PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor 11 :49 :25 PM PMC-2001646 ay ,1 9S ep PALADIN-10 tem be r, 20 02 PM7800 Data Sheet PROPRIETARY AND CONFIDENTIAL Released Issue 4: May, 2002 Do wn loa de db yV inv ef uo fo liv ett io nT hu rsd Digital Correction Signal Processor PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor :25 PM PMC-2001646 :49 PUBLIC REVISION HISTORY Issue Date Details of Change Issue 1 January, 2001 Document created. Issue 2 March, 2001 Modified voltage tolerances for VDD and VDDI. Modified CPUMODE2 connection (tied to VDD rather than GND). Minor editorial changes. Issue 3 July, 2001 • Removed I2C references throughout to reflect the fact that I2C is not supported. • Changed Figure 3-1 on page 7: changed GND to VSS and VCC to VDD to match labels used in pin descriptions. • Text edits in Section 5.1 on page 16. • Modified procedure for Programming the WAIT_N Register (Section 5.1.2 on page 23). • Inserted text and diagram regarding relative timing of SPI inputs in Section 5.3 on page 26. • Added section (Section 5.4.2 on page 31) describing bug affecting Power_Attenuator_Delay and Power_Correction_Delay circuits. Modified Figure 5-25 on page 33 to reflect this issue. • Revision number incremented to 1; i.e., rev_code changed to 178000CD. Affects Section 5.6 on page 34 and Table 6-3 on page 41. • Changed VT+ and VT- values to 2.2V min and 0.8V max, respectively, in DC Characteristics. Also, changed VTH to 0.87V typ. • IIH text edit in Table 8-1 on page 51. • added IDDOP (VDDI) and IDDOP (VDDO) in DC Characteristics. • Changed notes at start of AC Timing. • Removed Relative Timing Diagrams and table for serial interface in AC Timing. • Changed min/max loading from 0/40pF to 15/30pF on toe, tdp, toz, and trp, in Table 9-2 on page 54; toe, in Table 9-3 on page 55; and toe, top, and toz in Table 9-7 on page 59. Issue 4 May, 2002 Added patent numbers, corrected connections to DSP, added GPIO 18. Do wn loa de db yV inv ef uo fo liv ett io nT hu rsd ay ,1 9S ep tem be r, 20 02 11 Issue No. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :49 :25 CONTENTS 11 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 02 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 PALADIN Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 PALADIN-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.2 Signal Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 PM7800 DCSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.2 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.5 Patent Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1 CPU, Address Decoder and Miscellaneous Interfaces . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1.1 Functional Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.1.2 Programming the WAIT_N Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 Data Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2.1 VREF Interface and FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2.2 VOBS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2.3 VD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2.4 Dual-Clock System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2.5 Single-Clock System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.1 Serial Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4 Hop Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.4.1 Power and Carrier Values and Hop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.4.2 Bug that affects Power_Attenuator_Delay and Power_Correction_Delay . . . 31 5.5 GPIO Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.5.1 Status Output Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.5.2 Power Attenuator Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.5.3 Watchdog Timer Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.6 JTAG Test Access Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Do wn loa de db yV inv ef uo fo liv ett io nT hu rsd ay ,1 9S ep tem be r, 20 1 6 Test Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE i PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 9S 7 ep tem be r, 20 02 11 :49 :25 6.1 Full Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.2 RAMBIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.3 OE_N Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.4 JTAG Boundary Scan, IEEE 1149.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.4.1 TAP Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.4.2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.4.2.1 Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.4.2.2 Identification register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.4.2.3 Boundary Scan Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.4.3 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.4.4 Boundary Scan Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ,1 8 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 uo fo liv ett io nT hu rsd ay 9 AC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 9.1 RESET_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 9.2 CPU Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9.3 VREF, VOBS, VD Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 9.3.1 Dual-Clock System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 9.3.2 Single-Clock System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 9.4 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 9.4.1 Serial Interface AC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 9.5 GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9.6 JTAG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 ef 10 Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Do wn loa de db yV inv 11 Mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE ii PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :25 LIST OF TABLES Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin Description and Cell Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 PM7800 Connections to C54xx Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 PM7800 Connections to Address Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Miscellaneous PM7800 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Functional Timing for WAIT_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Programming the WAIT_N Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Full-Scan Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Input Observation Cell (IN_CELL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 D.C.Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 RESET_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 CPU Interface - DCLK Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 CPU Interface - CPUCLK Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Dual-Clock System timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Single-Clock System timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 AC Timing for Serial Inputs (SCLK, SCS_N, SD, HOP_N) . . . . . . . . . . . . . . . 58 GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 JTAG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Do wn loa de db yV inv ef uo fo liv ett io nT hu rsd ay ,1 9S ep tem be r, 20 02 11 :49 Table 1-1 Table 4-1 Table 5-1 Table 5-2 Table 5-3 Table 5-4 Table 5-5 Table 6-1 Table 6-2 Table 6-3 Table 6-4 Table 7-1 Table 8-1 Table 9-1 Table 9-2 Table 9-3 Table 9-4 Table 9-5 Table 9-6 Table 9-7 Table 9-8 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE iii PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 loa de db yV inv ef uo fo liv ett io nT hu rsd ay ,1 9S ep tem be r, 20 02 11 :49 System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PM7800 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Diagram (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 CPU, Address Decoder and Miscellaneous Interfaces. . . . . . . . . . . . . . . . . . . . 16 Read Cycle (CPUMODE0 = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Read Cycle (CPUMODE0 = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Back-to-Back Read Cycles (CPUMODE0 = 0) . . . . . . . . . . . . . . . . . . . . . . . . . 20 Back-to-Back Read Cycles (CPUMODE0 = 1) . . . . . . . . . . . . . . . . . . . . . . . . . 20 Back-to-Back Write Cycles (CPUMODE0 = 0) . . . . . . . . . . . . . . . . . . . . . . . . . 21 Back-to-Back Write Cycles (CPUMODE0 = 1) . . . . . . . . . . . . . . . . . . . . . . . . . 21 WAIT_N Timing - Reads (CPUMODE0 = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . 22 WAIT_N Timing - Reads (CPUMODE0 = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 22 WAIT_N Timing - Writes (CPUMODE0 = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . 22 WAIT_N Timing - Writes (CPUMODE0 = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Data Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Dual-Clock System timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Single-Clock System timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Serial (SPI), Hop, and GPIO Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Relative Timing of SPI Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SPI carrier_stream (spi_clock_polarity = 0, falling edge of SCLK is active) . . 28 SPI carrier_stream (spi_clock_polarity = 1, rising edge of SCLK is active) . . . 28 SPI power_stream (spi_clock_polarity = 0, falling edge of SCLK is active) . . . 28 SPI power_stream (spi_clock_polarity = 1, rising edge of SCLK is active) . . . 28 SPI word_stream (spi_clock_polarity = 0, falling edge of SCLK is active) . . . 29 SPI word_stream (spi_clock_polarity = 1, rising edge of SCLK is active) . . . . 29 SPI hop_stream (spi_clock_polarity = 0, falling edge of SCLK is active) . . . . . 29 SPI hop_stream (spi_clock_polarity = 1, rising edge of SCLK is active) . . . . . 30 Power Attenuator Outputs - shown with active-low pulse on GPIO17 . . . . . . . 33 Watchdog Timer Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 JTAG and Scan Test Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Boundary-Scan Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TAP Controller Finite State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Output Cell (OUT_CELL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Bi-directional Cell (IO_CELL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Layout of Output Enable and Bidirectional Cells . . . . . . . . . . . . . . . . . . . . . . . . 49 RESET_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 CPU Interface - DCLK Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 CPU Interface - CPUCLK Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Dual-Clock System timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Single-Clock System timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 AC Timing for Serial Inputs (SCLK, SCS_N, SD, HOP_N) . . . . . . . . . . . . . . . 58 GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 wn Do Figure 1-1 Figure 2-1 Figure 3-1 Figure 5-1 Figure 5-2 Figure 5-3 Figure 5-4 Figure 5-5 Figure 5-6 Figure 5-7 Figure 5-8 Figure 5-9 Figure 5-10 Figure 5-11 Figure 5-12 Figure 5-13 Figure 5-14 Figure 5-15 Figure 5-16 Figure 5-17 Figure 5-18 Figure 5-19 Figure 5-20 Figure 5-21 Figure 5-22 Figure 5-23 Figure 5-24 Figure 5-25 Figure 5-26 Figure 5-27 Figure 6-1 Figure 6-2 Figure 6-3 Figure 6-4 Figure 6-5 Figure 9-1 Figure 9-2 Figure 9-3 Figure 9-4 Figure 9-5 Figure 9-6 Figure 9-7 :25 LIST OF FIGURES PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE iv PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 JTAG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Do wn loa de db yV inv ef uo fo liv ett io nT hu rsd ay ,1 9S ep tem be r, 20 02 11 :49 :25 Figure 9-8 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE v PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor Do wn loa de db yV inv ef uo fo liv ett io nT hu rsd ay ,1 9S ep tem be r, 20 02 11 :49 :25 PM PMC-2001646 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE vi PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :25 1 Introduction 11 :49 This document describes the features, functionality, and physical characteristics of the PM7800 Digital Correction Signal Processor, which forms part of the PALADIN-10 system. 