General Purpose, Low Current NPN Silicon Bipolar Transistor Technical Data AT-41532 Features • General Purpose NPN Bipolar Transistor Optimized for Low Current, Low Voltage Applications at 900 MHz, 1.8 GHz, and 2.4 GHz • Performance (5 V, 5 mA) 0.9 GHz: 1 dB NF, 15.5 dB GA 1.8 GHz: 1.4 dB NF, 10.5 dB GA 2.4 GHz: 1.9 dB NF, 9 dB GA • Characterized for 3, 5, and 8 V Use • Miniature 3-lead SOT-323 (SC-70) Plastic Package • High Breakdown Voltage (can be operated up to 10 V) Applications • LNA, Oscillator, Driver Amplifier, Buffer Amplifier, and Down Converter for Cellular and PCS Handsets and Cordless Telephones • LNA, Oscillator, Mixer, and Gain Amplifier for Pagers • Power Amplifier and Oscillator for RF-ID Tag • LNA and Gain Amplifier for GPS • LNA for CATV Set-Top Box 3-Lead SC-70 (SOT-323) Surface Mount Plastic Package Description Agilent’s AT-41532 is a general purpose NPN bipolar transistor that has been optimized for maximum ft at low voltage operation, making it ideal for use in battery powered applications in cellular/PCS and other wireless markets. The AT-41532 uses the miniature 3-lead SOT-323 (SC-70) plastic package. Pin Configuration COLLECTOR 41 BASE EMITTER Optimized performance at 5 V makes this device ideal for use in 900 MHz, 1.8 GHz, and 2.4 GHz systems. Typical amplifier design at 900 MHz yields 1 dB NF and 15.5 dB associated gain at 5 V and 5 mA bias. High gain capability at 1 V and 1 mA makes this device a good fit for 900 MHz pager applications. A good noise match near 50 ohms at 900 MHz makes this a very user-friendly device. Moreover, voltage breakdowns are high enough to support operation at 10 V. The AT-41532 belongs to Agilent’s AT-4XXXX series bipolar transistors. It exhibits excellent device uniformity, performance, and reliability as a result of ionimplantation, self-alignment techniques, and gold metalization in the fabrication process. 2 AT-41532 Absolute Maximum Ratings Units Absolute Maximum[1] VEBO Emitter-Base Voltage V 1.5 VCBO Collector-Base Voltage V 20 VCEO Collector-Emitter Voltage Symbol Parameter Thermal Resistance:[2] θ jc = 350°C/W Notes: 1. Operation of this device above any one of these parameters may cause permanent damage. 2. TMOUNTING SURFACE = 25°C. V 12 IC Collector Current mA 50 PT Power Dissipation[2,3] mW 225 Tj Junction Temperature °C 150 TSTG Storage Temperature °C -65 to 150 3. Derate at 2.86 mW/°C for TMOUNTING SURFACE > 72°C. Electrical Specifications, TA = 25°C Symbol Units Min Typ Max hFE Forward Current Transfer Ratio Parameters and Test Conditions VCE = 5 V IC = 5 mA - 30 150 270 ICBO Collector Cutoff Current VCB = 3 V mA 0.2 IEBO Emitter Cutoff Current VEB = 1 V mA 1.0 Characterization Information, TA = 25°C Symbol NF Parameters