ± 0.10
0.061 ± 0.002
0.157 ± 0.004
0.069 ± 0.004
CARRIER TAPE
WIDTH
THICKNESS
W
t1
8.00 ± 0.30
0.255 ± 0.013
0.315 ± 0.012
0.010 ± 0.0005
COVER TAPE
WIDTH
TAPE THICKNESS
C
Tt
5.4 ± 0.10
0.062 ± 0.001
0.205 ± 0.004
0.0025 ± 0.00004
DISTANCE
CAVITY TO PERFORATION
(WIDTH DIRECTION)
F
3.50 ± 0.05
0.138 ± 0.002
CAVITY TO PERFORATION
(LENGTH DIRECTION)
P2
2.00 ± 0.05
0.079 ± 0.002
www.semiconductor.agilent.com
Data subject to change.
Copyright © 1999 Agilent Technologies
5965-6167E (11/99)