20 02 1.1 Definitions Definitions Abbreviation Definition ep Table 1-1 tem be r, The following table defines the terms and abbreviations used in this data sheet. Adaptive Control Processing Compensation Engine ADC Analog to Digital Converter AQM Analog Quadrature Modulator BGA Super Ball Grid Array, the type of package used by this chip BIST Built-In Self-Test BTS Base Transceiver Station (Node B in WCDMA) CMOS Complementary Metal Oxide Semiconductor CPU Central Processing Unit - in this context, the CPU is the ACPCE and the terms are used interchangeably DAC Digital to Analog Converter DCSP Digital Correction Signal Processor DQM Digital Quadrature Modulator DSP Digital-Signal Processor EDGE Enhanced Data Rates for GSM Evolution - 3rd generation GSM (Global System for Mobile Communications) FIFO First-In, First-Out - a queuing mechanism GPIO General-Purpose Input-Output pin GSM Global System for Mobile Communications RRME WCDMA ,1 ay rsd hu nT io ett liv fo uo ef inv yV db de loa wn RAM Do NC 9S ACPCE No Connect, indicates an unused pin Random-Access Memory Radio Resource Management Entity Wideband Code Division Multiple Access PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 1 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 :25 1.2 PALADIN Technologies 20 02 11 :49 PALADIN is a family of distortion elimination chip technologies that enables the development of higher performance, higher efficiency 2G and 3G base stations that utilize fewer and less expensive components. Based on proprietary Digital Signal Processing (DSP) architectures and techniques, PALADIN products feature: tem be r, • Digital Adaptive Predistortion for wideband amplifier linearization; • Digital Correction for Analog Quadrature Modulation (AQM) distortion; and • Constant-Gain Mode to facilitate operation at higher efficiency. rsd ay ,1 9S ep Emerging 3G wireless services require high capacity radio networks to deliver the high volume multi-media data traffic that is central to the new "wireless internet" paradigm. High spectral efficiency, the ability to maximize the data-carrying capacity of a limited amount of licensed spectrum, will be key to the success of 3G radio networks. However, spectral efficiency is fundamentally limited by distortion in the analog transmitter and power amplifier components of the Base Transceiver Station (BTS). liv ett io nT hu PALADIN products eliminate distortion in the transmitter chain and power amplifier using fully digital methods, permitting designers to replace many expensive and difficult to manufacture analog IF and RF sub-systems, components which are often required to control distortion and aggregate signals in many existing BTS designs. de 1.3 PALADIN-10 db yV inv ef uo fo In particular, PALADIN can transform an inexpensive, simple, narrow-band Class AB power amplifier into a wide-band, multi-carrier capable, high efficiency, digitally controlled amplifier unit which can replace the expensive, low efficiency, feedforward-based multi-carrier power amplifiers (MCPA) commonly used in many current 3G BTS designs. Furthermore, PALADIN opens the door to the development of new BTS architectures that could feature "standard sockets" for multiple air interfaces, multiple transmitter/amplifier "hot swap" redundancy, multiple amplifier efficiency management, and smart antenna transceivers. Do wn loa PALADIN-10 is a wideband transceiver linearizer and distortion elimination chip solution for multi-carrier high power radio transmitter applications. Based on high speed digital signal processing (DSP), PALADIN-10 provides digital adaptive predistortion and preconditioning for complex modulation signals with instantaneous bandwidths up to 10MHz. PALADIN-10 consists of (1) the PM7800 Digital Correction Signal Processor (DCSP) chip and (2) the Adaptive Control Processor Compensation Engine (APCE) running on an industry-standard programmable DSP1. 1. TMS320C54xx PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 2 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :25 1.3.1 System Diagram tem be Basestation Modem r, 20 02 11 :49 Figure 1-1 shows a simplified system diagram of PALADIN-10 operating in the transmitter chain of a typical multi-carrier base transceiver subsystem (BTS). Vobs hu RF Downconverter Observation Signal Path PALADIN Adaptive Control SPI Processor Compensation Engine (ACPCE) nT Command Interface Main Amp io local BTS Controller BSC or RRME rsd ay CPU RF Upconverter 9S GPIO SPI HOP VD ep PM7800 PALADIN-10 DCSP ,1 Vref ADC Baseband signal DAC Open Loop Predistortion Signal Path fo liv ett TMS320C5410 System Diagram yV inv ef uo Figure 1-1 Do wn loa de db The PM7800 DCSP chip, also called the PALADIN predistortion kernel, is responsible for all the real-time operations on the complex modulation baseband signal, from the base station modem, that predistort and precondition it such that the modified signal at the main or power amplifier (PA) will cancel out the distortions due to non-linearities in the PA and transmitter chain. The PM7800 DCSP chip supports all 3G and 2G air interfaces, including WCDMA, cdma2000 and IS-95, and GSM/EDGE. The PM7800 DCSP chip is the very high speed “hardware” digital signal processor component of the PALADIN-10 system. The PALADIN ACPCE, also called the PALADIN predistortion firmware, is responsible for carrying out all the nonreal-time complex computations necessary to generate predictive parameters used inside the PM7800 DCSP. The PALADIN ACPCE is also responsible for control functions and acts as the Master, taking commands from the base station controller (BSC) or some radio resource management entity (RRME) and controlling the operation and functioning of the PM7800 DCSP chip. The ACPCE runs on an external programmable DSP processor chip (TMS320C5410), also referred to as the CPU. The ACPCE is fully software upgradeable via a PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 3 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 11 :49 :25 serial interface from the BSC or RRME. The current version of the ACPCE supports the WCDMA air interface standard only. Versions supporting the other 2G and 3G air standards will be provided as software updates. The PALADIN-10 ACPCE is the highly complex adaptive “software” digital signal processor component of the PALADIN-10 system. tem be r, The signal flow through the PALADIN-10 system is as follows: 20 02 1.3.2 Signal Flow rsd ay ,1 9S ep In the forward direction, the composite (digitally combined single or multi-carrier complex baseband) signal from the base station modem enters the PM7800 through the Vref port, where it is interpolated to the correct rate, predistorted by the Digital Correction Signal (DCSP) Processor core using parameters provided by the Adaptive Control Processor Compensation Engine (ACPCE), and exits through the VD port. The predistorted signal output at the VD port is converted to analog, up-converted, amplified, and applied to the antenna. This is called the open-loop predistortion signal path, which is sometimes referred to as the transmit path or upconversion path. fo liv ett io nT hu In the reverse direction, a small portion of the amplified signal is downconverted, re-sampled and re-digitized, and enters the PM7800 through the Vobs port. This is called the observation or sampling signal path, and is sometimes referred to as the downconversion path. The PM7800 concurrently captures the baseband signal (Vref) and observed signal (Vobs) for analysis by the Adaptive Control Processor Compensation Engine (running on a TMS320C5410 DSP). The CPU analyzes the captured data to monitor system performance, and adjusts the internal parameters of the PM7800 DCSP accordingly. uo 1.4 PM7800 DCSP yV inv ef The PM7800 DCSP chip is the very high speed “hardware” digital signal processor component of the PALADIN-10 system. The remainder of this document describes the PM7800 DCSP chip only. wn predistortion kernel for linearization of power-amplifiers in wireless base-stations up to 80MHz data-rate interpolated up-conversion (1:N, where 1<=N<=10) of baseband input to the data-rate generic 16-bit microprocessor bus interface for configuration, control, and monitoring SPI serial interface for update of power and carrier values 48 general-purpose IO pins, eight of which are edge-triggered interrupt sources standard five-signal IEEE 1149.1 JTAG test port for boundary scan board test purposes low-power 1.8V CMOS core logic with 3.3V CMOS/TTL compatible digital inputs and digital outputs • Industrial temperature range (-40C to +85C) Do • • • • • • • • loa 1.4.1 Features de db The ACPCE is described in a companion document: PMC-2002272, “PALADIN-10/PALADIN15 ACPCE Firmware User Manual.” PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 4 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :25 1.4.2 Interfaces 11 r, 20 02 Baseband interface to the base station modem (Vref) Digital IF or Digital Baseband interface to DAC(s) and RF Upconverter (VD) Digital IF or Digital Baseband interface from ADC(s) and RF Downconverter (Vobs) GPIO and Serial (SPI) interface for auxiliary monitor and control CPU interface to ACPCE processor (external C54xx DSP) tem be • • • • • :49 The major interfaces to the PM7800 DCSP include: 9S ep Note: The command interface to the BSC or RRME is through an SPI (serial) interface on the CPU (TMS320C5410). The command interface is separately detailed in the companion document: PMC-2002272, “PALADIN-10/PALADIN-15 ACPCE Firmware User Manual.” ,1 1.4.3 Applications nT hu rsd ay • WCDMA Base Transceiver Subsystems (BTS) • CDMA2000 BTS (requires firmware upgrade) • GSM/TDMA/EDGE BTS (requires firmware upgrade) ett io 1.4.4 References liv 1. TMS320VC5410 Fixed-Point Digital Signal Processor (Texas Instruments) uo fo 2. Section 8: Synchronous Serial Peripheral Interface, M68HC11 Reference Manual (Motorola) inv ef 3. PMC-2002272, “PALADIN-10/PALADIN-15 ACPCE Firmware User Manual.” yV 1.4.5 Patent Information wn loa de US Patent 5,990,734 US Patent 5,990,738 US Patent 6,054,894 US Patent 6,054,896 US Patent 6,342,810 US Patent 6,356,146 B1 Do • • • • • • db The technology discussed in this document is protected by the following Patents: Other relevent Patents and Patent Applications may also exist. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 5 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :25 2 Block Diagram 02 11 :49 A block diagram of the PM7800 DCSP, showing the major interfaces is shown below as: V V ref D vd_i[15:0] vd_q[15:0] tem be vref_i[15:0] vref_q[15:0] from Baseband Modem fo dat[15:0] strb1_n strb2_n cpuclk uo (MSTRB*) R/(W*) inv ef CLKOUT yV nT liv adr[17:0] cs1_n cs2 cpumode[4:0] ep gpio[23:0] gpio[47:24] hop_n sd sclk scs_n tck trstb tms tdi tdo scansel scanen oe_n JTAG Scan Test PM7800 Block Diagram Do wn loa de Figure 2-1 CPU Interface ett A18-A16 A14-A0 D15-D0 db io wait_n irq_n READY (INT3*) hu cs0_n (PS*) from ACPCE (TMS320C54xx) rsd ay ,1 dclk refclk from Address Decoder vobs_i[15:0] 9S obs to DAC(s) & RF from ADC(s) & RF vobs_q[15:0] V reset_n mute_n r, vd_fmt 20 PM7800 DCSP 3 Pin Diagram The PM7800 is packaged in a 304-pin SBGA with a body size of 31mm x 31mm. The following pin diagram shows the pinout from the ball-side of the package. Note that, for readability, the aspect ratio of the diagram has been changed. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 6 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 7 NC NC VD_Q13 VD_Q10 VD_Q8 VD_Q4 VSS DCLK NC VDDI VSS VD_Q5 VSS VD_I2 VD_I3 VDD VD_I6 VDDI VDD VD_I8 VD_I9 VSS VD_I12 VSS VSS VD_I14 VD_I15 MUTE_N GPIO0 VSS GPIO45 GPIO5 GPIO3 GPIO46 GPIO6 GPIO4 GPIO47 VSS GPIO7 VD_Q0 VDD VSS GPIO42 VSS VDD ADR0 GPIO43 CPUMODE3 VDD VDDI VDD VD_Q2 VD_Q6 VDD VD_Q11 VD_Q14 VDD VD_I0 VD_I4 VDD VD_I10 GPIO1 VDD VDDI VDD VD_FMT GPIO10 VDDI ADR2 ADR1 GPIO44 GPIO8 GPIO11 VDDI VSS ADR3 ADR4 VDD VDD ADR5 ADR6 ADR7 ADR8 VSS ADR9 ADR10 ADR11 VDDI 15 ADR12 ADR13 ADR14 VDD VDDI ADR15 ADR16 ADR17 CPUCLK CS0_N CS1_N CS2 VOBS_I15 11 VSS STRB1_N STRB2_N VDD WAIT_N IRQ_N DAT0 DAT1 DAT2 DAT3 DAT4 DAT5 9 VDDI DAT6 DAT7 VDD VSS DAT8 DAT9 DAT10 7 VSS 6 VDDI 5 DAT11 DAT12 DAT13 DAT14 VDD VSS DAT15 GPIO41 VDD GPIO18 GPIO16 VDDI GPIO38 GPIO39 GPIO40 RESET_N GPIO26 GPIO21 VDD VSS GPIO20 3 GPIO28 GPIO27 GPIO23 VSS VDD VSS 2 VSS VDDI GPIO25 GPIO22 VSS VDD 1 VREF_I2 VREF_I5 VREF_I7 VREF_Q14 VREF_Q15 VREF_I1 VREF_I4 VREF_I6 VREF_I10 VREF_I11 VSS REFCLK VDDI VREF_I8 VSS GPIO37 CPUMODE2 GPIO36 VSS VDD CPUMODE0 GPIO30 VSS VDD VSS GPIO33 GPIO31 W V U T R P N M L K J H G F E D C B A VDD VSS GPIO35 GPIO34 AC AB :49 Y :A2A5 GPIO32 VSS VREF_Q0 VSS VREF_Q5 VREF_Q9 11 GPIO29 SCLK VREF_Q3 VREF_Q4 VREF_Q8 02 VDDI SCS_N VREF_Q2 VDDI VREF_Q7 20 CPUMODE1 VDD SD VDD HOP_N r, VREF_Q1 VDD VREF_Q6 VREF_Q10 VREF_Q11 VREF_Q12 VREF_Q13 VDD VREF_I0 VREF_I3 VDD VREF_I9 VREF_I12 VREF_I13 VREF_I14 VREF_I15 VDD GPIO24 VDD GPIO19 GPIO17 GPIO15 4 tem be ep 9S VOBS_Q9 VOBS_Q10 VOBS_Q13 VOBS_Q11 VOBS_Q14 VOBS_Q15 VOBS_Q12 ,1 VOBS_Q6 VOBS_Q7 VOBS_Q8 VSS 8 ay rsd VDD VOBS_Q3 VOBS_Q4 VOBS_Q5 hu VDDI VOBS_Q0 VOBS_Q1 VOBS_Q2 10 nT io VOBS_I12 ett VDD VOBS_I10 VOBS_I13 VOBS_I11 VOBS_I14 VSS 12 liv fo VOBS_I6 VOBS_I7 VOBS_I8 VOBS_I9 13 uo VOBS_I2 VOBS_I3 VOBS_I4 VOBS_I5 14 ef inv VDD VOBS_I0 VOBS_I1 yV TCK TRSTB TMS VSS 16 db GPIO14 de TDI GPIO13 loa SCANSEL 17 SCANEN VSS 18 TDO wn OE_N Do GPIO12 19 PM PMC-Sierra, Inc. CPUMODE4 NC NC VD_Q3 VD_Q7 VD_Q9 VD_Q12 VD_Q15 NC VD_I1 VD_I5 VD_I7 VD_I11 VD_I13 GPIO2 NC NC VDD VSS GPIO9 20 ISSUE 4 VD_Q1 VSS VDD 21 Pin Diagram (Bottom View) PMC-2001646 VSS 22 23 Figure 3-1 Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Digital Correction Signal Processor PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 Pin Name Type Pin # :49 Pin Description and Cell Types Default Functional Description 02 CPU Interface (47) 11 Table 4-1 :25 4 Pin Description I AB12 Hi-Z This signal is either used as an access strobe or as a write strobe, depending on the setting of the CPUMODE0 pin. If the CPUMODE0 pin is connected to VSS, this signal is treated as an access strobe, if the CPUMODE0 pin is connected to VDD, then this strobe is treated as a WRITE_N strobe. STRB2_N I AA12 Hi-Z This signal is either used as an Read/Write_N cycle type indication or as a read strobe, depending on the setting of the CPUMODE0 pin. If the CPUMODE0 pin is connected to VSS, this signal is treated as an Read/Write_N indication, if the CPUMODE0 pin is connected to VDD, then this strobe is treated as a READ_N strobe. CS0_N I AB13 Hi-Z This signal is an active-low chip select. All three chip selects must be asserted for the chip to be accessed. CS1_N I AA13 Hi-Z This signal is an active-low chip select. All three chip selects must be asserted for the chip to be accessed. CS2 I Y13 Hi-Z This signal is an active-high chip select. All three chip selects must be asserted for the chip to be accessed. ADR[17:0] I Y14, AA14, AB14, AA15, AB15, AC15, Y16, AA16, AB16, Y17, AA17, AB17, AC17, AA18, AB18, AB19, AA19, AC20 Hi-Z This is the eighteen-bit word-address bus. The bus addresses 256k 16-bit words (512Kbytes) in the PM7800. Do wn loa de db yV inv ef uo fo liv ett io nT hu rsd ay ,1 9S ep tem be r, 20 STRB1_N PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 8 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Pin Name Type Pin # Default :25 Pin Description and Cell Types Functional Description :49 Table 4-1 Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 IO AB6, Y7, AA7, AB7, AC7, Y8, AA8, AB8, AA9, AB9, Y10, AA10, AB10, AC10, Y11, AA11 Hi-Z This is the 16-bit data bus. WAIT_N O AC11 Output High This is the external wait signal, required when DCLK on the PM7800 is slow. This output has programmable timing. See Programming the WAIT_N Register section 5.1.2. IRQ_N O AB11 Output High This is an active-low interrupt request pin. CPUCLK I AC13 Hi-Z CPU Clock Input. This is a Schmitt-trigger input. CPUMODE0 I Y3 Hi-Z This pin configures the strobe-signalling mode of the PM7800. See CPU, Address Decoder and Miscellaneous Interfaces section 5.1. CPUMODE1 I AA4 Hi-Z CPUMODE2 I AB4 Hi-Z CPUMODE3 I AA20 CPUMODE4 I If this pin is connected to VDD, the WAIT circuit deactivates the internal version of the CPU write strobe for a programmable number of CPUCLK cycles. See CPU, Address Decoder and Miscellaneous Interfaces section 5.1. This input is reserved and must be connected to VDD. This pin selects a mode of operation that can be used to support processors, that require the read strobe and write strobe to be sampled on a specific edge of CPUCLK. See CPU, Address Decoder and Miscellaneous Interfaces section 5.1. Y21 Hi-Z This pin enables additional delay on the WAIT_N output to provide more hold time. See CPU, Address Decoder and Miscellaneous Interfaces section 5.1. I N23 Hi-Z Data clock. This is a Schmitt-trigger input. I L1 Hi-Z VREF clock. This is a Schmitt-trigger input. VREF is synchronous to this clock in 2-clock systems. loa de yV Hi-Z db inv ef uo fo liv ett io nT hu rsd ay ,1 9S ep tem be r, 20 02 11 DAT[15:0] REFCLK Do DCLK wn Data Interfaces (98) PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 9 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Pin Name Type Pin # Default :25 Pin Description and Cell Types Functional Description :49 Table 4-1 Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 IO G1, G2, G3, G4, H2, H3, H4, J1, J2, J3, K2, K3, K4, L2, L3, L4 Hi-Z In normal modes, this bus is the I-channel of the baseband input signal. In scan test mode, this bus is an output used for SCANOUT[31:16]. VREF_Q[15:0] IO M2, M3, N1, N2, N3, N4, P1, P2, P3, P4, R1, R2, T2, T3, T4, U1 Hi-Z In normal modes, this bus is the Q-channel of baseband input signal. In scan test mode, this bus is an output used for SCANOUT[15:0]. VOBS_I[15:0] I A11, B11, C11, D11, B12, C12, A13, B13, C13, D13, A14, B14, C14, D14, B15, C15 Hi-Z Input: I-channel of observed signal from power amplifier. Do wn loa de db yV inv ef uo fo liv ett io nT hu rsd ay ,1 9S ep tem be r, 20 02 11 VREF_I[15:0] PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 10 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Pin Name Type Pin # Default :25 Pin Description and Cell Types Functional Description :49 Table 4-1 Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 I B5, B6, C6, A7, B7, C7, D7, B8, C8, D8, A9, B9, C9, A10, B10, C10 Hi-Z Input: Q-channel of observed signal from power amplifier. VD_I[15:0] IO G23, G22, G21, H22, H21, H20, J23, J22, J21, K22, K21, K20, L23, L22, L21, L20 Hi-Z In normal modes, this bus is the I-channel of output signal to the DAC. In scan test mode, this bus is an input used for SCANIN[31:16]. VD_Q[15:0] IO N21, N20, P22, P21, P20, R22, R21, T22, T21, T20, U23, U22, U21, U20, V22, W23 ef uo fo liv ett io nT hu rsd ay ,1 9S ep tem be r, 20 02 11 VOBS_Q[15:0] In normal modes, this bus is the Q-channel of output signal to the DAC. In scan test mode, this bus is an input used for SCANIN[15:0]. Do wn loa de db yV inv Hi-Z Serial Port (4) SD I W4 Hi-Z Serial Data input for the serial port. If unused, this pin must be connected to VSS. SCLK I U2 Hi-Z Clock input for the serial port - Schmitt trigger. If unused, this pin must be connected to VSS. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 11 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Pin Name Type Pin # Default :25 Pin Description and Cell Types Functional Description :49 Table 4-1 Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 I U3 Hi-Z Chip Select for the serial port. This is a Schmitt-trigger input. If unused, this pin must be connected to VSS. HOP_N I U4 Hi-Z This input can be used to activate the new carrier and power values. This is a Schmitt-trigger input. If unused, this pin must be connected to VSS. 20 02 11 SCS_N tem be r, JTAG and other test pins (8) I D16 Hi-Z JTAG clock. In normal operation, this pin must be connected to VSS. TRSTB I C16 Hi-Z pulled high JTAG reset signal - active low. This is a Schmitt-trigger input with internal pull-up resistor. In normal mode (non-JTAG) this pin must be connected to RESET_N. TMS I B16 Hi-Z pulled high JTAG test mode select input with internal pull-up resistor. In normal operation, this pin must be driven high or left unconnected. TDI I C17 Hi-Z pulled high JTAG test data input with internal pull-up resistor. In normal operation, this pin must be driven high or left unconnected. TDO O B18 Hi-Z Tri-state output for JTAG test data. This is the only pin unaffected by OE_N. SCANSEL I A17 Hi-Z Scan MUX select. When high, this signal selects Scan test mode. This pin must be connected to VSS in normal operation. SCANEN I B17 Hi-Z When high, this signal enables the Scan chain. This pin must be connected to VSS in normal operation. OE_N I A19 Hi-Z pulled low RESET_N I F3 MUTE_N I AA23 VD_FMT I Forces all pins except TDO to high impedance. This is a Schmitt-trigger input with internal pull-down resistor. In normal operation, this pin must be driven low or left unconnected. uo fo liv ett io nT hu rsd ay ,1 9S ep TCK ef Miscellaneous (50) System reset signal - active low. This is a Schmitt-trigger input with internal pull-up resistor. Hi-Z pulled high Mute input - active-low. When low, this signal forces VD to zero. This is a Schmitt-trigger input with internal pull-up resistor. Hi-Z Configuration pin that sets the data format of the VD_I and VD_Q outputs: 0 -> offset-binary 1 -> 2s-complement. db yV inv Hi-Z pulled high Do wn loa de C20 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 12 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Pin Name Type Pin # Default :25 Pin Description and Cell Types Functional Description :49 Table 4-1 Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 IO W22, Y23, Y22, Y19, AB20, AC21, AA6, Y5, AA5, AB5, AC4, AC3, AA1, Y1, Y2, W1 Hi-Z General-purpose IO pins. GPIO[31:28] IO W2, W3, V2, F2 Hi-Z General-purpose IO pins with rising-edge interrupt capability (see Interrupt_Enable2 register). GPIO[27:24] IO E2, E3, D1, E4 Hi-Z General-purpose IO pins with falling-edge interrupt capability (see Interrupt_Enable2 register). GPIO[23:19] IO D2, C1, D3, A3, C4 Hi-Z GPIO[18] IO D5 Hi-Z GPIO[17] IO B4 GPIO[16] IO GPIO[15:0] IO 02 20 r, tem be ep 9S ,1 ay rsd hu nT ett io inv ef uo fo liv General-purpose IO pins. General-purpose IO pins or a maskable Status Interrupt output for the Base Station Interface. General-purpose IO pins or Power_Attenuator_Pulse output (see GPIO_Secondary_Function_Select registers). C5 Hi-Z General-purpose IO pins or Watchdog_Timer_Output (see GPIO_Secondary_Function_Select registers). A4, D17, C18, A20, C19, B20, A21, D19, C23, D22, E22, D23, E23, F21, G20, F22 Hi-Z General-purpose IO pins or Power_Attenuator_Output[15:0] (see GPIO_Secondary_Function_Select registers). yV Hi-Z db de loa wn Do 11 GPIO[47:32] PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 13 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Pin Name Type Pin # Default :25 Pin Description and Cell Types Functional Description :49 Table 4-1 Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 fo liv ett io nT hu rsd ay ,1 9S ep tem be r, 20 02 Ground supply. uo A2 A6 A8 A12 A16 A18 A22 B1 B3 B21 B23 C2 C22 F1 F23 H1 H23 M1 M23 T1 T23 V1 V23 AA2 AA22 AB1 AB3 AB21 AB23 AC2 AC6 AC8 AC12 AC16 AC18 AC22 ef P Do wn loa de db yV inv VSS 11 Power Supply (84) PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 14 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet :49 11 02 20 r, tem be ep 9S ,1 ay rsd E20, K23, R23, W20, AC19, AC14 AC9, AC5, V3, R3, K1, E1, A5, D10, A15, B19 hu P nT VDDI 3.3V IO voltage supply. io A1 A23 B2 B22 C3 C21 D4 D6 D9 D12 D15 D18 D20 F4 F20 J4 J20 M4 M20 R4 R20 V4 V20 Y4 Y6 Y9 Y12 Y15 Y18 Y20 AA3 AA21 AB2 AB22 AC1 AC23 ett P Functional Description 1.8V Core voltage supply. Do wn loa de db yV inv VDD Default liv Pin # fo Type uo Pin Name :25 Pin Description and Cell Types ef Table 4-1 Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 15 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 :26 5 Functional Description A18-A16 A14-A0 D15-D0 dat[15:0] strb1_n strb2_n cpuclk (MSTRB*) R/(W*) rsd ay CLKOUT tem be 9S adr[17:0] ,1 ACPCE (TMS320C54xx) ep wait_n irq_n READY (INT3*) CPU Interface cs0_n (PS*) r, PM7800 DCSP Address Decoder 20 02 11 :49 5.1 CPU, Address Decoder and Miscellaneous Interfaces CPU, Address Decoder and Miscellaneous Interfaces. liv ett io Figure 5-1 nT hu cs1_n cs2 cpumode[4:0] inv ef uo fo The CPU interface is designed to “look” like the interface to a slow asynchronous SRAM device, with some added functionality to reduce glue logic. The CPU interface is primarily designed for a TI TMS320C54xx General Purpose DSP processor, but some flexibility is provided to support other processors. Do wn loa de db yV Internally, the CPU access cycle is synchronized to the DCLK to allow a simultaneous CPU write to, and data path read from, the same memory location - this is to provide fail-safe operation of the internal dual-port RAM. This requirement significantly slows down the access speed of the CPU interface, especially at EDGE sample clock rates in the 13MHz range. The slow access speed can result in a longer access time than what can be generated by the internal wait-state machine of the processor when the processor is fast and DCLK is slow. To generate longer CPU access cycles, a wait signal (WAIT_N) is generated by the PM7800. The WAIT_N signal is generated by the wait circuit which is clocked by CPUCLK. The PM7800 needs to detect cycle-to-cycle transitions on the CPU bus. Detecting the cycle-tocycle change is complicated because the cycle-inactive indication (deassertion of the strobes) between cycles can be short for write-to-write cycles, and short or non-existent for read-to-read cycle transitions. To simplify the design and stay within synchronous design practices, cycle-tocycle transition-detection is achieved by the direct approach of sampling the control signal(s) inactive, or by the indirect approach of sampling the control strobes a programmable number of PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 16 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :49 :26 clock cycles after the WAIT_N signal is deasserted - if the strobes are still active, then the start of another cycle is assumed. 