and Test Conditions Noise Figure VCE = 5 V, IC = 5 mA GA Associated Gain VCE = 5 V, IC = 5 mA Units Min Typ f = 0.9 GHz f = 1.8 GHz f = 2.4 GHz dB 1.0 1.4 1.9 f = 0.9 GHz f = 1.8 GHz f = 2.4 GHz dB 15.5 10.5 9.0 P1dB Power at 1 dB Gain Compression (opt tuning) VCE = 5 V, IC = 25 mA f = 0.9 GHz dBm 14.5 G1dB Gain at 1 dB Gain Compression (opt tuning) VCE = 5 V, IC = 25 mA f = 0.9 GHz dB 14.5 Output Third Order Intercept Point, VCE = 5 V, IC =25 mA (opt tuning) f = 0.9 GHz dBm 25 Gain in 50 Ω system; VCE = 5 V, IC = 5 mA f = 0.9 GHz f = 2.4 GHz dB IP3 |S21E|2 12.5 13.25 5.2 3 AT-41532 Typical Performance 4.0 3.5 2 mA 5 mA NOISE FIGURE (dB) 2.5 2.0 1.5 1.0 2.5 2.0 1.5 1.0 0 0 0 1.0 2.0 3.0 1.0 FREQUENCY (GHz) 1.5 1.0 2.0 3.0 4.0 0 1.0 FREQUENCY (GHz) Figure 1. AT-41532 Typical Noise Figure vs. Frequency at 1 V, 1 mA. 2.0 16 2 mA 5 mA 8 2 mA 5 mA 12 GAIN (dB) GAIN (dB) 12 4 4.0 Figure 3. AT-41532 Typical Noise Figure vs. Frequency and Current at 5 V. 16 6 3.0 FREQUENCY (GHz) Figure 2. AT-41532 Typical Noise Figure vs. Frequency and Current at 2.7 V. 10 GAIN (dB) 2.0 0 0 4.0 2.5 0.5 0.5 0.5 2 mA 5 mA 3.0 NOISE FIGURE (dB) 3.0 3.0 NOISE FIGURE (dB) 3.5 3.5 8 4 8 4 2 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 0.5 4.0 1.0 1.5 FREQUENCY (GHz) 2.0 2.5 3.0 3.5 4.0 FREQUENCY (GHz) Figure 4. AT-41532 Associated Gain vs. Frequency at 1 V, 1 mA. 9 8 15 G1 dB (dB) P1 dB (dBm) 7 10 5 0 6 5 4 3 2 2.7 V 5V -5 2.7 V 5V 1 -10 0 0 5 10 15 20 COLLECTOR CURRENT (mA) Figure 7. AT-41532 P1 dB vs. Collector Current and Voltage (valid up to 2.4 GHz). 25 0 5 10 15 1.0 1.5 2.0 2.5 3.0 3.5 4.0 FREQUENCY (GHz) Figure 5. AT-41532 Associated Gain vs. Frequency and Current at 2.7 V. 20 0 0.5 20 COLLECTOR CURRENT (mA) Figure 8. AT-41532 G1 dB vs. Collector Current and Voltage (valid up to 2.4 GHz). 25 Figure 6. AT-41532 Associated Gain vs. Frequency and Current at 5 V. 4 AT-41532 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 1 V, IC = 1 mA Freq. S11 S21 S12 S22 GHz Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.5 0.75 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 0.787 0.697 0.620 0.554 0.538 0.543 0.559 0.561 0.545 0.534 0.544 0.563 0.597 0.655 0.703 -75 -104 -128 -166 -164 118 79 47 28 14 2 -10 -23 -34 -42 8.79 7.28 5.84 3.40 1.52 -1.06 -2.61 -3.06 -2.81 -2.46 -2.38 -2.49 -2.79 -3.39 -4.03 2.750 2.311 1.960 1.480 1.191 0.886 0.741 0.703 0.724 0.754 0.761 0.751 0.725 0.677 0.629 125 106 90 66 48 22 5 -7 -20 -35 -52 -68 -84 -100 -112 -20.18 -18.74 -18.40 -18.80 -18.69 -13.30 -8.03 -4.83 -3.11 -2.30 -2.08 -2.18 -2.52 -3.15 -3.76 0.098 0.116 0.120 0.115 0.116 0.216 0.397 0.574 0.699 0.768 0.787 0.778 0.748 0.696 0.649 49 38 31 30 42 60 47 24 0 -23 -44 -63 -80 -96 -110 0.860 0.785 0.734 0.678 0.653 0.620 0.568 0.487 0.398 0.362 0.407 0.467 0.523 0.593 0.665 -22 -28 -32 -40 -50 -73 -102 -137 -180 130 88 58 35 16 -6 Gassoc dB 9.4 7.6 6.7 5.7 4.6 3.5 2.1 AT-41532 Typical Noise Parameters, Common Emitter, Z O = 50 Ω, VCE = 1 V, IC = 1 mA Mag Ang Rn ohms 0.9 1.8 2.0 2.5 3.0 3.5 4.0 1.4 1.8 1.9 2.2 2.6 3.1 3.6 0.44 0.57 0.60 0.66 0.71 0.75 0.77 92 -183 -169 -140 -116 -95 -77 12.4 3.0 3.3 10.1 27.6 59.9 103.0 gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor S MAG = 21 (k ± √k2–1) S12 MSG = |S21| / |S12| k= 1 – |S11| 2 – |S22| 2 + |D|2 ; D = S11S22 – S12 S21 2 * |S12| |S21| 20 1.50 gmax dB(S|2,1|) k 16 1.25 12 1.00 8 0.75 4 0.50 0 0.25 -4 0 1 2 3 4 5 0 6 FREQUENCY (GHz) Figure 9. Gain vs. Frequency at 1 V, 1 mA. Note: dB(|S 21|) = 20 * log(|S 21|) k Fmin dB GAIN (dB) Γopt Freq. GHz 5 AT-32032 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 2.7 V, IC = 2 mA Freq. S11 S21 S12 S22 GHz Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.5 0.75 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 0.647 0.532 0.455 0.394 0.382 0.397 0.434 0.474 0.497 0.501 0.512 0.532 0.569 0.643 0.687 -82 -111 -134 -171 160 116 80 50 30 15 4 -9 -22 -32 -40 13.45 11.34 9.54 6.70 4.64 1.87 0.03 -1.20 -1.81 -1.88 -1.89 -1.99 -2.31 -2.37 -3.51 4.702 3.691 3.000 2.162 1.707 1.240 1.004 0.871 0.812 0.805 0.804 0.796 0.767 0.762 0.668 119 101 88 68 51 26 5 -10 -23 -36 -51 -67 -83 -97 -112 -23.97 -22.60 -21.87 -20.48 -18.50 -13.56 -9.26 -6.05 -3.84 -2.40 -1.73 -1.61 -1.86 -2.41 -3.10 0.063 0.074 0.081 0.095 0.119 0.210 0.344 0.498 0.643 0.759 0.819 0.831 0.808 0.758 0.700 52 46 46 52 59 61 50 32 11 -12 -34 -55 -74 -93 -107 0.808 0.737 0.696 0.658 0.643 0.627 0.604 0.556 0.470 0.377 0.361 0.411 0.476 0.562 0.639 -21 -24 -27 -33 -40 -59 -81 -108 -142 174 123 82 52 27 1 Gassoc dB 12.9 9.7 9.1 8.0 6.9 5.9 5.1 AT-32032 Typical Noise Parameters, Common Emitter, Z O = 50 Ω, VCE = 2.7 V, IC = 2 mA Mag Ang Rn ohms 0.9 1.8 2.0 2.5 3.0 3.5 4.0 1.2 1.6 1.7 1.9 2.2 2.5 2.9 0.35 0.48 0.51 0.60 0.65 0.70 0.74 100 -179 -165 -136 -112 -91 -74 8.7 3.3 3.7 8.9 21.0 42.0 72.0 20 1.2 gmax dB(S|2,1|) k 16 12 0.8 8 0.6 4 0.4 0 0.2 -4 0 gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor S MAG = 21 (k ± √k2–1) S12 MSG = |S21| / |S12| k= 1 – |S11| 2 – |S22| 2 + |D|2 ; D = S11S22 – S12 S21 2 * |S12| |S21| 1 1 2 3 4 5 0 6 FREQUENCY (GHz) Figure 10. Gain vs. Frequency at 2.7 V, 2 mA. Note: dB(|S 21|) = 20 * log(|S 21|) k Fmin dB GAIN (dB) Γopt Freq. GHz 6 AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 2.7 V, IC = 5 mA Freq. S11 S21 S12 S22 GHz Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.5 0.75 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 0.400 0.312 0.270 0.247 0.253 0.280 0.323 0.379 0.434 0.480 0.522 