9S ep tem be r, 20 02 11 The operation of the wait circuit - clocked by CPUCLK - is as follows: sample control strobes active, assert WAIT_N for Assert_Wait_Cycles (register 0x0_0010 bits 6:0) CPUCLK’s, negate WAIT_N for Negate_Wait_Cycles (register 0x0_0010 bits 11:8) CPUCLK’s, then sample control strobes again. Another cycle has started if the control strobes are still active. The TI processor’s internal wait-state circuit continues to count while WAIT_N is asserted. This results in the waitstate circuitry re-aligning itself with the TI cycle at each transition since the TI cycle will end as soon as it detects WAIT_N negated. Other processors’ internal wait-state circuits may halt while WAIT_N is asserted: in this case, the Assert_Wait_Cycles and Negate_Wait_Cycles registers must be programmed so that they match the length of the processor accesses. hu rsd ay ,1 To further support the case where the de-assertion period of the strobe signal between back-to-back writes is too short to be reliably detected by DCLK, the PM7800 must be programmed to temporarily deassert its internal version of the write strobe: CPUMODE1, when tied to VDD, selects this operation. The Fake_End_Length register (register 0x0_0010 bits 15:12) sets the duration, in CPUCLK’s, for which the write strobe is deasserted. uo fo liv ett io nT The C54xx interface has an access strobe (either I/O or memory), an area indication (either DS# or PS# for data or program memory or IS# for I/O space select), a R/W# indication, a data bus and an address bus. To support C54xx processors, STRB1_N and STRB2_N must be connected to the access strobe and R/W# indicator respectively, and CPUMODE0 must be tied to VSS. Processors with read and write strobes can be supported by tying CPUMODE0 to VDD, and connecting the write strobe to STRB1_N and the read strobe to STRB2_N. inv ef The CPUMODE2 pin is reserved and should be tied to VDD. de db yV The CPUMODE3 pin, when tied to VDD, selects a mode of operation that can be used to support processors, e.g. ARM, that require the read strobe to be sampled on the falling edge of CPUCLK and the write strobe to be sampled on the rising edge. The CPUMODE3 pin must be tied to VSS. Do wn loa The PM7800 can be configured to provide additional hold time from CPUCLK before negating WAIT_N - this may be required to support processors, e.g. ARM, that require longer hold times on WAIT_N. CPUMODE4, when tied to VDD, selects additional hold time. The CPUMODE4 pin must be tied to VSS. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 17 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 Connect To (TMS320C5410) 11 Signal (PM7800) :49 PM7800 Connections to C54xx Processor Description 02 Table 5-1 :26 The following table describes how to connect the PM7800 to a C5410 processor. MSTRB# This signal is the active-low program memory access strobe. STRB2_N R/W# This signal is the Read/Write# cycle type indication. WAIT_N READY When the WAIT_N signal is asserted low, the TI chip extends the current cycle until the WAIT_N signal negated to a high state. IRQ_N INT3# INT3 is one of the four interrupt inputs. ADR[17:00] ADDR[18:16], ADDR[14:00] The TI bus is word addressed, as is the PM7815. DAT[15:00] DATA[15:00] Data is connected straight across. CPUCLK CLKOUT The master clock output for the TI processor. Maximum CPU clock frequency 100 MHz. r, tem be ep 9S ,1 ay This signal is the program space access strobe. ett PS# Description liv CS0_N Miscellaneous PM7800 Connections HIGH CPUMODE2 HIGH CPUMODE3 LOW CPUMODE4 inv CPUMODE1 de wn LOW Do Description The CPU signalling style is access strobe and read/write# indication. yV LOW db CPUMODE0 ef Connect To loa Signal (PM7815) uo fo Table 5-3 CS2 nT Connect To io Signal (PM7815) CS1_N rsd PM7800 Connections to Address Decoder hu Table 5-2 20 STRB1_N The WAIT circuit forces the internal version of the CPU write strobe inactive for a programmable number of CPUCLK cycles. Reserved. All inputs sampled on rising edge of CPUCLK. No additional delay on WAIT_N. LOW Connected to the two other chip select inputs. HIGH Connected to the two other chip select inputs. 5.1.1 Functional Timing The following timing diagrams give functional timing for the CPU interface. Because this interface is asynchronous to DCLK, AC timing parameters (tis, tih, toe, top, toz, tw) are shown here for clarity but are defined in AC Timing section 9. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 18 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Read Cycle (CPUMODE0 = 0) 20ns DCLK T0 40ns T1 60ns T2 80ns T3 100ns T4 T5 120ns T6 :26 0ns :49 Figure 5-2 Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 t ih 11 t is T7 STRB1_N t is 20 02 STRB2_N tem be CSx t ih r, 5TDCLK t oz toz t ih ep t is 9S ADR[17:0] t oe 0ns 20ns DCLK T1 T2 60ns T3 80ns 100ns T4 T5 120ns T6 ett STRB1_N t ih liv t is uo fo STRB2_N t is t oz t ih 5TDCLK ef CSx inv toz t ih yV t is t oe t op Do wn loa de db ADR[17:0] DAT1[15:0] T7 io T0 40ns hu Read Cycle (CPUMODE0 = 1) nT Figure 5-3 rsd ay ,1 DAT1[15:0] t op PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 19 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet 0ns 50ns T0 T1 T2 100ns T3 T4 T5 :26 Back-to-Back Read Cycles (CPUMODE0 = 0) 150ns T6 T7 T8 200ns T9 T10 T11 T12 T13 T14 :49 Figure 5-4 Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 11 DCLK 02 tis 20 STRB1_N STRB2_N r, 3TDCLK 5TDCLK CSx 5TDCLK tis ep tis ADR[17:0] toz tem be tis adr2 9S adr1 toe top DAT[15:0] top toz data2 0ns nT Back-to-Back Read Cycles (CPUMODE0 = 1) 50ns T1 T2 T3 T4 100ns T5 uo tis inv tis ef STRB2_N T8 T9 T10 T11 T12 T13 T14 3TDCLK 5TDCLK yV CSx db de toz 5TDCLK tis tis adr1 toe adr2 top top data1 Do PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE top toz data2 wn loa T7 fo STRB1_N DAT[15:0] T6 200ns liv DCLK ADR[17:0] 150ns ett T0 io Figure 5-5 hu rsd ay ,1 data1 top 20 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet 0ns 20ns DCLK 40ns T0 T1 60ns T2 80ns T3 100ns T4 T5 t ih STRB1_N t is t ih t ih t is t is t ih t is t is t ih t is 20 t is ep tem be r, STRB2_N ADR[17:0] t ih 9S t is T6 02 Note2 CSx 120ns 11 t is t is :26 Back-to-Back Write Cycles (CPUMODE0 = 0) :49 Figure 5-6 Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 0ns 20ns DCLK nT Back-to-Back Write Cycles (CPUMODE0 = 1) 40ns T1 ett T0 io Figure 5-7 hu rsd ay ,1 DAT[15:0] T2 tis inv CSx ef STRB2_N yV tis T4 T5 120ns T6 tih tis tih tis tih tis tih tis tih de db ADR[17:0] T3 100ns Note2 uo STRB1_N 80ns tis fo liv tis 60ns wn Do Note: loa DAT[15:0] 1. The system designer need not worry about violating tis and tih - all inputs are treated as asynchronous signals. Setup and hold times are specified here to identify the clock edge on which the signal is sampled. 2. If deassertion of the strobe cannot be detected by DCLK, CPUMODE1 must be tied to VDD to program the PM7800 to temporarily deactivate the internal write strobe - See Functional Description section 5. . PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 21 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor WAIT_N Timing - Reads (CPUMODE0 = 0) 100ns 200ns 300ns 400ns 500ns 600ns 700ns 800ns 900ns 1 700ns 800ns 900ns 1 700ns 900ns 1 11 0ns :49 Figure 5-8 :26 PM PMC-2001646 02 CPUCLK 20 STRB1_N r, STRB2_N Twait_n_delay tem be Twait_n_asserted Twait_n_negated WAIT_N Timing - Reads (CPUMODE0 = 1) 0ns 100ns 200ns 300ns 400ns 500ns 600ns nT hu CPUCLK rsd Figure 5-9 ay ,1 9S ep WAIT_N STRB1_N ett io STRB2_N liv Twait_n_asserted Twait_n_negated fo Twait_n_delay yV inv ef uo WAIT_N Figure 5-10 WAIT_N Timing - Writes (CPUMODE0 = 0) 100ns 200ns 300ns 400ns 500ns 600ns de CPUCLK db 0ns loa STRB1_N Do wn STRB2_N First rising edge of STRB1_N Twait_n_delay Twait_n_asserted Twait_n_negated WAIT_N Tfake_end_length internal_write_strobe PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 22 800ns PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor :26 PM PMC-2001646 Figure 5-11 WAIT_N Timing - Writes (CPUMODE0 = 1) 100ns 200ns 300ns 400ns 500ns 600ns 700ns 900ns 11 CPUCLK 800ns :49 0ns 02 STRB1_N STRB2_N 20 First rising edge of STRB1_N r, Twait_n_delay Twait_n_negated tem be Twait_n_asserted WAIT_N ep Tfake_end_length ,1 min hu Parameter ay Functional Timing for WAIT_N rsd Table 5-4 9S internal_write_strobe Description 2TCPUCLK Twait_n_asserted (Assert_Wait_Cycles[6:0] + 1)TCPUCLK Twait_n_negated (Negate_Wait_Cycles[3:0] + 1) TCPUCLK WAIT_N negated width Tfake_end_length (Fake_End_Length[3:0] + 1) TCPUCLK Internal fake_end length for back-to-back writes. STRBx to WAIT_N delay WAIT_N pulse width fo liv ett io nT Twait_n_delay ef uo 5.1.2 Programming the WAIT_N Register Programming the WAIT_N Register db Table 5-5 yV inv The following are guidelines for programming the WAIT_N register: de Formula loa Assert_Wait_Cycles = round-up {6Tdclk /Tcpuclk -1} wn Negate_Wait_Cycles = round-up {3 + 32 / Tcpuclk} Do internal_c54_wait > Negate_Wait_Cycles Comment Must satisfy PM7800 read-access time of 6 dclk periods Must be long enough to allow the C54 to end the current cycle, and to flush the cycle_active out of the cpuclk synchronizers. The C54 must be programmed such that it will not start another cycle before WAIT_N can be reasserted. where internal_c54_wait is the number of wait cycles programmed in the C54xx processor. Fake_End_Length = round-up{max{[(Tdclk + 2ns) / Tcpuclk - 1] : [1.5 + 32 / Tcpuclk]}} Must be long enough for the PM7800 to sample its internal fake_wait_inactive with dclk. Must also be long enough that fake_wait_inactive is held until past the rising edge of STRB1_N (shown in Figure 5-10 on page 22 and Figure 5-11 on page 23). PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 23 1 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 Baseband Modem 11 :49 :26 5.2 Data Interfaces dclk refclk vobs_i[15:0] rsd ay vd_fmt RF Downconverter 9S obs Main Amp ,1 V RF Upconverter ep reset_n mute_n 20 vobs_q[15:0] D r, vd_i[15:0] vd_q[15:0] V ref tem be V DAC DAC vref_i[15:0] vref_q[15:0] ADC ADC 02 PM7800 DCSP nT hu Figure 5-12 Data Interfaces ett io 5.2.1 VREF Interface and FIFO ef uo fo liv The VREF interface is used to input the reference signal in either offset-binary or two’scomplement notation. In the case of offset-binary format, the VREF_Data_Format bit in the Mode register must be set to zero to instruct the PM7800 to convert the data to two’s-complement format which is used throughout the chip. There are three modes of operation for the VREF interface: de db yV inv 1. VREF is clocked in by REFCLK and upsampled to the rate of the PM7800 clock, DCLK, where fDCLK = N * fREFCLK. In this case, a FIFO is used to handle the skew between REFCLK and DCLK, and to provide a steady supply of data to the interpolator. Set the Bypass_FIFO and Interpolator_Bypass bits to zero (default) in this case. Do wn loa 2. VREF is clocked in by REFCLK which is at the same rate as the PM7800 clock, DCLK, that is, fDCLK = fREFCLK. In this case, a FIFO is used to handle the skew between REFCLK and DCLK. The interpolator can be bypassed to reduce latency. Set the Bypass_FIFO bit to zero (default) and the Interpolator_Bypass bit to one in this case. 3. VREF is at the same rate as and synchronous to DCLK. In this case, the FIFO and interpolator can be bypassed to reduce system latency by setting the Bypass_FIFO and Interpolator_Bypass bits to one in the Mode register. The REFCLK input is ignored and should be connected to VSS. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 24 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :26 5.2.2 VOBS Interface 20 02 11 :49 The VOBS interface is used to input the observed signal from the ADC in either offset-binary or two’s-complement notation. In the case of offset-binary format, the VOBS_Data_Format bit in the Mode register must be set to zero to instruct the PM7800 to convert the data to two’s-complement format. tem be r, 5.2.3 VD Interface 9S ep The VD interface is used to output the predistorted signal to the DAC in either offset-binary or two’s-complement notation. The VD_FMT pin selects offset-binary format when low, and two’scomplement format when high. ,1 5.2.4 Dual-Clock System liv ett io nT hu rsd ay Use the dual-clock system when VREF is synchronous to REFCLK (usually when VREF is upsampled internally to the DCLK rate). TREFCLK must be an exact integer multiple of TDCLK, i.e. TREFCLK = nTDCLK, where n = 1,2,...,10. REFCLK must be created from DCLK. In this case, a FIFO and interpolator are used to upsample VREF to the DCLK rate. REFCLK must be created from DCLK such that there is no varying phase shift that may cause under-run or over-run, i.e. skew may exist between DCLK and REFCLK, but this skew must not vary over time by more than one DCLK period. fo Figure 5-13 Dual-Clock System timing 20ns 60ns 80ns 100ns 120n ef DCLK inv VOBS yV VD loa de db REFCLK VREF 40ns uo 0ns wn 5.2.5 Single-Clock System Do Use the single-clock system when all signals are synchronous to DCLK and the data-rate of VREF is the same as the output data-rate of VD. In this case, connect the REFCLK pin to VSS, and bypass the FIFO and interpolator to reduce latency through the chip. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 25 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 10ns 20ns 30ns 40ns 50ns 60ns 70ns 80ns 9 :49 0ns :26 Figure 5-14 Single-Clock System timing DCLK 11 VREF 02 VOBS tem be r, 20 VD ,1 9S ep 5.3 Serial Interface rsd ay PM7800 DCSP hop_n sd sclk scs_n liv ett io nT hu gpio[23:0] gpio[47:24] inv ef uo fo Figure 5-15 Serial (SPI), Hop, and GPIO Interfaces de db yV The serial interface is used to input the next_power, next_carrier values, hop_stream command, and general-purpose serial_word register. Also included in this interface is the HOP_N pin which can be used to delay the effect of the hop_stream to a more precise time. Do wn loa The PM7800 supports the SPI specification included in the M68HC11 Reference Manual (section 8). Only the modes where CPHA = 1 is supported. CPOL may be 0 or 1, and the spi_clock_polarity bit of the serial_mode register (0x0_0013 bit 2) is used to select the active clock edge. The PM7800 does not have a data output pin (MISO). The PM7800’s SCS_N pin is equivalent to the /SS pin, and it can be tied to ground to reduce system pin requirements. A transfer can be reset by deactivating SCS_N. If SCS_N is tied low (always active) then another method must be used to reset the state machine. One way is to disable the serial interface by writing a zero to the serial_interface_enable bit in the Serial_Mode register. Another way is to set reg_serial_address[4:0] = 00000b (this is the default setting) and stream twenty-four 1’s into the serial port: at some stage during the stream of 1’s, the idle state will be reached and the interface PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 26 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :49 :26 will be held waiting for the first 0 of the address. Note that if the transfer is aborted after some data has been sent, that data will already be shifted into the respective data register. 20 02 11 Relative timing of the SPI input signals is shown in Figure 5-16. Note that SCLK, SD, SCS_N can be asynchronous to DCLK: Figure 5-16 shows timing for the inputs relative to the DCLK edges on which they are detected. Notes: tem be r, • SCLK, SD, SCS_N are debounced using DCLK, therefore they must be present for two consecutive DCLK edges to be properly detected. It is recommended that the minimum pulse-width be 3 TDCLK, i.e. TSCLK >= 6TDCLK. ay ,1 9S ep • SD and SCS_N are sampled by DCLK on the active edge of SCLK. Therefore, because of the asynchronous relationship, it is recommended that SD and SCS_N be valid for one DCLK either side of the active SCLK edge. hu rsd Figure 5-16 Relative Timing of SPI Inputs nT Active edge of SCLK >=3TD ett io DCLK fo liv SCLK >=TD >=3TD db yV inv ef uo SD, SCS_N >=TD loa de 5.3.1 Serial Operation Do wn All signal pins in the serial interface are synchronized to dclk and debounced to reject glitches shorter than a dclk period - see AC Timing. There are four serial streams recognized by this interface: 1. carrier_stream consists of three bytes as follows: • • • • five address bits corresponding to reg_serial_address[4:0] two bits = 00b, that indicate a carrier_stream a r/w bit that must be zero seven don’t-care bits PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 27 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 :26 • nine bits of the next_carrier value - in the order of msb to lsb 50ns 100ns 150ns 200ns x x x x x x c8 c7 c6 c5 c4 c3 c2 c1 c0 20 a7 a6 a5 a4 a3 0 0 0 x 02 SCLK SD 250 11 0ns :49 Figure 5-17 SPI carrier_stream (spi_clock_polarity = 0, falling edge of SCLK is active) tem be r, SCS_N Figure 5-18 SPI carrier_stream (spi_clock_polarity = 1, rising edge of SCLK is active) 0ns 50ns 100ns 150ns a7 a6 a5 a4 a3 0 0 0 x x x x x c8 c7 c6 c5 c4 c3 c2 c1 c0 x x rsd ay ,1 SCS_N 9S SD 250 ep SCLK 200ns liv ett io five address bits corresponding to reg_serial_address[4:0] two bits = 01b, that indicate a power_stream a r/w bit that must be zero eight bits of the next_power value - in the order of msb to lsb fo • • • • nT hu 2. power_stream consists of two bytes as follows: uo Figure 5-19 SPI power_stream (spi_clock_polarity = 0, falling edge of SCLK is active) 20ns 40ns 60ns 80ns 100ns 120ns 140ns 160ns 1 ef 0ns inv SCLK SD 0 1 0 p7 p6 p5 p4 p3 p2 p1 p0 yV a7 a6 a5 a4 a3 de db SCS_N 0ns 20ns 40ns 60ns 80ns 100ns 120ns 140ns 160ns wn loa Figure 5-20 SPI power_stream (spi_clock_polarity = 1, rising edge of SCLK is active) Do SCLK SD a7 a6 a5 a4 a3 0 1 0 p7 p6 p5 p4 p3 p2 p1 p0 SCS_N 3. word_stream consists of three bytes as follows: PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 28 1 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet :49 :26 five address bits corresponding to reg_serial_address[4:0] two bits = 10b, that indicate a word_stream a r/w bit that must be zero sixteen bits of the serial_word value - in the order of msb to lsb 11 • • • • Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 50ns 100ns 150ns 200ns 250n 20 0ns 02 Figure 5-21 SPI word_stream (spi_clock_polarity = 0, falling edge of SCLK is active) a7 a6 a5 a4 a3 1 0 0 w15w14w13w12w11w10 w9 w8 w7 w6 w5 w4 w3 w2 w1 w0 tem be SD r, SCLK SCS_N 50ns 100ns 9S 0ns ep Figure 5-22 SPI word_stream (spi_clock_polarity = 1, rising edge of SCLK is active) a7 a6 a5 a4 a3 1 0 250n 0 w15w14w13w12w11w10 w9 w8 w7 w6 w5 w4 w3 w2 w1 w0 ay SD 200ns ,1 SCLK 150ns nT hu rsd SCS_N ett io 4. hop_stream consists of one byte as follows: uo fo liv • five address bits corresponding to reg_serial_address[4:0] • two bits = 11b, that indicate a hop_stream • a r/w bit that must be zero ef Figure 5-23 SPI hop_stream (spi_clock_polarity = 0, falling edge of SCLK is active) yV SCLK SD 40ns 60ns 80ns a6 a5 a4 a3 1 1 0 db a7 de SCS_N 20ns inv 0ns loa HOP_N Do wn carrier/power Figure 5-23 shows how HOP_N can be used to delay the new carrier/power values. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 29 100ns 1 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 10ns 20ns 30ns 40ns 50ns 60ns 70ns 80ns 90ns 1 :49 0ns :26 Figure 5-24 SPI hop_stream (spi_clock_polarity = 1, rising edge of SCLK is active) SD a7 a6 a5 a4 a3 1 1 0 02 SCS_N 11 SCLK 20 HOP_N tem be r, carrier/power ,1 9S ep Figure 5-24 shows a case where HOP_N is tied active so that the new carrier/power values take effect immediately after the Hop_Stream. rsd ay 5.4 Hop Generation ett io nT hu The hop_state_machine generates the Hop pulse that propagates throughout the chip and activates the new carrier and power values. The Hop pulse is generated upon a write to the Hop bit in the Control register, or on the later of HOP_N and a Hop_Stream. There are three methods of operation: uo fo liv 1. The Hop bit in the Control register controls the activation point. The CPU writes to the next_carrier and/or next_power registers, then writes 1 to the Hop bit in the Control register. db yV inv ef 2. HOP_N controls the activation point. Carrier_Stream and Power_Stream are immediately followed by a Hop_Stream. Then HOP_N is applied so that the new values are activated at the correct time. This is a likely scenario for Multi_Band_Mode (e.g. single-carrier EDGE systems). This is illustrated in Figure 5-23. Do wn loa de 3. Hop_Stream controls the activation point. HOP_N is held active by connecting it to VSS, thereby reducing system pin requirements. The Hop_Stream is used to activated new values at the correct time. This is illustrated in Figure 5-24. Note that the final bit of the Hop_Stream can be delayed to the desired time. 5.4.1 Power and Carrier Values and Hop There are two parameters that are used throughout the device and must be explained here: PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 30 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 02 11 :49 :26 • Power - Power selection by base station. This is an 8-bit integer value and its interpretation is configured by the Power_Attenuation_Table, the Power_Correction_Gain_Table, and the Carrier_Power_Map. • Carrier - Carrier (or frequency band) selection by base station. This is a 9-bit integer value and its interpretation is configured by the Carrier_Correction_Gain_Table and the Carrier_Power_Map. tem be r, 20 The Power and Carrier values can be input through the serial interface, or directly programmed by the CPU. In either case, the values entered are Next_Power and Next_Carrier, and they become active Power and Carrier values after the next Hop occurs (see Section 5.4, Hop Generation, on page 30). rsd ay ,1 9S ep The new Power value propagates to the Power_Attenuation_Table after a delay controlled by the Power_Attenuator_Delay register. The new Power and Carrier values propagate to all other areas of the device after a delay controlled by the Power_Correction_Delay register. These two programmable delays are designed to allow some control over the effects of power changes throughout the system. nT hu 5.4.2 Bug that affects Power_Attenuator_Delay and Power_Correction_Delay ett io The Power_Attenuator_Delay and Power_Correction_Delay circuits were intended to operate so that: uo fo liv 1. if Power_Attenuator_Delay > Power_Correction_Delay, the Power_Attenuator output on GPIO[15:0] and the pulse output on GPIO17 are delayed with respect to the power_correction_gain value applied inside the chip. yV inv ef 2. if Power_Attenuator_Delay < Power_Correction_Delay, the Power_Attenuator output on GPIO[15:0] and the pulse output on GPIO17 are earlier than the power_correction_gain value applied inside the chip. db The bug has two ramifications: wn loa de • The relationship between these two delays must be such that Power_Attenuator_Delay >= Power_Correction_Delay + 1, i.e. (2) above is not possible. We recommend that Power_Correction_Delay is programmed to its default state of zero. Do • The Power_Attenuator output on GPIO[15:0] is not delayed but the pulse on GPIO17 is. Therefore, the external attenuator device must use the pulse to latch the new Power_Attenuator value. See Section 5.5.2, Power Attenuator Outputs, on page 33. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 31 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :26 5.5 GPIO Pins 11 :49 These pins are general-purpose input-outputs. They are controlled and monitored through the PM7800 register set. Some of the pins have secondary functions. fo liv ett io nT hu rsd ay ,1 9S ep tem be r, 20 02 • GPIO[15:0] can be configured to output the value from the Power_Attenuator_Table. • GPIO16 can be configured to output an active-low pulse of 32TDCLK duration when the Watchdog Timer expires. • GPIO17 can be configured to output a 5TDCLK pulse when a Hop occurs. The pulse is positioned so that its leading edge is concurrent with changes in the value of the Power_Attenuator_Table output at GPIO[15:0] - see Functional Timing. The polarity of the pulse is selected by the Atten_Pulse_Polarity bit in the Mode register. • GPIO[18] can be configured to output a low pulse when a subset of alarms have been detected in the ACPCE Firmware. This pulse can be used to trigger a Status Request across the Base Station Interface. • GPIO[23:19] have no secondary function. • GPIO[27:24] can be configured as falling-edge triggered interrupt sources. The interrupts are enabled using the GPIO_Interrupt_Enable bits in the Interrupt_Enable2 register. The interrupts are monitored and cleared in the Interrupt_Status_Clear register. • GPIO[31:28] can be configured as rising-edge triggered interrupt sources. The interrupts are enabled using the GPIO_Interrupt_Enable bits in the Interrupt_Enable2 register. The interrupts are monitored and cleared in the Interrupt_Status_Clear register. • GPIO[47:32] have no secondary function. uo 5.5.1 Status Output Pulse db yV inv ef The ACPCE firmware will output a pulse whenever an alarm occurs which is not masked. The mask can be configured by the Base Station Controller. The output pulse occurs on GPIO18 and is an active low pulse. The duration of the pulse depends on the operating speed of the DSP: at 25 MHz it is about 12 microseconds, at 100 MHz it is about 3 microseconds. de The boot kernel outputs a pulse on GPIO18 as well under the following circumstances: Do wn loa • Hard Reset/Power-on - indicates that the boot kernel is ready to send out the boot_status response. After this response is read out the boot kernel commands for loading firmware can be sent. GPIO18 is not pulsed for Watchdog/Assert resets as these resets autostart the previous version of firmware that was running. For Watchdog/assert the a pulse is sent as part of the ACPCE firmware startup. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 32 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 :49 :26 5.5.2 Power Attenuator Outputs 11 DCLK 02 power_correction_gain r, 20 TD tem be GPIO[15:0] 5TD 9S ep GPIO17 ay ,1 power_attenuator_delay*TD hu rsd Figure 5-25 Power Attenuator Outputs - shown with active-low pulse on GPIO17 nT 5.5.3 Watchdog Timer Output 0ns 50ns 150ns 200ns 250ns ett io 100ns 32TDCLK fo liv DCLK ef uo GPIO16 Do wn loa de db yV inv Figure 5-26 Watchdog Timer Output PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 33 300ns 3 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 11 :49 :26 5.6 JTAG Test Access Port tck trstb tms tdi tdo scansel scanen oe_n tem be r, JTAG 20 02 PM7800 DCSP ep Scan Test ay ,1 9S Figure 5-27 JTAG and Scan Test Interfaces nT hu rsd The JTAG Test Access Port block provides JTAG support for boundary scan. The standard JTAG EXTEST, SAMPLE, BYPASS, IDCODE and STCTEST instructions are supported. The PM7800 identification code is 178000CD hexadecimal. Do wn loa de db yV inv ef uo fo liv ett io The JTAG port is described in detail in Test Features section 6. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 34 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor Do wn loa de db yV inv ef uo fo liv ett io nT hu rsd ay ,1 9S ep tem be r, 20 02 11 :49 :26 PM PMC-2001646 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 35 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :26 6 Test Features 11 :49 The PM7800 has four test modes: Full Scan, RAMBIST, OE_N Pin, and JTAG Boundary Scan. 02 6.1 Full Scan Full-Scan Interface Full-Scan Signal tem be Table 6-1 r, 20 The core logic is tested using full scan. The following table describes the full-scan interface. Pin Description SCANSEL Selects full-scan mode: selects RESET_N to directly control all flop sets and resets; disables RAM BIST; configures the SCANIN and SCANOUT IO pads. SCANEN SCANEN Enables the scan chain. SCANIN[55:32] GPIO[47:24] SCANIN bus. SCANIN[31:16] VD_Q[15:0] SCANIN bus. SCANIN[15:0] VD_I[15:0] SCANIN bus. SCANOUT[55:32] GPIO[23:0] SCANOUT bus. SCANOUT[31:16] VREF_Q[15:0] SCANOUT bus. SCANOUT[15:0] VREF_I[15:0] ett io nT hu rsd ay ,1 9S ep SCANSEL fo liv SCANOUT bus. uo 6.2 RAMBIST yV inv ef These registers are for RAMBIST. They must remain in their default states during regular operation. BIST_Mode db 0x0_00F0 loa Type Size Bits Description Reset RW 8 7:0 BIST test pattern bus which is replicated over the RAM data bus. This bus is the seed used by the BIST to generate patterns during the bist test. It is also used in exercising the backdoor feature by providing a method to shift in/out data. 0 RW 1 8 This bit activates BIST testing. 0 Do wn BISTTEST[7:0] de Name BISTEN PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 36 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet BIST_Mode Size Bits Description BISTSIDE RW 1 9 BISTSIDE is used to select between port A and port B when performing a BIST test. Since Predistorter1 contains dual-port RAM, two BIST tests must be run, first with this bit = 0, and then with this bit = 1. 0: port A 1: port B BISTMODE[2:0] RW 3 12:10 BISTMODE configures the BIST in several different modes: 000: bistmode_hold 001: bistmode_shift 010: bistmode_bist 011: bistmode_run 100: bistmode_reset 101 ~ 111: Reserved. 11 :49 Type Reset 0 0 BIST_Result1 Size Bits BISTEND RO 1 0 BISTRESULT RO 1 0 1 The BISTRESULT bit indicates whether all RAMs have passed or failed the BIST test. If BISTRESULT transitions from high to low, a RAM has experienced a compare failure (i.e. at least one of the bisterror bits have been asserted). Once a compare failure is detected, BISTRESULT transitions to a low state, and stays in that state for the remainder of the test. 0 15:2 BISTERROR bus to indicate compare failure on a RAM word. Each bit corresponds to one of the RAMs in the device. The BISTERROR bit associated with each RAM toggles high each time a compare failure is detected. 0 ett liv fo uo ef inv yV RO 14 Reset The BISTEND bit indicates the BIST test sequence has completed. When the BIST test is complete, bistend transitions from low to high. 0x0_00F4 BIST_Result2 Do wn loa de db BISTERROR[13:0] Description nT Type io Name hu 0x0_00F2 rsd ay ,1 9S ep tem be r, 20 02 Name :26 0x0_00F0 Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 Type Size Bits Description Reset RO 7 6:0 BISTERROR bus to indicate compare failure on a RAM word. Each bit corresponds to one of the RAMs in the device. The BISTERROR bit associated with each RAM toggles high each time a compare failure is detected. 0 Name BISTERROR[20:14] PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 37 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :26 6.3 OE_N Pin 02 11 :49 The OE_N pin, when high, deactivates all pins except TDO. TDO is a tri-state output driven during boundary-scan testing only (see below); applying an active-low pulse to TRSTB ensures that TDO is inactive. 20 6.4 JTAG Boundary Scan, IEEE 1149.1 9S ep tem be r, The PM7800 supports the IEEE Boundary Scan Specification as described in the IEEE 1149.1 standards. The PM7800 JTAG Test Access Port (TAP) allows access to the TAP controller and the four TAP registers: instruction, bypass, device identification and boundary scan. Using the TAP, device input logic levels can be read, device outputs can be forced, the device can be identified and the device scan path can be bypassed. nT hu rsd ay ,1 The Test Access Port (TAP) consists of the five standard pins, TRSTB, TCK, TMS, TDI and TDO used to control the TAP controller and the boundary scan registers. The TRSTB input is the activelow reset signal used to reset the TAP controller. TCK is the test clock used to sample data on input, TDI and to output data on output, TDO. The TMS input is used to direct the TAP controller through its states. fo liv ett io The boundary-can architecture is shown below. Boundary Scan Register Device Identification Register ef uo TDI yV inv Bypass Register Mux DFF TDO Do Control TMS wn loa de db Instruction Register and Decode Test Access Port Controller Select Tri-state Enable TRSTB TCK Figure 6-1 Boundary-Scan Architecture PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 38 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 20 02 11 :49 :26 The boundary scan architecture consists of a TAP controller, an instruction register with instruction decode, a bypass register, a device identification register and a boundary scan register. The TAP controller interprets the TMS input and generates control signals to load the instruction and data registers. The instruction register with instruction decode block is used to select the test to be executed and/or the register to be accessed. The bypass register offers a single-bit delay from primary input, TDI to primary output, TDO. The device identification register contains the device identification code. 9S ep tem be r, The boundary scan register allows testing of board inter-connectivity. The boundary scan register consists of a shift register place in series with device inputs and outputs. Using the boundary scan register, all digital inputs can be sampled and shifted out on primary output, TDO. In addition, patterns can be shifted in on primary input, TDI and forced onto all digital outputs. ,1 6.4.1 TAP Controller nT hu rsd ay The TAP controller is a synchronous finite state machine clocked by the rising edge of primary input, TCK. All state transitions are controlled using primary input, TMS. The finite state machine is described below. TR STB=0 io T e s t- L o g ic - R e s e t 1 ett 0 1 liv R u n - T e s t- Id le 1 S e le c t- I R - S c a n 0 0 1 1 C a p tu re -IR C a p tu r e - D R uo fo 0 1 S e le c t- D R - S c a n 0 ef 0 S h if t - IR inv S h if t- D R 1 1 0 1 yV E x it1 - IR E x it 1 - D R 0 db 0 P a u s e - IR de P a u s e -D R 0 1 loa 0 E x it2 - IR 1 1 wn 0 1 0 E x it 2 - D R U p d a te -D R Do 0 1 1 U p d a te -IR 1 0 0 A ll tr a n s itio n s d e p e n d e n t o n in p u t T M S Figure 6-2 TAP Controller Finite State Machine PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 39 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor :26 PM PMC-2001646 11 :49 Test-Logic-Reset tem be r, 20 02 The test logic reset state is used to disable the TAP logic when the device is in normal mode operation. The state is entered asynchronously by asserting input, TRSTB. The state is entered synchronously regardless of the current TAP controller state by forcing input, TMS high for 5 TCK clock cycles. While in this state, the instruction register is set to the IDCODE instruction. Run-Test-Idle 9S ep The run test/idle state is used to execute tests. ,1 Capture-DR nT hu rsd ay The capture data register state is used to load parallel data into the test data registers selected by the current instruction. If the selected register does not allow parallel loads or no loading is required by the current instruction, the test register maintains its value. Loading occurs on the rising edge of TCK. ett io Shift-DR fo liv The shift data register state is used to shift the selected test data registers by one stage. Shifting is from MSB to LSB and occurs on the rising edge of TCK. ef uo Update-DR de db yV inv The update data register state is used to load a test register's parallel output latch. In general, the output latches are used to control the device. For example, for the EXTEST instruction, the boundary scan test register's parallel output latches are used to control the device's outputs. The parallel output latches are updated on the falling edge of TCK. loa Capture-IR Shift-IR Do wn The capture instruction register state is used to load the instruction register with a fixed instruction. The load occurs on the rising edge of TCK. The shift instruction register state is used to shift both the instruction register and the selected test data registers by one stage. Shifting is from MSB to LSB and occurs on the rising edge of TCK. Update-IR PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 40 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 11 :49 :26 The update instruction register state is used to load a new instruction into the instruction register. The new instruction must be scanned in using the Shift-IR state. The load occurs on the