0.557 0.595 0.662 0.709 -102 -130 -152 175 149 112 80 55 38 24 10 -5 -19 -29 -39 17.03 14.15 11.97 8.82 6.67 3.86 2.07 0.80 -0.13 -0.72 -1.20 -1.64 -2.17 -2.38 -3.56 7.106 5.101 3.969 2.762 2.154 1.559 1.269 1.097 0.986 0.920 0.871 0.828 0.779 0.761 0.664 106 91 80 64 50 26 6 -12 -28 -43 -58 -72 -87 -99 -115 -25.97 -23.86 -22.09 -19.10 -16.60 -12.48 -9.19 -6.55 -4.50 -2.96 -2.07 -1.73 -1.86 -2.43 -3.03 0.050 0.064 0.079 0.111 0.148 0.238 0.347 0.471 0.595 0.711 0.788 0.820 0.808 0.756 0.705 59 60 61 63 62 55 43 27 9 -11 -32 -53 -73 -92 -107 0.671 0.615 0.588 0.564 0.553 0.535 0.514 0.472 0.398 0.309 0.299 0.366 0.449 0.533 0.633 -22 -24 -25 -30 -37 -54 -75 -99 -130 -174 131 87 55 27 3 Ang Rn ohms Gassoc dB 106 -165 -151 -126 -106 -86 -69 7.3 3.9 4.8 9.2 18.4 35.0 58.0 14.0 10.7 9.8 8.5 7.5 6.6 5.8 AT-41532 Typical Noise Parameters, Fmin dB 0.9 1.8 2.0 2.5 3.0 3.5 4.0 1.2 1.4 1.5 1.7 1.9 2.2 2.5 Γopt Mag 0.283 0.41 0.44 0.53 0.60 0.67 0.71 gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor S MAG = 21 (k ± √k2–1) S12 MSG = |S21| / |S12| k= 1 – |S11| 2 – |S22| 2 + |D|2 ; D = S11S22 – S12 S21 2 * |S12| |S21| 25 1.2 20 1 15 0.8 10 0.6 5 0.4 gmax dB(S|2,1|) k -5 0 1 2 0 0.2 3 4 5 0 6 FREQUENCY (GHz) Figure 11. Gain vs. Frequency at 2.7 V, 5 mA. Note: dB(|S 21|) = 20 * log(|S 21|) k Freq. GHz GAIN (dB) Common Emitter, Z O = 50 Ω, VCE = 2.7 V, I C = 5 mA 7 AT-41532 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 2. 7 V, IC = 10 mA Freq. S11 S21 S12 S22 Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.5 0.75 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 0.243 0.199 0.184 0.186 0.199 0.232 0.275 0.334 0.399 0.462 0.521 0.566 0.609 0.678 0.722 -122 -149 -169 161 139 107 79 56 41 27 14 -2 -18 -28 -39 18.39 15.19 12.88 9.64 7.44 4.61 2.84 1.60 0.66 -0.02 -0.67 -1.26 -1.88 -2.97 -3.38 8.310 5.751 4.408 3.034 2.354 1.700 1.387 1.202 1.079 0.997 0.926 0.865 0.805 0.711 0.678 97 85 76 62 49 27 6 -12 -29 -45 -60 -75 -90 -101 -116 -26.90 -23.99 -21.74 -18.35 -15.79 -11.93 -9.00 -6.66 -4.79 -3.30 -2.34 -1.89 -1.92 -2.32 -3.02 0.045 0.063 0.082 0.121 0.162 0.253 0.355 0.465 0.576 0.684 0.764 0.805 0.802 0.766 0.706 68 69 69 67 63 52 39 24 7 -12 -32 -52 -72 -91 -106 0.586 0.552 0.536 0.520 0.510 0.491 0.467 0.424 0.349 0.261 0.251 0.328 0.422 0.485 0.620 -21 -21 -23 -28 -35 -52 -72 -95 -125 -167 134 88 56 29 3 MSG = |S21| / |S12| k= 1 – |S11| 2 – |S22| 2 + |D|2 ; D = S11S22 – S12 S21 2 * |S12| |S21| 25 1.25 20 1 15 0.75 10 0.5 5 0.25 k gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor S MAG = 21 (k ± √k2–1) S12 GAIN (dB) GHz gmax dB(S|2,1|) k 0 0 1 2 3 4 5 0 6 FREQUENCY (GHz) Figure 12. Gain vs. Frequency at 2.7 V, 10 mA. Note: dB(|S 21|) = 20 * log(|S 21|) 8 AT-41532 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 2 mA Freq. S11 S21 S12 S22 GHz Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.5 0.75 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 0.659 0.540 0.456 0.387 0.371 0.387 0.428 0.472 0.494 0.490 0.489 0.506 0.541 0.634 0.670 -79 -108 -131 -169 162 116 79 49 28 13 2 -10 -22 -33 -39 13.43 11.41 9.64 6.81 4.74 1.91 0.01 -1.31 -1.96 -1.95 -1.81 -1.84 -2.07 -2.46 -3.23 4.696 3.720 3.034 2.190 1.726 1.247 1.001 0.860 0.798 0.799 0.812 0.810 0.788 0.754 0.689 121 103 89 69 53 27 7 -8 -20 -33 -48 -64 -80 -94 -109 -25.16 -23.78 -23.06 -21.69 -19.63 -14.40 -9.89 -6.47 -4.05 -2.36 -1.51 -1.28 -1.51 -2.09 -2.75 0.055 0.065 0.070 0.082 0.104 0.191 0.320 0.475 0.627 0.762 0.840 0.863 0.841 0.786 0.729 53 48 48 55 63 67 56 38 17 -5 -29 -51 -71 -90 -105 0.836 0.774 0.738 0.705 0.694 0.685 0.673 0.635 0.556 0.448 0.388 0.408 0.462 0.539 0.625 -18 -22 -24 -30 -37 -54 -75 -100 -131 -170 141 96 62 35 6 Rn ohms Gassoc dB 8.5 3.4 3.7 8.8 21.7 44.6 79.5 13.5 10.6 9.7 8.8 7.8 7.1 6.0 0.9 1.8 2.0 2.5 3.0 3.5 4.0 1.2 1.5 1.6 1.9 2.2 2.5 2.9 0.35 0.48 0.51 0.60 0.65 0.70 0.74 100 178 -166 -137 -112 -92 -73 gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor S MAG = 21 (k ± √k2–1) S12 MSG = |S21| / |S12| k= 1 – |S11| 2 – |S22| 2 + |D|2 ; D = S11S22 – S12 S21 2 * |S12| |S21| 25 1.2 20 1 15 0.8 10 0.6 5 0.4 gmax dB(S|2,1|) k -5 0 1 2 0 0.2 3 4 5 0 6 FREQUENCY (GHz) Figure 13. Gain vs. Frequency at 5 V, 2 mA. Note: dB(|S 21|) = 20 * log(|S 21|) k Common Emitter, Z O = 50 Ω, 5 V, IC = 2 mA Γopt Freq. Fmin GHz dB Mag Ang GAIN (dB) AT-41532 Typical Noise Parameters, 9 AT-41532 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 5 mA Freq. S11 S21 S12 GHz Mag Ang dB Mag Ang dB 0.5 0.75 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 0.402 0.304 0.255 0.225 0.227 0.256 0.301 0.359 0.414 0.457 0.496 0.531 0.573 0.633 0.696 -98 -124 -147 178 151 111 79 53 36 22 10 -4 -19 -28 -38 17.27 14.42 12.25 9.09 6.92 4.06 2.22 0.92 -0.02 -0.60 -1.00 -1.42 -1.89 -2.40 -3.32 7.303 5.260 4.095 2.848 2.218 1.596 1.291 1.111 0.997 0.933 0.891 0.849 0.805 0.759 0.682 107 92 82 65 52 28 8 -10 -26 -40 -55 -70 -85 -95 -113 -27.15 -25.04 -23.26 -20.23 -17.66 -13.38 -9.92 -7.07 -4.78 -2.97 -1.84 -1.37 -1.44 -2.03 -2.63 Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 5 mA Γopt Freq. Fmin Rn GHz dB ohms Mag Ang Gassoc dB S22 Mag 0.044 0.056 0.069 0.097 0.131 0.214 0.319 0.443 0.577 0.711 0.809 0.854 0.847 0.792 0.739 Ang Mag Ang 60 61 63 66 65 59 48 33 16 -4 -26 -49 -69 -88 -105 0.713 0.663 0.640 0.621 0.613 0.603 0.592 0.562 0.498 0.401 0.344 0.374 0.441 0.516 0.624 -19 -21 -23 -28 -34 -51 -69 -92 -120 -156 154 105 67 38 8 1.1 1.4 1.5 1.7 1.9 2.2 2.4 0.29 0.41 0.44 0.53 0.60 0.67 0.71 110 -167 -153 -127 -106 -86 -70 gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor S MAG = 21 (k ± √k2–1) S12 MSG = |S21| / |S12| k= 1 – |S11| 2 – |S22| 2 + |D|2 ; D = S11S22 – S12 S21 2 * |S12| |S21| 7.0 3.9 4.7 9.3 18.6 36.8 59.5 14.8 11.3 10.5 9.3 8.4 7.5 6.7 25 1.2 20 1 15 0.8 10 0.6 5 0.4 gmax dB(S|2,1|) k -5 0 1 2 0 0.2 3 4 5 0 6 FREQUENCY (GHz) Figure 14. Gain vs. Frequency at 5 V, 5 mA. Note: dB(|S 21|) = 20 * log(|S 21|) k 0.9 1.8 2.0 2.5 3.0 3.5 4.0 GAIN (dB) AT-41532 Typical Noise Parameters, 10 AT-41532 Typical Scattering Parameters, Common Emitter, Z O = 50 Ω, VCE = 5 V, IC = 10 mA Freq. S11 S21 S12 S22 Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.5 0.75 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 0.239 0.182 0.160 0.155 0.167 0.201 0.246 0.306 0.369 0.430 0.489 0.539 0.588 0.638 0.713 -113 -140 -162 164 140 105 76 54 40 27 14 -1 -16 -29 -38 18.69 15.51 13.20 9.95 7.75 4.87 3.05 1.79 0.86 0.23 -0.35 -0.91 -1.58 -3.09 -3.24 8.601 5.966 4.571 3.144 2.440 1.751 1.421 1.229 1.105 1.027 0.961 0.900 0.834 0.701 0.689 98 86 78 63 51 29 9 -10 -26 -42 -58 -73 -88 -102 -115 -28.05 -25.18 -22.94 -19.50 -16.89 -12.90 -9.80 -7.24 -5.11 -3.33 -2.11 -1.49 -1.45 -1.93 -2.58 0.040 0.055 0.071 0.106 0.143 0.226 0.324 0.434 0.555 0.682 0.785 0.842 0.846 0.801 0.743 69 70 71 69 66 57 45 31 14 -5 -26 -47 -68 -88 -104 0.641 0.611 0.597 0.585 0.578 0.566 0.553 0.523 0.461 0.366 0.308 0.342 0.419 0.501 0.616 -18 -19 -20 -26 -33 -49 -67 -88 -115 -149 161 110 70 40 9 MSG = |S21| / |S12| k= 1 – |S11| 2 – |S22| 2 + |D|2 ; D = S11S22 – S12 S21 2 * |S12| |S21| 25 1.25 20 1 15 0.75 10 0.5 5 0.25 k gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor S MAG = 21 (k ± √k2–1) S12 GAIN (dB) GHz gmax dB(S|2,1|) k 0 0 1 2 3 4 5 0 6 FREQUENCY (GHz) Figure 15. Gain vs. Frequency at 5 V, 10 mA. Note: dB(|S 21|) = 20 * log(|S 21|) 11 AT-41532 Application Information The AT-41532 is described in a low noise amplifier for use in the 800 to 900 MHz frequency range. The amplifier is designed for use with .032 inch thickness FR-4 printed circuit board material. 900 MHz LNA Design The amplifier is designed for a VCE of 5 volts and IC of 5 mA. and a minimum power supply voltage of 5.25 volts. Higher power supply voltages will require an additional resistance to be inserted at the power supply terminal. The amplifier schematic is shown in Figure 16. A component list is shown in Figure 17. The artwork including component placement is shown in Figure 18. C3 C2 L1 Q1 R6 INPUT Zo C1 L3 C4 OUTPUT Zo L2 R5 R1 C4 R2 R4 C5 VCC = 5.25 V C1,C4 10 pF chip capacitor C2 Open circuited stub – see text C3 2.7 pF chip capacitor C5 1000 pF chip capacitor L1 8 nH chip inductor (Coilcraft 1008CS-080) L2 Optional (see R1) L3 