falling edge of TCK. 20 02 The Pause-DR and Pause-IR states are provided to allow shifting through the test data and/or instruction registers to be momentarily paused. tem be r, 6.4.2 Registers 6.4.2.1 Instruction Register ,1 Selected Register Boundary Scan IDCODE Identification SAMPLE Boundary Scan BYPASS Bypass BYPASS Bypass STCTEST Boundary Scan 101 BYPASS Bypass 110 BYPASS Bypass 111 nT hu rsd EXTEST liv Instruction Codes, IR[2:0] fo Instructions 9S Instruction Register ay Table 6-2 ep Length = 3 bits 000 001 010 io 011 inv ef uo ett 100 yV 6.4.2.2 Identification register db Length = 32 bits Identification Register Length 32 bits wn loa de Table 6-3 1h Do Version number Part Number 7800h Manufacturer's identification code 0CDh Device identification 178000CDh 6.4.2.3 Boundary Scan Register Name Register Bit -------------------------------- -----------OEB_GPIO7 333 Cell Type --------OUT_CELL Device ID --------L PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 41 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ef :26 :49 11 02 20 r, tem be ep 9S ,1 ay rsd L L L L H H H H L L L L L L L L L L L L L L L H H L L H H L H - io nT hu IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL IN_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL ett liv fo uo 332 331 330 329 328 327 326 325 324 323 322 321 320 319 318 317 316 315 314 313 312 311 310 309 308 307 306 305 304 303 302 301 300 299 298 297 296 295 294 293 292 291 290 289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 272 271 270 269 268 267 266 265 264 263 262 261 260 259 258 257 256 inv yV db de loa wn Do GPIO7 OEB_GPIO6 GPIO6 OEB_GPIO4 GPIO4 OEB_GPIO5 GPIO5 OEB_GPIO2 GPIO2 OEB_GPIO1 GPIO1 OEB_GPIO3 GPIO3 OEB_GPIO0 GPIO0 OEB_VD_I13 VD_I13 OEB_VD_I10 VD_I10 OEB_VD_I14 VD_I14 OEB_VD_I11 VD_I11 OEB_VD_I15 VD_I15 OEB_VD_I12 VD_I12 OEB_VD_I7 VD_I7 OEB_VD_I8 VD_I8 OEB_VD_I4 VD_I4 OEB_VD_I9 VD_I9 OEB_VD_I5 VD_I5 OEB_VD_I6 VD_I6 OEB_VD_I0 VD_I0 OEB_VD_I1 VD_I1 OEB_VD_I2 VD_I2 OEB_VD_I3 VD_I3 DCLK OEB_VD_Q15 VD_Q15 OEB_VD_Q14 VD_Q14 OEB_VD_Q13 VD_Q13 OEB_VD_Q12 VD_Q12 OEB_VD_Q11 VD_Q11 OEB_VD_Q10 VD_Q10 OEB_VD_Q9 VD_Q9 OEB_VD_Q8 VD_Q8 OEB_VD_Q7 VD_Q7 OEB_VD_Q5 VD_Q5 OEB_VD_Q4 VD_Q4 OEB_VD_Q6 VD_Q6 OEB_VD_Q3 VD_Q3 OEB_VD_Q1 VD_Q1 OEB_VD_Q0 Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 42 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ef :26 :49 11 02 20 r, tem be ep 9S ,1 ay rsd - io nT hu IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL IN_CELL IN_CELL IN_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL OUT_CELL OUT_CELL OUT_CELL OUT_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL ett liv fo uo 255 254 253 252 251 250 249 248 247 246 245 244 243 242 241 240 239 238 237 236 235 234 233 232 231 230 229 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 inv yV db de loa wn Do VD_Q0 OEB_VD_Q2 VD_Q2 OEB_GPIO47 GPIO47 OEB_GPIO46 GPIO46 OEB_GPIO45 GPIO45 MUTE_N CPUMODE4 CPUMODE3 OEB_GPIO44 GPIO44 OEB_GPIO42 GPIO42 OEB_GPIO43 GPIO43 ADR1 ADR0 ADR2 ADR4 ADR8 ADR3 ADR7 ADR11 ADR6 ADR10 ADR5 ADR9 ADR14 ADR13 ADR17 ADR12 ADR16 ADR15 CS2 CS1_N CS0_N CPUCLK STRB1_N STRB2_N OEB_WAIT_N WAIT_N OEB_IRQ_N IRQ_N OEB_DAT0 DAT0 OEB_DAT1 DAT1 OEB_DAT2 DAT2 OEB_DAT3 DAT3 OEB_DAT4 DAT4 OEB_DAT5 DAT5 OEB_DAT6 DAT6 OEB_DAT7 DAT7 OEB_DAT8 DAT8 OEB_DAT9 DAT9 OEB_DAT11 DAT11 OEB_DAT12 DAT12 OEB_DAT10 DAT10 OEB_DAT13 DAT13 OEB_DAT15 DAT15 OEB_DAT14 Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 43 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ef :26 :49 11 02 20 r, tem be ep 9S ,1 ay rsd - io nT hu IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL IN_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL IN_CELL IN_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL IN_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL IN_CELL OUT_CELL IO_CELL IN_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL IN_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL ett liv fo uo 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 inv yV db de loa wn Do DAT14 OEB_GPIO41 GPIO41 OEB_GPIO38 GPIO38 OEB_GPIO37 GPIO37 OEB_GPIO39 GPIO39 VSS OEB_GPIO36 GPIO36 OEB_GPIO40 GPIO40 CPUMODE1 CPUMODE0 OEB_SD SD OEB_GPIO35 GPIO35 OEB_GPIO33 GPIO33 OEB_GPIO30 GPIO30 OEB_GPIO34 GPIO34 OEB_GPIO31 GPIO31 HOP_N OEB_GPIO32 GPIO32 OEB_GPIO29 GPIO29 SCS_N OEB_VREF_Q1 VREF_Q1 SCLK OEB_VREF_Q2 VREF_Q2 OEB_VREF_Q0 VREF_Q0 OEB_VREF_Q3 VREF_Q3 OEB_VREF_Q4 VREF_Q4 OEB_VREF_Q6 VREF_Q6 OEB_VREF_Q5 VREF_Q5 OEB_VREF_Q7 VREF_Q7 OEB_VREF_Q8 VREF_Q8 OEB_VREF_Q9 VREF_Q9 OEB_VREF_Q10 VREF_Q10 OEB_VREF_Q11 VREF_Q11 OEB_VREF_Q12 VREF_Q12 OEB_VREF_Q13 VREF_Q13 OEB_VREF_Q15 VREF_Q15 OEB_VREF_Q14 VREF_Q14 REFCLK OEB_VREF_I2 VREF_I2 OEB_VREF_I1 VREF_I1 OEB_VREF_I0 VREF_I0 OEB_VREF_I5 VREF_I5 OEB_VREF_I4 Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 44 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ef :26 :49 11 02 20 r, tem be ep 9S ,1 ay rsd - io nT hu IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL IN_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL ett liv fo uo 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 inv yV db de loa wn Do VREF_I4 OEB_VREF_I8 VREF_I8 OEB_VREF_I3 VREF_I3 OEB_VREF_I7 VREF_I7 OEB_VREF_I6 VREF_I6 OEB_VREF_I11 VREF_I11 OEB_VREF_I10 VREF_I10 OEB_VREF_I15 VREF_I15 OEB_VREF_I14 VREF_I14 OEB_VREF_I9 VREF_I9 OEB_VREF_I13 VREF_I13 OEB_GPIO28 GPIO28 OEB_VREF_I12 VREF_I12 RESET_N OEB_GPIO27 GPIO27 OEB_GPIO25 GPIO25 OEB_GPIO26 GPIO26 OEB_GPIO23 GPIO23 OEB_GPIO22 GPIO22 OEB_GPIO24 GPIO24 OEB_GPIO21 GPIO21 OEB_GPIO19 GPIO19 OEB_GPIO18 GPIO18 OEB_GPIO20 GPIO20 OEB_GPIO17 GPIO17 OEB_GPIO16 GPIO16 OEB_GPIO15 GPIO15 VOBS_Q15 VOBS_Q13 VOBS_Q9 VOBS_Q14 VOBS_Q10 VOBS_Q6 VOBS_Q11 VOBS_Q7 VOBS_Q12 VOBS_Q8 VOBS_Q3 VOBS_Q4 VOBS_Q5 VOBS_Q0 VOBS_Q1 VOBS_Q2 VOBS_I12 VOBS_I13 VOBS_I14 VOBS_I15 VOBS_I11 VOBS_I10 VOBS_I9 VOBS_I8 VOBS_I7 Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 45 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet tem be r, 20 02 11 :49 :26 - ep IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL IN_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL OUT_CELL IO_CELL IN_CELL 9S 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ,1 VOBS_I6 VOBS_I5 VOBS_I4 VOBS_I3 VOBS_I2 VOBS_I1 VOBS_I0 SCANSEL SCANEN OE_N OEB_GPIO14 GPIO14 OEB_GPIO13 GPIO13 OEB_GPIO12 GPIO12 OEB_GPIO11 GPIO11 OEB_GPIO10 GPIO10 OEB_GPIO9 GPIO9 OEB_GPIO8 GPIO8 VD_FMT Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 rsd ay 6.4.3 Instructions nT hu The following is an description of the standard instructions. Each instruction selects an serial test data register path between input, TDI and output, TDO. ett io BYPASS uo fo liv The bypass instruction shifts data from input, TDI to output, TDO with one TCK clock period delay. The instruction is used to bypass the device. ef EXTEST wn Do SAMPLE loa de db yV inv The external test instruction allows testing of the interconnection to other devices. When the current instruction is the EXTEST instruction, the boundary scan register is place between input, TDI and output, TDO. Primary device inputs can be sampled by loading the boundary scan register using the Capture-DR state. The sampled values can then be viewed by shifting the boundary scan register using the Shift-DR state. Primary device outputs can be controlled by loading patterns shifted in through input TDI into the boundary scan register using the Update-DR state. The sample instruction samples all the device inputs and outputs. For this instruction, the boundary scan register is placed between TDI and TDO. Primary device inputs and outputs can be sampled by loading the boundary scan register using the Capture-DR state. The sampled values can then be viewed by shifting the boundary scan register using the Shift-DR state. IDCODE PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 46 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :49 :26 The identification instruction is used to connect the identification register between TDI and TDO. The device's identification code can then be shifted out using the Shift-DR state. 11 STCTEST tem be r, 20 02 The single transport chain instruction is used to test out the TAP controller and the boundary scan register during production test. When this instruction is the current instruction, the boundary scan register is connected between TDI and TDO. During the Capture-DR state, the device identification code is loaded into the boundary scan register. The code can then be shifted out output, TDO using the Shift-DR state. ,1 9S ep 6.4.4 Boundary Scan Cells IDCODE ay Scan Chain Out rsd Input Pad hu G1 G2 SHIFT-DR io nT 12 1 2 MUX 12 I.D. Code bit D C ett 12 INPUT to internal logic CLOCK-DR fo liv Scan Chain In Input Observation Cell (IN_CELL) Do wn loa de db yV inv ef uo Table 6-4 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 47 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor :49 :26 PM PMC-2001646 Scan Chain Out 1 1 I.D. code bit r, 1 1 1 1 2 2 MUX 2 2 D D C C ep CLOCK-DR tem be SHIFT-DR OUTPUT or Enable MUX 20 G1 G2 IDOODE 02 Output or Enable from system logic 11 G1 EXTEST UPDATE-DR 9S Scan Chain In Output Cell (OUT_CELL) inv ef uo IDCODE yV I.D. code bit 1 fo OUTPUT from internal logic INPUT from pin G1 liv EXTEST SHIFT-DR Scan Chain Out ett io nT hu rsd ay ,1 Figure 6-3 MUX 1 G1 G2 12 1 2 MUX 12 12 D C INPUT to internal logic OUTPUT to pin D C CLOCK-DR Scan Chain In Figure 6-4 Bi-directional Cell (IO_CELL) Do wn loa de db UPDATE-DR PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 48 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor :49 :26 PM PMC-2001646 OUTPUT ENABLE from internal logic (0 = drive) 11 Scan Chain Out INPUT to internal logic OUTPUT from internal logic 20 02 OUT_CELL IO_CELL tem be r, I/O PAD Scan Chain In ep Layout of Output Enable and Bidirectional Cells Do wn loa de db yV inv ef uo fo liv ett io nT hu rsd ay ,1 9S Figure 6-5 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 49 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 :26 7 Absolute Maximum Ratings 11 :49 Maximum rating are the worst case limits that the device can withstand without sustaining permanent damage. They are not indicative of normal mode operation conditions. Symbol Value r, Parameter 20 02 Absolute Maximum Ratings Units TJ (Absolute) +150 Junction Temperature under Bias (Operation) 1 TJ (Operation) -40 to +125 °C Junction Temperature under Bias (Long-Term) 2 TJ (Long-Term) -40 to +105 °C Storage Temperature TST Supply Voltage 3,4 VVDDI Supply Voltage 3,4 VVDD Voltage on Any Pin VIN IIN liv ett DC Input Current °C -0.3 to + 3.6 VDC -0.3 to + 6.0 VDC -0.3 to 6.0 VDC ±1000 V ±100 mA ±20 mA +230 °C uo fo Lead Temperature -40 to +125 9S ,1 ay rsd hu nT io Latch-Up Current °C ep Junction Temperature Static Discharge Voltage tem be Table 7-1 ef Notes on Power Supplies: inv 1. Correct operation is not guaranteed outside these limits. yV 2. Long-term operation outside these limits will reduce reliability. db 3. VDD must power up before VDDI. Do wn loa de 4. VDD must not drop below VDDI except when VDDI is not powered. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 50 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 :26 8 DC Characteristics 11 :49 TJ = -40°C to +125°C, VVDD = 3.3 V ± 5%, VVDDI = 1.8V ± 5% Parameter Min Typ Max Units r, Symbol 20 D.C.Characteristics Conditions tem be Table 8-1 02 (Typical Conditions: TJ = 25°C, VVDD = 3.3 V, VVDDI = 1.8V) Pin Power Supply 3.15 3.3 3.45 Volts Tj = -40°C to 125°C VDDI Core Power Supply 1.71 1.8 1.89 Volts Tj = -40°C to 125°C VIL Input Low Voltage 0 0.8 Volts VIH Input High Voltage 2.0 VOL Output or Bidirec- 0 9S ep VDD 0.4 ay 0.1 ,1 Volts Volts hu nT uo fo liv ett io • IRQ_N • VD_I[15:0], VD_Q[15:0] • SD • TDO • GPIO[47:0] IOL = 15mA for • DAT[15:0] • WAIT_N Output or Bidirec- Volts yV loa de db • IRQ_N • VD_I[15:0], VD_Q[15:0] • SD • TDO • GPIO[47:0] IOH = -15mA for • DAT[15:0] • WAIT_N wn Do VT+ Schmitt Input High VDD = min IOH = -4mA for • VREF_I[15:0], VREF_Q[15:0] (outputs in scan test mode only) IOH = -12mA for inv tional High Voltage 2.4 ef VOH VDD = min IOL = 4mA for • VREF_I[15:0], VREF_Q[15:0] (outputs in scan test mode only) IOL = 12mA for rsd tional Low Voltage 2.2 Volts Threshold Voltage VT- Schmitt Input Low 0.8 Volts Threshold Voltage VTH Schmitt Input Hyster- 0.87 Volts esis Voltage PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 51 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Symbol Min Input Low Leak Cur- Typ Max Units Conditions -10 +10 µA VIL = GND. Note 1 -10 +10 µA VIH = VDD. Note 1 -10 +10 µA VIL = GND. Note 1 +50 +400 µA -300 -10 11 IIL Parameter :26 D.C.Characteristics :49 Table 8-1 Digital Correction Signal Processor PM PMC-2001646 IIH Input High Leak Cur- 02 rent rent for input with IIHPD Input High Leak Cur- ep pull-down. µA VIL = GND. Note 1 µA VIH = VDD. Note 1 ay Input Low Leak Cur- ,1 pull-down. rent for input with rsd pull-up. -10 Input High Leak Cur- +10 hu IIHPU VIH = VDD. Note 1 9S rent for input with IILPU r, Input Low Leak Cur- tem be IILPD 20 rent nT rent for input with Output Capacitance CIO Bidirectional Capaci- rent for PM7800 ef (VDDI) yV inv Core Operating Cur- uo tance IDDOP Nominal IO Operating (VDDO) Current for PM7800 8 pF 8 pF 230 560 (VDDI = (VDDI = 1.80V) 1.89V) 132 mA DCLK = 80MHz mA VDDO = 3.3V DCLK = 80MHz CL = 20pF loa de db IDDOP pF ett COUT 8 liv Input Capacitance fo CIN io pull-up. Do wn Notes on D.C. Characteristics: 1. Positive currents flow into the device (sinking), negative currents flow out of the device (sourcing). PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 52 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :26 9 AC Timing 11 :49 TJ = -40°C to +125°C, VVDD = 3.3 V ± 5%, VVDDI = 1.8V ± 5% 02 Notes on Input Timing: r, 20 1. When a set-up time is specified between an input and a clock, the set-up time is the time in nanoseconds from the 1.4 Volt point of the input to the 1.4 Volt point of the clock. tem be 2. When a hold time is specified between an input and a clock, the hold time is the time in nanoseconds from the 1.4 Volt point of the clock to the 1.4 Volt point of the input. 9S ep 3. It is recommended that the transition time on all clock inputs is less than 15 ns. ,1 Notes on Output Timing: rsd ay 1. Output propagation delay time is the time in nanoseconds from the 1.4 Volt point of the reference signal to the 1.4 Volt point of the output. liv ett io nT hu 1. Output tristate delay is the time in nanoseconds from the 1.4 Volt point of the reference signal to the point where the total current delivered through the output is less than or equal to the leakage current. uo Figure 9-1 fo 9.1 RESET_N RESET_N 20ns ef 0ns 60ns 80ns 100ns 12 inv tw de db yV RESET_N 40ns RESET_N loa Table 9-1 100 max units ns description notes RESET_N pulse width. Do tw min wn parameter PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 53 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 CPU Interface - DCLK Timing 0ns 5ns 10ns 15ns 20ns 25ns tch toz tah tem be ADR[17:0] toe ep tdp tdh ,1 9S DAT[15:0] tds r, tas 20 STRBx,CSx 3 02 tcs 30ns 11 DCLK :49 Figure 9-2 :26 9.2 CPU Interface min units ns tcs 3 ns tch 2 tas 5 tah 0 tds 5 tdh trp de loa wn Do toz description notes DCLK Period. 1 ns STRB1_N, STRB2_N, CS0_N, CS1_N, CS2 hold time from DCLK. 1 ns ADR setup time to DCLK. 1 ns ADR hold time from DCLK. 1 ns DAT input-setup time to DCLK. 1 ns DAT input-hold time from DCLK. 1 12 ns DAT driven delay from DCLK, 30pF load. 12 ns DAT propagation delay from DCLK, 30pF load. 12 ns DAT released delay from STRBx, CSx, 30pF load. 12 ns IRQ_N propagation delay from DCLK, 30pF load. yV inv ef uo fo STRB1_N, STRB2_N, CS0_N, CS1_N, CS2 setup time to DCLK. 0 toe tdp liv 12.5 db TDCLK max nT parameter io CPU Interface - DCLK Timing ett Table 9-2 hu rsd ay IRQ_N trp 1. The system designer need not worry about violating setup and hold times - all inputs are treated as asynchronous signals. Setup and hold times are specified here to identify the clock edge on which the signal is sampled. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 54 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor CPU Interface - CPUCLK Timing 5ns 10ns 15ns 20ns 25ns 30ns 3 11 0ns :49 Figure 9-3 :26 PM PMC-2001646 CPUCLK t ch 02 t cs 20 STRBx,CSx t chx t wp parameter min max ay CPU Interface - CPUCLK Timing units description notes rsd Table 9-3 ,1 9S ep WAIT_N tem be r, t csx STRBx,CSx 8 ns CPUCLK Period. tcs 3 ns STRB1_N, STRB2_N, CS0_N, CS1_N, CS2 setup time to positive edge CPUCLK. tch 2 ns tcsx 3 ns tchx 2 twp 2 (15pF) 5 (15pF) io nT hu TCPUCLK ett liv fo ns STRB1_N, STRB2_N, CS0_N, CS1_N, CS2 hold time from negative edge CPUCLK (for reads operation with CPUMODE3 = 1). ns ns WAIT_N propagation delay from CPUCLK (CPUMODE4 = 0). WAIT_N propagation delay from CPUCLK (CPUMODE4 = 1). uo ef STRB1_N, STRB2_N, CS0_N, CS1_N, CS2 setup time to negative edge CPUCLK (for reads operation with CPUMODE3 = 1). Do wn loa de db yV inv 10 (30pF) 16 (30pF) STRB1_N, STRB2_N, CS0_N, CS1_N, CS2 hold time from posedge CPUCLK. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 55 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 :26 9.3 VREF, VOBS, VD Interfaces :49 9.3.1 Dual-Clock System Dual-Clock System timing 0ns 5ns tem be Figure 9-4 r, 20 02 11 Use the dual-clock system when VREF is synchronous to REFCLK (usually when VREF is upsampled internally to the DCLK rate). In this case, a FIFO and interpolator are used to upsample VREF to the DCLK rate. REFCLK must be created from DCLK such that there is no varying phase shift that may cause under-run or over-run. 10ns 15ns T DCLK 25ns ep DCLK 20ns thvobs 9S tsvobs ,1 VOBS top nT REFCLK 12.5 ett REFCLK period. 1 ns DCLK to REFCLK skew. 2 ns VOBS setup time to DCLK. ns VOBS hold time from DCLK. ns Output delay from DCLK. 2 ns VREF setup time to REFCLK. 0 ns VREF hold time from REFCLK. 3 TDCLK db tsvobs 0 de wn loa 1.8 (15pF) Do notes ns 0 thref description DCLK period. tskew tsref thref ns ef TREFCLK units inv 12.5 yV TDCLK top fo max uo min thvobs tsref liv Dual-Clock System timing parameter tskew io VREF Table 9-4 T REFCLK hu rsd ay VD 7.8 (30pF) Note: 1. TREFCLK must be an exact integer multiple of TDCLK, i.e. TREFCLK = nTDCLK, where n = 1,2,...,10. REFCLK must be created from DCLK. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 56 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :49 :26 2. Skew may exist between DCLK and REFCLK, but this skew must not vary over time by more than one DCLK period. 11 9.3.2 Single-Clock System Single-Clock System timing 0ns 5ns 10ns tem be Figure 9-5 r, 20 02 Use the single-clock system when all signals are synchronous to DCLK and the data-rate of VREF is the same as the output data-rate of VD. In this case, connect the REFCLK pin to VSS, and bypass the FIFO and interpolator to reduce latency through the chip. 15ns ep TDCLK 20ns tsvref thvref ay ,1 VREF 9S DCLK rsd tsvobs top nT hu VOBS thvobs parameter min max 3 thvref 0 tsvobs 3 thvobs yV inv ef tsvref 0 de 1.8 (15pF) 7.8 (30pF) description ns DCLK period. ns VREF setup time to DCLK. ns VREF hold time from DCLK. ns VOBS setup time to DCLK. ns VOBS hold time from DCLK. ns VD propagation delay from DCLK. notes Do wn loa top units uo 12.5 db TDCLK liv Single-Clock System timing fo Table 9-5 ett io VD PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 57 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :26 9.4 Serial Interface 11 :49 9.4.1 Serial Interface AC Timing 0ns 10ns 20ns 30ns 40ns 50ns 60ns 70ns r, AC Timing for Serial Inputs (SCLK, SCS_N, SD, HOP_N) 80ns 90ns 100n tem be Figure 9-6 20 02 All serial inputs are debounced and synchronized to dclk. The minimum pulse width for all serial input signals is 2TDCLK + setup and hold. dclk ep tw tnx 9S tih tis tw ,1 PIN tis nT hu rsd ay Debounced_PIN min max units 0 ns tih 3 tw 2TD + tis + tih Hold time from DCLK. 1 ns Pulse width for input. 2 ns Noise exclusion period. 3 uo ef TD - tis - tih notes 1 ns yV inv tnx description Setup time to DCLK. liv tis ett parameter io AC Timing for Serial Inputs (SCLK, SCS_N, SD, HOP_N) fo Table 9-6 db Note: wn loa de 1. The system designer need not worry about violating tis and tih - all inputs are treated as asynchronous signals. Setup and hold times are specified here to identify the clock edge on which the signal is sampled. Do 2. The input signal must be stable for at least two rising edges of DCLK. 3. All serial inputs are debounced on rising and falling edges. The period of noise (bounce) must be smaller than TD - tis - tih. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 58 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 GPIO 0ns 10ns 20ns 30ns tis DAT[15:0] tih tw data_in ep tem be data_out max units description 3 ns GPIO input-setup time to DCLK. tih 2 ns GPIO input-hold time from DCLK. tw 2TDCLK + tis + tih ns GPIO[31:24] signal width. top 2 (15pF) 14 (30pF) ns toz 2 (15pF) 14 (30pF) hu 2 GPIO output-driven delay from DCLK. GPIO output-propagation delay from DCLK. GPIO output-released delay from DCLK. uo fo liv ns 1 nT ns io 14 (30pF) ett 2 (15pF) 1 rsd tis toe notes ay min ,1 9S GPIO parameter 20 toz r, toe 02 top Table 9-7 40ns 11 DCLK :49 Figure 9-7 :26 9.5 GPIO inv ef 1. The system designer need not worry about violating tis and tih - all inputs are treated as asynchronous signals. Setup and hold times are specified here to identify the clock edge on which the signal is sampled. Do wn loa de db yV 2. GPIO[31:24] are debounced. The input signal must be stable for at least two rising edges of DCLK. The period of noise (bounce) must be smaller than TD - tis - tih. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 59 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 JTAG Interface :49 Figure 9-8 :26 9.6 JTAG Interface tS TMS tH TMS tS TDI tH TDI tem be r, 20 TMS 02 11 TCK 9S ep TDI tP ,1 TCK ay TDO nT hu rsd TDO TRSTB units description 5 MHz TCK Frequency 60 % TCK Duty Cycle ns TMS Set-up time to TCK ns TMS Hold time to TCK ns TDI Set-up time to TCK 50 ns TDI Hold time to TCK ns TCK Low to TDO Valid ns TRSTB Pulse Width 50 tSTDI 50 de tHTMS loa 50 Do tSTMS db 40 tHTDI max inv min wn parameter ef JTAG Interface yV Table 9-8 uo fo liv ett io TRSTB tV tPTDO 2 tVTRSTB 100 50 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE notes 60 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 :49 :26 10 Thermal 100 200 Dense Board 23.4 20.7 18.9 JEDEC Board 15.7 14.0 400 500 17.8 17.3 17.1 12.0 11.4 10.9 300 9S ep tem be r, Conv 20 Theta JA @1.6W 02 11 Forced Air (Linear Feet per Minute) ay ,1 12.8 rsd Notes: ett io nT hu 1. Dense Board is defined as a 3S3P board and consists of a 3x3 array of device PM7800 located as close to each other as board design rules allow. All PM7800 devices are assumed to be dissipating 1.6Watts. Theta-JA listed is for the device in the middle of the array. Do wn loa de db yV inv ef uo fo liv 2. JEDEC Board: Theta-JA is the measured value for a single thermal device in the same package on a 2S2P board following EIA/JESD 51-3. PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 61 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet ISSUE 4 Digital Correction Signal Processor PM PMC-2001646 Do wn loa de db yV inv ef uo fo liv ett io nT hu rsd ay ,1 9S ep tem be r, 20 02 11 :49 :26 11 Mechanical PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 62 PMC-Sierra, Inc. Released Digital Correction Signal Processor PM7800 PALADIN-10 Data Sheet Digital Correction Signal Processor PM ISSUE 4 PMC-2001646 :26 CONTACTING PMC-SIERRA, INC. +1 (604) 415-6000 Fax: +1 (604) 415-6200 Web Site: http://www.pmc-sierra.com ep [email protected] [email protected] [email protected] (604) 415-4533 wn loa de db yV inv ef uo fo liv ett io nT hu rsd ay ,1 9S Document Information: Corporation Information: Application Information: tem be r, Tel: 20 02 11 :49 PMC-Sierra, Inc. 8555 Baxter Place, Burnaby, BC Canada V5A 4V7 Do None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency, fitness or suitability for a particular purpose of any such information or the fitness, or suitability for a particular purpose, merchantability, performance, compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this document. PMC-Sierra, Inc. expressly disclaims all representations and warranties of any kind regarding the contents or use of the information, including, but not limited to, express and implied warranties of accuracy, completeness, merchantability, fitness for a particular use, or non-infringement. In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to, lost profits, lost business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been advised of the possibility of such damage. © 2002 PMC-Sierra, Inc. PMC-2001646 (R4) Issue date: May, 2002 PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC. AND FOR ITS CUSTOMERS’ INTERNAL USE 63