15 nH chip inductor (Coilcraft 1008CS-150) Q1 Agilent AT-41532 Silicon Bipolar Transistor R1 10K Ω chip resistor (may want to substitute a 180 nH chip inductor and 50 Ω resistor for lower noise figure , better low freq stability, then readjust R2) R2 48 K Ω chip resistor (adjust for rated Ic) R3 3.32 K Ω chip resistor R4 3.32 K Ω chip resistor R5 51.1 Ω chip resistor R6 1.1K Ω chip resistor (see text) Zo 50 Ω microstripline Biasing The bias network is designed for a nominal power supply voltage of 5.25 volts. Resistors R1 and R2 are used to adjust collector current. Resistor R4 can be attached to the junction of R5 and C5 to improve bias point stability. Figure 17. Component Parts List. R3 Figure 16. Schematic Diagram. The input matching network uses a series inductor for the noise match. Some fine tuning for lowest noise figure and improved input VSWR can be accomplished by adding capacitance at C2. The shunt C is accomplished with an open circuited stub while a chip inductor is used for the series element. The output impedance matching network is a high pass structure consisting of a series capacitor and shunt inductor. A resistor is paralleled across the shunt inductor to enhance broad band stability through 10 GHz. Bias insertion is accomplished through the use of the shunt inductor appropriately bypassed. Surface mount Coilcraft inductors were chosen for their small size. AT-3XX32 AT-4XX32 IN 01/98 AJW .062 FR-4 OUT Vcc Figure 18. 1X Artwork showing Component Placement. Performance The measured gain of the completed amplifier is shown in Figure 19. The gain varies from 14 to 15 dB over the 800 to 900 MHz frequency range. Noise figure versus frequency is shown in Figure 20. Best performance occurs at 850 MHz providing a near 1 dB noise figure. 12 27 Ω range and has similar effects on circuit stability. A third alternative is to re-optimize the output match for power as opposed to matching for lowest output VSWR. This may make the output return loss less than 10 dB but it would enhance power output. 0 -2 RETURN LOSS (dB) Measured input and output return loss is shown in Figure 21. The input return loss is 10 dB at 850 MHz and can be improved with slight tuning at C2. Output return loss was measured at almost 10 dB at 850 MHz. -4 -6 -8 -10 16 -12 GAIN (dB) 14 -14 500 Input Output 600 700 800 900 1000 FREQUENCY (MHz) 12 Figure 21. Input/Output Return Loss. 10 8 6 500 600 700 800 900 1000 FREQUENCY (MHz) Figure 19. Gain vs Frequency. There is considerable tuning interaction between input and output matching networks in any single stage amplifier. Having a somewhat better input return loss coincident with low noise figure may necessitate a compromise in output return loss. 1.6 NOISE FIGURE (dB) 1.5 1.4 1.3 1.2 1.1 1 500 600 700 800 900 1000 FREQUENCY (MHz) Figure 20. Noise Figure vs Frequency. Output intercept point, IP3, was measured at 850 MHz to be +12 dBm. Removing the 1.1 KΩ resistor at R6 increases IP3 to +13.6 dBm. Resistor R6 was originally added to enhance stability; caution is urged when removing this resistor or increasing its value without careful analysis. Another alternative to the shunt resistor R6 would be to incorporate a resistor in series with the transistor collector lead. This resistor would be in the 10 to Modifications to Original Demo Board The original demo board dated 01/98 requires some modification to work as described in this application note. The modification is to add resistor R6 in series with the collector lead. This is accomplished by cutting the etch at the output of Q1 such that resistor R6 can be placed on the circuit board as shown in Figure 17. Inductor L3 will then have be placed at a 90 degree angle with respect to its original intended location. L3 is then connected to the junction of R6 and L4 with a small piece of wire or etch. Using the AT-41532 at Other Frequencies The demo board and design techniques presented here can be used to build low noise amplifiers for other frequencies in the VHF through 1.9 GHz frequency range. 13 Ordering Information Part Number Increment Comments AT-41532-BLK AT-41532-TR1 AT-41532-TR2 100 3000 10000 Bulk 7" Reel 13" Reel Package Dimensions SOT-323 Plastic Package 1.30 (0.051) REF. 2.20 (0.087) 2.00 (0.079) 1.35 (0.053) 1.15 (0.045) 0.650 BSC (0.025) 0.425 (0.017) TYP. 2.20 (0.087) 1.80 (0.071) 0.10 (0.004) 0.00 (0.00) 0.25 (0.010) 0.15 (0.006) 0.30 REF. 1.00 (0.039) 0.80 (0.031) 10° 0.30 (0.012) 0.10 (0.004) 0.20 (0.008) 0.10 (0.004) 14 Tape Dimensions and Product Orientation For Outline SOT-323 (SC-70 3 Lead) P P2 D P0 E F W C D1 t1 (CARRIER TAPE THICKNESS) Tt (COVER TAPE THICKNESS) K0 8° MAX. A0 DESCRIPTION 5° MAX. B0 SYMBOL SIZE (mm) SIZE (INCHES) CAVITY LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER A0 B0 K0 P D1 2.24 ± 0.10 2.34 ± 0.10 1.22 ± 0.10 4.00 ± 0.10 1.00 + 0.25 0.088 ± 0.004 0.092 ± 0.004 0.048 ± 0.004 0.157 ± 0.004 0.039 + 0.010 PERFORATION DIAMETER PITCH POSITION D P0 E 1.55 ± 0.05 4.00 ± 0.10 1.75 ± 0.10 0.061 ± 0.002 0.157 ± 0.004 0.069 ± 0.004 CARRIER TAPE WIDTH THICKNESS W t1 8.00 ± 0.30 0.255 ± 0.013 0.315 ± 0.012 0.010 ± 0.0005 COVER TAPE WIDTH TAPE THICKNESS C Tt 5.4 ± 0.10 0.062 ± 0.001 0.205 ± 0.004 0.0025 ± 0.00004 DISTANCE CAVITY TO PERFORATION (WIDTH DIRECTION) F 3.50 ± 0.05 0.138 ± 0.002 CAVITY TO PERFORATION (LENGTH DIRECTION) P2 2.00 ± 0.05 0.079 ± 0.002 www.semiconductor.agilent.com Data subject to change. Copyright © 1999 Agilent Technologies 5965-6167E (11/99)